National Library of Energy BETA

Sample records for fast pyrolysis conversion

  1. Fast Pyrolysis Conversion Tests of Forest Concepts’ Crumbles.

    SciTech Connect (OSTI)

    Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

    2012-04-02

    The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect (OSTI)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  3. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  4. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fast Pyrolysis and Hydroprocessing Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in...

  5. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect (OSTI)

    Dutta, Abhijit; Sahir, Asad; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John Lukas

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  6. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  7. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels Title Supply Chain Sustainability Analysis of Fast Pyrolysis and...

  8. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  9. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  10. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  11. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology Pathway...

  12. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect (OSTI)

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  13. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  14. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  15. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  16. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect (OSTI)

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  17. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  18. Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst 

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2013-05-01

    include liquefaction, gasification, and pyrolysis. Among these biomass technologies, pyrolysis (i.e. a thermochemical conversion process of any organic material in the absence of oxygen) has gained more attention because of its simplicity in design...

  19. Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake q

    E-Print Network [OSTI]

    Reichenbach, Stephen E.

    Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake q Charles A h i g h l i g h t s Oil seed presscakes are a source of proteinaceous biomass. Stable pyrolysis pyrolysis oils produced from proteinaceous biomass, such as pennycress presscake differ signif- icantly from

  20. Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

  1. Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels 

    E-Print Network [OSTI]

    Imam, Tahmina 1983-

    2012-11-30

    Because of the limited supply of imported crude oil and environmental degradation, renewable energy is becoming commercially feasible and environmentally desirable. In this research, biological and thermal (pyrolysis) conversion pathways for biofuel...

  2. Pyrolysis of scrap tires and conversion of chars to activated carbon

    SciTech Connect (OSTI)

    Merchant, A.A.; Petrich, M.A. . Dept. of Chemical Engineering)

    1993-08-01

    The primary objective of this work was to demonstrate the conversion of scrap tires to activated carbon. The authors have been successful in this endeavor, producing carbons with surface areas greater than 500 m[sup 2]/g and significant micropore volumes. Tire shreddings were pyrolyzed in batch reactors, and the pyrolysis chars activated by reaction with superheated steam. Solid products of pyrolysis and activation were studied with nitrogen adsorption techniques. They find that the porosity development during steam activation of tire pyrolysis char is similar to that reported for various other chars. A maximum in micropore volume is observed as a function of conversion, but the total surface area increases monotonically with conversion. They suggest that the activation process consists of micropore formation, followed by pore enlargement. The process conditions used in this study are a good starting point from which to optimize a process to convert tires to activated carbon.

  3. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Kreibich, Roland E. (Auburn, WA)

    1992-01-01

    A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.

  4. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect (OSTI)

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ? 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  5. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  6. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  7. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  8. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  9. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect (OSTI)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  10. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect (OSTI)

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  11. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils

    SciTech Connect (OSTI)

    George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ���µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125���°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90���ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

  12. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Male, Jonathan L.

    2012-02-01

    Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

  13. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia; Elliott, Douglas C.; Solantausta, Yrjo

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standards are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.

  14. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOE Patents [OSTI]

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  15. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOE Patents [OSTI]

    Chum, Helena L. (8448 Allison Ct., Arvada, CO 80005); Black, Stuart K. (4976 Raleigh St., Denver, CO 80212); Diebold, James P. (57 N. Yank Way, Lakewood, CO 80228); Kreibich, Roland E. (4201 S. 344th, Auburn, WA 98001)

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  16. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  17. Fast Pyrolysis and Hydrotreating: 2014 State of Technology R&D and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Zacher, Alan H.; Olarte, Mariefel V.; Drennan, Corinne

    2015-03-20

    This report documents the technical targets and modeled costs associated with the Bioenergy Technologies Office 2014 fiscal year research related to pyrolysis oil upgrading to hydrocarbons.

  18. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  19. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  20. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications BETO Conversion Program Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis...

  1. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q.

    2011-12-01

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.

  2. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  3. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  4. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect (OSTI)

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  5. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Black, Stuart K. (Denver, CO); Diebold, James P. (Lakewood, CO); Kreibich, Roland E. (Auburn, WA)

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  6. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  7. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Wang, Huamin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rover, Majorie [Iowa State University, Ames, IA (United States); Whitmer, Lysle [Iowa State University, Ames, IA (United States); Smith, Ryan [Iowa State University, Ames, IA (United States); Brown, Robert C. [Iowa State University, Ames, IA (United States)

    2015-05-04

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  8. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore »the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  9. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Snowden-Swan, Lesley J.

    2013-08-27

    This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

  10. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcement atofPyrolysis | Department

  11. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect (OSTI)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  12. Fast Pyrolysis and Hydrotreating 2013 State of Technology R&D and Projections to 2017

    SciTech Connect (OSTI)

    Jones, Susanne B.; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Zacher, Alan H.; Olarte, Mariefel V.; Drennan, Corinne

    2014-04-16

    This report documents the FY13 modeled costs and experimental basis for those costs for fast pyrolyis and hydrotreating to liquid fuels. The report also documents the projected costs to 2013.

  13. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  14. Process for fractionating fast-pyrolysis oils, and products derived therefrom

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Black, Stuart K. (Denver, CO)

    1990-01-01

    A process is disclosed for fractionating lignocellulosic materials fast-prolysis oils to produce phenol-containing compositions suitable for the manufacture of phenol-formaldehyde resins. The process includes admixing the oils with an organic solvent having at least a moderate solubility parameter and good hydrogen The United States Government has rights in this invention under Contract No. DE-AC02-83CH10093 between the United States Department of Energy and the Solar Energy Research Institute, a Division of the Midwest Research Institute.

  15. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions

    E-Print Network [OSTI]

    Malghani, S; Gleixner, G; Trumbore, SE

    2013-01-01

    of biochar from fast pyrolysis and gasi?cation systems.Effects of slow and fast pyrolysis biochar on soil C and Ncarbonaceous products obtained by pyrolysis and hydrothermal

  16. CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS

    SciTech Connect (OSTI)

    Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

    2012-10-14

    Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

  17. Mode conversion and absorption of fast waves at high ion cyclotron harmonics in inhomogeneous magnetic fields

    SciTech Connect (OSTI)

    Cho, Suwon; Kwak, Jong-Gu

    2014-04-15

    The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where ?{sub i}=k{sub ?}{sup 2}?{sub i}{sup 2}/2?1 (where k{sub ?} is the perpendicular wave number and ?{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.

  18. One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies

    SciTech Connect (OSTI)

    Jia, Guo-Zhang; Gao, Zhe

    2014-12-15

    The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.

  19. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    2.2 Proton Acceleration . . . . . . . . . . . . . . . .plasma (LSP) simulations . . Proton Focusing and ConversionProton Focusing and Conversion Efficiency with Hemispherical

  20. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  1. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  2. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  3. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  4. 8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission and Climate Change

    E-Print Network [OSTI]

    Columbia University

    8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission Pyrolysis and Gasification / New Materials / New Processes ·Waste-to-Energy Conversion Traditional as well

  5. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  6. Evaluation of ethane as a power conversion system working fluid for fast reactors

    E-Print Network [OSTI]

    Perez, Jeffrey A

    2008-01-01

    A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

  7. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    SciTech Connect (OSTI)

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  8. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    1.1 Concept of Inertial Confinement Fusion . 1.2 FastFigure 1.3: Inertial Confinement Fusion: (a) Direct laser4] J. D. Lindl, Inertial Confinement Fusion. New York, NY:

  9. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions

    E-Print Network [OSTI]

    Malghani, S; Malghani, S; Gleixner, G; Trumbore, SE

    2013-01-01

    of slow and fast pyrolysis biochar on soil C and N turnoverpyrolysis and hydrothermal carbonisation of corn stover. Soilmatter. Slow pyrolysis char is more stable in soil and had

  10. FAST

    Energy Science and Technology Software Center (OSTI)

    002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

  11. Consider Upgrading Pyrolysis Oils Into Renewale Fuels

    SciTech Connect (OSTI)

    Holmgren, J.; Marinangeli, R.; Nair, P.; Elliott, D.; Bain, R.

    2008-09-01

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. An alternate route being pursued involves using a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  12. A Generalized Pyrolysis Model for Combustible Solids

    E-Print Network [OSTI]

    Lautenberger, Chris

    2007-01-01

    development of the FDS5 pyrolysis model have helped shapebeta versions of the pyrolysis model, but never complained,pyrolysis. 153 Figure

  13. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect (OSTI)

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  14. Formate-assisted pyrolysis

    DOE Patents [OSTI]

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  15. Laboratory Scale Dip-Coating and Vacuum Conversion of Solution

    E-Print Network [OSTI]

    Laboratory Scale Dip-Coating and Vacuum Conversion of Solution Deposited YBCO SANDIA NATIONAL) and $100K (ORNL) #12;FY 2003 Plans · Develop rapid solvent pyrolysis for the TFA-YBCO dip-coating process · Demonstrate continuous dip coating and solvent pyrolysis for meter length tapes · Investigate the conversion

  16. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene

    SciTech Connect (OSTI)

    Solak, Agnieszka; Rutkowski, Piotr

    2014-02-15

    Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

  17. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  18. Ultrasonic Spray Pyrolysis of Hierarchically Structured Cathode Materials

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Ultrasonic Spray Pyrolysis of Hierarchically Structuredsuch as ultrasonic spray pyrolysis generate fine particlesusing ultrasonic spray pyrolysis. Our initial work has

  19. 90 Seconds of Discovery: Fast Pyrolysis

    ScienceCinema (OSTI)

    Weber, Robert; Elliot, Douglas

    2014-06-13

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  20. 90 Seconds of Discovery: Fast Pyrolysis

    SciTech Connect (OSTI)

    Weber, Robert; Elliot, Douglas

    2013-01-08

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  1. Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons

    SciTech Connect (OSTI)

    Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

    2009-07-24

    The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

  2. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  3. Pyrolysis of Furan in a Microreactor

    E-Print Network [OSTI]

    Urness, Kimberly N.

    2014-01-01

    Pyrolysis of Furan in a Microreactor Kimberly N. Urness, 1of furan, C 4 H 4 O. The pyrolysis experiments are carriedas a device to study the pyrolysis of these new oxygenated

  4. Pyrolysis process and apparatus

    DOE Patents [OSTI]

    Lee, Chang-Kuei (Sewell, NJ)

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  5. Flash pyrolysis and hydropyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

  6. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  7. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  8. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  9. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  10. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  11. Volatile organic emissions from the distillation and pyrolysis of vegetation

    E-Print Network [OSTI]

    Greenberg, T

    2006-01-01

    emissions from vegetation pyrolysis Comprehensive laboratoryfrom the distillation and pyrolysis of vegetation J. P.J. Anal. and Appl. Pyrolysis, 60, 123–130, 2000. Fall, R. :

  12. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Grown by Pneumatic Spray Pyrolysis. ” Thin Solid Films 535 (Films Grown by Spray Pyrolysis: Characterization by RamanFilms Prepared by Spray Pyrolysis. ” Physica Status Solidi (

  13. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    Fed. Sci. Tech. Inform., AD 1968, AD-676351, 44 pp. 194. Kwang-Shaun Huang, Kee-Chuan Pan and Chao-Nan Perng, "Pyrolysis of Cellulose. I. Effect of Diamrnonium Phos- phate...

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO)

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  15. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  16. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOE Patents [OSTI]

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  17. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  18. Pulsed Laser Powered Homogeneous Pyrolysis for

    E-Print Network [OSTI]

    Swihart, Mark T.

    Pulsed Laser Powered Homogeneous Pyrolysis for Reaction Kinetics Studies: Probe Laser Measurement Pulsed laser powered homogeneous pyrolysis ( LPHP) is a technique which can be used to measure rate a number of researchers have shown that pulsed laser powered homogeneous pyrolysis (LPHP) can be used

  19. Optimization of Jatropha Oil Extraction and Its By-Product Utilization by Pyrolysis Method 

    E-Print Network [OSTI]

    Kongkasawan, Jinjuta 1987-

    2012-08-20

    crisis. The purpose of this research is to investigate the optimum condition of Jatropha seed extraction via a screw press and its by-product utilization by a pyrolysis method for achieving the maximum mass conversion and energy recovery. In this study...

  20. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOE Patents [OSTI]

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  1. Vacuum pyrolysis of used tires

    SciTech Connect (OSTI)

    Roy, C.; Darmstadt, H.; Benallal, B.; Chaala, A.; Schwerdtfeger, A.E.

    1995-11-01

    The vacuum pyrolysis of used tires enables the recovery of useful products, such as pyrolytic oil and pyrolytic carbon black (CB{sub P}). The light part of the pyrolytic oil contains dl-limonene which has a high price on the market. The naphtha fraction can be used as a high octane number component for gasoline. The middle distillate demonstrated mechanical and lubricating properties similar to those of the commercial aromatic oil Dutrex R 729. The heavy oil was tested as a feedstock for the production of needle coke. It was found that the surface morphology of CB{sub P} produced by vacuum pyrolysis resembles that of commercial carbon black. The CB{sub P} contains a higher concentration of inorganic compounds (especially ZnO and S) than commercial carbon black. The pyrolysis process feasibility looks promising. One old tire can generate upon vacuum pyrolysis, incomes of at least $2.25 US with a potential of up to $4.83 US/tire upon further product improvement. The process has been licensed to McDermott Marketing Servicing Inc. (Houston) for its exploitation in the US.

  2. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char

    E-Print Network [OSTI]

    Lam, Su Shiung; Liew, Rock Keey; Cheng, Chin Kui; Chase, Howard A.

    2015-04-09

    Microwave pyrolysis was performed on waste engine oil pre-mixed with different amounts of metallic-char catalyst produced previously from a similar microwave pyrolysis process. The metallic-char catalyst was first prepared by pretreatment...

  3. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  4. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  6. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  7. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  8. Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol

    E-Print Network [OSTI]

    Singh, S; Park, C S; Norbeck, J N

    2005-01-01

    Approximate modelling of coal pyrolysis. Fuel, 78(7), 825-9. Gonzalez, JF. (2003). Pyrolysis of cherry stones: energyof analytical and applied pyrolysis, 67(1), 165-190. 10.

  9. Pyrolysis of Yttria Stabilized Zirconia and its Characterization

    E-Print Network [OSTI]

    FARSHIHAGHRO, EBRAHIM

    2013-01-01

    and among them the spray pyrolysis method as well as itscolloidal and emulsion Spray pyrolysis Salt assisted aerosol3.1 Introduction In spray pyrolysis a solution of precursors

  10. Apparatus for entrained coal pyrolysis

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-11-16

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  11. A Generalized Pyrolysis Model for Combustible Solids

    E-Print Network [OSTI]

    Lautenberger, Chris

    2007-01-01

    149 Figure 4.1. Effect of grid spacing on thermoplastic154 Figure 4.3. Effect of time step on thermoplasticon thermoplastic pyrolysis. . 159

  12. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    SciTech Connect (OSTI)

    Lewis, Alex J; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P

    2015-01-01

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.

