Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fast Pyrolysis Conversion Tests of Forest Concepts’ Crumbles.  

SciTech Connect (OSTI)

The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

2012-04-02T23:59:59.000Z

2

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

2013-11-01T23:59:59.000Z

3

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

2013-11-01T23:59:59.000Z

4

Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"  

SciTech Connect (OSTI)

The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

2014-01-01T23:59:59.000Z

5

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in a fluidized bed to create...

6

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

7

Catalytic fast pyrolysis of lignocellulosic biomass  

SciTech Connect (OSTI)

Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

2014-11-21T23:59:59.000Z

8

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect (OSTI)

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

9

Chemical analysis of biomass fast pyrolysis oils  

SciTech Connect (OSTI)

This paper reviews the development of the field of chemical analysis of biomass fast pyrolysis oils. The techniques applied to pyrolysis oil analysis are reviewed including proximate and ultimate analysis, water (moisture) analysis, and chemical component analysis by various forms of chromatography, solvent separations, and spectrophotometric analyses, like infrared and ultraviolet. Advanced analytical techniques such as nuclear magnetic resonance and molecular beam -- mass spectrometry are also discussed. This paper reviews and compares the methods and the results of the analyses. The advantages and shortcomings of the various methods applied are identified. Comparisons derived from the IEA Round Robin are incorporated.

Elliott, D.C.

1994-09-01T23:59:59.000Z

10

Specialists' workshop on fast pyrolysis of biomass  

SciTech Connect (OSTI)

This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

Not Available

1980-01-01T23:59:59.000Z

11

Understanding the product distribution from biomass fast pyrolysis.  

E-Print Network [OSTI]

??Fast pyrolysis of biomass is an attractive route to transform solid biomass into a liquid bio-oil, which has been envisioned as a renewable substitute for… (more)

Patwardhan, Pushkaraj Ramchandra

2010-01-01T23:59:59.000Z

12

The effects of biomass pretreatments on the products of fast pyrolysis.  

E-Print Network [OSTI]

??Fast pyrolysis thermochemically degrades lignocellulosic material into solid char, organic liquids, and gaseous products. Using fast pyrolysis to produce renewable liquid bio-oil to replace crude… (more)

Kasparbauer, Randall Dennis

2009-01-01T23:59:59.000Z

13

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

14

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

15

Lignin Fast Pyrolysis: Results from an International Collaboration  

SciTech Connect (OSTI)

An international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized bed reactors and entrained flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized bed fast pyrolysis systems.

Nowakowski, Daniel J.; Bridgwater, Anthony V.; Elliott, Douglas C.; Meier, Dietrich; de Wild, Paul

2010-05-01T23:59:59.000Z

16

Stabilization of Fast Pyrolysis Oil: Post Processing Final Report  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

2012-03-01T23:59:59.000Z

17

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

18

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

19

Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)  

SciTech Connect (OSTI)

Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

Not Available

2009-09-01T23:59:59.000Z

20

Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.  

E-Print Network [OSTI]

??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current… (more)

Dalluge, Erica A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor and its products.  

E-Print Network [OSTI]

??The focus of this work is a radiatively heated, free-fall, fast pyrolysis reactor. The reactor was designed and constructed for the production of bio-oil from… (more)

Ellens, Cody James

2009-01-01T23:59:59.000Z

22

Summary of Fast Pyrolysis and Upgrading GHG Analyses  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 established new renewable fuel categories and eligibility requirements (EPA 2010). A significant aspect of the National Renewable Fuel Standard 2 (RFS2) program is the requirement that the life cycle greenhouse gas (GHG) emissions of a qualifying renewable fuel be less than the life cycle GHG emissions of the 2005 baseline average gasoline or diesel fuel that it replaces. Four levels of reduction are required for the four renewable fuel standards. Table 1 lists these life cycle performance improvement thresholds. Table 1. Life Cycle GHG Thresholds Specified in EISA Fuel Type Percent Reduction from 2005 Baseline Renewable fuel 20% Advanced biofuel 50% Biomass-based diesel 50% Cellulosic biofuel 60% Notably, there is a specialized subset of advanced biofuels that are the cellulosic biofuels. The cellulosic biofuels are incentivized by the Cellulosic Biofuel Producer Tax Credit (26 USC 40) to stimulate market adoption of these fuels. EISA defines a cellulosic biofuel as follows (42 USC 7545(o)(1)(E)): The term “cellulosic biofuel” means renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions, as determined by the Administrator, that are at least 60 percent less than the baseline lifecycle greenhouse gas emissions. As indicated, the Environmental Protection Agency (EPA) has sole responsibility for conducting the life cycle analysis (LCA) and making the final determination of whether a given fuel qualifies under these biofuel definitions. However, there appears to be a need within the LCA community to discuss and eventually reach consensus on discerning a 50–59 % GHG reduction from a ? 60% GHG reduction for policy, market, and technology development. The level of specificity and agreement will require additional development of capabilities and time for the sustainability and analysis community, as illustrated by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

Snowden-Swan, Lesley J.; Male, Jonathan L.

2012-12-07T23:59:59.000Z

23

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-25T23:59:59.000Z

24

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case  

SciTech Connect (OSTI)

The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

2009-02-28T23:59:59.000Z

25

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

SciTech Connect (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

26

State-of-the-Art of Fast Pyrolysis in IEA Bioenergy Member Countries  

SciTech Connect (OSTI)

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency(IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level.

Meier, Dietrich; van de Beld, Bert; Bridgwater, Anthony V.; Elliott, Douglas C.; Oasmaa, Anja; Preto, Fernando

2013-04-01T23:59:59.000Z

27

Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing  

SciTech Connect (OSTI)

In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

Hsu, D. D.

2011-03-01T23:59:59.000Z

28

Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils  

SciTech Connect (OSTI)

This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8 ���µm were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125���°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90���ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the bio-oils. The

George W. Huber, Aniruddha A Upadhye, David M. Ford, Surita R. Bhatia, Phillip C. Badger

2012-10-19T23:59:59.000Z

29

Implications of Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

2010-11-01T23:59:59.000Z

30

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017  

SciTech Connect (OSTI)

Review of the the status of DOE funded research for converting biomass to liquid transportation fuels via fast pyrolysis and hydrotreating for fiscal year 2011.

Jones, Susanne B.; Male, Jonathan L.

2012-02-01T23:59:59.000Z

31

Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials  

DOE Patents [OSTI]

A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

Chum, Helena L. (8448 Allison Ct., Arvada, CO 80005); Black, Stuart K. (4976 Raleigh St., Denver, CO 80212); Diebold, James P. (57 N. Yank Way, Lakewood, CO 80228); Kreibich, Roland E. (4201 S. 344th, Auburn, WA 98001)

1993-01-01T23:59:59.000Z

32

Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials  

DOE Patents [OSTI]

A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

1993-08-10T23:59:59.000Z

33

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network [OSTI]

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry… (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

34

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact… (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

35

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current… (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

36

Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils  

DOE Patents [OSTI]

A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

1993-06-29T23:59:59.000Z

37

Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products  

SciTech Connect (OSTI)

Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

2009-10-01T23:59:59.000Z

38

Quality Control in Fast Pyrolysis Bio-Oil Production and Use  

SciTech Connect (OSTI)

This paper will focus on norms and standards for fast pyrolysis bio-oils. It will include the present status and address what still has to be done on bio-oil specifications and relevant test methods. The paper will address industrial needs in commercialization of the fuel oil use of bio-oil, including the registration application to the REACH program and its consequences within the European Union, as well as development of a standard within ASTM. The paper will discuss the most important properties of bio-oil and the variation in these properties among various bio-oils. It will address the issue of quality follow-up in bio-oil production, including the properties to be followed and the laboratory and on-line monitoring methods. The paper will provide a state of the art of fuel oil specifications, test methods, and testing procedures as they are applied to bio-oil. It will review the effort in support of the implementation of an ASTM standard including the methods validation work.

Oasmaa, Anja; Elliott, Douglas C.; Muller, Stefan

2009-10-01T23:59:59.000Z

39

Comparison of Biological and Thermal (Pyrolysis) Pathways for Conversion of Lignocellulose to Biofuels  

E-Print Network [OSTI]

D study. This journey was great because of her and Tinku being around! Thanks to my advisor Dr. Capareda for the diverse bio-energy research opportunity at BETA lab, Dr. El-Halwagi for the unconditional care in every step since I joined TX A... to produce bio-energy from biomass ....................... 3 1.2.2 Pretreatment and hydrolysis in lignocellulose breakdown ....................... 5 1.2.3 Pyrolysis oil upgrade technology...

Imam, Tahmina 1983-

2012-11-30T23:59:59.000Z

40

Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.  

SciTech Connect (OSTI)

The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.

Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q. (Energy Systems)

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor  

E-Print Network [OSTI]

The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

Whitman, Joshua (Joshua J.)

2007-01-01T23:59:59.000Z

42

Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions  

SciTech Connect (OSTI)

Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

2011-10-06T23:59:59.000Z

43

Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity  

SciTech Connect (OSTI)

An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

2012-05-04T23:59:59.000Z

44

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017  

SciTech Connect (OSTI)

This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

Jones, Susanne B.; Snowden-Swan, Lesley J.

2013-08-27T23:59:59.000Z

45

Influence of inorganic compounds on char formation and quality of fast pyrolysis oils  

SciTech Connect (OSTI)

Inorganic compounds, especially potassium, calcium, sodium, silicon, phosphorus, and chlorine, are the main constituents of ash in biomass feedstocks. The concentrations of ash in biomass feedstocks range from less than 1% in softwoods to 15% in herbaceous biomass and agricultural residues. During biomass pyrolysis, these inorganics, especially potassium and calcium, catalyze both decomposition and char formation reactions. Decomposition reactions may either result in levoglucosan-rich or hydroxyacetaldehyde-rich pyrolysis products depending on the concentration of the ash in the feedstocks. The catalytic effect of the ash levels off at high organic ion concentrations. Chars formed during these reactions invariably end up in the pyrolysis oils (biofuel oils). A high proportion of the alkali metals in the ash are sequestered in the chars. The presence of high concentrations of alkali metals in the biofuel oils make them unsuitable for combustion in boilers, diesel engines, and in turbine operations. The highest concentration of alkali metals are found in herbaceous feedstocks and agricultural residue biofuel oils. Leaching studies conducted on the chars suspended in the oils showed no leaching of the alkali metals from the chars into the oils. Our data suggest that hot gas filtration of the oils can effectively reduce the alkali metals contents of the biofuel oils to acceptable levels to be used as turbine, diesel engine, and boiler fuels.

Agbleyor, F.A.; Besler, S.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-01T23:59:59.000Z

46

Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids  

SciTech Connect (OSTI)

The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

2013-01-18T23:59:59.000Z

47

Fast and accurate direct MDCT to DFT conversion with arbitrary window functions  

E-Print Network [OSTI]

1 Fast and accurate direct MDCT to DFT conversion with arbitrary window functions Shuhua Zhang* and Laurent Girin Abstract--In this paper, we propose a method for direct con- version of MDCT coefficients of the MDCT-to- DFT conversion matrices into a Toeplitz part plus a Hankel part. The latter is split

Paris-Sud XI, Université de

48

Fast Pyrolysis and Hydrotreating 2013 State of Technology R&D and Projections to 2017  

SciTech Connect (OSTI)

This report documents the FY13 modeled costs and experimental basis for those costs for fast pyrolyis and hydrotreating to liquid fuels. The report also documents the projected costs to 2013.

Jones, Susanne B.; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Zacher, Alan H.; Olarte, Mariefel V.; Drennan, Corinne

2014-04-16T23:59:59.000Z

49

Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors  

SciTech Connect (OSTI)

Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

2014-02-01T23:59:59.000Z

50

Experimental investigation into fast pyrolysis of biomass using an entrained-flow reactor  

SciTech Connect (OSTI)

Pyrolysis experiments were performed using 30 and 90cm entrained-flow reactors, with steam as a carrier gas and two different feedstocks - wheat straw and powdered material drived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 700/sup 0/ to 1400/sup 0/C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II are due to the presence of plastics in the feedstock. Batch experiments were run on wheat straw using a Pyroprobe/sup TM/. The samples were heated at a high rate (20,000/sup 0/ C/sec) to 1000/sup 0/ and held at 1000/sup 0/C for a variable period of time from 0.05 to 4.95s. For times up to 0.15s volume fractions of ethylene, propylene, and methane increase while that of carbon dioxide decreases. Subsequently, only carbon monoxide and hydrogen are produced. The change may be related to poor thermal contact and suggests caution in using the Pyroprobe.