  13. Sequential pyrolysis of plastic to recover polystyrene HCL and...

    Office of Scientific and Technical Information (OSTI)

    Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid Citation Details In-Document Search Title: Sequential pyrolysis of plastic to recover polystyrene...

  14. Chemical Analysis of Soot Using Thermal Desorption/Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Soot Using Thermal DesorptionPyrolysis Gas ChromatographyMass Spectrometry Chemical Analysis of Soot Using Thermal DesorptionPyrolysis Gas ChromatographyMass...

  15. Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Lemieux, Jessy Mario

    2013-01-01

    6 III. PYROLYSIS OF BENZYL RADICAL . . . . . . . .16 IV. PYROLYSIS OF ALKYL RADICALS . . . . . . . . . . . .75 V. PYROLYSIS OF LINEAR

  16. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore »of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  17. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  18. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  19. ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Lindsey, D.

    2011-01-01

    Subbiturninous Coal Below Pyrolysis Temperatures, LBL-4434,a Subbiturninous Coal Below Pyrolysis Temperature, LBL-6355,Subbituminous Coal Below Pyrolysis Temperature David Lindsey

  20. INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Dorighi, G.P.

    2010-01-01

    A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE Contentson Subbituminous Coal Below Pyrolysis Temperature, LBL-4434,A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE Gary Paul

  1. THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Grens III., Edward A.

    2013-01-01

    BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE Edward A.BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE Edward A.the effects of coal pyrolysis to be noted (the initial

  2. Investigation on coal pyrolysis in CO{sub 2} atmosphere

    SciTech Connect (OSTI)

    Lunbo Duan; Changsui Zhao; Wu Zhou; Chengrui Qu; Xiaoping Chen [Institute for Thermal Power Engineering of Southeast University, Nanjing (China)

    2009-07-15

    Considerable studies have been reported on the coal pyrolysis process and the formation of SO{sub 2} and NOx processors such as H{sub 2}S, COS, SO{sub 2}, HCN, and NH{sub 3} in inert atmospheres. Similar studies in CO{sub 2} atmosphere also need to be accomplished for better understanding of the combustion characteristics and the SO{sub 2}/NOx formation mechanism of oxy-fuel combustion, which is one of the most important technologies for CO{sub 2} capture. In this study, thermogravimetry coupled with Fourier Transform Infrared (TG-FTIR) analysis was employed to measure the volatile yield and gas evolution features during coal pyrolysis process in CO{sub 2} atmosphere. Results show that replacing N{sub 2} with CO{sub 2} does not influence the starting temperature of volatile release but seems to enhance the volatile releasing rate even at 480{sup o}C. At about 760{sup o}C, CO{sub 2} prevents the calcite from decomposing. In CO{sub 2} atmosphere, the volatile yield increases as the temperature increases and decreases as the heating rate increases. COS is monitored during coal pyrolysis in CO{sub 2} atmosphere while there are only H{sub 2}S and SO{sub 2} formed in N{sub 2} atmosphere. The COS is most likely formed by the reaction between CO{sub 2} and H{sub 2}S. No NH{sub 3} was monitored in this study. In CO{sub 2} atmosphere, the gasification of char elevates the conversion of char-N to HCN. The HCN yield increases as the temperature increases and decreases as the heating rate increases. 20 refs., 13 figs., 3 tabs.

  3. Coal liquefaction with subsequent bottoms pyrolysis

    DOE Patents [OSTI]

    Walchuk, George P. (Queens, NY)

    1978-01-01

    In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.

  4. Pyrolysis kinetics of Melon (Citrullus colocynthis L.) seed husk

    E-Print Network [OSTI]

    Nyakuma, Bemgba Bevan

    2015-01-01

    This study is aimed at investigating the thermochemical fuel characteristics and kinetic decomposition of melon seed husks (MSH) under inert (pyrolysis) conditions. The calorific value, elemental composition, proximate analyses and thermal kinetics of MSH was examined. The kinetic parameters; activation energy E and frequency factor A for MSH decomposition under pyrolysis conditions were determined using the Kissinger and isoconversional Flynn-Wall-Ozawa (FWO) methods. The values of E for MSH ranged from 146.81 to 296 kJ/mol at degrees of conversion {\\alpha} = 0.15 to 0.60 for FWO. The decomposition of MSH process was fastest at {\\alpha} = 0.15 and slowest at {\\alpha} = 0.60 with average E and A values of 192.96 kJ/mol and 2.86 x 1026 min-1, respectively at correlation values of 0.9847. The kinetic values of MSH using the Kissinger method are E = 161.26 kJ/mol and frequency factor, A = 2.08 x 1010 min-1 with the correlation value, R2 = 0.9958. The results indicate that MSH possesses important characteristics ...

  5. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  6. Pyrolysis of waste tyres: A review

    SciTech Connect (OSTI)

    Williams, Paul T.

    2013-08-15

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  7. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  8. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOE Patents [OSTI]

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  9. Molecular beam mass spectrometric characterization of biomass pyrolysis products for fuels and chemicals

    SciTech Connect (OSTI)

    Agblevor, F.A.; Davis, M.F.; Evans, R.J. [National Renewal Energy Lab., Golden, CO (United States)

    1994-12-31

    Converting biomass feedstocks to fuels and chemicals requires rapid characterization of the wide variety of possible feedstocks. The combination of pyrolysis molecular beam mass spectrometry (Py-MBMS) and multivariate statistical analysis offers a unique capability for characterizing these feedstocks. Herbaceous and woody biomass feedstocks that were harvested at different periods were used in this study. The pyrolysis mass spectral data were acquired in real time on the MBMS, and multivariate statistical analysis (factor analysis) was used to analyze and classify Py-MBMS data into compound classes. The effect of harvest times on the thermal conversion of these feedstocks was assessed from these data. Apart from sericea lespedeza, the influence of harvest time on the pyrolysis products of the various feedstocks was insignificant. For sericea lespedeza, samples harvested before plant defoliation were significantly different from those harvested after defoliation. The defoliated plant samples had higher carbohydrate-derived pyrolysis products than the samples obtained from the foliated plant. Additionally, char yields from the defoliated plant samples were lower than those from the foliated plant samples.

  10. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits theCommitteeCrystallineReserve |DemonstrationClean,Product

  11. In-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article)CurvesAnodic MaterialslithiationSciTech

  12. In-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers(Journal Article)CurvesAnodic MaterialslithiationSciTechSciTech

  13. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure inrepeats (Journal Article)SciTech

  14. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure inrepeats (Journal

  15. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment ofJanuary 19, 2013

  16. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping11, 2012 Exparte

  17. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  18. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  19. Pulsed Laser Powered Homogeneous Pyrolysis: A Computational Analysis

    E-Print Network [OSTI]

    Swihart, Mark T.

    Pulsed Laser Powered Homogeneous Pyrolysis: A Computational Analysis MARK T. SWIHART and ROBERT W pyrolysis technique for measuring unimolecular decomposition rate constants under unambiguously homogeneous. Introduction Pulsed laser powered homogeneous pyrolysis (LPHP) is a technique which may be used to measure

  20. PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer location of an aibreathing hypersonic vehicle. The rationale for arc pyrolysis is provided. Major

  1. NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS

    E-Print Network [OSTI]

    Fletcher, Thomas H.

    NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS by Haifeng Zhang DURING SECONDARY COAL PYROLYSIS Haifeng Zhang Department of Chemical Engineering Doctor of Philosophy evidence of ring opening reactions was observed during the pyrolysis of pyrene. A simple model was devised

  2. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change of Contents Scope Executive Summary 1. Background 2. Pyrolysis Oil-Char Supply and Export Potential 2 Competitiveness 3.1. Substitute Fuels 3.2. Price of Fossil Fuels 3.3. Delivered Costs of Pyrolysis Oil/Char 4

  3. Correlation between homogeneous propane pyrolysis and pyrocarbon deposition

    E-Print Network [OSTI]

    Boyer, Edmond

    Correlation between homogeneous propane pyrolysis and pyrocarbon deposition C´edric Descamps, G propane pyrolysis is studied in a 1-D hot-wall CVD furnace. The gas-phase pyrolysis is modelled in previous reports [6]: total pressure equal to 2 kPa, temperature between 900 K and 1400 K, and pure propane

  4. Scrap tire pyrolysis: Experiment and modelling

    SciTech Connect (OSTI)

    Napoli, A.; Soudais, Y.; Lecomte, D.; Castillo, S.

    1997-12-01

    Pyrolysis of waste, usually organic solids like tires, plastics or composite materials, is an alternative thermal waste treatment technology. Three main physical and chemical mechanisms - i.e.: chemical kinetics, internal heat transfer and external heat transfer - have to be considered when modelling the degradation of solid waste particles. Because of the lack of physical properties for wastes most of the models described in the literature use basic data obtained on the pyrolysis of coal, wood and biomass. In this work, the authors report basic information on the thermal degradation of tire samples at small scale: Thermogravimetric analyser (TGA) and differential scanning calorimeter (DSC), as well as direct and indirect measurements of thermal and physical properties (thermal conductivity of the tire and of the char, porosity, density, specific heat). Pyrolysis experiments on tire samples are performed in an imaging furnace. The experimental results are compared to theoretical values deduced from models that take into account physical property measurements.

  5. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  6. Volatile constituents in a wood pyrolysis oil 

    E-Print Network [OSTI]

    Lin, Shih-Chien

    1978-01-01

    was determined on six me als. Acetic and formic acids were found to be the major corrosive agents. !Vine frac ions of pyrolysis oil obtained by vacuum fractional d still ation were classified on a 0$-1-38/H PO / 3 4 SP1210, 80/100 chromosorb G. C. column. Ph... Naterial s One objective of this work was to determine the corn- position of nine fraction' obtained by vacuum fractiona- tion of whole pyrolysis oil. The nine fractions were ch. omatographed on a 08-1-38/H PO /SP1210/80/100 chromosorb 3 4 W-AW column...

  7. Processes for converting lignocellulosics to reduced acid pyrolysis oil

    DOE Patents [OSTI]

    Kocal, Joseph Anthony; Brandvold, Timothy A

    2015-01-06

    Processes for producing reduced acid lignocellulosic-derived pyrolysis oil are provided. In a process, lignocellulosic material is fed to a heating zone. A basic solid catalyst is delivered to the heating zone. The lignocellulosic material is pyrolyzed in the presence of the basic solid catalyst in the heating zone to create pyrolysis gases. The oxygen in the pyrolysis gases is catalytically converted to separable species in the heating zone. The pyrolysis gases are removed from the heating zone and are liquefied to form the reduced acid lignocellulosic-derived pyrolysis oil.

  8. Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Weber, Kevin Howard

    2010-01-01

    Molecules by Flash Pyrolysis, University of California,approach of coupling flash pyrolysis of the compound ofIn addition, secondary pyrolysis of the isoamylene alkenes,

  9. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  10. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  11. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  12. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  13. Formation of NH{sub 3} during the pyrolysis of a brown coal

    SciTech Connect (OSTI)

    Li, C.Z.; Pang, Y.; Li, X.G. [Monash Univ., Clayton, Victoria (Australia). Dept. of Chemical Engineering

    1998-12-31

    Emissions of oxides of nitrogen (NO, NO{sub 2} and N{sub 2}O) from power generation using coal are an important environmental problem, contributing to the formation of photochemical smog and acid rain or to the enhancement of greenhouse effects and to the enhanced depletion of stratospheric ozone. During pyrolysis, the nitrogen in coal, as a part of coal organic matter, is converted into NOx precursors (eg. NH{sub 3}, HCN, HNCO and the nitrogen in tar and char). These NOx precursors may then be converted into either NOx or N{sub 2} during subsequent combustion or gasification/combustion. The conversion efficiency of these NOx precursors into NOx depends strongly upon the type of NOx precursor. Knowledge of the formation of these NOx precursors during pyrolysis is therefore essential for the accurate predictions of NOx emissions from large scale power plants, and therefore for the development of optimum strategies for NOx reduction. Formation of NH{sub 3} during the pyrolysis of a Victorian brown coal (Loy Yang) has been studied in a novel reactor. The experimental results obtained suggest that a considerable amount of the nitrogen in the nascent char could be converted into NH{sub 3} if the char is held at high temperatures for a long period of time. The formation of NH{sub 3} from the thermal cracking of char was seen to last for more than an hour even at temperatures as high as 700--900 C. The experimental results seem to suggest that the differences in reactor geometries would account at least partially for some of the discrepancies in the literature regarding the formation of NH{sub 3} during the pyrolysis of coals. It is thought that NH{sub 3} may be formed from the hydrogenation of the N sites in the char by the active hydrogen generated from the thermal cracking of the char.

  14. Effects of torrefaction and densification on switchgrass pyrolysis products

    SciTech Connect (OSTI)

    Yang, Zixu; Sarkar, Madhura; Kumar, Ajay; Tumuluru, Jaya Shankar; Huhnke, Raymond L.

    2014-12-01

    Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 şC followed by densification) were studied at three temperatures (500, 600, 700 şC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis products increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.

  15. Effects of torrefaction and densification on switchgrass pyrolysis products

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Zixu; Sarkar, Madhura; Kumar, Ajay; Tumuluru, Jaya Shankar; Huhnke, Raymond L.

    2014-12-01

    Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 şC followed by densification) were studied at three temperatures (500, 600, 700 şC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis productsmore »increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.« less

  16. Porous Carbon Powders Prepared by Ultrasonic Spray Pyrolysis Sara E. Skrabalak and Kenneth S. Suslick*

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Porous Carbon Powders Prepared by Ultrasonic Spray Pyrolysis Sara E. Skrabalak and Kenneth S to the destruction of (relatively) expensive templates. Here, we use ultrasonic spray pyrolysis (USP)6, after pyrolysis, the

  17. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry

    E-Print Network [OSTI]

    Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography Available online 29 March 2008 Keywords: Flame-retardant polymers Thermal degradation Pyrolysis by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized

  18. A Generalized Pyrolysis Model for Simulating Charring, Intumescent, Smoldering, and Noncharring Gasification

    E-Print Network [OSTI]

    Lautenberger, Chris; Fernandez-Pello, Carlos

    2006-01-01

    State-of-the-Art in Pyrolysis Modeling of LignocellulosicC. & Fernandez-Pello, A.C. , “Pyrolysis Modeling, ThermalKuo, J.T. & Hsi, C. -L. , “Pyrolysis and Ignition of Single

  19. CATALYTIC LIQUEFACTION BY ZINC CHLORIDE MELTS AT PRE-PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Vermeulen, T.

    2012-01-01

    CHLORIDE MELTS AT PRE-PYROLYSIS TEMPERATURE T. Vermeulen, C.CHLORIDE MELTS AT PRE-PYROLYSIS TEMPERATURE T. Vermeulen, C.rather than by thermal pyrolysis which requires appreciably

  20. Methods for deoxygenating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  1. Environmental control technology for biomass flash pyrolysis

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Seward, W.H.

    1980-01-01

    The rapid commercialization of biomass gasification and pyrolysis technologies will raise questions concerning the environmental impacts of these systems and the associated costs for appropriate control technologies. This study concentrates on characterizing the effluent emissions and control technologies for a dual fluid-bed pyrolysis unit run by Arizona State University, Tempe, Arizona. The ASU system produces a raw product gas that is passed through a catalytic liquefaction system to produce a fuel comparable to No. 2 fuel oil. Argonne National Laboratory is conducting a program that will survey several biomass systems to standardize the sampling techniques, prioritize standard analyses and develop a data base so that environmental issues later may be addressed before they limit or impede the commercialization of biomass gasification and pyrolysis technologies. Emissions will be related to both the current and anticipated emissions standards to generate material balances and set design parameters for effluent treatment systems. This will permit an estimate to be made of the capital and operating costs associated with these technologies.

  2. Controlled catalystic and thermal sequential pyrolysis and hydrolysis...

    Office of Scientific and Technical Information (OSTI)

    catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers Citation Details In-Document Search Title: Controlled catalystic...

  3. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED...

    Office of Scientific and Technical Information (OSTI)

    AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT Citation Details In-Document...

  4. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Broader source: Energy.gov (indexed) [DOE]

    and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast pyrolysisworkshopreport...

  5. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical...

  6. Applications of Modern Pyrolysis Gas Chromatography for the Study...

    Office of Scientific and Technical Information (OSTI)

    Book: Applications of Modern Pyrolysis Gas Chromatography for the Study of Degradation and Aging in Complex Silicone Elastomers Citation Details In-Document Search Title:...

  7. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOE Patents [OSTI]

    Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  8. Methods for deoxygenating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  9. Pyrolysis and hydrolysis of mixed polymer waste comprisingpolyethylen...

    Office of Scientific and Technical Information (OSTI)

    in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for...

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis...

    Office of Scientific and Technical Information (OSTI)

    in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for...

  11. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP

    E-Print Network [OSTI]

    Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans; Methamphetamine; Pyrolysis Introduction Methamphetamine hydrochloride is a popular illicit drug that is abused

  12. In situ Raman spectroscopic studies of trimethylindium pyrolysis in an OMVPE reactor

    E-Print Network [OSTI]

    Anderson, Timothy J.

    In situ Raman spectroscopic studies of trimethylindium pyrolysis in an OMVPE reactor Chinho Park for OMVPE deposition of indium-containing compound semiconductors. The pyrolysi

  13. Pyrolysis of secondary raw material from used frying oils

    E-Print Network [OSTI]

    Billaud, Francis; Coniglio, Lucie

    2007-01-01

    A totally green chemistry alternative that would lead both to energy production from renewable feedstocks and to solutions of parts of ecological problems related to waste disposals would be very attractive. Pyrolysis of used frying oils seems to be one option for this attractive alternative as we propose to demonstrate in this study. Since 2002, the whole production of waste edible oils (around 100 000 tons per year in France) must be collected and transformed into secondary raw material by specific companies. The general aim of the present work is to produce one of the following target sources of energy: (i) H2 for fuel cells, (ii) H2/CO in satisfactory ratios to produce biodiesel by Fischer-Tropsch (FT) reaction, or (iii) hydrocarbon mixtures with high added value. Therefore, in this work, the conversion of a crude used frying oil, named VEGETAMIXOIL^(r); from Ecogras Company (France), was investigated (weight composition: C 73.6%; O 9.7%; H 12.2%). In support of our knowledge related to fatty acids and me...

  14. Quantum conversion

    E-Print Network [OSTI]

    Michael Mazilu

    2015-08-06

    The electromagnetic momentum transferred transfered to scattering particles is proportional to the intensity of the incident fields, however, the momentum of single photons ($\\hbar k$) does not naturally appear in these classical expressions. Here, we discuss an alternative to Maxwell's stress tensor that renders the classical electromagnetic field momentum compatible to the quantum mechanical one. This is achieved through the introduction of the quantum conversion which allows the transformation, including units, of the classical fields to wave-function equivalent fields.

  15. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  16. New Modularization Framework Transforms FAST Wind Turbine Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    behavior of complex multisegmented mooring systems-a critical component of both wave energy conversion and floating offshore wind systems. The new FAST modularization...

  17. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    SciTech Connect (OSTI)

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  18. Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the coal without chemical decomposition and pyrolysis converts dry coal into gas and coke [1]. The final1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying

  19. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect (OSTI)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  20. Pyrolysis reactor and fluidized bed combustion chamber

    DOE Patents [OSTI]

    Green, Norman W. (Upland, CA)

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  1. John L Gaunt and Johannes Lehmann Energy balance and emissions associated with biochar sequestration and pyrolysis

    E-Print Network [OSTI]

    Lehmann, Johannes

    sequestration and pyrolysis bioenergy production Summary of tables Data are provided energy inputs (Mj ha-1

  2. Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar

    E-Print Network [OSTI]

    Wolberg, George

    Using Pyrolysis to Convert Unused Urban Biotic Material into Bioenergy and Biochar Objective of pyrolysis (low-temperature anaerobic burning) that will generate bio-energy as well as biochar for enriching-explored technology is pyrolysis. Pyrolysis is a low temperature, anaerobic process that avoids incineration

  3. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect (OSTI)

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  4. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  5. Catalytic pyrolysis of plastic wastes - Towards an economically viable process

    SciTech Connect (OSTI)

    McIntosh, M.J.; Arzoumanidis, G.G.; Brockmeier, F.E.

    1996-07-01

    The ultimate goal of our project is an economically viable pyrolysis process to recover useful fuels and/or chemicals from plastics- containing wastes. This paper reports the effects of various promoted and unpromoted binary oxide catalysts on yields and compositions of liquid organic products, as measured in a small laboratory pyrolysis reactor. On the basis of these results, a commercial scale catalytic pyrolysis reactor was simulated by the Aspen software and rough costs were estimated. The results suggest that such a process has potential economic viability.

  6. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  7. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  8. N-amino heterocycles : applications in flash vacuum pyrolysis 

    E-Print Network [OSTI]

    Rozgowska, Emma Jayne

    2011-06-27

    Routes to N-amino heterocycles were reviewed and findings applied to generate flash vacuum pyrolysis (FVP) precursors of two types - ketene generators and azol-1-yl radical generators. N-Amino heterocycles can be used ...

  9. Volatile organic emissions from the distillation and pyrolysis of vegetation

    E-Print Network [OSTI]

    Greenberg, T

    2006-01-01

    Pinus ponderosa, Eucalyptus saligna, Quercus gambelli,chem-phys.org/acp/6/81/ Eucalyptus J. P. Greenberg et al. :from vegetation pyrolysis Eucalyptus wood µ gC emission/gC/

  10. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect (OSTI)

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  11. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  12. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect (OSTI)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  13. Synthesis and Characterization of Earth Abundant and Nontoxic Metal Chalcogenides Produced via Aerosol Spray Pyrolysis for Photovoltaic Applications

    E-Print Network [OSTI]

    Davis, Patrick John

    2013-01-01

    of Analytical and Applied Pyrolysis 100 (2013) 12–16. [43]M.T. Swihart: Spray pyrolysis synthesis of ZnS nanoparticlesvia Aerosol Spray Pyrolysis for Photovoltaic Applications A

  14. An enthalpy-temperature hybrid method for solving phase change problems and its application to polymer pyrolysis and ignition

    E-Print Network [OSTI]

    Zhou, Ying-Ying; Fernandez-Pello, Carlos

    2000-01-01

    K.M. , “A Mixed Layer Pyrolysis Model for Polypropylene”, toapplication to polymer pyrolysis and ignition Y. Zhou and A.application to polymer pyrolysis and ignition Y. Zhou and A.

  15. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    DOE Patents [OSTI]

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  16. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  17. Computational Analysis of the Pyrolysis of ..beta..-O4 Lignin Model Compounds: Concerted vs. Homolytic Fragmentation

    SciTech Connect (OSTI)

    Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

    2012-01-01

    The thermochemical conversion of biomass to liquid transportation fuels is a very attractive technology for expanding the utilization of carbon neutral processes and reducing dependency on fossil fuel resources. As with all such emerging technologies, biomass conversion through gasification or pyrolysis has a number of obstacles that need to be overcome to make these processes cost competitive with the refining of fossil fuels. Our current efforts have focused on the investigation of the thermochemistry of the linkages between lignin units using ab initio calculations on dimeric lignin model compounds. All calculations were carried out using M062X density functional theory at the 6-311++G(d,p) basis set. The M062X method has been shown to be consistent with the CBS-QB3 method while being significantly less computationally expensive. To date we have only completed the study on the b-O4 compounds. The theoretical calculations performed in the study indicate that concerted elimination pathways dominate over bond homolysis reactions under typical pyrolysis conditions. However, this does not mean that concerted elimination will be the dominant loss process for lignin. Bimolecular radical chemistry could very well dwarf the unimolecular pathways investigated in this study. These concerted pathways tend to form stable, reasonably non-reactive products that would be more suited producing a fungible bio-oil for the production of liquid transportation fuels.

  18. Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits 

    E-Print Network [OSTI]

    Brownsort, Peter A

    2009-01-01

    This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes and how this affects potential benefits of pyrolysis biochar ...

  19. Sulfur and Oxygen Isotope Analysis of Sulfate at Micromole Levels Using a Pyrolysis Technique in a

    E-Print Network [OSTI]

    Alexander, Becky

    Sulfur and Oxygen Isotope Analysis of Sulfate at Micromole Levels Using a Pyrolysis Technique sample. The technique takes advantage of the easy pyrolysis of Ag2SO4 to SO2, O2, and Ag metal

  20. Pressurized pyrolysis and gasification of Chinese typical coal samples

    SciTech Connect (OSTI)

    Hanping Chen; Zhiwu Luo; Haiping Yang; Fudong Ju; Shihong Zhang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2008-03-15

    This paper aims to understand the pyrolysis and gasification behavior of different Chinese coal samples at different pressures. First, the pyrolysis of four typical Chinese coals samples (Xiaolongtan brown coal, Shenfu bituminous coal, Pingzhai anthracite coal, and Heshan lean coal) were carried out using a pressurized thermogravimetric analyzer at ambient pressure and 3 MPa, respectively. The surface structure and elemental component of the resultant char were measured with an automated gas adsorption apparatus and element analyzer. It was observed that higher pressure suppressed the primary pyrolysis, while the secondary pyrolysis of coal particles was promoted. With respect to the resultant solid char, the carbon content increased while H content decreased; however, the pore structure varied greatly with increasing pressure for different coal samples. For Xiaolongtan brown coal (XLT) char, it decreased greatly, while it increased obviously for the other three char types. Then, the isothermal gasification behavior of solid char particles was investigated using an ambient thermal analyzer with CO{sub 2} as the gasifying agent at 1000{sup o}C. The gasification reactivity of solid char was decreased greatly with increasing pyrolysis pressure. However, the extent of change displayed a vital relation with the characteristics of the original coal sample. 26 refs., 5 figs., 5 tabs.

  1. Solar coal gasification reactor with pyrolysis gas recycle

    DOE Patents [OSTI]

    Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  2. ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Lindsey, D.

    2011-01-01

    ~. ~. ~. ~. Procedure . . . . . . . . . . . Coal and Solventon Subbiturninous Coal Below Pyrolysis Temperatures, LBL-Treatment of Extract Solution Coal Residue Treatment. Yield

  3. Scrap tires: a resource and technology evaluation of tire pyrolysis and other selected alternate technologies

    SciTech Connect (OSTI)

    Dodds, J.; Domenico, W.F.; Evans, D.R.; Fish, L.W.; Lassahn, P.L.; Toth, W.J.

    1983-11-01

    The results of a technical and economic evaluation of scrap tire pyrolysis are presented and some other alternative uses for scrap tires are discussed. A scrap tire, by definition in this report, is one for which there is no economic end use. Information is presented on the scrap tire resource, pyrolysis processes, pyrolysis products (char, oil, and gas), markets for these products, and the economics of tire pyrolysis. A discussion is presented on alternative ideas for using scrap tires as an energy resource.

  4. Characteristics of chars produced from lignites by pyrolysis at 808C following

    E-Print Network [OSTI]

    Characteristics of chars produced from lignites by pyrolysis at 808°C following rapid heating heating up at 8 x 103'C/s. Following pyrolysis, the chars were rapidly cooled - at about 3 x 104"C/s. Weight losses were measured as a function of pyrolysis time. The following measure- ments were made

  5. Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane followed by

    E-Print Network [OSTI]

    Swihart, Mark T.

    Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane. In Final Form: March 15, 2004 CO2 laser induced pyrolysis of silane was used to produce silicon quantities of silicon nanoparticles by laser-driven pyrolysis of silane followed by an HF- HNO3 etching

  6. Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis pyrolysis of an epoxy-based film that coated the spacer and parts of the sub- strate. Fillers were chosen to reduce the shrinkage during pyrolysis and to increase the electrical conductivity. Multiwalled carbon

  7. 1 Solvent-Extractable Polycyclic Aromatic Hydrocarbons in Biochar: 2 Influence of Pyrolysis Temperature and Feedstock

    E-Print Network [OSTI]

    1 Solvent-Extractable Polycyclic Aromatic Hydrocarbons in Biochar: 2 Influence of Pyrolysis, it is not known how variations in pyrolysis temperature and feedstock type 13 affect concentration and composition to pyrolytic products. Further research 25 is needed to characterize the PAH evolution in modern pyrolysis

  8. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality

    E-Print Network [OSTI]

    Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality, and its release from, biochar made at pyrolysis temperatures of 400, 500 and 600 C from three feedstocks:C) decreased with increasing pyrolysis temperature irrespective of the feedstock used, both pH and EC slightly

  9. Numerical Simulation of Vortex Pyrolysis Reactors for Condensable Tar Production from Biomass

    E-Print Network [OSTI]

    Miller, Richard S.

    Numerical Simulation of Vortex Pyrolysis Reactors for Condensable Tar Production from Biomass R. S is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor

  10. Thermal Decomposition of Dichlorosilane Investigated by Pulsed Laser Powered Homogeneous Pyrolysis

    E-Print Network [OSTI]

    Swihart, Mark T.

    Thermal Decomposition of Dichlorosilane Investigated by Pulsed Laser Powered Homogeneous Pyrolysis powered homogeneous pyrolysis of dichlorosilane are reported. Pyrolyses at temperatures of 1350 to 1700 K in both static pyrolysis exper- iments and using a single-pulse shock tube. They conclud- ed

  11. A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction heating

    E-Print Network [OSTI]

    Evans, Michael N.