Bohn, M.; Benham, C.

1981-02-01T23:59:59.000Z

51

In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About Us Ian KalinEditionIn-Situ Catalytic Fast

52

Sodium Cooled Fast Reactors and the Pyro-Process: Conversion of Nuclear Waste into a Fuel Source  

E-Print Network [OSTI]

1 Sodium Cooled Fast Reactors and the Pyro-Process: Conversion of Nuclear Waste into a Fuel Source. Belanger Chair, Department of Physics #12;2 Abstract A review of the sodium cooled fast reactor........................................................................................23 1.3.5 Reactor Startup

Belanger, David P.

53

Mode conversion and absorption of fast waves at high ion cyclotron harmonics in inhomogeneous magnetic fields  

SciTech Connect (OSTI)

The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where ?{sub i}=k{sub ?}{sup 2}?{sub i}{sup 2}/2?1 (where k{sub ?} is the perpendicular wave number and ?{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.

Cho, Suwon, E-mail: swcho@kgu.ac.kr [Department of Physics, Kyonggi University, Suwon, Kyonggi-Do 443-760 (Korea, Republic of)] [Department of Physics, Kyonggi University, Suwon, Kyonggi-Do 443-760 (Korea, Republic of); Kwak, Jong-Gu [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

2014-04-15T23:59:59.000Z

54

CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS  

SciTech Connect (OSTI)

Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

2012-10-14T23:59:59.000Z

55

Modelling and experimental studies of biomass and organic pyrolysis.  

E-Print Network [OSTI]

??Pyrolysis is a thermal conversion process that decomposes organic materials into liquid hydrocarbons, carbonaceous residues and combustible gases in the absence of oxygen. Depending on… (more)

Lam, Ka Leung

2012-01-01T23:59:59.000Z

56

Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability  

SciTech Connect (OSTI)

An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

2012-11-06T23:59:59.000Z

57

Environmental impacts of thermochemical biomass conversion. Final report  

SciTech Connect (OSTI)

Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

58

Biomass Thermochemical Conversion Program. 1983 Annual report  

SciTech Connect (OSTI)

Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1984-08-01T23:59:59.000Z

59

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems   

E-Print Network [OSTI]

to pessimistic scenarios are used for system operation. Slow pyrolysis is compared to fast pyrolysis and biomass co-firing for GHG abatement and electricity production, using various scenarios for availability of indigenous Scottish feedstocks....

Hammond, James A R

2009-01-01T23:59:59.000Z

60

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect (OSTI)

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

62

Evaluation of ethane as a power conversion system working fluid for fast reactors  

E-Print Network [OSTI]

A supercritical ethane working fluid Brayton power conversion system is evaluated as an alternative to carbon dioxide. The HSC® chemical kinetics code was used to study thermal dissociation and chemical interactions for ...

Perez, Jeffrey A

2008-01-01T23:59:59.000Z

63

Life-Cycle Assessment of Pyrolysis Bio-Oil Production  

SciTech Connect (OSTI)

As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

2012-02-01T23:59:59.000Z

64

Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection  

SciTech Connect (OSTI)

Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

Christensen, E.; Alleman, T. L.; McCormick, R. L.

2013-01-01T23:59:59.000Z

65

Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 C  

E-Print Network [OSTI]

reserves in lignocellulosic biomass.1 Fast pyrolysis of lignocellulosic biomass, which involves rapidAb Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C Vishal pyrolysis at 327 and 600 °C using Car-Parrinello molecular dynamics (CPMD) simulations with rare events

Auerbach, Scott M.

66

APPLICATION OF PYROLYSIS-GC/MS TO THE STUDY OF BIOMASS AND BIOMASS CONSTITUENTS.  

E-Print Network [OSTI]

??Fast pyrolysis, the rapid thermal decomposition of organic material in the absence of oxygen, is a process that can be used to convert biomass into… (more)

Ware, Anne E

2013-01-01T23:59:59.000Z

67

FAST  

Energy Science and Technology Software Center (OSTI)

002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

68

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

69

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network [OSTI]

processes of wood and biomass pyrolysis,” to appear ineffect during biomass pyrolysis,” Industrial & Engineeringprocesses during pyrolysis of a large biomass particle,”

Lautenberger, Chris

2007-01-01T23:59:59.000Z

70

Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds  

SciTech Connect (OSTI)

There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

Wang, Huamin; Male, Jonathan L.; Wang, Yong

2013-05-01T23:59:59.000Z

71

The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene  

SciTech Connect (OSTI)

Highlights: • Non-catalytic and catalytic fast pyrolysis of cellulose/polyethylene blend was carried out in a laboratory scale reactor. • Optimization of process temperature was done. • Optimization of clay catalyst type and amount for co-pyrolysis of cellulose and polyethylene was done. • The product yields and the chemical composition of bio-oil was investigated. - Abstract: Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.

Solak, Agnieszka; Rutkowski, Piotr, E-mail: piotr.rutkowski@pwr.wroc.pl

2014-02-15T23:59:59.000Z

72

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect (OSTI)

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

73

Fluidized bed pyrolysis of terrestrial biomass feedstocks  

SciTech Connect (OSTI)

Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

74

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network [OSTI]

processes such as flash pyrolysis [187], but it has not yetreaction model for flash wood pyrolysis,” Fuel 68: 1408–

Lautenberger, Chris

2007-01-01T23:59:59.000Z

75

Fuel Cycle System Analysis Implications of Sodium-Cooled Metal-Fueled Fast Reactor Transuranic Conversion Ratio  

SciTech Connect (OSTI)

If advanced fuel cycles are to include a large number of fast reactors (FRs), what should be the transuranic (TRU) conversion ratio (CR)? The nuclear energy era started with the assumption that they should be breeder reactors (CR > 1), but the full range of possible CRs eventually received attention. For example, during the recent U.S. Global Nuclear Energy Partnership program, the proposal was burner reactors (CR < 1). Yet, more recently, Massachusetts Institute of Technology's "Future of the Nuclear Fuel Cycle" proposed CR [approximately] 1. Meanwhile, the French company EDF remains focused on breeders. At least one of the reasons for the differences of approach is different fuel cycle objectives. To clarify matters, this paper analyzes the impact of TRU CR on many parameters relevant to fuel cycle systems and therefore spans a broad range of topic areas. The analyses are based on a FR physics parameter scan of TRU CR from 0 to [approximately]1.8 in a sodium-cooled metal-fueled FR (SMFR), in which the fuel from uranium-oxide-fueled light water reactors (LWRs) is recycled directly to FRs and FRs displace LWRs in the fleet. In this instance, the FRs are sodium cooled and metal fueled. Generally, it is assumed that all TRU elements are recycled, which maximizes uranium ore utilization for a given TRU CR and waste radiotoxicity reduction and is consistent with the assumption of used metal fuel separated by electrochemical means. In these analyses, the fuel burnup was constrained by imposing a neutron fluence limit to fuel cladding to the same constant value. This paper first presents static, time-independent measures of performance for the LWR [right arrow] FR fuel cycle, including mass, heat, gamma emission, radiotoxicity, and the two figures of merit for materials for weapon attractiveness developed by C. Bathke et al. No new fuel cycle will achieve a static equilibrium in the foreseeable future. Therefore, additional analyses are shown with dynamic, time-dependent measures of performance including uranium usage, TRU inventory, and radiotoxicity to evaluate the complex impacts of transition from the current uranium-fueled LWR system, and other more realistic impacts that may not be intuited from the time-independent steady-state conditions of the end-state fuel cycle. These analyses were performed using the Verifiable Fuel Cycle Simulation Model VISION. Compared with static calculations, dynamic results paint a different picture of option space and the urgency of starting a FR fleet. For example, in a static analysis, there is a sharp increase in uranium utilization as CR exceeds 1.0 (burner versus breeder). However, in dynamic analyses that examine uranium use over the next 1 to 2 centuries, behavior as CR crosses the 1.0 threshold is smooth, and other parameters such as the time required outside of reactors to recycle fuel become important. Overall, we find that there is no unambiguously superior value of TRU CR; preferences depend on the relative importance of different fuel cycle system objectives.

Steven J. Piet; Edward A. Hoffman; Samuel E. Bays; Gretchen E. Matthern; Jacob J. Jacobson; Ryan Clement; David W. Gerts

2013-03-01T23:59:59.000Z

76

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS  

E-Print Network [OSTI]

reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar secondary pyrolysis, an enrichment of nitrogen in tar was first observed, followed by a subsequent fast

Fletcher, Thomas H.

77

Bremsstrahlung and K(alpha) fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons  

SciTech Connect (OSTI)

The Bremsstrahlung and K-shell emission from 1 mm x 1 mm x 1 mm planar targets irradiated by a short-pulse 3 x 10{sup 18}-8 x 10{sup 19} W/cm{sup 2} laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device (CCD). From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3-12%, representing 20-40% total conversion efficiencies were inferred for intensities up to 8 x 10{sup 19} W/cm{sup 2}. Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons.

Chen, C D; Patel, P K; Hey, D S; Mackinnon, A J; Key, M H; Akli, K U; Bartal, T; Beg, F N; Chawla, S; Chen, H; Freeman, R R; Higginson, D P; Link, A; Ma, T Y; MacPhee, A G; Stephens, R B; Van Woerkom, L D; Westover, B; Porkolab, M

2009-07-24T23:59:59.000Z

78

90 Seconds of Discovery: Fast Pyrolysis  

ScienceCinema (OSTI)

Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

Weber, Robert; Elliot, Douglas

2014-06-13T23:59:59.000Z

79

90 Seconds of Discovery: Fast Pyrolysis  

SciTech Connect (OSTI)

Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

Weber, Robert; Elliot, Douglas

2013-01-08T23:59:59.000Z

80

Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flash pyrolysis and hydropyrolysis of biomass  

SciTech Connect (OSTI)

Process chemistry data on the flash pyrolysis and hydropyrolysis of wood is being obtained in a 1'' downflow entrained tubular reactor. The data indicates that at residence times of <1 second, and 900 to 1000/sup 0/C and 500 psi pressure, the flash hydropyrolysis of wood yields mainly methane and water. As the residence time increases to >3 seconds, the products are methane and CO. Almost complete conversion of the carbon to methane and CO are obtained in these experiments. At lower temperatures, in the order of 800/sup 0/C, 500 psi and residence times <4 seconds, significant amounts of benzene and ethane are produced. The experimental process chemistry data have been used to design and evaluate two processes in a preliminary manner. One process converts wood to high BTU pipeline gas and the other to methanol and chemical feedstocks consisting of benzene and ethylene. Reasonable plant investments which compare favorably with coal conversion plant estimates are derived.

Not Available

1982-08-01T23:59:59.000Z

82

Recovery of valuable chemical feedstocks from waste automotive plastics via pyrolysis processes  

SciTech Connect (OSTI)

Each year in North America over 9 million scrap vehicles are shredded to recover approximately 10 million tons of ferrous metal. The process also produces 3 million tons of waste known as automobile shredder residue (ASR) which consists of plastics, rubber, foams, textiles, glass, dirt, rust, etc. This waste is currently landfilled. In this study the authors present the results obtained in three different pyrolysis processes when ASR was used as the pyrolysis feedstock. The pyrolysis processes examined included: (1) a fast pyrolysis process, featuring rapid heat transfer and short residence times. This process produced primarily a gas stream that was rich in C{sub 1} to C{sub 3} hydrocarbons; (2) a screw kiln unit, characterized by slow heating and long residence times. This process produced a liquid stream that was high in aromatics; (3) a bench-scale autoclave reactor which, in the presence of water, produced a pyrolysis liquid containing large quantities of oxygenated hydrocarbons.

Shen, Z.; Day, M.; Cooney, D. [National Research Council Canada, Ottawa, Ontario (Canada). Inst. for Environmental Research and Technology

1995-11-01T23:59:59.000Z

83

Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1995-01-01T23:59:59.000Z

84

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers  

DOE Patents [OSTI]

A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

Evans, R.J.; Chum, H.L.

1994-06-14T23:59:59.000Z

85

Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers  

DOE Patents [OSTI]

A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

86

A review of the toxicity of biomass pyrolysis liquids formed at low temperatures  

SciTech Connect (OSTI)

The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

Diebold, J.P. [Thermalchemie, Inc., Lakewood, CO (United States)

1997-04-01T23:59:59.000Z

87

Integration of waste pyrolysis with coal/oil coprocessing  

SciTech Connect (OSTI)

HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PB-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI`s newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions were tested, including a baseline coal-only condition. During the coprocessing conditions, 343{degrees}C+ pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524{degrees}C- coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved.

Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

1998-04-01T23:59:59.000Z

88

Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers  

DOE Patents [OSTI]

A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

Evans, R.J.; Chum, H.L.

1998-10-13T23:59:59.000Z

89

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO)

1992-01-01T23:59:59.000Z

90

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals  

DOE Patents [OSTI]

A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

Chum, H.L.; Evans, R.J.

1992-08-04T23:59:59.000Z

91

Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis  

SciTech Connect (OSTI)

Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

2012-01-01T23:59:59.000Z

92

Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery  

SciTech Connect (OSTI)

Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

Jones, Susanne B.; Zhu, Yunhua

2009-04-01T23:59:59.000Z

93

Methods and apparatuses for preparing upgraded pyrolysis oil  

DOE Patents [OSTI]

Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

2013-10-01T23:59:59.000Z

94

Autothermal pyrolysis of waste tires  

SciTech Connect (OSTI)

The main objective of this research was to study the operating parameters of autothermal pyrolysis of scrap tires in a laboratory-scale fluidized bed reactor with a 100-cm bed height (10 cm I.D.) and a 100-cm freeboard (25 cm I.D.). Scrap tires were pyrolyzed in a limited oxygen supply, so that the heat for pyrolysis of the scrap tires was provided by combustion of some portion of the scrap tires. The operating parameters evaluated included the effect on the pyrolysis oil products and their relative proportions of (1) the air factor (0.07-0.035); (2) the pyrolysis temperature (370-570{degree}C); and (3) the catalyst added (zeolite and calcium carbonate). The results show that: (1) the composition of the liquid hydrocarbon obtained is affected significantly by the air factor; (2) the higher operating temperature caused a higher yield of gasoline and diesel; (3) the yield of gasoline increased due to the catalyst zeolite added, and the yield of diesel increased due to the addition of the catalyst calcium carbonate; (4) the principal constituents of gasoline included dipentene and diprene. 30 refs., 10 figs., 5 tabs.

Wey, M.Y.; Liou, B.H. [National Chung-Hsing Univ., Taichung (Taiwan, Province of China); Wu, S.Y.; Zhang, C.H. [Feng-Chia Univ., Taichung (Taiwan, Province of China)

1995-11-01T23:59:59.000Z

95

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1993-01-01T23:59:59.000Z

96

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

97

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

Evans, R.J.; Chum, H.L.

1994-04-05T23:59:59.000Z

98

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

99

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

Evans, R.J.; Chum, H.L.

1994-10-25T23:59:59.000Z

100

Study of Surface Cleaning Methods and Pyrolysis Temperature on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Cleaning Methods and Pyrolysis Temperature on Nano-Structured Carbon Films using X-ray Photoelectron Study of Surface Cleaning Methods and Pyrolysis Temperature on...

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

102

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

103

Conversion, Fragmentation,  

E-Print Network [OSTI]

YFFReview Forestland Conversion, Fragmentation, and Parcelization A summary of a forum exploring our forests today. Development and economic pressures on private lands are driving conversion the complexity of factors influencing fragmentation--for example, historic land use planning policies

104

Volatile constituents in a wood pyrolysis oil  

E-Print Network [OSTI]

Science VOLATILE CONSTITUTENTS IN A WOOD PYROLYSIS OIL A Thesis SHIH-CHIEN LIN Appro d as to style and content by: (Chairman of Committee) Head of epa tmen (Member Member Nay 1978 442936 ABSTRACT Volatile Constituents in a Wood Pyrolysis Oil.../120 Supelcoport. Other trace constituents of volatile acid were also 'dentifi="' by trap- ping the substances from the C. C. column into i: n;- 0-sh ped capillary tube and subjecting to mass spectrometry. The corrosivity of pyrolysis oil and it, volati'e acids...

Lin, Shih-Chien

1978-01-01T23:59:59.000Z

105

Pyrolysis of shale oil residual fractions  

SciTech Connect (OSTI)

The freezing point of JP-5, the Navy jet fuel, has been related to the n-alkane content, specifically n-hexadecane. In general, jet fuels from shale oil have the highest n-alkanes. The formation of n-alkanes in the jet fuel distillation range can be explained if large n-alkanes are present in the crude oil source. Quantities of large n-alkanes are insufficient, however, to explain the amounts found - up to 37% n-alkanes in the jet fuel range. Other possible precursors to small straight chain molecules are substituted cyclic compounds. Attack in the side chain obviously afford a path to an n-alkane. Aromatic hydrocarbons, esters, acids, amines, and ethers also have the potential to form n-alkanes if an unbranched alkyl chain is present in the molecule. Investigations showed that the best yield of the JP-5 cut comes at different times for the various fractions, but a time in the 60 to 120 min range would appear to be the optimum time for good yield at 450/sup 0/C. The longer time would be preferred with respect to lower potential n-alkane yield. None of the fractions gave n-alkane yields approaching the 37% amount found in the Shale-I JP-5. A temperature different than the 450/sup 0/C used here might affect the conversion percentage. Further the combined saturate, aromatic, and polar fractions may interact under pyrolysis conditions to give higher potential n-alkane yields than the fractions stressed independently.

Hazlett, R.N.; Beal, E.; Vetter, T.; Sonntag, R.; Moniz, W.

1980-01-01T23:59:59.000Z

106

Waste tire recycling by pyrolysis  

SciTech Connect (OSTI)

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

107

Pyrolysis of waste tyres: A review  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

2013-08-15T23:59:59.000Z

108

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

Evans, R.J.; Chum, H.L.

1994-10-25T23:59:59.000Z

109

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products  

DOE Patents [OSTI]

A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

Evans, Robert J. (Lakewood, CO); Chum, Helena L. (Arvada, CO)

1994-01-01T23:59:59.000Z

110

Molecular beam mass spectrometric characterization of biomass pyrolysis products for fuels and chemicals  

SciTech Connect (OSTI)

Converting biomass feedstocks to fuels and chemicals requires rapid characterization of the wide variety of possible feedstocks. The combination of pyrolysis molecular beam mass spectrometry (Py-MBMS) and multivariate statistical analysis offers a unique capability for characterizing these feedstocks. Herbaceous and woody biomass feedstocks that were harvested at different periods were used in this study. The pyrolysis mass spectral data were acquired in real time on the MBMS, and multivariate statistical analysis (factor analysis) was used to analyze and classify Py-MBMS data into compound classes. The effect of harvest times on the thermal conversion of these feedstocks was assessed from these data. Apart from sericea lespedeza, the influence of harvest time on the pyrolysis products of the various feedstocks was insignificant. For sericea lespedeza, samples harvested before plant defoliation were significantly different from those harvested after defoliation. The defoliated plant samples had higher carbohydrate-derived pyrolysis products than the samples obtained from the foliated plant. Additionally, char yields from the defoliated plant samples were lower than those from the foliated plant samples.

Agblevor, F.A.; Davis, M.F.; Evans, R.J. [National Renewal Energy Lab., Golden, CO (United States)

1994-12-31T23:59:59.000Z

111

Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production  

SciTech Connect (OSTI)

Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to ?nd out the effect of process variables on the biofuel (bio-oil and syn- gas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5–50.3 wt.% of the biomass. Biochar yields were 23.5–62.2% depending on the pyrolysis conditions. The energy con- tent of DDGS bio-oils was 28 MJ/kg obtained at the 650 oC and 8 min, which was about 66.7% of the heat- ing value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.

Lei, Hanwu; Ren, Shoujie; Wang, Lu; Bu, Quan; Julson, James; Holladay, Johnathan E.; Ruan, Roger

2011-05-01T23:59:59.000Z

112

E-Print Network 3.0 - analytical on-line pyrolysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scrap tire pyrolysis: experiment and modelling Summary: developped for wood and biomass pyrolysis, integral balance techniques provide approximate analytical... .....

113

BIOMASS PRETREATMENT FOR INCREASED ANHYDROSUGARS YIELD DURING FAST PYROLYSIS.  

E-Print Network [OSTI]

??Production of liquid fuels is a high national priority to provide transporation fuels. Production of liquid bio-fuels from biomass has been idenfied as a viable… (more)

Li, Qi

2009-01-01T23:59:59.000Z

114

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendix B, September 2010 |November 3, 1999Hydrotreating

115

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOE Hydrogen andProgram T OStaffparteEx-Situ

116

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System PerformanceIn

117

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

118

Catalytic pyrolysis using UZM-39 aluminosilicate zeolite  

SciTech Connect (OSTI)

A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2014-10-07T23:59:59.000Z

119

Catalytic pyrolysis using UZM-39 aluminosilicate zeolite  

DOE Patents [OSTI]

A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christpher P; Boldingh, Edwin P

2013-12-17T23:59:59.000Z

120

1982 annual report: Biomass Thermochemical Conversion Program  

SciTech Connect (OSTI)

This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products  

SciTech Connect (OSTI)

A process of using fast pyrolysis in a carrier gas to convert a polyamide containing a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polyamide and its high value monomeric constituent or derived high value products occurs prior to pyrolysis of other plastic components is described therein comprising: (a) selecting a first temperature program range to cause pyrolysis of said given polyamide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; (b) selecting a catalyst and a support and treating said feed stream with said catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent or high value product of said polyamide in said first temperature program range; (c) differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of said high value monomeric constituent or high value product of said polyamide prior to pyrolysis of other plastic components therein; (d) separating said high value monomer constituent or derived high value product of said polyamide; (e) selecting a second higher temperature program range to cause pyrolysis to a different high value monomeric constituent of said plastic waste and differentially heating said feed stream of said higher temperature program range to cause pyrolysis of said plastic into a different high value monomeric constituent or derived product; and (f) separating said different high value monomeric constituent or derived high value product.

Evans, R.J.; Chum, H.L.

1993-06-01T23:59:59.000Z

122

Coking phenomena in the pyrolysis of ethylene dichloride into vinyl chloride  

SciTech Connect (OSTI)

Pyrolysis of ethylene dichloride (EDC) into vinyl chloride (VCM) which is the monomer for polyvinyl chloride, one of the most popular polymers, has been established commercially for quite a time. The process around 500{degrees}C has been proved to give VCM of high purity at very high selectivity about 99% and a reasonable conversion about 50%. However, the coking is a major problem in the long run, requiring decoking treatment every two months. The present paper describes features of carbons produced in the pyrolysis process. Coke of respective features was found in the reactor, the transfer line, the heat exchanger and the rapid quencher. Typical pyrolytic carbon, anisotropic coke produced in the liquid phase, isotropic carbon was produced on the reactor wall as low as 500{degrees}C. The mechanisms for their formation are discussed.

Sotowa, Chiaki; Korai, Yozo; Mochida, Isao [Kyushu Univ., Kasuga, Fukuoka (Japan)] [and others

1995-12-31T23:59:59.000Z

123

PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW  

E-Print Network [OSTI]

1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer- cate the feasibility of arc pyrolysis of methane. Introduction he high specific enthalpy of combustion

Texas at Arlington, University of

124

Scrap tire pyrolysis: Experiment and modelling  

SciTech Connect (OSTI)

Pyrolysis of waste, usually organic solids like tires, plastics or composite materials, is an alternative thermal waste treatment technology. Three main physical and chemical mechanisms - i.e.: chemical kinetics, internal heat transfer and external heat transfer - have to be considered when modelling the degradation of solid waste particles. Because of the lack of physical properties for wastes most of the models described in the literature use basic data obtained on the pyrolysis of coal, wood and biomass. In this work, the authors report basic information on the thermal degradation of tire samples at small scale: Thermogravimetric analyser (TGA) and differential scanning calorimeter (DSC), as well as direct and indirect measurements of thermal and physical properties (thermal conductivity of the tire and of the char, porosity, density, specific heat). Pyrolysis experiments on tire samples are performed in an imaging furnace. The experimental results are compared to theoretical values deduced from models that take into account physical property measurements.