    A reactor for high-temperature pyrolysis and oxygen isotopic analysis of cellulose via induction and theory to recommend pyrolysis at temperatures above 14508C to minimize memory and fractionation effects of producing pyrolysis conditions for the analysis of oxygen and deuterium isotopic compositions of organic

  12. High Surface Area Iron Oxide Microspheres via Ultrasonic Spray Pyrolysis of Ferritin Core Analogues

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    High Surface Area Iron Oxide Microspheres via Ultrasonic Spray Pyrolysis of Ferritin Core Analogues) and are difficult to scale-up. Spray pyrolysis and similar aerosol techniques are well- known as scalable synthetic particles with relatively high surface areas have been obtained with spray pyrolysis for carbon,33-40 silica

  13. Pyrolysis approach to the synthesis of gallium nitride nanorods Wei-Qiang Han and Alex Zettla)

    E-Print Network [OSTI]

    Zettl, Alex

    Pyrolysis approach to the synthesis of gallium nitride nanorods Wei-Qiang Han and Alex Zettla for publication 26 October 2001 Herein we describe a pyrolysis route to the synthesis of gallium nitride GaN nanorods. GaN nanorods have been grown by the pyrolysis of gallium dimethylamide and ferrocene under

  14. CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis Maryam Sayyah,b Brandon R pyrolysis (USP) synthesis and charac- terization of composite calcium oxide-based sorbents for carbon of metal oxides, even on an industrial scale.18,19 We report here the rst use of ultrasonic spray pyrolysis

  15. Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis Sangjin Leea

    E-Print Network [OSTI]

    Messing, Gary L.

    Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis Sangjin Leea , Taehwan Sona were synthesized by combustion spray pyrolysis using a 1:1 molar ratio of oxidizer and fuel. To prepare. Keywords: BaTiO3; Nanomaterials; Spray pyrolysis; Combustion; Powder technology 1. Introduction Fine barium

  16. Use of an Apple IIe microcomputer for pyrolysis data acquisition

    SciTech Connect (OSTI)

    Not Available

    1988-02-01

    An Apple IIe microcomputer is being used to collect data and to control a pyrolysis system. Pyrolysis data for bitumen and kerogen are widely used to estimate source rock maturity. For a detailed analysis of kinetic parameters, however, data must be obtained more precisely than for routine pyrolysis. The authors discuss the program which controls the temperature ramp of the furnace that heats the sample, and collects data from a thermocouple in the furnace and from the flame ionization detector measuring evolved hydrocarbons. These data are stored on disk for later use by programs that display the results of the experiment or calculate kinetic parameters. The program is written in Applesoft BASIC with subroutines in Apple assembler for speed and efficiency.

  17. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  18. Colloids and Surfaces A: Physicochem. Eng. Aspects 233 (2004) 145153 Solgel transition study and pyrolysis of alumina-based gels

    E-Print Network [OSTI]

    Gulari, Erdogan

    2004-01-01

    and pyrolysis of alumina-based gels prepared from alumatrane precursor Bussarin Ksapabutra, Erdogan Gularib

  19. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    solar energy conversion .This new paradigm of solar energy conversion, based on theon this field, solar energy conversion aimed at photovoltaic

  20. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  1. Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA

    SciTech Connect (OSTI)

    Kim, S.; Park, J.K.; Chun, H.D.

    1995-07-01

    Tire pyrolysis kinetics was investigated to explore an economically viable design for the pyrolysis process. Derivative thermogravimetry (DTG) and thermogravimetric analysis (TGA) were found to provide valuable information on pyrolysis kinetics and mechanisms of a heterogeneous compound like scrap tire rubbers. Kinetic parameters of each compositional compound were obtained by analyzing DTG and TGA results with a series of mathematical methods proposed in this study. The pyrolysis kinetics of the scrap tire rubbers tested was well accounted for by the first-order irreversible independent reactions of three compositional compounds. The sidewall and tread rubber exhibited different thermal degradation patterns, suggesting a compositional difference between them. Isothermal pyrolysis results showed that the sidewall rubber would hardly be degraded at low temperature regions (<600 K), whereas it would be more rapidly degraded than the tread rubber at higher temperatures ({>=}746 K). Because of the shorter pyrolysis time, the higher isothermal pyrolysis temperature appeared to be more economically favorable.

  2. Mineral Nutrient Recovery from Pyrolysis Co-Products 

    E-Print Network [OSTI]

    Wise, Jatara Rob

    2012-07-16

    Pyrolysis is the thermo-chemical degradation of biomass in an oxygen-free environment to product liquid, gaseous, and solid co-products. The liquid co-product, known as bio-oil, can be used as a transportation fuel. The gaseous co-product, known...

  3. Influence of pressure on coal pyrolysis and char gasification

    SciTech Connect (OSTI)

    Haiping Yang; Hanping Chen; Fudong Ju; Rong Yan; Shihong Zhang [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2007-12-15

    Coal char structure varied greatly with pyrolysis pressure, which has a significant influence on the gasification reactivity. In this study, the influence of pressure on the behavior of coal pyrolysis and physicochemical structure and gasification characteristics of the resultant coal char was investigated using a pressurized thermogravimetric analyzer combined with an ambient thermogravimetric analyzer. First, the pyrolysis of Shenfu (SF) bituminous coal was performed in a pressurized thermogravimetric analyzer (TGA) at different pressures (0.1, 0.8, 1.5, 3, and 5 MPa). The volatile mainly evolved out at 400-800{sup o}C. The gas products are mainly CO{sub 2}, CO, CH{sub 4}, and light aliphatics with some water. It was observed that the pyrolysis of coal was shifted to lower temperature (50{sup o}C) with pressure increasing from ambient to 5 MPa, and the devolatilization rate of coal pyrolysis was decreased and the coal char yield was increased slightly. The structure of solid coal char was analyzed using FTIR, ASAP2020, and CNHS. In the solid char, the main organic functional groups are mainly CO, C-C (alkane), C-H ar, C-O-C, and C=C ar. The carbon content was increased while H content decreased. Finally, the gasification of the solid char was preformed at ambient pressure with CO{sub 2} as gasify agent. The gasification process of coal char can be divided into postpyrolysis and char gasification. Higher pressure accelerated the initial stage of char gasification, and higher gasification reactivity was observed for char derived at 5 MPa. 23 refs., 8 figs., 5 tabs.

  4. Pyrolytic oil of banana (Musa spp.) pseudo-stem via fast process

    SciTech Connect (OSTI)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd; Miskam, Muhamad Azman

    2015-04-24

    This study was an attempt to produce bio-oil from banana pseudo-stem, a waste of banana cultivation, using fast pyrolysis technology. The compositions were determined and the thermal degradation behaviour of the raw material was analyzed using Perkin-Elmer Simultaneous Thermal Analyzer (STA) 6000. A 300?g/h fluidized bed bench scale fast pyrolysis unit, assembled with double screw feeders and cyclones, operating at atmospheric pressure, was used to obtain the pyrolysis liquid. The study involves the impact of the following key variables; the reactor temperature in the range of 450–650 °C, and the residence time in the range of 1.00–3.00 s. The particle size was set at 224-400?µm. The properties of the liquid product were analyzed for calorific heating value, pH value, conductivity, water and char content. The basic functional groups of the compositions were also determined using FTIR. The properties of the liquid product were compared with other wood derived bio-oil. The pyrolysis liquids derived from banana pseudo-stem were found to be in an aqueous phase.

  5. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  6. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  7. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, M.; Grohse, E.W.

    1995-06-27

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  8. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

    1995-01-01

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  9. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    SciTech Connect (OSTI)

    Lin, Chen-Luh; Miller, Jan

    2011-03-01

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (?m) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  10. Improving the reproducibility of pyrolysis MS techniques

    SciTech Connect (OSTI)

    Roussis, S.G.; Fedora, J.W. [Imperial Oil, Sarnia (Canada)

    1995-12-31

    The analysis of the majority of volatile samples is primarily accomplished with established techniques (EI, CI). These techniques are based on the direct vapourization of the sample, upon heating, in the ionization source of a mass spectrometer. Typical analytical techniques, able to analyze non-volatile samples are those that allow the desorption of components from the solid or liquid phase directly to the gas phase. Field Desorption (FD) and Desorption Chemical Ionization (DCI) are two of these techniques. Fast Atom Bombardment (FAB) has been more successful in analyzing polar samples than non-volatile hydrocarbon samples. Limited information is available for the capabilities of the newer ionization techniques (Electrospray Ionization, ESI; Matrix Assisted Laser Desorption Ionization, MALDI) to characterize the non-volatile hydrocarbon samples. ESI of mixtures of compounds produces complex mass spectra, consisting of multiply charged ion species, that may be difficult to interpret. MALDI has the potential for ionization of non-volatile hydrocarbon samples, but extensive research is required to determine the appropriate matrix compounds that will permit the unbiased desorption of all sample components. An important requirement in the characterization of the non-volatile samples using direct desorption techniques without prior chromatographic separation, is the use of ultra high resolution (>50,000), for the separation of high molecular weight isobaric peaks. In the present work, the experimental parameters affecting reproducibility have been studied, optimum conditions have been determined that permit reproducible analysis.

  11. Fast Scramblers

    E-Print Network [OSTI]

    Yasuhiro Sekino; Leonard Susskind

    2008-08-15

    We consider the problem of how fast a quantum system can scramble (thermalize) information, given that the interactions are between bounded clusters of degrees of freedom; pairwise interactions would be an example. Based on previous work, we conjecture: 1) The most rapid scramblers take a time logarithmic in the number of degrees of freedom. 2) Matrix quantum mechanics (systems whose degrees of freedom are n by n matrices) saturate the bound. 3) Black holes are the fastest scramblers in nature. The conjectures are based on two sources, one from quantum information theory, and the other from the study of black holes in String Theory.

  12. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies | BlandinenewsandFacultyFast

  13. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment of Energy In Austin, Energy Secretaryto Foster|In-Situ

  14. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartmentExercise ProgramGas HeatMemorandumparte

  15. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor4 Registration--

  16. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor4 Registration--dried to

  17. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor4 Registration--dried toabout

  18. Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search TheChlamydomonas reinhardtiiUpdating the

  19. Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio

    E-Print Network [OSTI]

    Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

    2008-01-01

    This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

  20. Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM) in the presence of tetramethylammonium hydroxide

    E-Print Network [OSTI]

    Infra red spectroscopy, flash pyrolysis, thermally assisted hydrolysis and methylation (THM to sporopollenin or algaenan. This is in agreement with flash pyrolysis­gas chromatography­mass spectrometry (py

  1. Unit 9: Spatial Data Conversion

    E-Print Network [OSTI]

    9, CCTP; Dodson, Rustin

    1998-01-01

    UNIT 9: SPATIAL DATA CONVERSION Written by Rustin Dodson,Programs Page 1 Unit 9: Spatial Data Conversion freezingPrograms Page 2 Unit 9: Spatial Data Conversion Export USGS

  2. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISŘ and DTU Anne Belinda Thomsen (RISŘ) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  3. Cell Wall Chemotyping for Functional Applications of PyrolysisGas Chromatography / Mass

    E-Print Network [OSTI]

    Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis­Gas Chromatography / Mass, Umeĺ 2012 #12;Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis.4.1 The Basic Tool-set 27 1.5 Wood Formation and Functional Genomics 31 2 Objectives 33 3 Methodological

  4. Pyrolysis in Porous Media: Part 2.1 Numerical Analysis and Comparison to Experiments.2

    E-Print Network [OSTI]

    Boyer, Edmond

    , France17 Only limited studies are available experimentally to investigate18 hydrocarbon fuel pyrolysis a better5 analysis of the fuel pyrolysis and of the products' formation.6 Keywords: Porous flow; Fuel of the fluid / solid (kg.m-3 )23 hal-00868587,version1-2Oct2013 #12;3/40 I. Introduction1 Studying porous flow

  5. Composite CaO-Based CO2 Sorbents Synthesized by Ultrasonic Spray Pyrolysis: Experimental Results and Modeling

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Composite CaO-Based CO2 Sorbents Synthesized by Ultrasonic Spray Pyrolysis: Experimental Results by ultrasonic spray pyrolysis (USP) with both experimental results and modeling of the sorption process, even on an industrial scale.9,10 Recently, we reported the first use of ultrasonic spray pyrolysis (USP

  6. International Journal of Mass Spectrometry 249250 (2006) 303310 Pyrolysis of 2-methoxy-2,3,3-trimethylbutane (MTMB) monitored by

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    2006-01-01

    International Journal of Mass Spectrometry 249­250 (2006) 303­310 Pyrolysis of 2-methoxy-2 Available online 23 January 2006 In memoriam Chava Lifshitz Abstract Pyrolysis/supersonic jet expansion/118,3-bond is the weakest bond of MTMB. Pyrolysis of MTMB-d6 below 1000 K shows no production of CD3 radicals

  7. The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle Anders V. Friderichsena

    E-Print Network [OSTI]

    Ellison, Barney

    The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle Anders V. Friderichsena , Eun 11 December 2000 Abstract We have investigated the pyrolysis of anisole (C6H5OCH3), a model compound for methoxy functional groups in lignin. An understanding of the pyrolysis of this simple compound can provide

  8. Catalytic pyrolysis of methane on Mo/H-ZSM5 with continuous hydrogen removal by permeation through dense oxide lms

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic pyrolysis of methane on Mo/H-ZSM5 with continuous hydrogen removal by permeation through ®lms, chain-limiting catalytic pyrolysis reactions on Mo/H-ZSM5, and CO2 co-reactants led to stable simulations in tubular reactors with permeable walls. KEY WORDS: methane pyrolysis; membrane reactors; Mo

  9. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision dD measurements

    E-Print Network [OSTI]

    Fischer, Hubertus

    A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision d we present a highly automated, high-precision online gas chromatography/pyrolysis/isotope ratio from ice, preconcentration, gas chromatographic separation and pyrolysis of CH4 from roughly 500 g

  10. The researchers are developing the theoretical framework necessary for the mechanistic modeling of the decomposition of polymers during pyrolysis.

    E-Print Network [OSTI]

    Ottino, Julio M.

    of the decomposition of polymers during pyrolysis. NORTHWESTERN CHEMICAL AND BIOLOGICAL ENGINEERING MECHANISTIC MODEL OF POLYMER PYROLYSIS Principal Investigator: Linda J. Broadbelt Objective: The push to recycle plastics to valuable chemicals would be desirable, but the lack of a comprehensive understanding of pyrolysis ­ a set

  11. Carbon Powders Prepared by Ultrasonic Spray Pyrolysis of Substituted Alkali Benzoates Sara E. Skrabalak and Kenneth S. Suslick*

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Carbon Powders Prepared by Ultrasonic Spray Pyrolysis of Substituted Alkali Benzoates Sara E Ultrasonic spray pyrolysis (USP) has been used to prepare carbon spheres from aqueous solutions direct hydro- carbon pyrolysis methods.15-18 While the former methods are potentially cost and scale

  12. Metal Oxide Laser Ioniza2on Mass Spectrometry for the Direct Profiling of Pyrolysis Oil Cons2tuents

    E-Print Network [OSTI]

    of Pyrolysis Oil Cons2tuents Casey R. McAlpin and Kent J. Voorhees Colorado School from the anoxic pyrolysis of biomass (py-oils) represent a promising, renewable: ·MOLI MS produces profiles of pyrolysis oil consGtuents without separa

  13. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    E-Print Network [OSTI]

    Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method­12]. Compared to other deposition techniques, spray pyrolysis offers several advantages like non-vacuum use

  14. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search The jobs listedNuclear1 DOE Hydrogen and Fuel

  15. Ultra-Fast Chemical Conversion Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search The jobs listedNuclear1 DOE Hydrogen and Fuel0 DOE

  16. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Compatibility with Existing Infrastructure Throughout Supply Chain Challenge 3 Operational Issues Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

  17. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  18. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  19. Pyrolysis of scrap tires: Can it be profitable?