Napoli, A.; Soudais, Y.; Lecomte, D. [Ecole des Mines d`Albi - Carmaux, Albi (France); Castillo, S. [Universite Paul Sabatier, Toulouse (France)

1997-12-01T23:59:59.000Z

125

Biomass Feedstock and Conversion Supply System Design and Analysis  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

2014-09-01T23:59:59.000Z

126

Pyrolysis of Organic Molecules Relevant to Combustion as Monitored by Photoionization Time-of-Flight Mass Spectrometry  

E-Print Network [OSTI]

of Small Molecules by Flash Pyrolysis, University ofapproach of coupling flash pyrolysis of the compound ofZhang, Chairperson Flash pyrolysis coupled to molecular beam

Weber, Kevin Howard

2010-01-01T23:59:59.000Z

127

Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry  

E-Print Network [OSTI]

of Small Molecules by Flash Pyrolysis, University ofwas performed using flash pyrolysis vacuum-ultraviolet time-Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass

Lemieux, Jessy Mario

2013-01-01T23:59:59.000Z

128

Catalytic pyrolysis using UZM-44 aluminosilicate zeolite  

DOE Patents [OSTI]

A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2013-12-17T23:59:59.000Z

129

Catalytic pyrolysis using UZM-44 aluminosilicate zeolite  

DOE Patents [OSTI]

A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2014-04-29T23:59:59.000Z

130

INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION  

SciTech Connect (OSTI)

Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

2003-03-01T23:59:59.000Z

131

Tar-free fuel gas production from high temperature pyrolysis of sewage sludge  

SciTech Connect (OSTI)

Highlights: • High temperature pyrolysis of sewage sludge was efficient for producing tar-free fuel gas. • Complete tar removal and volatile matter release were at elevated temperature of 1300 °C. • Sewage sludge was converted to residual solid with high ash content. • 72.60% of energy conversion efficiency for gas production in high temperature pyrolysis. • Investment and costing for tar cleaning were reduced. - Abstract: Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H{sub 2} and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m{sup 3} to 9.10 MJ/N m{sup 3} with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.

Zhang, Leguan; Xiao, Bo; Hu, Zhiquan; Liu, Shiming, E-mail: Zhangping101@yeah.net; Cheng, Gong; He, Piwen; Sun, Lei

2014-01-15T23:59:59.000Z

132

Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions  

SciTech Connect (OSTI)

Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

Aho, K.; Vakkilainen, E. (A. Ahistrom Corp., Varkaus (Finland)); Hupa, M. (Abo Akademi Univ., Turku (Finland). Chemical Engineering Dept.)

1994-05-01T23:59:59.000Z

133

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

134

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction of existing  

E-Print Network [OSTI]

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction density polyethylene pyrolysis: Part 2. Reduction of existing detailed mechanism, Polymer Degradation Modelling of High Density PolyEthylene Pyrolysis: Part 2. Reduction of existing detailed mechanism. N

Paris-Sud XI, Université de

135

Effects of torrefaction and densification on switchgrass pyrolysis products  

SciTech Connect (OSTI)

Abstract The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 270 °C, densification, and torrefaction at 270 ºC followed by densification) were studied at three temperatures (500, 600, 700 ºC) using a pyroprobe attached to a gas chromatogram mass spectroscopy (Py-GC/MS). The torrefaction of switchgrass improved its oxygen to carbon ratio and energy content. Contents of anhydrous sugars and phenols in pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of anhydrous sugars and phenols in pyrolysis products increased whereas content of guaiacols decreased. High pyrolysis temperature (600 and 700 °C as compared to 500 °C) enhanced decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis.

Yang, Z; Sarkar, M; Kumar, A; Jaya Shankar Tumuluru; R.L. Huhnke

2014-10-01T23:59:59.000Z

136

Fast Beam Studies of Free Radical Photodissociation  

E-Print Network [OSTI]

radicals. 37 They employ a flash pyrolysis source, having abond on undergoing flash pyrolysis. Our approach to the

Cyr, D.R.

2010-01-01T23:59:59.000Z

137

Char reactions during kraft black liquor pyrolysis  

SciTech Connect (OSTI)

The pyrolysis characteristics of dried black liquor particles were investigated at high heating rates in a laminar entrained-flow reactor at temperatures of 600-1100{degrees}C. Primary pyrolysis of the organic fraction occurred very rapidly, in less 0.5 seconds. Char yields at the end or volatiles evolution were 58-72%. The decreased with increasing reactor temperature to 900{degrees}C but remained constant at higher temperatures. 35-65% of the fuel nitrogen was volatilized, nearly all in less than 0.5 s. Relatively little fuel nitrogen was evolved from the char. Significant alkali metal chloride volatization from the char occurred at all temperatures, while additional sodium volatilization became important above 900{degrees}C. Reduction of sulfur species in the char increased rapidly with increasing temperature. A temperature-dependent delay time in the onset of Na{sub 2}S formation was observed.

Frederick, W.J.; Sricharoenchaikul, V.; Reis, V.V. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

138

A study of pyrolysis of Texas lignites  

E-Print Network [OSTI]

better correlation for Dulong's formula. Yegua and Dakota lignites are readily obtainable and would provide a good check on the results derived from the Calvert Bluff lignites. The present equ1pment would also be used to study gasification of lignite...A STUDY OF PYROLYSIS OF TEXAS LIGNITES A Thesis by Robert A. Clark, Jr. Submitted to the Graduate College of Texas AAN University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Nay 1979 Major Subject...

Clark, Robert A

1979-01-01T23:59:59.000Z

139

Utilization of pyrolysis oil in industrial scale boilers.  

E-Print Network [OSTI]

??The performance of pyrolysis oil in a large-scale combustion system is investigated to determine the feasibility of displacing fuel oil or natural gas in current… (more)

Redfern, Kyle D.

2013-01-01T23:59:59.000Z

140

Process for minimizing solids contamination of liquids from coal pyrolysis  

DOE Patents [OSTI]

In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

1981-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Study of the mechanism of pyrolysis and gasification of Mallee biomass.  

E-Print Network [OSTI]

??Mechanisms of pyrolysis/gasification (steam and carbon dioxide) of mallee biomass were investigated. Wood biochar obtained under slow pyrolysis kept botanical structure but lost its original… (more)

Yang, Yanwu

2012-01-01T23:59:59.000Z

142

Catalytic microwave torrefaction and pyrolysis of Douglas fir pellet to improve biofuel quality .  

E-Print Network [OSTI]

??The aims of this dissertation were to understand the effects of torrefaction as pretreatment on biomass pyrolysis and catalytic pyrolysis for improving biofuel quality, and… (more)

[No author

2012-01-01T23:59:59.000Z

143

E-Print Network 3.0 - aerosol spray pyrolysis Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the endothermic pyrolysis reactions is transferred from the combustor... (MFR) for Biomass Pyrolysis briens, Cedric Institute for Chemicals and Fuels from Alternative...

144

Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs  

SciTech Connect (OSTI)

Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

Lynch, J F; Young, J C

1980-09-01T23:59:59.000Z

145

Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a  

E-Print Network [OSTI]

in the coal without chemical decomposition and pyrolysis converts dry coal into gas and coke [1]. The final1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying

Paris-Sud XI, Université de

146

Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report  

SciTech Connect (OSTI)

Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

C. R. Shaddix; D. R. Hardesty

1999-04-01T23:59:59.000Z

147

Biomass Thermochemical Conversion Program. 1984 annual report  

SciTech Connect (OSTI)

The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1985-01-01T23:59:59.000Z

148

Analysis and comparison of biomass pyrolysis/gasification condensates: Final report  

SciTech Connect (OSTI)

This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longer term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.

Elliott, D.C.

1986-06-01T23:59:59.000Z

149

Fluidized bed selective pyrolysis of coal  

DOE Patents [OSTI]

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

1992-12-15T23:59:59.000Z

150

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

151

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

152

CATALYTIC MICROWAVE PYROLYSIS OF BIOMASS FOR RENEWABLE PHENOLS AND FUELS .  

E-Print Network [OSTI]

??Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of… (more)

[No author

2013-01-01T23:59:59.000Z

153

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England April 2012 Biomass Program News Blast June 2012 News Blast: Algae on the Mind...

154

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

155

Auto shredder residue recycling: Mechanical separation and pyrolysis  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

2012-05-15T23:59:59.000Z

156

Production of valuable hydrocarbons by flash pyrolysis of oil shale  

DOE Patents [OSTI]

A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

Steinberg, M.; Fallon, P.T.

1985-04-01T23:59:59.000Z

157

Isothermal pyrolysis and char combustion of oil shales  

SciTech Connect (OSTI)

Yields and rates of hydrocarbons evolved during pyrolysis of oil shales have been measured with improved accuracy. Green River and New Albany oil shales were heated in a fluidized sand bed, and volatile pyrolysis products were transferred to a combustion tube and burned. Resulting H/sub 2/O and CO/sub 2 were detected in real time by mass spectrometry. Residual char was subsequently burned to allow complete C and H balances. Good closure was obtained. Proportions of organic C and H released as pyrolysis products and retained as char were determined. Shale oil loss due to the presence of oxidized shale in the fluidized bed was measured accurately. We find that all of the experimental apparatus that the pyrolysis gas contacts must be near pyrolysis temperature to avoid condensation of heavy oil which subsequently forms coke and secondary products. We observe a faster release of products with all transfer lines 450/degree/C than when they are at 300/degree/C. The current uncertainty in pyrolysis rates is due in part to such difficulties with experimental techniques. 12 refs., 7 figs., 1 tab.

Coburn, T.T.; Taylor, R.W.; Morris, C.J.; Duval, V.

1988-02-03T23:59:59.000Z

158

Low oxygen biomass-derived pyrolysis oils and methods for producing the same  

SciTech Connect (OSTI)

Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

2013-08-27T23:59:59.000Z

159

Computational Analysis of the Pyrolysis of ..beta..-O4 Lignin Model Compounds: Concerted vs. Homolytic Fragmentation  

SciTech Connect (OSTI)

The thermochemical conversion of biomass to liquid transportation fuels is a very attractive technology for expanding the utilization of carbon neutral processes and reducing dependency on fossil fuel resources. As with all such emerging technologies, biomass conversion through gasification or pyrolysis has a number of obstacles that need to be overcome to make these processes cost competitive with the refining of fossil fuels. Our current efforts have focused on the investigation of the thermochemistry of the linkages between lignin units using ab initio calculations on dimeric lignin model compounds. All calculations were carried out using M062X density functional theory at the 6-311++G(d,p) basis set. The M062X method has been shown to be consistent with the CBS-QB3 method while being significantly less computationally expensive. To date we have only completed the study on the b-O4 compounds. The theoretical calculations performed in the study indicate that concerted elimination pathways dominate over bond homolysis reactions under typical pyrolysis conditions. However, this does not mean that concerted elimination will be the dominant loss process for lignin. Bimolecular radical chemistry could very well dwarf the unimolecular pathways investigated in this study. These concerted pathways tend to form stable, reasonably non-reactive products that would be more suited producing a fungible bio-oil for the production of liquid transportation fuels.

Clark, J. M.; Robichaud, D. J.; Nimlos, M. R.

2012-01-01T23:59:59.000Z

160

Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits   

E-Print Network [OSTI]

This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes and how this affects potential benefits of pyrolysis biochar ...

Brownsort, Peter A

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis… (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

162

Kinetic Model Development for Lignin Pyrolysis  

SciTech Connect (OSTI)

Lignin pyrolysis poses a significant barrier to the formation of liquid fuel products from biomass. Lignin pyrolyzes at higher temperatures than other biomass components (e.g. cellulose and hemi-cellulose) and tends to form radicals species that lead to cross-linking and ultimately char formation. A first step in the advancement of biomass-to-fuel technology is to discover the underlying mechanisms that lead to the breakdown of lignin at lower temperatures into more stable and usable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin (B-O4, a-O4, B-B, B-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to bond homolysis reactions, a variety of concerted elimination pathways are under investigation that tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.

Clark, J.; Robichaud, D.; Nimlos, M.

2012-01-01T23:59:59.000Z

163

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents [OSTI]

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

164

1 Solvent-Extractable Polycyclic Aromatic Hydrocarbons in Biochar: 2 Influence of Pyrolysis Temperature and Feedstock  

E-Print Network [OSTI]

combustion (or 30 pyrolysis) of plant biomass are important natural constituents 31 of soils and sediments.1 45 different starting materials. 46 Pyrolysis of biomass is known to produce a wide variety of 47 low and high molecular weight (LMW and HMW, respectively) 48 PAHs depending on the biomass type, pyrolysis

165

Flash Pyrolysis -A Powerful Method for Characterization of Polymers Helge Egsgaard  

E-Print Network [OSTI]

;Analytical flash pyrolysis Direct analysis of polymers including biopolymers & biomass Products detectedFlash Pyrolysis - A Powerful Method for Characterization of Polymers Helge Egsgaard Biosystems Department Risø National Laboratory DK-4000 Roskilde, Denmark The rational behind the pyrolysis technique

166

"Optimization of Zero Length Chromatographic System and Measuring Properties of Model Compounds from Biomass Pyrolysis"  

E-Print Network [OSTI]

Compounds from Biomass Pyrolysis" Ross Kendall Faculty Mentor: Dr. Paul Dauenhauer, Chemical Engineering by using what he made to measure many of the compounds involved in biomass pyrolysis. If we can understand to retrieve diffusion coefficients of many intermediates of the biomass pyrolysis reaction. From this data

Mountziaris, T. J.

167

Thermal Decomposition of Dichlorosilane Investigated by Pulsed Laser Powered Homogeneous Pyrolysis  

E-Print Network [OSTI]

of vacuum flash pyrolysis of SiH 2Cl2. Ban and Gilbert6 observed SiCl2 by mass spectrometry under sili- conThermal Decomposition of Dichlorosilane Investigated by Pulsed Laser Powered Homogeneous Pyrolysis powered homogeneous pyrolysis of dichlorosilane are reported. Pyrolyses at temperatures of 1350 to 1700 K

Swihart, Mark T.

168

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction warming and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth Sustained growth of 30

Glashausser, Charles

169

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

170

Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation of Their  

E-Print Network [OSTI]

Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation-FT (chromophore Met66-Tyr67-Gly68) and its precursor with blocked blue-to- red conversion Blue102 (chromophore Leu data suggest that blue-to-red conversion, taking place in Fast-FT and in related FTs, is associated

Verkhusha, Vladislav V.

171

Pyrolysis and Combustion of Acetonitrile (CH{sub 3}CN)  

SciTech Connect (OSTI)

Acetonitrile (CH{sub 3}CN) is formed from the thermal decomposition of a variety of cyclic, noncyclic, and polymeric nitrogen-containing compounds such as pyrrole and polyacrylonitrile. The pyrolysis and combustion of acetonitrile have been studied over the past 30 years to gain a more detailed understanding of the complex mechanisms involved in the release of nitrogen-containing compounds such as hydrogen cyanide (HCN) in fires and nitrogen oxides (NOx) in coal combustion. This report reviews the literature on the formation of HCN and NOx from the pyrolysis and combustion of acetonitrile and discusses the possible products found in an acetonitrile fire.

Britt, P.F.

2002-05-22T23:59:59.000Z

172

Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA  

SciTech Connect (OSTI)

Tire pyrolysis kinetics was investigated to explore an economically viable design for the pyrolysis process. Derivative thermogravimetry (DTG) and thermogravimetric analysis (TGA) were found to provide valuable information on pyrolysis kinetics and mechanisms of a heterogeneous compound like scrap tire rubbers. Kinetic parameters of each compositional compound were obtained by analyzing DTG and TGA results with a series of mathematical methods proposed in this study. The pyrolysis kinetics of the scrap tire rubbers tested was well accounted for by the first-order irreversible independent reactions of three compositional compounds. The sidewall and tread rubber exhibited different thermal degradation patterns, suggesting a compositional difference between them. Isothermal pyrolysis results showed that the sidewall rubber would hardly be degraded at low temperature regions (<600 K), whereas it would be more rapidly degraded than the tread rubber at higher temperatures ({>=}746 K). Because of the shorter pyrolysis time, the higher isothermal pyrolysis temperature appeared to be more economically favorable.

Kim, S.; Park, J.K. [Univ. of Wisconsin, Madison, WI (United States); Chun, H.D. [Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

1995-07-01T23:59:59.000Z

173

Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications.  

E-Print Network [OSTI]

phenomenon (heat and mass transfers, pyrolysis, combustion) in a cooling channel surrounding a SCRamjet regeneratively cooled SCRamjet is provided to get a large vision of the fuel nature impact on the system of supersonic combustion ramjet (SCRamjet) [1]. For such high velocity, the total temperature of external air

Boyer, Edmond

174

Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management  

E-Print Network [OSTI]

1 Hydrocarbons Heterogeneous Pyrolysis: Experiments and Modeling for Scramjet Thermal Management : United States (2008)" #12;2 I. Introduction One of the main issues of the development of scramjet, an air to the endothermicity of its thermal decomposition. Because of the large heat load found in a scramjet, engine

Paris-Sud XI, Université de

175

European Market Study for BioOil (Pyrolysis Oil)  

E-Print Network [OSTI]

European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Bio-trade 402 Third Avenue ·Ottawa, Ontario ·Canada K. Market Determining Factors 5. EU Country Perspectives 6. Potential European Markets 6.1. Pulp Mill Lime

176

Pyrolysis of polyolefins for increasing the yield of monomers' recovery  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Thermal and catalytic pyrolysis of mixed polyolefins in fluidized bed has been studied. Black-Right-Pointing-Pointer We tested applicability of a commercial Ziegler-Natta catalyst (Z-N: TiCl{sub 4}/MgCl{sub 2}). Black-Right-Pointing-Pointer The catalyst has a strong influence on product distribution, increasing gas fraction. Black-Right-Pointing-Pointer At 650 Degree-Sign C the monomer generation increased by 55% when the catalyst was used. Black-Right-Pointing-Pointer We showed the concept of treatment of mixed polyolefins without a need of separation. - Abstract: Pyrolysis of plastic waste is an alternative way of plastic recovery and could be a potential solution for the increasing stream of solid waste. The objective of this work was to increase the yield the gaseous olefins (monomers) as feedstock for polymerization process and to test the applicability of a commercial Ziegler-Natta (Z-N): TiCl{sub 4}/MgCl{sub 2} for cracking a mixture of polyolefins consisted of 46% wt. of low density polyethylene (LDPE), 30% wt. of high density polyethylene (HDPE) and 24% wt. of polypropylene (PP). Two sets of experiments have been carried out at 500 and 650 Degree-Sign C via catalytic pyrolysis (1% of Z-N catalyst) and at 650 and 730 Degree-Sign C via only-thermal pyrolysis. These experiments have been conducted in a lab-scale, fluidized quartz-bed reactor of a capacity of 1-3 kg/h at Hamburg University. The results revealed a strong influence of temperature and presence of catalyst on the product distribution. The ratios of gas/liquid/solid mass fractions via thermal pyrolysis were: 36.9/48.4/15.7% wt. and 42.4/44.7/13.9% wt. at 650 and 730 Degree-Sign C while via catalytic pyrolysis were: 6.5/89.0/4.5% wt. and 54.3/41.9/3.8% wt. at 500 and 650 Degree-Sign C, respectively. At 650 Degree-Sign C the monomer generation increased by 55% up to 23.6% wt. of total pyrolysis products distribution while the catalyst was added. Obtained yields of olefins were compared with the naphtha steam cracking process and other potentially attractive processes for feedstock generation. The concept of closed cycle material flow for polyolefins has been discussed, showing the potential benefits of feedstock recycling in a plastic waste management.

Donaj, Pawel J., E-mail: pawel@mse.kth.se [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden); Kaminsky, W. [University of Hamburg, Institute of Technical and Macromolecular Chemistry, Martin-Luther-King Platz 6, 20146 Hamburg (Germany); Buzeto, F. [State University of Campinas - UNICAMP, College of Chemical Engineering, Department of Polymer Science - Av. Albert Einstein 13083-852 Campinas (Brazil); Yang, W. [Royal Institute of Technology, School of Industrial Engineering and Management, Division of Energy and Furnace Technology, Brinellvagen 23, 100-44 Stockholm (Sweden)

2012-05-15T23:59:59.000Z

177

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

178

Thermochemical conversion of waste materials to valuable products  

SciTech Connect (OSTI)

The potential offered by a large variety of solid and liquid wastes for generating value added products is widely recognized. Extensive research and development has focused on developing technologies to recover energy and valuable products from waste materials. These treatment technologies include use of waste materials for direct combustion, upgrading the waste materials into useful fuel such as fuel gas or fuel oil, and conversion of waste materials into higher value products for the chemical industry. Thermal treatment in aerobic (with oxygen) conditions or direct combustion of waste materials in most cases results in generating air pollution and thereby requiring installation of expensive control devices. Thermochemical conversion in aerobic (without oxygen) conditions, referred to as thermal decomposition (destructive distillation) results in formation of usable liquid, solid, and gaseous products. Thermochemical conversion includes gasification, liquefaction, and thermal decomposition (pyrolysis). Each thermochemical conversion process yields a different range of products and this paper will discuss thermal decomposition in detail. This paper will also present results of a case study for recovering value added products, in the form of a liquid, solid, and gas, from thermal decomposition of waste oil and scrap tires. The product has a high concentration of benzene, xylene, and toluene. The solid product has significant amounts of carbon black and can be used as an asphalt modifier for road construction. The gas product is primarily composed of methane and is used for heating the reactor.

Saraf, S. [Engineering Technologies, Lombard, IL (United States)

1997-12-31T23:59:59.000Z

179

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents [OSTI]

A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

Steinberg, M.; Grohse, E.W.

1995-06-27T23:59:59.000Z

180

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents [OSTI]

A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NREL: Biomass Research - Thermochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

182

Method of producing pyrolysis gases from carbon-containing materials  

DOE Patents [OSTI]

A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

1989-01-01T23:59:59.000Z

183

Experimental Flash Pyrolysis of High Density1 PolyEthylene under Hybrid Propulsion Conditions2  

E-Print Network [OSTI]

1/25 Experimental Flash Pyrolysis of High Density1 PolyEthylene under Hybrid Propulsion Conditions2 Poly-Ethylene (HDPE) is studied6 up to 20 000 K.s-1 , under pressure up to 3.0 MPa and at temperature Pyrolysis (2013) 1-11" DOI : 10.1016/j.jaap.2013.02.014 #12;2/25 Keywords: Polyethylene; flash pyrolysis

Boyer, Edmond

184

Pyrolysis Kinetics and Chemical Structure Considerations of a Green River Oil Shale and Its Derivatives.  

E-Print Network [OSTI]

??This work had the objective of determining both the kinetic parameters for the pyrolysis of oil shale and kerogen as well as using analytical techniques… (more)

Hillier, James L

2011-01-01T23:59:59.000Z

185

The best use of biomass? Greenhouse gas lifecycle analysis of predicted pyrolysis biochar systems.  

E-Print Network [OSTI]

??Life cycle analysis is carried out for 11 predicted configurations of pyrolysis biochar systems to determine greenhouse gas balance, using an original spreadsheet model. System… (more)

Hammond, James A R

2009-01-01T23:59:59.000Z

186

Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits.  

E-Print Network [OSTI]

??This study focuses on performance of biomass pyrolysis processes for use in biochar systems. Objectives are to understand the range of control of such processes… (more)

Brownsort, Peter A

2009-01-01T23:59:59.000Z

187

Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

None

2010-01-01T23:59:59.000Z

188

Reactive gases evolved during pyrolysis of Devonian oil shale  

SciTech Connect (OSTI)

Computer modeling of oil shale pyrolysis is an important part of the Lawrence Livermore National Laboratory (LLNL) Oil Shale Program. Models containing detailed chemistry have been derived from an investigation of Colorado oil shale. We are currently attempting to use models to treat more completely reactions of nitrogen and sulfur compounds in the retort to better understand emissions. Batch retorting work on Devonian oil shale is proving particularly useful for this study of nitrogen/sulfur chemistry. Improved analytical methods have been developed to quantitatively determine reactive volatiles at the parts-per-million level. For example, the triple quadrupole mass spectrometer (TQMS) is used in the chemical ionization (CI) mode to provide real-time analytical data on ammonia evolution as the shale is pyrolyzed. A heated transfer line and inlet ensure rapid and complete introduction of ammonia to the instrument by preventing water condensation. Ammonia and water release data suitable for calculating kinetic parameters have been obtained from a New Albany Shale sample. An MS/MS technique with the TQMS in the electron ionization (EI) mode allows hydrogen sulfide, carbonyl sulfide, and certain trace organic sulfur compounds to be monitored during oil shale pyrolysis. Sensitivity and selectivity for these compounds have been increased by applying artificial intelligence techniques to tuning of the spectrometer. Gas evolution profiles (100 to 900/sup 0/C) are reported for hydrogen sulfide, water, ammonia, and trace sulfur species formed during pyrolysis of Devonian oil shale. Implications for retorting chemistry are discussed. 18 refs., 11 figs., 3 tabs.

Coburn, T.T.; Crawford, R.W.; Gregg, H.R.; Oh, M.S.