    SciTech Connect (OSTI)

    Wojtowicz, M.A.; Serio, M.A.

    1996-10-01

    Pyrolysis--the thermal degradation in the absence of oxygen--is one way to reprocess scrap tires. The products are fuel gas, oils, and a solid residue (char), which contains appreciable quantities of mineral matter and low-grade carbon black. The three products have comparable yields by weight. The two most important factors affecting process economics are the tipping fees charged for tire disposal and the selling prices of the products. Selling prices of the products yield low returns because of the low market value of the fuels and the low quality of the recovered char or carbon black. Therefore, to obtain a positive cash flow, it would be desirable to develop a process based on the recovery of value-added products such as high-grade carbon black, activated carbon, or valuable chemicals (e.g., benzene, toluene, and xylene). The authors believe that significant improvement in the economics can be accomplished by upgrading the primary pyrolysis products to secondary products of higher value.

  20. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, L.

    1994-12-06

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

  1. Isolation of levoglucosan from pyrolysis oil derived from cellulose

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1994-01-01

    High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH).sub.2 is added to adjust the pH to the elevated values, and then Ca(OH).sub.2 is added in an excess amount needed.

  2. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  3. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect (OSTI)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  4. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy Levels Counter Electrode Valence Band Conduction Band Fermi Level I- /I3 - Redox Potential Dye 1D 3D* 1D* Energy

  5. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    , 5th Edition Michael J. Moran and Howard N. Shapiro, John Wiley and Sons Inc., New York, NY, 2004, John Willey 2010. 3) Alternative Energy Systems and Applications, by B.K. Hodge, John Willey 2010. 41 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

  6. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOE Patents [OSTI]

    Knight, James A. (Atlanta, GA); Gorton, Charles W. (Atlanta, GA)

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  7. The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1990-02-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

  8. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  9. Formation of dl-limonene in used tire vacuum pyrolysis oils. [dipentene

    SciTech Connect (OSTI)

    Pakdel, H.; Roy, C.; Aubin, H.; Jean, G. ); Coulombe, S. )

    1991-09-01

    Tire recycling has become an important environmental issue recently due to the huge piles of tires that threaten the environment. Thermal decomposition of tire, a synthetic rubber material, enables the recovery of carbon black and liquid hydrocarbon oils. Both have potential economic values. Pyrolysis oils obtained under vacuum conditions contain a significant portion of a volatile, naptha-like fraction with an octane number similar to petroleum naphtha fraction, in addition, contains approximately 15% limonene. Potential applications of vacuum pyrolysis oil and carbon black have been investigated. However, the process economics is greatly influenced by the quality of the oil and carbon black products. This paper discusses limonene formation during used tire vacuum pyrolysis and its postulated reaction mechanism. The limonene separation method from pyrolysis oil, as well as its purification in laboratory scale, and structural characterization are discussed. Large-scale limonene separation and purification is under investigation.

  10. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    SciTech Connect (OSTI)

    Islam, M.R.; Joardder, M.U.H.; Hasan, S.M.; Takai, K.; Haniu, H.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

  11. Numerical model for the vacuum pyrolysis of scrap tires in batch reactors

    SciTech Connect (OSTI)

    Yang, J.; Tanguy, P.A.; Roy, C.

    1995-06-01

    A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.

  12. The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems 

    E-Print Network [OSTI]

    Hammond, James A R

    2009-01-01

    Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System parameters reflect deployment in Scotland, and results demonstrate...

  13. Microwave-assisted pyrolysis of HDPE using an activated carbon bed

    E-Print Network [OSTI]

    Russell, Alan Donald

    2013-04-16

    away” into a landfill after a single use. Microwave-assisted pyrolysis is a recycling technique that allows the recovery of chemical value from plastic waste by breaking down polymers into useful smaller hydrocarbons using microwave heat in the absence...

  14. Chemical Analysis of Soot Using Thermal Desorption/Pyrolysis Gas Chromatography/Mass Spectrometry

    Broader source: Energy.gov [DOE]

    A new method of soot analysis using thermal/pyrolysis GS-MS has provided a faster, more efficient analytical method to understand the surface chemistry of the soot.

  15. Free Radicals in Superfluid Liquid Helium Nanodroplets: A Pyrolysis Source for the Production of Propargyl Radical

    E-Print Network [OSTI]

    Küpper, J; Miller, R E; K\\"upper, Jochen; Merritt, Jeremy M.; Miller, Roger E.

    2002-01-01

    An effusive pyrolysis source is described for generating a continuous beam of radicals under conditions appropriate for the helium droplet pick-up method. Rotationally resolved spectra are reported for the $\

  16. Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques

    E-Print Network [OSTI]

    Lam, Su Shiung; Liew, Rock Keey; Jusoh, Ahmad; Chong, Cheng Tung; Ani, Farid Nasir; Chase, Howard A.

    2015-10-02

    This paper begins with a review on the current techniques used for the treatment and recovery of waste oil, which is then followed by an extensive review of the recent achievements in the sustainable development and utilization of pyrolysis...

  17. Rigorous Simulation Model of Kerogen Pyrolysis for the In-situ Upgrading of Oil Shales 

    E-Print Network [OSTI]

    Lee, Kyung Jae

    2014-10-09

    Oil shale is a vast, yet untapped energy source, and the pyrolysis of kerogen in the oil shales releases recoverable hydrocarbons. In this dissertation, we investigate how to increase process efficiency and decrease the costs of in-situ upgrading...

  18. Pyrolysis in Porous Media:1 Part 1. Numerical model and parametric study.2

    E-Print Network [OSTI]

    Boyer, Edmond

    due to the formation of light species and heavy ones (up to solid coke particles). The1 presence by the formation of3 permeable char [10,11]. The coal pyrolysi

  19. Ocean Thermal Energy Conversion Basics

    Broader source: Energy.gov [DOE]

    A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

  20. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy Biological Conversion of Sugars...

  1. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  2. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOE Patents [OSTI]

    Agblevor, Foster A. (Blacksburg, VA); Besler-Guran, Serpil (Flemington, NJ)

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  3. Rapid gasification of nascent char in steam atmosphere during the pyrolysis of Na- and Ca-ion-exchanged brown coals in a drop-tube reactor

    SciTech Connect (OSTI)

    Ondej Maek; Sou Hosokai; Koyo Norinaga; Chun-Zhu Li; Jun-ichiro Hayashi [Hokkaido University, Kita-ku (Japan). Center for Advanced Research of Energy Conversion Materials

    2009-09-15

    Several recent studies on in situ steam gasification of coal suggest a possibility of extremely fast steam gasification of char from rapid pyrolysis of pulverized brown coal. The unprecedented rate of char steam gasification can be achieved by exposing nascent char, that is, after tar evolution (temperature range >600{sup o}C), but before devolatilization (<900{sup o}C), to steam in the presence of Na and/or Ca dispersed in/on the char. In this study, we conducted rapid pyrolysis experiments using ion-exchanged Loy Yang brown coal samples, that is, H-form coal with Na/Ca contents <0.001 wt %, Na-form coal with Na content = 2.8 wt % and Ca-form coal with Ca content = 3.2 wt %. These samples were pyrolyzed in an atmospheric drop-tube reactor at a temperature of 900{sup o}C, inlet steam concentration of 50 vol. %, and a particle residence times of 2.8 s. The char yields from the pyrolysis of Na-form and Ca-form coals were as low as 12 and 33% on the respective coal carbon bases, and accounted for only 18 and 53% of the char yields from the full devolatilization of the respective coals at 900{sup o}C. In addition, the pyrolysis also consumed as much as 0.7-1.1 mol of H{sub 2}O per mol of coal C. On the other hand, the nascent char from the H-form coal allowed carbon deposition from the nascent tar, resulting in a char yield as high as 115% of that from the full devolatilization. The chars from the Na-form and Ca-form coals also acted as catalysts for steam reforming of tar, which was evidenced by significant negative synergistic effects of blending of H-form coal with Na-form coal or Ca-form coal on the tar and soot yields. 57 refs., 6 figs.

  4. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  5. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  6. An economic analysis of mobile pyrolysis for northern New Mexico forests.

    SciTech Connect (OSTI)

    Brady, Patrick D.; Brown, Alexander L.; Mowry, Curtis Dale; Borek, Theodore Thaddeus, III

    2011-12-01

    In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three main products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break-even selling price for the baseline assumption is about $11/GJ, however it may be possible to reduce this value by 20-30% depending on other factors evaluated in the non-baseline scenarios. Assuming a value for the char co-product improves the analysis. Significantly lower break-even costs are possible in an international setting, as labor is the dominant production cost.

  7. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    webinarcarbohydratesproduction.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates...

  8. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels...

  9. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  10. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  11. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  12. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  13. Pyrolysis and gasification of coal at high temperatures

    SciTech Connect (OSTI)

    Zygourakis, K.

    1988-01-01

    Coals of different ranks will be pyrolyzed in a microscope hot-stage reactor using inert and reacting atmospheres. The macropore structure of the produced chars will be characterized using video microscopy and digital image processing techniques to obtain pore size distributions. Comparative studies will quantify the effect of pyrolysis conditions (heating rates, final heat treatment temperatures, particle size and inert or reacting atmosphere) on the pore structure of the devolatilized chars. The devolatilized chars will be gasified in the regime of strong intraparticle diffusional limitations using O{sub 2}/N{sub 2} and O{sub 2}/H{sub 2}O/N{sub 2}2 mixtures. Constant temperature and programmed-temperature experiments in a TGA will be used for these studies. Additional gasification experiments performed in the hot-stage reactor will be videotaped and selected images will be analyzed to obtain quantitative data on particle shrinkage and fragmentation. Discrete mathematical models will be developed and validated using the experimental gasification data.

  14. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  15. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  16. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01

    Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

  17. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  18. BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis Scott S. Dunkle, Richard J. Helmich, and Kenneth S. Suslick*

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis Scott S. Dunkle spray pyrolysis (USP). Gases created from the evaporation of solvent and the decomposition of precursor to complete the overall water splitting reaction.28,29 Ultrasonic spray pyrolysis (USP)30-32 is a powerful

  19. Modelling of Particle Pyrolysis in a Packed Bed Combustor A.R.C. Tuck and W.L.H. Hallett ,1 2*

    E-Print Network [OSTI]

    Hallett, William L.H.

    Modelling of Particle Pyrolysis in a Packed Bed Combustor A.R.C. Tuck and W.L.H. Hallett ,1 2 are accounted for [2]. However, initial efforts to include pyrolysis were quite crude: a simple one-step global presented here is therefore to upgrade the current treatment of pyrolysis in the bed by developing a more

  20. HELIOPHYSICS II. ENERGY CONVERSION PROCESSES

    E-Print Network [OSTI]

    Hudson, Hugh

    with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other formsHELIOPHYSICS II. ENERGY CONVERSION PROCESSES edited by CAROLUS J. SCHRIJVER Lockheed Martin of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X

  1. Catalyst specificities in high pressure hydroprocessing of pyrolysis and gasification tars

    SciTech Connect (OSTI)

    Soltes, E.J.; Lin, S.C.K.; Sheu, Y.H.E.

    1987-04-01

    Over a period of several years, the Department of Forest Science at Texas A and M University has been conducting studies in the hydroprocessing (catalytic high pressure hydrotreating or hydrodeoxygenation accompanied by hydrocracking) of pyrolytic tars produced in biomass pyrolysis and gasification. Upgrading through hydroprocessing results in good yields of volatile hydrocarbon and phenolic products. This paper compares the performance of twenty different catalysts selected for hydroprocessing of a pine pyrolysis oil, describes the use of noble metal catalysts with tars produced from nine different biomass feedstocks (oil from pine pyrolysis and the tars from pine wood chip, pine plywood trim, pecan shell, peanut shell, sugarcane bagasse, corncob, rice hull, and cottonseed hull gasification), and compares the use of several catalysts in a trickle bed reactor for kinetic studies of the hyroprocessing reaction.

  2. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  3. Transformation of alkali metals during pyrolysis and gasification of a lignite

    SciTech Connect (OSTI)

    Xiaofang Wei; Jiejie Huang; Tiefeng Liu; Yitian Fang; Yang Wang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

    2008-05-15

    Transformation of Na and K in a lignite was investigated during pyrolysis and gasification in a fixed-bed by using a serial dissolution method with H{sub 2}O, CH{sub 3}COONH{sub 4}, and HCl solutions. The evolution of the fractions of four forms in solid and alkali volatilization during pyrolysis and gasification was determined. The results show that a different mode of occurrence between Na and of K in coal existed. Na in coal can be nearly completely dissolved by H{sub 2}O, CH{sub 3}COONH{sub 4}, and HCl solution. However, K in coal exists almost in the stable forms. Both H{sub 2}O soluble and CH{sub 3}COONH{sub 4} soluble Na and K fractions decline during pyrolysis and early gasification stage and increase a little with the process of char gasification. The stable form Na in the char produced during pyrolysis is transferred to other forms during char gasification via the pore opening and a series of chemical reactions. Na{sub 2}SO{sub 4} (K{sub 2}SO{sub 4}) may play an important role in producing stable forms such as Na{sub 2}O.Al{sub 2}O{sub 3}2SiO{sub 2} and K{sub 2}O.Al{sub 2}O{sub 3}.2SiO{sub 2} during pyrolysis. The fraction of HCl soluble K increases during pyrolysis but decreases markedly during the early gasification stage. 20 refs., 7 figs., 1 tabs.

  4. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    SciTech Connect (OSTI)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  5. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  6. Fast Rotation vs. Metallicity

    E-Print Network [OSTI]

    Ronaldo Levenhagen; Nelson Vani Leister; Juan Zorec; Yves Fremat

    2005-09-07

    Fast rotation seems to be the major factor to trigger the Be phenomenon. Surface fast rotation can be favored by initial formation conditions such as metal abundance. Models of fast rotating atmospheres and evolutionary tracks are used to determine the stellar fundamental parameters of 120 Be stars situated in spatially well-separated regions to imply there is between them some gradient of metallicity. We study the effects of the incidence of this gradient on the nature of the studied stars as fast rotators.

  7. High conversion hydrocracking process

    SciTech Connect (OSTI)

    Stine, L.O.; Reno, M.E.; Munro, W.H.; Hamper, S.J.