1986-11-01T23:59:59.000Z

189

Pore Scale Analysis of Oil Shale/Sands Pyrolysis  

SciTech Connect (OSTI)

There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (?m) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

Lin, Chen-Luh; Miller, Jan

2011-03-01T23:59:59.000Z

190

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

191

Conversion of waste polyvinyl chloride (PVC) to useful chemicals  

SciTech Connect (OSTI)

Developments of recycling technologies are expected one of the most important keys for saving energy and resources, and minimization impact for environment. For instance, combustion of waste for power generation and conversion of plastics into liquid fuels have been studying for thermal energy recycling. However, PVC has been excepted from the most of these experiments. Because, heat of combustion of PVC is almost a half of other plastics, hydrogen chloride, which is produced at low temperature, corrodes the combustion chamber, and PVC causes coking reaction during pyrolysis of plastics. Numerous investigations have been conducted on degradation of PVC. However, most of these experiments were done to improve heat resistance of PVC or to study reaction mechanism of PVC degradation. Pyrolysis of PVC into liquid products have been studying since 1960`s from a view of environmental protection. Recently, Y. Maezawa et al. reported PVC was converted into oil at 600 T with sodium hydroxide. However, more than 50 % of hydrocarbon fraction of PVC was converted to residue and gas in their experiment. We are going to develop a new technology to convert of PVC into useful chemicals or liquid fuels at high efficiency by using hydrogen donor solvent.

Kamo, T.; Yamamoto, Y.; Miki, K.; Sato, Y. [National Institute for Resources and Environment, Tsukuba-shi, Ibaraki (Japan)

1995-12-31T23:59:59.000Z

192

Object Closure Conversion * Neal Glew  

E-Print Network [OSTI]

of closure conversion. This paper argues that a direct formulation of object closure conversio* *n Object Closure Conversion * Neal into closed code and auxiliary data* * structures. Closure conversion has been extensively studied

Glew, Neal

193

Fast Ignition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun Off From A GovernmentFast

194

Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report  

SciTech Connect (OSTI)

This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

Elliott, D.C.

1985-09-01T23:59:59.000Z

195

Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio  

E-Print Network [OSTI]

This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

196

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

197

Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst  

E-Print Network [OSTI]

such as switchgrass, sorghum and miscanthus, agriculture crops such as corn and sugarcane, municipal solid waste, agriculture wastes and forest residues. Energy crops are more preferred since they produce high yield, low fertilizer application requirements and low...), plastic wastes (Bhattacharya et al., 2009; Karaduman et al., 2001; Rutkowski and 7 Kubacki, 2006; Scott et al., 1990), waste biomass like oil cakes (?zbay et al., 2001), energy crops (He et al., 2009), and forest residues (Ingram et al., 2007...

Santos, Bjorn Sanchez

2013-05-01T23:59:59.000Z

198

Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake q  

E-Print Network [OSTI]

- icantly more nitrogen than do most lignocellulosic feedstocks. Examples of potential proteinaceous biomass feedstocks include oil seed presscakes (meals), manures, legume residues, and aquatic species such as algae

Reichenbach, Stephen E.

199

Development of a Computational Fluid Dynamics Model for Combustion of Fast Pyrolysis Liquid (Bio-oil).  

E-Print Network [OSTI]

??A study was carried out into the computational fluid dynamic simulation of bio-oil combustion. Measurements were taken in an empirical burner to obtain information regarding… (more)

McGrath, Arran Thomas

2011-01-01T23:59:59.000Z

200

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartment of

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company Agrees to CooperateJapan

202

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJuly 2015communication

203

Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast Pyrolysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Project

204

Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Projectdried to about 10 wt%

205

Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO) Projectdried to about 10 wt%about

206

Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ...... 13:27DepartmentUpdating theUpgrading

207

Development of integrated assessment platform for biofuels production via fast pyrolysis and upgrading pathway.  

E-Print Network [OSTI]

??Growing concern over Greenhouse Gas (GHG) emissions from petroleum-based fuel consumption have prompted interest in the production of alternative transportation fuels from biorenewable sources. As… (more)

Zhang, Yanan

2014-01-01T23:59:59.000Z

208

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

209

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

210

Surface Tension Mediated Conversion of Light to Work David Okawa,,  

E-Print Network [OSTI]

to a high energy intermediate (e.g., electrical potential, thermal loading, or chemical fuel), which- taics for conversion to electricity, solar thermal for water heating, fast growing plants to produce rely on weak momentum transfer from photons. Harnessing the energy of photons is a far more powerful

Zettl, Alex

211

Ultra-Fast Chemical Conversion Surfaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |UltraDepartmentand1

212

Ultra-Fast Chemical Conversion Surfaces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS

213

Metal Oxide Laser Ioniza2on Mass Spectrometry for the Direct Profiling of Pyrolysis Oil Cons2tuents  

E-Print Network [OSTI]

from the anoxic pyrolysis of biomass (py-oils) represent a promising, renewable of Pyrolysis Oil Cons2tuents Casey R. McAlpin and Kent J. Voorhees Colorado School: ·MOLI MS produces profiles of pyrolysis oil consGtuents without separa

214

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems  

E-Print Network [OSTI]

Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two (National Renewable Energy Laboratory) wind turbine simulator FAST (Fatigue, Aerodynamics, Structures

Boyer, Edmond

215

Cell Wall Chemotyping for Functional Applications of PyrolysisGas Chromatography / Mass  

E-Print Network [OSTI]

Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis­Gas Chromatography / Mass, Umeå 2012 #12;Cell Wall Chemotyping for Functional Genomics Applications of Pyrolysis.4.1 The Basic Tool-set 27 1.5 Wood Formation and Functional Genomics 31 2 Objectives 33 3 Methodological

216

Microturbine Power Conversion Technology Review  

SciTech Connect (OSTI)

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

217

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

218

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

219

University of Delaware | Catalysis Center for Energy Innovation | Pyrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch Thrust Pyrolysis

220

D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III  

SciTech Connect (OSTI)

Immature source rock chips containing different types of kerogen (I,II,IIS,III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310--381 C), time (12--144h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330 C for 72h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS {gt} II {approximately} III {gt} I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 250 C for 72 h or 330 C for 133 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115 C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of their results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, the authors suggest that organic D/H ratios of fossil fuels in contact with formation water are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected by exchange with water hydrogen at typical reservoir conditions over geologic time. It will be difficult to utilize D/H ratios of thermally mature bulk or fractions or organic matter to quantitatively reconstruct isotopic aspects of paleoclimate and paleoenvironment. Hope resides in compound-specific D/H ratio of thermally stable, extractable biomarkers (molecular fossils) that are less susceptible to hydrogen exchange with water-derived hydrogen.

Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

222

ENERGY CONVERSION Spring 2011  

E-Print Network [OSTI]

on energy storage devices Course Webpage: http://www.sfu.ca/~mbahrami/ENSC 461.htm Tutorials for this course. Lab information is posted on the website. Laboratory report requirements, background and a lab1 ENSC 461 ENERGY CONVERSION Spring 2011 Instructor: Dr. Majid Bahrami 4372 Email

Bahrami, Majid

223

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

224

Flash Pyrolysis of Biomass with Reactive and Non-Reactive Gases: Summary Report for Period July 1983 through September 1984  

SciTech Connect (OSTI)

The purpose of this program is to study the conversion of biomass to liquid and gaseous hydrocarbon fuels and chemical feedstocks by a flash or rapid pyrolysis technique. During this period of study pine wood was flash pyrolyzed in atmospheres of methane and helium at a pressure of 50 psi and at temperatures up to 1050 C. The 1-inch I.D. entrained downflow tubular reactor was used in these experiments. Product yields of methane, ethane, ethylene, BTX, carbon monoxide and carbon dioxide were determined as a function of temperature and gas to wood ratio. Of particular interest were the ethylene and BTX yields. These represented as much as 29.6% and 24.6% of the carbon contained in the feed wood respectively when flash pyrolyzing in methane (flash methanolysls) and 14.7% and 9.7% when pyrolyzing in helium. In the case of flash methanolysis of wood the yields of ethylene and benzene increased with increasing methane to wood feed ratios. In the case of flash pyrolysis in helium the yields of ethylene and BTX decreased with increasing helium gas to wood feed ratios. These results indicate a mechanism by which a free radical reactive species originating from the wood interacts with the methane pyrolyzing gas to produce an enhanced yield of ethylene and benzene. The flash methanolysis of lignin extract from wood produced lower yields of ethylene, indicating the yields mainly originate from the cellulosic fractions of the wood. Some work was also performed on substituting wood ash for sillca flour (Cab-O-Sil) to allow free flow of wood particles through the entrained flow reactor. Preliminary process design and analysis indicates an economically competitive process for the flash methanolysis of wood for the production of methanol, benzene and ethylene. Future plans include completing the studies on obtaining the process chemistry of the flash methanolysis of woods, to obtain a better understanding of the enhanced ethylene and benzene yield and to investigate other biomass forms.

Steinberg M.; Fallon, P.T.; Sundaram, M.S.

1984-10-01T23:59:59.000Z

225

Pyrolysis of scrap tires: Can it be profitable?  

SciTech Connect (OSTI)

Pyrolysis--the thermal degradation in the absence of oxygen--is one way to reprocess scrap tires. The products are fuel gas, oils, and a solid residue (char), which contains appreciable quantities of mineral matter and low-grade carbon black. The three products have comparable yields by weight. The two most important factors affecting process economics are the tipping fees charged for tire disposal and the selling prices of the products. Selling prices of the products yield low returns because of the low market value of the fuels and the low quality of the recovered char or carbon black. Therefore, to obtain a positive cash flow, it would be desirable to develop a process based on the recovery of value-added products such as high-grade carbon black, activated carbon, or valuable chemicals (e.g., benzene, toluene, and xylene). The authors believe that significant improvement in the economics can be accomplished by upgrading the primary pyrolysis products to secondary products of higher value.

Wojtowicz, M.A.; Serio, M.A.

1996-10-01T23:59:59.000Z

226

Isolation of levoglucosan from pyrolysis oil derived from cellulose  

DOE Patents [OSTI]

High purity levoglucosan is obtained from pyrolysis oil derived from cellulose by: mixing pyrolysis oil with water and a basic metal hydroxide, oxide, or salt in amount sufficient to elevate pH values to a range of from about 12 to about 12.5, and adding an amount of the hydroxide, oxide, or salt in excess of the amount needed to obtain the pH range until colored materials of impurities from the oil are removed and a slurry is formed; drying the slurry azeotropically with methyl isobutyl ketone solvent to form a residue, and further drying the residue by evaporation; reducing the residue into a powder; continuously extracting the powder residue with ethyl acetate to provide a levoglucosan-rich extract; and concentrating the extract by removing ethyl acetate to provide crystalline levoglucosan. Preferably, Ca(OH)[sub 2] is added to adjust the pH to the elevated values, and then Ca(OH)[sub 2] is added in an excess amount needed. 3 figures.

Moens, L.

1994-12-06T23:59:59.000Z

227

Co-pyrolysis of low rank coals and biomass: Product distributions  

SciTech Connect (OSTI)

Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

2013-10-01T23:59:59.000Z

228

Influences of alcoholic solvents on spray pyrolysis deposition of TiO{sub 2} blocking layer films for solid-state dye-sensitized solar cells  

SciTech Connect (OSTI)

Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO{sub 2} films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO{sub 2} films as the blocking layers were investigated. Smooth TiO{sub 2} films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 Degree-Sign C. On the other hand, when ethanol was used as solvent, the TiO{sub 2} films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO{sub 2} blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO{sub 2} precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: Black-Right-Pointing-Pointer Solvent influences morphology of spray pyrolysis deposited TiO{sub 2} blocking layer. Black-Right-Pointing-Pointer Ethanol reacts with TPA, resulting poor quality of blocking layer. Black-Right-Pointing-Pointer Isopropanol is better than ethanol for obtaining smooth blocking layer. Black-Right-Pointing-Pointer SDSC with blocking layer made with isopropanol showed better performance.

Jiang, Changyun, E-mail: jiangc@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Koh, Wei Lin; Leung, Man Yin [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Hong, Wei [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada)] [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Li, Yuning, E-mail: yuning.li@uwaterloo.ca [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore) [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Zhang, Jie [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)

2013-02-15T23:59:59.000Z

229

Oil production by entrained pyrolysis of biomass and processing of oil and char  

DOE Patents [OSTI]

Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

Knight, James A. (Atlanta, GA); Gorton, Charles W. (Atlanta, GA)

1990-01-02T23:59:59.000Z

230

Wind Energy Conversion Systems (Minnesota)  

Broader source: Energy.gov [DOE]

This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

231

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

232

The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol  

SciTech Connect (OSTI)

The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

1990-02-01T23:59:59.000Z

233

Object Closure Conversion Cornell University  

E-Print Network [OSTI]

that a direct formulation of object closure conversion is interesting and gives further insight into generalObject Closure Conversion Neal Glew Cornell University 24 August 1999 Abstract An integral part of implementing functional languages is closure conversion--the process of converting code with free variables

Glew, Neal

234

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

235

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

236

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

237

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

Sands, M.Dale

2013-01-01T23:59:59.000Z

238

Sandia National Laboratories: Wavelength Conversion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EFRCOverviewWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

239

Pyrolysis in Porous Media:1 Part 1. Numerical model and parametric study.2  

E-Print Network [OSTI]

due to the formation of light species and heavy ones (up to solid coke particles). The1 presence by the formation of3 permeable char [10,11]. The coal pyrolysi

Boyer, Edmond

240

Numerical model for the vacuum pyrolysis of scrap tires in batch reactors  

SciTech Connect (OSTI)

A quantitative model for scrap tire pyrolysis in a batch scale reactor developed comprises the following basic phenomena: conduction inside tire particles; conduction, convection, and radiation between the feedstock particles or between the fluids and the particles; tire pyrolysis reaction; exothermicity and endothermicity caused by tire decomposition and volatilization; and the variation of the composition and the thermal properties of tire particles. This model was used to predict the transient temperature and density distributions in the bed of particles, the volatile product evolution rate, the mass change, the energy consumption during the pyrolysis process, and the pressure history in a tire pyrolysis reactor with a load of 1 kg. The model predictions agree well with independent experimental data.

Yang, J.; Tanguy, P.A.; Roy, C. [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique] [Univ. Laval, Quebec, PQ (Canada). Dept. de Genie Chimique

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass  

E-Print Network [OSTI]

biomass combustion and gasification Milena Nowakowska, Olivier Herbinet, Anthony Dufour, Pierre. Methoxyphenols are one of the main precursors of PAH and soot in biomass combustion and gasification. Keywords: Anisole; Pyrolysis; Oxidation; Tars; Biomass; Kinetic modeling Corresponding author

Paris-Sud XI, Université de

242

Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology  

SciTech Connect (OSTI)

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Islam, M.R., E-mail: mrislam1985@yahoo.com [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Joardder, M.U.H.; Hasan, S.M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Takai, K.; Haniu, H. [Department of Mechanical Engineering, National University Corporation Kitami Institute of Technology, 165 Koen-cho, Kitami City, Hokkaido 090-8507 (Japan)

2011-09-15T23:59:59.000Z

243

Group pyrolysis, ignition, and combustion of a spherical cloud of coal particles  

E-Print Network [OSTI]

GROUP PYROLYSIS, IGNITION, AND COMBUSTION OF A SPHERICAL CLOUD OF COAL PARTICLES A Thesis by WILLIAM RICHARD RYAN, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree MASTER OF SCIENCE December 1988 Major Subject: Mechanical Engineering GROUP PYROLYSIS, IGNITION, AND COMBUSTION OF A SPHERICAL CLOUD OF COAL PARTICLES A Thesis by WIL LI AM RI C HA RD RYA N ~ JR Approved ss to style and content by...

Ryan, William Richard

1988-01-01T23:59:59.000Z

244

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

245

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

246

Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils  

DOE Patents [OSTI]

A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

Agblevor, Foster A. (Blacksburg, VA); Besler-Guran, Serpil (Flemington, NJ)

2001-01-01T23:59:59.000Z

247

Solar Thermoelectric Energy Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical...

248

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

249

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

250

Modelling of heating and evaporation of n-Heptane droplets: Towards a generic model for fuel droplet/particle conversion  

E-Print Network [OSTI]

is a part of a project that is targeted to optimize the pyrolysis process of biomass pellets for bio, study of pyrolysis of the biomass pellets and evaporation of the pyrolysis bio-oil droplets are two key of the biomass pellets in the pyrolysis reactor, for the purpose of optimiz- ing the pyrolysis process. Modelling

Yin, Chungen

251

An economic analysis of mobile pyrolysis for northern New Mexico forests.  

SciTech Connect (OSTI)

In the interest of providing an economically sensible use for the copious small-diameter wood in Northern New Mexico, an economic study is performed focused on mobile pyrolysis. Mobile pyrolysis was selected for the study because transportation costs limit the viability of a dedicated pyrolysis plant, and the relative simplicity of pyrolysis compared to other technology solutions lends itself to mobile reactor design. A bench-scale pyrolysis system was used to study the wood pyrolysis process and to obtain performance data that was otherwise unavailable under conditions theorized to be optimal given the regional problem. Pyrolysis can convert wood to three main products: fixed gases, liquid pyrolysis oil and char. The fixed gases are useful as low-quality fuel, and may have sufficient chemical energy to power a mobile system, eliminating the need for an external power source. The majority of the energy content of the pyrolysis gas is associated with carbon monoxide, followed by light hydrocarbons. The liquids are well characterized in the historical literature, and have slightly lower heating values comparable to the feedstock. They consist of water and a mix of hundreds of hydrocarbons, and are acidic. They are also unstable, increasing in viscosity with time stored. Up to 60% of the biomass in bench-scale testing was converted to liquids. Lower ({approx}550 C) furnace temperatures are preferred because of the decreased propensity for deposits and the high liquid yields. A mobile pyrolysis system would be designed with low maintenance requirements, should be able to access wilderness areas, and should not require more than one or two people to operate the system. The techno-economic analysis assesses fixed and variable costs. It suggests that the economy of scale is an important factor, as higher throughput directly leads to improved system economic viability. Labor and capital equipment are the driving factors in the viability of the system. The break-even selling price for the baseline assumption is about $11/GJ, however it may be possible to reduce this value by 20-30% depending on other factors evaluated in the non-baseline scenarios. Assuming a value for the char co-product improves the analysis. Significantly lower break-even costs are possible in an international setting, as labor is the dominant production cost.

Brady, Patrick D.; Brown, Alexander L.; Mowry, Curtis Dale; Borek, Theodore Thaddeus, III

2011-12-01T23:59:59.000Z

252

A component based model for the prediction of the product yields of the pyrolysis of a biomass particle.  

E-Print Network [OSTI]

??Pyrolysis of biomass can produce several useful, renewable products: biochar for soil amendment and long-term carbon sequestration; tars for chemicals and biofuels; and syngas as… (more)

Eberly, Brian C.

2010-01-01T23:59:59.000Z

253

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

254

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

255

Swelling of kraft black liquor: an understanding of the associated phenomena during pyrolysis  

SciTech Connect (OSTI)

The objectives of this thesis were to quantify the swelling of black liquor during pyrolysis in a nitrogen atmosphere and to determine what factors were responsible for swelling. The first part of the investigation studied the process variables: pyrolysis temperature, solid content, heating rate and particle size. A temperature of 500/sup 0/C resulted in maximum swelling for the investigated temperature range of 300-900/sup 0/C. The swelling of black liquor occurred during the evolution of pyrolysis gases; however, there was no correlation found between the amount of pyrolysis gases evolved and the change in char volume. The initial solid content of black liquor had a small influence on the swelling of black liquor. The heating rate was found to effect the rate of swelling but not the final volume. Particle size had no effect on the swollen volume per unit particle weight. The effect of black liquor composition was studied. An interaction between sugar acids and kraft lignin was responsible for swelling. The extractives interfered with the swelling mechanism of black liquor, while inorganic salts acted as a diluent. The swelling behavior of black liquor appeared to be dictated by the surface active and viscous forces present in black liquor during pyrolysis. Surface active forces were evidenced by the formation of small bubbles (50-150 microns in diameter) which appeared necessary for highly swollen chars. Low swelling chars did not exhibit this phenomenon. Bubble formation began at 250/sup 0/C, which closely corresponded to the thermal decomposition temperature of sugar acids. The sugar acids formed bubbles when pyrolyzed but did not swell significantly during pyrolysis. Kraft lignin appeared to enhance the swelling of the sugar acids by increasing the viscosity and stabilizing the bubbles during pyrolysis.

Miller, P.T.

1986-01-01T23:59:59.000Z

256

Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

Adrados, A., E-mail: aitziber.adrados@ehu.es [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain); De Marco, I.; Lopez-Urionabarrenechea, A.; Caballero, B.M.; Laresgoiti, M.F. [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain)

2013-01-15T23:59:59.000Z

257

Fabrication of functional nanomaterials using flame assisted spray pyrolysis  

SciTech Connect (OSTI)

Flame assisted spray pyrolysis (FASP) is a class of synthesis method for nanomaterials fabrication. The ability to control nanomaterials characteristics and easy to be-scaled up are the main features of FASP. The crystallinity and particles size of the prepared nanomaterials can be easily controlled by variation of fuel flow rate. The precursor concentration, carrier gas flow rate, and carrier gas can be also used to control the prepared nanomaterials. Energy related nanomaterials preparation uses as the example case in FASP application. These material are yttrium aluminum garnet (YAG:Ce) and tungsten oxide (WO{sub 3}). It needs strategies to produce these materials into nano-sized order. YAG:Ce nanoparticles only can be synthesized by FASP using the urea addition. The decomposition of urea under high temperature of flame promotes the breakage of YAG:Ce particles into nanoparticles. In the preparation of WO{sub 3}, the high temperature flame can be used to gasify WO{sub 3} solid material. As a result, WO{sub 3} nanoparticles can be prepared easily. Generally, to produce nanoparticles via FASP method, the boiling point of the material is important to determine the strategy which will be used.

Purwanto, Agus, E-mail: aguspur@uns.ac.id [Chemical Engineering Department, Faculty of Engineering, Sebelas Maret University, Surakarta 632112 (Indonesia)

2014-02-24T23:59:59.000Z

258

Coke formation during pyrolysis of 1,2-dichloroethane  

SciTech Connect (OSTI)

Most processes involving hydrocarbons or carbon oxides at high temperatures suffer from the disadvantage of coke formation. The formation of coke deposits during pyrolysis of hydrocarbons or chlorinated hydrocarbons is of significant practical importance. Examples of such processes are the steam cracking of alkanes to produce olefins and the thermal decomposition of 1,2-dichloroethane (EDC) for the production of vinyl chloride monomer (VCM). Even id the rate of coke production is low, the cumulative nature of the solid product will result in reactor fouling. The present work deals with the thermal decomposition of EDC. Coke formation has been studied on metal surfaces in a quartz tubular reactor. The rate of coke deposition was measures on metal foils hanging from one arm of a microbalance. A complete analysis of the product gas was accomplished using on-line gas chromatography. The results show that coke deposition during thermal decomposition of EDC depends on the composition of the feed as well as on the nature of the surface of the metal foil. Small amounts of other components (contamination with other chlorinated hydrocarbons as an example) may have a large influence on the rate of coke formation. The results are discussed in terms of surface composition/morphology of the metal foil and the free radical mechanism for thermal decomposition of FDC.

Holmen, A. [Norwegian Institute of Technology, Trondheim (Norway); Lindvag, O.A. [SINTEF Applied Chemistry, Trondheim (Norway)

1995-12-31T23:59:59.000Z

259

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

260

Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

262

Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions  

SciTech Connect (OSTI)

A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

1993-03-01T23:59:59.000Z

263

Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions  

SciTech Connect (OSTI)

A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

1993-01-01T23:59:59.000Z

264

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect (OSTI)

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

265

A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

Reaven, S.J.

1994-08-01T23:59:59.000Z

266

Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach  

SciTech Connect (OSTI)

Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000?C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525?C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

Fletcher, Thomas; Pugmire, Ronald

2015-01-01T23:59:59.000Z

267

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

classes is an exam* *ple of closure conversion. This paper argues that a direct formulation of object HOOTS99 Preliminary Version Object Closure Conversion __________________________________________________________________________ Abstract An integral part of implementing functional languages is closure conversion_the process

Glew, Neal

268

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

269

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

270

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

Sands, M.Dale

2013-01-01T23:59:59.000Z

271

Production of higher quality bio-oils by in-line esterification of pyrolysis vapor  

DOE Patents [OSTI]

The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

2014-12-02T23:59:59.000Z

272

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

273

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents [OSTI]

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

274

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

275

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

276

Thermochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1Telework Telework The|Conversion Thermochemical Conversion

277

Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece  

SciTech Connect (OSTI)

Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

2014-02-15T23:59:59.000Z

278

Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities  

SciTech Connect (OSTI)

Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

Young, J C; Johnson, L D

1980-09-01T23:59:59.000Z

279

Organic carbon sources and transformations in mangrove sediments: A Rock-Eval pyrolysis approach  

E-Print Network [OSTI]

Organic carbon sources and transformations in mangrove sediments: A Rock-Eval pyrolysis approach C'Orléans, CNRS/INSU, Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans, France Abstract A Rock cycling in this specific environment using a method that allows monitoring the depth evolution of sources

Paris-Sud XI, Université de

280

Pyrolysis and Isomerization of Quadricyclane, Norbornadiene, and Toluene Zhi Li and Scott L. Anderson*  

E-Print Network [OSTI]

class of molecules, both from a fundamental perspective and because they have potential as high-energy density materials. The high volumetric energy density arises mostly from the fact that these molecules tandem mass spectrometry. The methodology permits pyrolysis studies with product isomer identification

Anderson, Scott L.