    1990-10-09

    This patent describes a process for hydrocracking a heavy hydrocarbon feed stream having a 10 percent boiling point above about 316{degrees} C. It comprises: passing the feedstream into a catalytic hydrocracking reaction zone in contact with hydrocracking catalyst comprising at least one metal selected from the group consisting of chromium, nickel, cobalt, platinum, palladium, tungsten and molybdenum, at a temperature above about 316{degrees} C. and a total pressure above 1480 kPa, the catalytic hydrocracking reaction zone operating at a feed stream conversion rate above 70 wt. percent with a hydrogen circulation rate in excess at 1777 m{sup 3}/m{sup 3}, to produce a reaction zone effluent stream, subjecting the reaction zone effluent stream to cooling and a vapor-liquid separation to yield a recycle hydrogen stream and a liquid phase stream, heating the liquid phase stream recovered from the vapor-liquid separation to vaporize at least 90 volume percent of the liquid phase stream, passing the heated and at least partially vaporized liquid phase stream to a fractionation zone wherein the stream is separated into at least a net bottoms stream, a heavy distillate stream, and at least one light distillate stream which is removed as the distillate product stream, removing all of the net bottoms stream from the process, and recycling substantially all of the heavy distillate stream to the catalytic hydrocracking zone.

  8. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  9. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Khan, M. Rashid (Morgantown, WV)

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  10. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  11. Conversation View Outlook Web App User Guide

    E-Print Network [OSTI]

    Calgary, University of

    Conversation View Outlook Web App User Guide Email conversations that include multiple replies and sent messages can be viewed simultaneously using Conversation View. In Exchange 2010 Outlook Web App

  12. Tidal Conversion by Supercritical Topography

    E-Print Network [OSTI]

    Balmforth, Neil J.

    Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

  13. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  14. Technical Market Analysis for Biochemical Conversion Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Market Analysis for Biochemical Conversion March 23, 2015 Biochemical Conversion Jim Collett and Mark Butcher PNNL This presentation does not contain any proprietary,...

  15. Unit Conversions and Formulas to Know

    E-Print Network [OSTI]

    rroames

    2007-12-06

    Math 139. Unit Conversions and Formulas to Memorize. Fall 2007. Unit Conversions to know: 1 foot = 12 inches. 1 centimeter = 10 millimeters. 1 yard = 3 feet.

  16. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    SciTech Connect (OSTI)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  17. Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends 

    E-Print Network [OSTI]

    Martin, Brandon Ray

    2009-05-15

    derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

  18. Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash. 

    E-Print Network [OSTI]

    Aquino, Froilan Ludana

    2009-05-15

    and 30 min settings, however, the HV of char was low and almost similar to the HV of CGT. A maximum gas yield of 40 wt.% was measured at 800°C and 60 min and the highest liquid yield of 30 wt.% was determined at 800°C and 30 min. In the modified pyrolysis...

  19. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, Keith; Ramakrishnan, Girish; Uchimiya, Minori; Orlov, Alexander

    2015-01-30

    We report on the first ever use of non-destructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the Cotton Hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350°C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett–Joyner–Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance tomore »environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. In addition, complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis.« less

  20. Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils

    E-Print Network [OSTI]

    and Performance Carbon Deposit Removal and Catalyst Regeneration Management Process Energy Integration Integrated and 7 2007 R. J. Evans, NREL D. M. Steward, NREL #12;Innovation / Overview Biomass pyrolysis produces.31 O2 + 0.26 H2O 0.71 CO2 + 0.96 H2 #12;Key Performance Metrics Catalytic Steam Reforming of Bio

  1. Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation of Their

    E-Print Network [OSTI]

    Verkhusha, Vladislav V.

    Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation phenolate oxygen and the side chain hydroxyl of Ser146. In Blue102, a bulky side chain of Ile146 precludes-FT and Blue102 structures revealed hydrolytic degradation of the chromophores. In Fast-FT, chromophore

  2. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

    SciTech Connect (OSTI)

    Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N.; Mew, D.A.

    1997-03-11

    Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to in situ destruction. Today, the principal treatment methods for chlorinated solvent- and PAH-contaminated soil are to remove it to landfills, or incinerate it on site. The most effective method for treating ground water, Dynamic Underground Stripping (Newmark et al., 1995), still involves removing the contaminant for destruction elsewhere. Hydrous pyrolysis/oxidation would eliminate the need for long-term use of expensive treatment facilities by converting all remaining contaminant to benign products (e.g., carbon dioxide, water, and chloride ion). The technique is expected to be applicable to dense non-aqueous phase liquids (DNAPLS) and dissolved organic components. Soil and ground water would be polished without bringing them to the surface. This would dramatically decrease the cost of final site closure efforts. Large-scale cleanup using hydrous pyrolysis/oxidation may cost less than $10/yd. The end product of hydrous pyrolysis/oxidation is expected to be a clean site. The delivery concept for hydrous pyrolysis/oxidation utilizes the established experience in heating large volumes of ground developed in the Dynamic Underground Stripping Demonstration (Newmark et al., 1995). Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the subsurface. When injection is halted, the steam condenses and contaminated groundwater returns to the heated zone. It mixes with the condensate and oxygen, destroying any dissolved contaminants. This avoids many of the mixing problems encountered in other in situ oxidation schemes. In other oxidation schemes, an oxidizing reagent is injected into the subsurface resulting in the displacement of the contaminant. Without a return process such as the steam condensation, the contaminant and oxidant never mix. Using hydrous pyrolysis/oxidation, DNAPLs and dissolved contaminants may be destroyed in place, without surface treatment. This will improve the rate and efficiency of remediation by rendering the hazardous materials into benign ones via a completely in situ process. Because the subsurface is heated during this process, hydrous pyrolysis/oxidation also takes advantage of the large increase in mass transfer rates which make contaminant more available for destruction, such as increased diffusion out of silty sediments. Many remediation processes are limited by the access of the reactants to the contaminant, making mass-transfer limitations the bane of remediation efforts in low-permeability media. In preparation for testing this method at Lawrence Livermore National Laboratory (TCE in groundwater) and at a Southern California pole treating site (fire product with PAH and pentachlorophenol), we are developing a concept for the implementation of hydrous pyrolysis/oxidation through co-injection of steam and possibly small amounts of oxygen, as well as evaluating the rate at which hydrous pyrolysis/oxidation occurs due to the natural presence of mineral oxidants such as manganese oxides when the water temperature is raised. We are also determining the thermodynamic properties (e.g., solubility, Henry`s Law constants, etc.) of these hazardous compounds, as a function of T and P, in order to be able to predict effectiveness and required time for design purposes and to optimize clean-up through the use of process-oriented hydrologic transport and geochemistry models. In spite of

  3. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  4. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  5. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  6. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-01-01

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  7. Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes

    SciTech Connect (OSTI)

    Roesener, W.S.; Mason, J.B.; Ryan, K.; Bryson, S.; Eldredge, H.B.

    2006-07-01

    In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

  8. Effects of pretreatment in steam on the pyrolysis behavior of Loy Yang brown coal

    SciTech Connect (OSTI)

    Cai Zeng; George Favas; Hongwei Wu; Alan L. Chaffee; Jun-ichiro Hayashi; Chun-Zhu Li [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2006-02-01

    Dewatering/drying of Victorian brown coal will be an integral part of future brown coal utilization processes aimed at the reduction of greenhouse gas emissions. This study aims to investigate the effects of the thermal pretreatment of brown coal in the presence of steam/water on its subsequent pyrolysis behavior. A Victorian (Loy Yang) brown coal was thermally pretreated in pressurized steam and inert atmospheres. The pyrolysis behavior of these pretreated coal samples was investigated in a wire-mesh reactor. While the pretreatment in steam at temperatures higher than 250{sup o}C increased the char yield of the steam-treated coal, it did not affect the overall pyrolysis char yield at 1000{sup o} C s{sup -1} if the weight loss during the pretreatment in steam was also considered. However, the tar yield decreased significantly after the pretreatment in the presence of steam. The UV-fluorescence spectroscopy of tars revealed that the release of large aromatic systems from the steam-treated coal was only affected by the pretreatment in steam if the treatment temperature was very high (e.g. 350{sup o}C). The loss of NaCl and the use of high pressure during the pretreatment of brown coal in steam were not the main reasons for the changes in the observed tar yield. The hydrolysis of O-containing structures such as ethers, esters, and carboxylates during the pretreatment in the presence of steam plays an important role in the fates of these O-containing structures during pretreatment and subsequent pyrolysis, leading to changes in the pyrolysis behavior of the brown coal. 36 refs., 8 figs.

  9. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  10. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    SciTech Connect (OSTI)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  11. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect (OSTI)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  12. FAST Final Technical Report

    SciTech Connect (OSTI)

    Toister, Elad

    2014-11-06

    The FAST project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  13. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  14. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  15. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  16. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    SciTech Connect (OSTI)

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  17. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect (OSTI)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550 ; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (?150?J, 0.7 ps, 2 × 10{sup 20} W cm{sup ?2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2?MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5?MeV and 4?MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  18. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  19. Phase control in the synthesis of yttrium oxide nano and micro-particles by flame spray pyrolysis 

    E-Print Network [OSTI]

    Mukundan, Mallika

    2009-05-15

    The project synthesizes phase pure Yttria particles using flame spray pyrolysis, and to experimentally determines the effect of various process parameters like residence time, adiabatic flame temperature and precursor droplet size on the phase...

  20. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production 

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  1. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading 

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02

    Increasing environmental concerns over greenhouse gas emissions, depleting petroleum reserves and rising oil prices has stimulated interest on biofuels production from biomass sources. This study explored on biofuels production from pyrolysis...

  2. Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry

    E-Print Network [OSTI]

    Weber, Kevin Howard

    2010-01-01

    Isoprene (2-methyl-1,3-butadiene) is the major productPYROLYSIS OF 2-METHYL 1,3-BUTADIENE (ISOPRENE) AND ISOMERSproduce 2-methyl-1,3-butadiene (isoprene). ………………………………………….

  3. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Kaufman, A. N. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Tracy, E. R. [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795 (United States)

    2008-08-15

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  4. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  5. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  6. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect (OSTI)

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  7. Thermodynamic study on the formation of acetylene during coal pyrolysis in the arc plasma jet

    SciTech Connect (OSTI)

    Bao, W.; Li, F.; Cai, G.; Lu, Y.; Chang, L.

    2009-07-01

    Based on the principle of minimizing the Gibbs free energy, the composition of C-H-O-N-S equilibrium system about acetylene formation during the pyrolysis in arc plasma jet for four kinds of different rank-ordered coals such as Datong, Xianfeng, Yangcheng, and Luan was analyzed and calculated. The results indicated that hydrogen, as the reactive atmosphere, was beneficial to the acetylene formation. The coal ranks and the hydrogen, oxygen, nitrogen, and sulfur in coal all could obviously affect the acetylene yield. The mole fraction of acetylene is the maximum when the ratio value of atom H/C was 2. The content of oxygen was related to the acetylene yield, but it does not compete with CO formation. These agreed with the experimental results, and they could help to select the coal type for the production of acetylene through plasma pyrolysis process.

  8. Rationality and Conversation: A Thesis on Grice’s Theory of Conversation 

    E-Print Network [OSTI]

    Schoolfield, Matthew D

    2007-11-27

    H. P. Grice first presented his theory of conversational implicature in “Logic and Conversation.” This theory is comprised of conversational maxims that are based on the Cooperative Principle. Since then, it has become ...

  9. Effect of Using Inert and Non-Inert Gases on the Thermal Degradation and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region 

    E-Print Network [OSTI]

    Eseltine, Dustin E.

    2012-02-14

    OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS REGION A Thesis by DUSTIN E. ESELTINE Submitted to the Office of Graduate Studies of Texas A&M University... and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region Copyright 2011 Dustin E. Eseltine EFFECT OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS...

  10. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect (OSTI)

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  11. Shock-tube and modeling study of ethane pyrolysis and oxidation

    SciTech Connect (OSTI)

    Hidaka, Yoshiaki; Sato, Kazutaka; Hoshikawa, Hiroki; Nishimori, Toshihide; Takahashi, Rie; Tanaka, Hiroya; Inami, Koji; Ito, Nobuhiro

    2000-02-01

    Pyrolysis and oxidation of ethane were studied behind reflected shock waves in the temperature range 950--1,900 K at pressures of 1.2--4.0 atm. Ethane decay rates in both pyrolysis and oxidation were measured using time-resolved infrared (IR) laser absorption at 3.39 {micro}m, and CO{sub 2} production rates in oxidation were measured by time-resolved thermal IR emission at 4.24 {micro}m. The product yields were also determined using a single-pulse method. The pyrolysis and oxidation of ethane were modeled using a reaction mechanism with 157 reaction steps and 48 species including the most recent submechanisms for formaldehyde, ketene, methane, acetylene, and ethylene oxidation. The present and previously reported shock tube data were reproduced using this mechanism. The rate constants of the reactions C{sub 2}H{sub 6} {yields} CH{sub 3} + CH{sub 3}, C{sub 2}H{sub 5} + H {yields} H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were evaluated. These reactions were important in predicting the previously reported and the present data, which were for mixture compositions ranging from ethane-rich (including ethane pyrolysis) to ethane-lean. The evaluated rate constants of the reactions C{sub 2}H{sub 5} + H {yields} C{sub 2}H{sub 4} + H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were found to be significantly different from currently accepted values.

  12. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    SciTech Connect (OSTI)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  13. Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal

    SciTech Connect (OSTI)

    Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda [Akita University, Akita (Japan). Faculty of Engineering and Resources Science

    2009-09-15

    Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

  14. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  15. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  16. Transparency in nonlinear frequency conversion

    E-Print Network [OSTI]

    Longhi, Stefano

    2015-01-01

    Suppression of wave scattering and the realization of transparency effects in engineered optical media and surfaces have attracted great attention in the past recent years. In this work the problem of transparency is considered for optical wave propagation in a nonlinear dielectric medium with second-order $\\chi^{(2)}$ susceptibility. Because of nonlinear interaction, a reference signal wave at carrier frequency $\\omega_1$ can exchange power, thus being amplified or attenuated,when phase matching conditions are satisfied and frequency conversion takes place. Therefore, rather generally the medium is not transparent to the signal wave because of 'scattering' in the frequency domain. Here we show that broadband transparency, corresponding to the full absence of frequency conversion in spite of phase matching, can be observed for the signal wave in the process of sum frequency generation whenever the effective susceptibility $\\chi^{(2)}$ along the nonlinear medium is tailored following a suitable spatial apodiza...

  17. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Kneževi?, Miloš; Warner, Mark

    2014-10-30

    has mov- ing parts gives it a disadvantage over conventional photo- voltaics, though rubber is highly durable and tough — for instance car tyres survive long use in harsh, abra- sive conditions. Another difficulty, that could perhaps be solved... ’effect du frottement dans l’equilibre,” Mem. Acad. Sci. , pp. 265 (1762). 7[14] L. R. G. Treloar, The Physics of Rubber Elasticity (Ox- ford University Press, Oxford, 2005). [15] M. Knez?evic´ and M. Warner, “Photoferroelectric solar to electrical conversion...

  18. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  19. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopmentDepartmentof EnergyTheConversion

  20. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  1. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  2. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  3. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  4. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  5. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  6. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  7. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy Conversion Efficiency Home

  8. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO Quiz -Technologies forBig SavingsConversion

  9. Experimental study of the effect of sodium carbonate on the conversion of cellulose to oil 

    E-Print Network [OSTI]

    Chu, Siu-Hung

    1981-01-01

    precipitated very fast, the mixture should be stirred up continuously until the slurry vas fed into the feed tank immediately after the reactor reached the desired preheated temperature. Once the feed vas fed, the feed tank was pressurized with nitrogen...) (Me mbe r) (He ber) (H d of Department- December 1981 ABSTHACT Experimental Study of the Effect of Sodium Carbonate on the Conversion of Cellulose to Oil. (December 19B1) Siu-Hunq Chu, B. A. , National Taiwan University Chairman of Advisory...

  10. Explorations of Novel Energy Conversion and Storage Systems

    E-Print Network [OSTI]

    Duffin, Andrew Mark

    2010-01-01

    Energy Conversion and Storage Systems By Andrew Mark DuffinEnergy Conversion and Storage Systems by Andrew Mark Duffin

  11. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  12. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    SciTech Connect (OSTI)

    G, Sreeja V; Anila, E. I., E-mail: anilaei@gmail.com; R, Reshmi, E-mail: anilaei@gmail.com; John, Manu Punnan, E-mail: anilaei@gmail.com [Optolectronic and Nanomaterials Research Laboratory, Department of Physics, Union Christian College, Aluva-683 102, Kerala (India); V, Sabitha P; Radhakrishnan, P. [International School of Photonics, CUSAT, Cochin-22 (India)

    2014-10-15

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  13. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOE Patents [OSTI]

    Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  14. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  15. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  16. FastForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL|FacilityAboutHeat & CoolSpunFast

  17. INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Dorighi, G.P.

    2010-01-01

    conversion of western coals into liquid products. A largeconsist of the coal derived organic liquid, unreacted coal,action of coal with an organic liquid solvent represents a

  18. Biochar and Plant Growth Promoting Rhizobacteria as Soil Amendments

    E-Print Network [OSTI]

    Hale, Lauren Elizabeth

    2014-01-01

    of biochar from fast pyrolysis and gasification systems.of two biochar production scenarios: slow pyrolysis vsfast pyrolysis. Biofuels Bioprod. Biorefining 5, 54–68.

  19. Natural gas/diesel conversions - the outlook

    SciTech Connect (OSTI)

    Fiore, V.B.; Joyce, T.J.

    1986-01-01

    High conversion costs and technical inadequacies of available equipment have limited diesel to compressed natural gas (CNG) conversions, a process which can use either fumigation, pilot oil injection, or spark-ignition for vehicle ignition. An overview of Gas Research Institute conversion research projects includes a summary of major problems associated with performance, cost, and reliability of the systems. A summary table identifies projects by organization and location, then provides project objectives, funding, future plans, and comments where the information is available.

  20. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  1. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  2. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrolyze the cellulose and hemicellulose in biomass to free the sugars for conversion. The program is working to identify the most productive, naturally occurring...

  3. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    "Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News &...

  4. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  5. Limits in high efficiency quantum frequency conversion

    E-Print Network [OSTI]

    Nicolás Quesada; J. E. Sipe

    2015-08-13

    Frequency conversion is an enabling process in many quantum information protocols. In this letter we study fundamental limits to high efficiency frequency conversion imposed by time ordering corrections. Using the Magnus expansion, we argue that these corrections, which are usually considered detrimental, can be used to increase the efficiency of conversion under certain circumstances. The corrections induce a nonlinear behaviour in the probability of upconversion as a function of the pump intensity, significantly modifying the sinusoidal Rabi oscillations that are otherwise expected. Finally, by using a simple scaling argument, we explain why cascaded frequency conversion devices attenuate time ordering corrections, allowing the construction of near ideal quantum pulse gates.

  6. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  7. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  8. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  9. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  11. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  12. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  13. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  14. Conversion Technologies for Advanced Biofuels ? Carbohydrates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for host organism in the presentence of limited six carbon sugars Identify cellular transporters and regulators required for maximum sugar to hydrocarbon conversion ...

  15. Thermal plasma pyrolysis of used old tires for production of syngas

    SciTech Connect (OSTI)

    Chang, J.S.; Gu, B.W.; Looy, P.C.; Chu, F.Y.; Simpson, C.J.

    1996-08-01

    Thermal plasma pyrolysis of used tires for the production of syngaswas investigated experimentally and the following conclusions wereobtained: 1. A series of experiments have shown that tire waste can bepyrolyzed in a plasma reactor to produce combustible gas, such asC{sub 2}H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}, H{sub 2}, CO. The combustion heat value of the produced gas is about 4-7 MJ/m{sup 3}, which is higher than that of blast furnace gas and reforming gas from coals. 2. Zinc oxidecan be captured during pyrolysis by both high temperature filters andlow temperature filters in the quenching chamber. The pollution gases,such as SO{sub 2} and NO{sub x}, are at relatively low levels, about 100-300ppm. 3. Increasing the tire injection quantity will increase theconcentration of hydrocarbons, increase the combustion heat of thepyrolysis product, and decrease the concentration of metal oxide. Withsteam injection, it produced a large quantity of hydrogen and carbonmonoxide with lower concentrations of C{sub 2}H{sub 2}. The combustion heatis slightly lower with steam injection than that without it. 4. Neitherpolychlorinated biphenyls (PCBs) nor p-aminohippuric acid (PAH) weredetected in the ashes. 8 refs., 11 figs., 4 tabs.

  16. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  17. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  18. Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds

    DOE Patents [OSTI]

    Khan, M. Rashid (Morgantown, WV)

    1988-01-01

    A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

  19. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  20. Fast matrix multiplication is stable

    E-Print Network [OSTI]

    Demmel, James; Holtz, Olga; Kleinberg, Robert; Dumitriu, Ioana

    2007-01-01

    Raz. On the complexity of matrix product. SIAM J. Comput. ,of fast algorithms for matrix multiplication. Num. Math. ,and Shmuel Winograd. Matrix multiplication via arithmetic

  1. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  2. Fast Proton Decay

    E-Print Network [OSTI]

    Tianjun Li; Dimitri V. Nanopoulos; Joel W. Walker

    2010-09-10

    We consider proton decay in the testable flipped SU(5) X U(1)_X models with TeV-scale vector-like particles which can be realized in free fermionic string constructions and F-theory model building. We significantly improve upon the determination of light threshold effects from prior studies, and perform a fresh calculation of the second loop for the process p \\to e^+ \\pi^0 from the heavy gauge boson exchange. The cumulative result is comparatively fast proton decay, with a majority of the most plausible parameter space within reach of the future Hyper-Kamiokande and DUSEL experiments. Because the TeV-scale vector-like particles can be produced at the LHC, we predict a strong correlation between the most exciting particle physics experiments of the coming decade.

  3. Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2 Morwell Brown Coal seam3 4 Elodie Salmon a, c , Françoise Behar a , François Lorant force21 field to simulate the thermal stress. The Morwell coal has been selected to study the thermal22

  4. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  5. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  6. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  7. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  8. The high conversion LC-Fining process

    SciTech Connect (OSTI)

    VanDriesen, R.P.; Strangio, V.A.; Rhoe, A.; Kolstad, J.J.

    1986-01-01

    Residual oil hydrocracking has been practiced at moderate conversions for many years on a wide range of feedstocks. Processes utilizing expanded bed reactors have been proven to be effective in the hydrocracking of these heavy residual feedstocks. Conversions up to 60% vacuum bottoms to distillates were routinely obtained in several commercial units. More recently Amoco has been operating an LC-Fining unit in their Texas City refinery at conversions as high as 80%. Normal conversion in this plant however is 60-65%. LC-Fining is an expanded bed resid hydrocracking and hydrodesulfurization process developed by Cities Service and Lummus Crest. There are a number of factors which may limit the conversion in any given plant site. These include compatibility problems with the liquid product, settling out of heavy hydrocarbons in downstream equipment or fouling of the catalyst in the reactor which in the extreme results in coking of the catalyst bed. The operator of a residual hydrocracker maintains conversion at a sufficiently low level to avoid these problems. Recent advances in the LC-Fining technology have led to the development of the High Conversion LC-Fining Process which is capable of operation at conversions of 95% and higher without any of these problems.

  9. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    ;2 Abstract This thesis tackles the problem of data conversion in the Residue Number System (RNS). The RNS has the use of RNS at the applications. In this thesis, we aim at developing efficient schemes for the conversion from the conventional representation to the RNS representation and vice versa. The conventional

  10. Fast Fourier demodulation Yuval Carmona)

    E-Print Network [OSTI]

    Ribak, Erez

    Fast Fourier demodulation Yuval Carmona) and Erez N. Ribakb) Department of Physics, Technion, Haifa present a fast Fourier demodulation method for calculating the distortion in a repetitive pattern in Fourier space. After demodulation, we are left with the Fourier transform of the sought phase information

  11. Effects of pyrolysis conditions and ion-exchangeable cations on the thermal decomposition of a Victorian low-rank coal

    SciTech Connect (OSTI)

    Sathe, C.; Pang, Y.; Li, C.Z. [Monash Univ., Clayton, Victoria (Australia)

    1998-12-31

    A Loy Yang brown coal sample was acid-washed and ion-exchanged with Na and Ca to prepare the H-form, Na-form and Ca-form coal samples. These coal samples were pyrolyzed in a wire-mesh reactor where the extraparticle secondary reactions of the evolved volatiles were minimized. The ion-exchanged coal samples were found to give very different tar yields from those of the raw coal samples. The tar yields from the pyrolysis of the raw and H-form coal samples were observed to be very sensitive to changes in heating rate and the tar yields at 600 C were found to increase much more than the corresponding increases in the total volatile yields as the heating rate was increased from 1 to 1,000 K/s. In contrast, the tar yields from the Ca-form and Na-form coal samples showed little heating rate sensitivity. The heating rate sensitivity of pyrolysis yields is believed to be at least partly related to the presence of carboxyl/carboxylate groups and other bulky substitution groups in the coal as well as the rapid pressure buildup within the particles. Re-exchanging Na in the Na-form coal sample and Ca in the Ca-form coal sample with H confirmed the effects of Na and Ca, but also suggested that the irreversible structural changes taking place during ion-exchange should also be considered to evaluate the effects of ion-exchangeable cations during pyrolysis. The major roles of ion-exchangeable cations during pyrolysis are thought to be associated with the transformation of the alkali and alkaline earth metallic species. Some Ca was volatilized during pyrolysis, even at temperatures as low as 600 C.

  12. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  13. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  14. Fast Track Kinderchirurgie -von der Qualittsverbesserung zur

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    Fast Track Kinderchirurgie - von der Qualitätsverbesserung zur integrierten Versorgung - Benno Ure Multimodales Konzept / Chirurgie entlang eines Pfades Hendrik Kehlet 1991 Kopenhagen, Dänemark Fast Track Chirurgie #12;Multimodales Konzept Fast Track Chirurgie Chirurgie Anästhesie Schmerztherapie Pflege andere

  15. Fast Ensemble Smoothing

    E-Print Network [OSTI]

    S. Ravela; D. McLaughlin

    2006-03-31

    Smoothing is essential to many oceanographic, meteorological and hydrological applications. The interval smoothing problem updates all desired states within a time interval using all available observations. The fixed-lag smoothing problem updates only a fixed number of states prior to the observation at current time. The fixed-lag smoothing problem is, in general, thought to be computationally faster than a fixed-interval smoother, and can be an appropriate approximation for long interval-smoothing problems. In this paper, we use an ensemble-based approach to fixed-interval and fixed-lag smoothing, and synthesize two algorithms. The first algorithm produces a linear time solution to the interval smoothing problem with a fixed factor, and the second one produces a fixed-lag solution that is independent of the lag length. Identical-twin experiments conducted with the Lorenz-95 model show that for lag lengths approximately equal to the error doubling time, or for long intervals the proposed methods can provide significant computational savings. These results suggest that ensemble methods yield both fixed-interval and fixed-lag smoothing solutions that cost little additional effort over filtering and model propagation, in the sense that in practical ensemble application the additional increment is a small fraction of either filtering or model propagation costs. We also show that fixed-interval smoothing can perform as fast as fixed-lag smoothing and may be advantageous when memory is not an issue.

  16. Reactions of {sup 1}:CX{sub 2} during chlorofluorocarbon pyrolysis

    SciTech Connect (OSTI)

    DiFelice, J.J.; Ritter, E.R. [Villanova Univ., Villanova, PA (United States)

    1994-12-31

    Singlet carbenes are reactive intermediates which behave in a fashion quite different from radicals. In hydrocarbon and hydrochlorocarbon systems, radicals and radical chemistry typically dominate. However, in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) systems, formation of perhalogenated singlet carbenes ({sup 1}:CX{sub 2}) has been observed. While radicals undergo abstraction reactions and addition to double bonds, singlet carbenes can insert into single bonds. Singlet carbenes are species which have two paired nonbonded electrons; since paired electrons have opposite spin, singlet carbenes can insert into single bonds. Triplet carbenes, in contrast, contain unpaired electrons and behave essentially like radicals. Formation of perhalogenated triplet carbenes ({sup 3}:CX{sub 2}) is less favorable in CFC and HCFC systems since the :CX{sub 2} singlet state is as much as 56 kcal/mol lower in energy than the triplet state. This paper discusses the results of chlorofluorocarbon pyrolysis in helium at different temperatures and with carbene insertion.

  17. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    SciTech Connect (OSTI)

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  18. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a �demonstration� size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  19. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    After ignition, a thermonuclear burn wave spreads radiallythe shell to create the thermonuclear burn wave. At 10 keV,heating the plasma to thermonuclear temperatures. Protons

  20. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling. Final report, August 15, 1988--October 15, 1991

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  1. Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers

    E-Print Network [OSTI]

    Das, Suman

    Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah alternative feedstocks · Alternative fuels must be: · Compatible with current infrastructure · Sustainable to traditional petroleum based fuels · Differences associated with oxygen · Removal of some oxygen is necessary

  2. Pyrolysis for waste management: A life cycle assesment of biodegradable waste, bioenergy generation and biochar production in Glasgow and Clyde valley 

    E-Print Network [OSTI]

    Ibarrola, Rodrigo

    2009-01-01

    Biochar production and waste treatment by pyrolysis represent an attractive solution to decrease carbon dioxide atmospheric concentrations and to enhance the enrichment of soils by treating in a more sustainable way the biodegradable waste generated...

  3. Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels

    SciTech Connect (OSTI)

    Thibodeaux, J.; Hensley, J.

    2013-01-01

    The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

  4. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  5. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  6. THE MATERIALS OF FAST BREEDER REACTORS

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01

    metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

  7. Ocean Thermal Energy Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Energy Conversion Basics Ocean Thermal Energy Conversion Basics August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat...

  8. Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

    SciTech Connect (OSTI)

    Ma, T

    2010-04-21

    The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

  9. Variation of char structure during anthracite pyrolysis catalyzed by Fe{sub 2}O{sub 3} and its influence on char combustion reactivity

    SciTech Connect (OSTI)

    Xuzhong Gong; Zhancheng Guo; Zhi Wang

    2009-09-15

    Effects of Fe{sub 2}O{sub 3} on the pyrolysis reactivity of demineralized anthracite were investigated by a thermo-gravimetric analyzer, indicating that pyrolysis reactivity of Fe{sub 2}O{sub 3}-loaded demineralized anthracite was higher than that of raw demineralized anthracite when temperature is over 500{sup o}C. Chars were prepared from the two coal samples in muffle with heating progress, and their structures were analyzed using SEM, FTIR, XRD, and Raman. FTIR results showed that absorption peaks of functional groups on the surface of char from catalytic pyrolysis at 700{sup o}C were more than that of char from noncatalytic pyrolysis. Raman results demonstrated values of (I{sub D3} + I{sub D4})/IG of chars from catalytic pyrolysis and noncatalytic pyrolysis were 4.76 and 3.86, respectively, indicating that ordering of the char was decreased by Fe{sub 2}O{sub 3}. XRD analysis revealed that diffraction angle of the 002 peak did not shift; however, L{sub a} and L{sub c} decreased, indicating degree of graphitization for microcrystalline structure of char from catalytic pyrolysis was decreased. The results of FTIR, XRD, and Raman of the char showed that catalytic pyrolysis improved the formation of free radicals, while hindered polymerization and forming of basic structure units. Finally, combustion reactivity of the three chars, including char of raw demineralized anthracite (char-A), char of Fe{sub 2}O{sub 3}-loaded demineralized anthracite (char-B), and char of Fe{sub 2}O{sub 3}-loaded demineralized anthracite washed by HCl (char-C), was investigated using TG and indicated that their active order was char-B > char-C > char-A. The results corroborated that Fe{sub 2}O{sub 3} changed structure of anthracite char and improved combustion reactivity.

  10. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  11. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  12. Interfacial effects in fast reactors

    E-Print Network [OSTI]

    Saidi, Mohammad Said

    1979-01-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

  13. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  14. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  15. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  16. ME 533: Energy Conversion Emily M Ryan

    E-Print Network [OSTI]

    aspects of modern energy conversion systems, including traditional systems such as steam power plants, gas turbines and internal combustion engines and refrigeration systems, and renewable systems such as solar

  17. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  18. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Yelick, Kathy

    2013-06-24

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  19. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  20. Collaboration on Topic Change in Conversation

    E-Print Network [OSTI]

    Howe, Mary

    1991-01-01

    Conversations are cooperatively achieved speech events. Analysis of topic changes shows that topic endings are negotiated by participants over a series of turns, using the following specific types of indicators: summary assessments, acknowledgment...

  1. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    Electrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Embedded Systems Credits 120 ECTS, 24 months Starts in September universities of technology in the Netherlands - Delft University of Technology, Eindhoven University

  2. Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient...

    Office of Environmental Management (EM)

    Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater Algae-to-Fuel: Integrating Thermochemical Conversion, Nutrient Recycling, and Wastewater...

  3. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

  4. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ebinarbiooilsupgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels...

  5. First-of-its-Kind Carbon Capture and Conversion Demonstration...

    Office of Environmental Management (EM)

    First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

  6. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01

    310, the Ocean the Ocean Energy Thermal Energy Conversionfor the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary

  7. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01

    making direct thermal energy storage methods, e.g. thosethermal shorting, that limits the energy conversion efficiency of direct thermoelectric energy conversion methods.

  8. Project Profile: Brayton Solar Power Conversion System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Conversion System Project Profile: Brayton Solar Power Conversion System Brayton Energy logo Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the...

  9. 2015 Peer Review Presentations-Thermochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Conversion 2015 Peer Review Presentations-Thermochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at...

  10. 2015 Peer Review Presentations-Biochemical Conversion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2015 Peer Review Presentations-Biochemical Conversion The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the...

  11. Novel Transparent Phosphor Conversion Matrix with High Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next-Generation Phosphor-Converted LED-based Solid State Lighting Novel Transparent Phosphor Conversion...

  12. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  13. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  14. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer Dynamics in Photocatalytic CO2 Conversion Electron Transfer Dynamics in Photocatalytic CO2 Conversion Coal is the workhorse of our power industry, responsible for...

  15. Composites for Multi-energy conversion & waste heat recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites for Multi-energy conversion & waste heat recovery Composites for Multi-energy conversion & waste heat recovery Discusses development of a composite that transfers energy...

  16. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons:...

  17. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Environmental Management (EM)

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol...

  18. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  19. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  20. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  1. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  2. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  3. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  4. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ex-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis In ex-situ catalytic fast pyrolysis, biomass is heated with catalysts...

  5. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis The in-situ catalytic fast pyrolysis pathway involves rapidly heating...

  6. FAST Spacecraft Reveals Fundamental Plasma Wave Emission NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source

    E-Print Network [OSTI]

    Strangeway, Robert J.

    FAST Spacecraft Reveals Fundamental Plasma Wave Emission Mechanism NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source region of the Earth's most powerful radio emission ­ Auroral Kilometric Radiation (AKR). FAST's high resolution particles and fields measurements have revealed

  7. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

  8. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  9. Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning1: Reforming Pyrolysis

  10. Implementing Fast Hierarchical Back Projection Jason Chang

    E-Print Network [OSTI]

    Willsky, Alan S.

    Implementing Fast Hierarchical Back Projection Jason Chang ECE 558 ­ Final Project Paper May 9, 2007 #12;Implementing Fast Hierarchical Back Projection Chang ii Abstract ­ Filtered back projection implemented in this project, called fast hierarchical back projection (FHBP), was proposed in [1] as a fast

  11. Fast exact linear algebra, LinBox

    E-Print Network [OSTI]

    Pernet, Clément

    Fast exact linear algebra, LinBox Clément Pernet Introduction LinBox: an overview Principles-place eliminations Fast matrix multiplication Linear algebra over big integers Fast exact linear algebra: LinBox Clément PERNET SAGE Days 6, November 11, 2007 #12;Fast exact linear algebra, LinBox Clément Pernet

  12. Fast Embedded Software Hashing Dag Arne Osvik

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Fast Embedded Software Hashing Dag Arne Osvik EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne to 512 bits. These hash functions all tend to be quite fast on modern processor architectures that a hash function should be efficient, in partic- ular fast; yet being fast is necessarily related to being

  13. Fast Kernel-Based Independent Component Analysis

    E-Print Network [OSTI]

    McAuliffe, Jon

    Fast Kernel-Based Independent Component Analysis Hao Shen , Stefanie Jegelka and Arthur Gretton instance, sources with near-zero kurtosis). FastKICA (Fast HSIC-based Kernel ICA) is a new optimisation-based ICA algorithms, FastKICA is applicable to any twice differentiable kernel function. Experimental

  14. Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333

    SciTech Connect (OSTI)

    Baldwin, R.

    2012-07-01

    The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

  15. Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW

    SciTech Connect (OSTI)

    1992-10-01

    This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

  16. Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda

    E-Print Network [OSTI]

    Novak Jr., Gordon S.

    Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda Department of Computer Sciences conversion and unit checking in a programming language is described. Index Terms -- unit conversion, unit if the type system does not include units of measurement. Conversion of units must be done explicitly

  17. ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported

    E-Print Network [OSTI]

    ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

  18. Strong converse theorems using Rényi entropies

    E-Print Network [OSTI]

    Felix Leditzky; Nilanjana Datta

    2015-06-08

    We use a R\\'enyi entropy approach to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940] to prove the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the $(e,q)$-plane, where $e$ and $q$ denote the entanglement cost and quantum communication cost, respectively. This extends a recent strong converse theorem for the quantum communication cost of state redistribution, proved by Berta et al. [arXiv:1409.4338]. For the other tasks as well, we provide new proofs for strong converse theorems which were previously established using smooth entropies.

  19. HI intensity mapping with FAST

    E-Print Network [OSTI]

    Bigot-Sazy, Marie-Anne; Battye, Richard A; Browne, Ian W A; Chen, Tianyue; Dickinson, Clive; Harper, Stuart; Maffei, Bruno; Olivari, Lucas C; Wilkinson, Peter N

    2015-01-01

    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L-band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000\\,{\\rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~\\sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.

  20. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  1. A Personalized System for Conversational Recommendations

    E-Print Network [OSTI]

    Goker, M H; Thompson, C A; 10.1613/jair.1318

    2011-01-01

    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and nu...

  2. Pyrolysis of tire rubber: Porosity and adsorption characteristics of the pyrolytic chars

    SciTech Connect (OSTI)

    Miguel, G.S.; Fowler, G.D.; Sollars, C.J.

    1998-06-01

    Tire rubber has been pyrolyzed at various temperatures under a nitrogen atmosphere. The resulting chars have been analyzed for their porosity using nitrogen gas adsorption and for their aqueous adsorption characteristics using phenol, methylene blue, and the reactive dyes Procion Turquoise H-A and Procion Red H-E3B. Nitrogen adsorption isotherms were modeled to the BET and Dubinin-Astakhov (DA) equations to determine effective surface areas, mesopore volumes, and micropore volumes. Results showed that pyrolysis of tire rubber was essentially complete at 500 C and resulted in a char yield of approximately 42 wt%. Pyrolytic chars exhibited BET surface areas up to 85 m{sup 2}/g and micropore volumes up to 0.04 mL/g. Owing to their poorly developed micropore structure, the pyrolytic chars exhibited limited aqueous adsorption capacity for compounds of small molecular weight, such as phenol. However, the chars possessed significantly greater adsorption capacity for species of large molecular weight which was attributed to the presence of large mesopore volumes (up to 0.19 mL/g).

  3. Dutchess County Resource Recovery Task Force report: Dutchess County Pyrolysis Program

    SciTech Connect (OSTI)

    None

    1980-07-01

    Dutchess County initiated development of a long-range master plan for Solid Waste Management in 1971. The plan included development of a resource recovery facility to service the municipalities in the County population center. Based on early recommendations, a pyrolysis facility employing Purox technology was to be implemented. A feasibility study, paid for by County funds was completed in 1975. The study provided siting recommendations, estimation of available waste, and preliminary facility design. Because of various considerations, the project was not developed. Under the Department of Energy grant, the County reassessed the feasibility of a resource recovery facility, with emphasis on confirming previous conclusions supporting the Purox technology, waste availability, energy recovery and sale and siting of the plant. The conclusions reached in the new study were: a resource recovery facility is feasible for the County; sufficient waste for such a facility is available and subject to control; While Purox technology was feasible it is not the most appropriate available technoloy for the County; that mass burning with steam recovery is the most appropriate technology; and that resource recovery while presently more expensive than landfilling, represents the only cost effective, energy efficient, and environmentally sound way to handle the solid waste problem in the County.

  4. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOE Patents [OSTI]

    McIntosh, M.J.; Arzoumanidis, G.G.

    1997-09-02

    A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

  5. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  6. Method and system including a double rotary kiln pyrolysis or gasification of waste material

    DOE Patents [OSTI]

    McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)

    1997-01-01

    A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

  7. Further Considerations of the Sources of the Volatiles from Pyrolysis of Polystyrene

    SciTech Connect (OSTI)

    Poutsma, Marvin L [ORNL

    2009-01-01

    Formation of the radical precursor to trimer (T) during pyrolysis of polystyrene features a 1,5-hydrogen shift. However because 1,3-shift is so much slower, the sources of the less abundant dimer (D) and tetramer (Te) remain unclear. While we and others have proposed addition of small radicals to olefinic polymer end-groups as a route to oligomer precursor radicals, others recently suggested that such addition is also too slow and proposed a third alternative: 1,7-shift followed serially by 7,3-shift to give the precursor for D. Although considerable evidence suggests that 1,7-shift would be much slower than 1,5-shift, this alternate kinetic model assigned them as comparably rapid. We apply a computational method to predict initial product distributions based on estimated, and empirically varied, propagation rate constants for 1,x-shifts, -scission, hydrogen transfer, and addition radical steps. The addition mechanism successfully predicted the relative amount of D but systematically underestimated Te. This deficiency could be removed by empirical inclusion of a small amount of 1,7-shift, although the other literature evidence still causes this to remain a questionable hypothesis.

  8. Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)

    SciTech Connect (OSTI)

    Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed

    2014-07-10

    The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 ?m which corresponded to the EFB particle size in the range of 710–1000 ?m and holding time of 483 seconds.

  9. FMTOMOFMTOMO Fast Marching Tomography Package

    E-Print Network [OSTI]

    Rawlinson, Nick

    FMTOMOFMTOMO Fast Marching Tomography Package: Instruction Manual by Nick Rawlinson Research School;1 Introduction This document describes how to use the Fortran software package FMTOMO to perform 3-D traveltime to be reconciled. The long term goal of the FMTOMO project is to produce a comprehensive package for carrying out

  10. FAST Observations of Wave Packets

    E-Print Network [OSTI]

    Strangeway, Robert J.

    of California, Berkeley #12;Outline The accelerated electrons as the free energy source for AKR. Pumping of AKR. Burstiness may be a signature of the reformation of the distribution. #12;Free Energy Source for AKR FAST has shown that the accelerated electrons can be the major free energy source for AKR. Within the AKR source

  11. Enhanced Model for Fast Ignition

    SciTech Connect (OSTI)

    Dr. Rodney J. Mason

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nationâ??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, â??implicitness and fluid modeling,â?ť can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  12. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    SciTech Connect (OSTI)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  13. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  14. Polarization conversion loss in birefringent crystalline resonators

    E-Print Network [OSTI]

    Polarization conversion loss in birefringent crystalline resonators Ivan S. Grudinin,* Guoping Lin gallery modes in birefringent crystalline resonators are investigated. We experimentally investigate://dx.doi.org/10.1364/OL.38.002410 Crystalline whispering gallery mode (WGM) resonators are known for compact size

  15. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  16. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  17. ENERGY SERIES "Emerging High Power Conversion Technologies"

    E-Print Network [OSTI]

    Bergman, Keren

    SEMINAR: ENERGY SERIES "Emerging High Power Conversion Technologies" Dujic Drazen Professor, Power of embedded renewable energy sources. Whatever the renewable source of the prime energy is (wind, solar, hydro, storage or use. This is where power electronics come into a play, as key enabling technology for flexible

  18. Ocean Thermal Energy Conversion LUIS A. VEGA

    E-Print Network [OSTI]

    demand due to emerging economies like China, India, and Brazil. Coal and natural gas resources 7296 OOcean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean the OTEC plant. The difference between gross power and in-plant power consumption needed to run all sweater

  19. Conversational Programming in Action Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Conversational Programming in Action Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming, which is programming by end users with limited, if any, formal programming programming languages such as Logo have made programming substantially more accessible to end users. More

  20. Making Programming more Conversational Alexander Repenning

    E-Print Network [OSTI]

    Repenning, Alexander

    Making Programming more Conversational Alexander Repenning AgentSheets Inc. Boulder 80301, Colorado.0 culture, end-user programming--programming by end users with limited or even no formal programming programming languages such as Logo have made programming substantially more accessible to end-users. More