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

John L Gaunt and Johannes Lehmann Energy balance and emissions associated with biochar sequestration and pyrolysis  

E-Print Network [OSTI]

S1 John L Gaunt and Johannes Lehmann Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production Summary of tables Data are provided energy inputs (Mj ha-1) associated with bio-energy crop production, field harvesting operations, transportation and processing. #12;S

Lehmann, Johannes

282

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison of  

E-Print Network [OSTI]

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison this article as: Gascoin N, Navarro-Rodriguez A, Gillard P, Mangeot A, Kinetic Modelling of High Density PolyEthylene.polymdegradstab.2012.05.008 #12;M ANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Kinetic Modelling of High Density PolyEthylene

Paris-Sud XI, Université de

283

Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis Sangjin Leea  

E-Print Network [OSTI]

], hydrothermal [6], and spray pyrolysis [7­9] have been developed to prepare stoichiometric, ultra- fine BaTiO3 process. Hydrothermal BaTiO3 powders [6] are usually a paraelectric cubic phase, which needs additional freedom from hydrocarbon-based chem- icals, and thus avoiding carbon-contamination problems. As a result

Messing, Gary L.

284

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network [OSTI]

reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energyUsing mobile distributed pyrolysis facilities to deliver a forest residue resource for bio

Victoria, University of

285

CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis  

E-Print Network [OSTI]

of additives in the CaO matrix and the relatively high surface area materials obtained via USP explain are currently under investigation for CO2 capture, both for post- combustion (e.g., silica supported amines,2 of metal oxides, even on an industrial scale.18,19 We report here the rst use of ultrasonic spray pyrolysis

Suslick, Kenneth S.

286

Pyrolysis and ignition behavior of coal, cattle biomass, and coal/cattle biomass blends  

E-Print Network [OSTI]

derived from biomass. Current research at Texas A&M University is focused on the effectiveness of using cattle manure biomass as a fuel source in conjunction with coal burning utilities. The scope of this project includes fuel property analysis, pyrolysis...

Martin, Brandon Ray

2009-05-15T23:59:59.000Z

287

Theoretical principles of the use of coal fractions with different densities for pyrolysis  

SciTech Connect (OSTI)

To obtain process gas and liquid products upon thermal action on low-grade (D, DG, and G) coals, it is reasonable to pyrolyze the lightest organic fractions with enhanced quality characteristics in terms of both the yield of liquid products (pyrolysis tar) and the component composition of the gas (hydrogen and methane hydrocarbons).

A.M. Gyul'maliev; S.G. Gagarin [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

288

Pyrolysis of polycyclic perhydroarenes. 3: 1-n-decylperhydropyrene and structure-reactivity relations  

SciTech Connect (OSTI)

Naphthenic (perhydroarene) moieties decorated with n-alkyl substituents exist in heavy hydrocarbon resources such as coal, heavy oils, and asphaltenes. 1-n-Decylperhydropyrene (DPP) was pyrolyzed neat at temperatures between 400 and 475 C. DPP disappearance followed first-order kinetics, and the Arrhenius parameters for the first-order rate constant were A (s{sup {minus}1}) = 10{sup 9.55.0} and E = 42.9 {+-} 16.5 kcal/mol, where the uncertainties are the 95% confidence intervals. DPP pyrolysis generated numerous primary products, and the primary products with the highest initial selectivities were, in order of decreasing abundance, perhydropyrene plus 1-decene, methylene perhydropyrene plus n-nonane, tetradecahydropyrene plus n-decane, and methylperhydropyrene plus nonene. This ordering of product pairs is completely analogous to that observed from pyrolysis of an alkylcyclohexane, but it differed from that observed for the pyrolysis of other polycyclic n-alkylnaphthenes. Eight other n-alkylperhydroarenes were pyrolyzed at temperatures between 400 and 450 C. The resulting kinetics data were used to test three structure-reactivity correlations in the literature for the pyrolysis kinetics of saturated cyclic compounds and to update one of these correlations so that it becomes consistent with the kinetics of long-chain n-alkylperhydroarenes.

Savage, P.E.; Ratz, S.; Diaz, J. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

1997-06-01T23:59:59.000Z

289

American Institute of Aeronautics and Astronautics Modeling the motion of pyrolysis gas through charring  

E-Print Network [OSTI]

= pyrolysis rate T = temperature u = velocity = void fraction K = thermal conductivity viscosity = density results in high drag force and strong deceleration that help them in landing. Due to high drag, bow shock's leading surface. This bow shock may interact with viscous boundary layer on the surface, and lead to high

Roy, Subrata

290

Reusable fast opening switch  

DOE Patents [OSTI]

A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

Van Devender, J.P.; Emin, D.

1983-12-21T23:59:59.000Z

291

Reusable fast opening switch  

DOE Patents [OSTI]

A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

1986-01-01T23:59:59.000Z

292

Fast Breeder Reactor studies  

SciTech Connect (OSTI)

This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

1980-07-01T23:59:59.000Z

293

Review and analysis of the 1980-1989 biomass thermochemical conversion program  

SciTech Connect (OSTI)

In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

Stevens, D.J.

1994-09-01T23:59:59.000Z

294

Biochemical Conversion Pilot Plant (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

295

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

is an example of closure conversion. This paper argues that a direct formulation of object closure conversionHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion--the process of converting code with free variables into closed code and auxiliary data structures

Glew, Neal

296

Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas  

DOE Patents [OSTI]

In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

Durai-Swamy, Kandaswamy (Culver City, CA)

1982-01-01T23:59:59.000Z

297

Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil  

SciTech Connect (OSTI)

Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

2014-08-14T23:59:59.000Z

298

A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils  

SciTech Connect (OSTI)

Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

Diebold, J.P.

1999-01-27T23:59:59.000Z

299

FAST Final Technical Report  

SciTech Connect (OSTI)

The FAST project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

Toister, Elad

2014-11-06T23:59:59.000Z

300

Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado  

SciTech Connect (OSTI)

The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

Milne, T.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production  

E-Print Network [OSTI]

The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

Bumguardner, Marisa

2012-10-19T23:59:59.000Z

302

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

303

Energy Storage, Conversion and Utilization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Al-Ghadhban, Samir - Electrical Engineering Department, King Fahd University of...

304

Energy Conversion and Storage Program  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

305

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

306

Fast Detector Simulation Using Lelaps, Detector Descriptions in GODL  

SciTech Connect (OSTI)

Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays. In addition to three built-in detector configurations, detector descriptions can also be read from files in the new GODL file format.

Langeveld, Willy; /SLAC

2005-07-06T23:59:59.000Z

307

MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS  

SciTech Connect (OSTI)

This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

Todd Lang; Robert Hurt

2001-12-23T23:59:59.000Z

308

Research on the pyrolysis of hardwood in an entrained bed process development unit  

SciTech Connect (OSTI)

An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. (Georgia Inst. of Tech., Atlanta, GA (United States). Research Inst.)

1991-08-01T23:59:59.000Z

309

Microwave-assisted pyrolysis of SiC and its application to joining  

SciTech Connect (OSTI)

Microwave energy has been used to pyrolyze silicon carbide from commercially available polycarbosilane precursor. The pyrolysis was performed on SiC surfaces having various surface treatments, to identify conditions which improve the wetting and adherence. Grinding and etching of the surfaces in hydrofluoric (HF) acid promotes the bonding of precursor derived ceramic to the SiC ceramic. Finally, the polycarbosilane precursor mixed with fine silicon carbide powder was used as the interlayer material to join silicon carbide specimens.

Ahmad, I.; Silberglitt, R. [FM Technologies, Inc., Fairfax, VA (United States); Shan, T.A. [George Mason Univ., Fairfax, VA (United States)] [and others

1995-07-01T23:59:59.000Z

310

A converse to Dye's theorem Greg Hjorthy  

E-Print Network [OSTI]

* A converse to Dye We show a converse to a consequence of the final strengthening of Dye's th* *eorem proved, measure preserving, and ergodic. Theorem 1.1(Dye; see [5], [6].) Any two ergodic, standard, measure

Hjorth, Greg

311

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network [OSTI]

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

312

The potential of pyrolysis technology in climate change mitigation – influence of process design and –parameters, simulated in SuperPro Designer Software.  

E-Print Network [OSTI]

??This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural… (more)

Ahrenfeldt, Jesper

2011-01-01T23:59:59.000Z

313

Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method  

SciTech Connect (OSTI)

ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

2014-02-24T23:59:59.000Z

314

Petar Ljusev SIngle Conversion stage AMplifier  

E-Print Network [OSTI]

. The proposed SICAM solution strives for direct energy conversion from the mains to the audio outputPetar Ljusev SIngle Conversion stage AMplifier - SICAM PhD thesis, December 2005 #12;#12;To Elena of the project "SICAM - SIngle Conversion stage AMplifier", funded by the Danish Energy Authority under the EFP

315

Data Conversion in Residue Number System  

E-Print Network [OSTI]

for direct conversion when interaction with the real analog world is required. We first develop two efficient schemes for direct analog-to-residue conversion. Another efficient scheme for direct residue analogique réel est nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine

Zilic, Zeljko

316

HOOTS99 Preliminary Version Object Closure Conversion  

E-Print Network [OSTI]

classes is an example of closure conversion. This paper argues that a direct formulation of object closureHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion---the process of converting code with free variables into closed code and auxiliary data

Glew, Neal

317

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network [OSTI]

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

318

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

319

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

Sands, M. D.

2011-01-01T23:59:59.000Z

320

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Direct energy conversion ..developed. Typically, direct energy conversion is achievedTechnologies 1.2.1. Direct energy conversion In a direct

Lim, Hyuck

2011-01-01T23:59:59.000Z

322

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference, June 19-Fifth Ocean Thermal Energy Conversion Conference, February

Sullivan, S.M.

2014-01-01T23:59:59.000Z

323

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, Februarythe Sixth Ocean Thermal Energy Conversion Conference. OceanSixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

324

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

Fifth Ocean Thermal Energy Conversion Conference, FebruaryFifth Ocean Thermal Energy Conversion Conference, FebruarySixth Ocean Thermal Energy Conversion Conference. June 19-

Sands, M. D.

2011-01-01T23:59:59.000Z

325

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

326

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

327

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

328

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

329

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

330

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

Sands, M. D.

2011-01-01T23:59:59.000Z

331

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

Sullivan, S.M.

2014-01-01T23:59:59.000Z

332

Next-Generation Thermionic Solar Energy Conversion | Department...  

Broader source: Energy.gov (indexed) [DOE]

Next-Generation Thermionic Solar Energy Conversion Next-Generation Thermionic Solar Energy Conversion This fact sheet describes a next-generation thermionic solar energy conversion...

333

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

334

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

Sullivan, S.M.

2014-01-01T23:59:59.000Z

335

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

336

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

Sands, M. D.

2011-01-01T23:59:59.000Z

337

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

Sullivan, S.M.

2014-01-01T23:59:59.000Z

338

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

Sullivan, S.M.

2014-01-01T23:59:59.000Z

339

High resolution A/D conversion based on piecewise conversion at lower resolution  

DOE Patents [OSTI]

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

340

MATLAB tensor classes for fast algorithm prototyping.  

SciTech Connect (OSTI)

Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.

Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Biomass thermochemical conversion program: 1987 annual report  

SciTech Connect (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

342

Biomass thermochemical conversion program. 1985 annual report  

SciTech Connect (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

343

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

-cooled Fast Reactor (GFR), Lead-cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), Sodium-cooled Fast Reactor (SFR), Supercritical-water-cooled Reactor (SCWR) and the Very-high-temperature Reactor (VHTR). An international effort to develop these new... and the hydrogen production plant4,5. Davis et al. investigated the possibility of helium and molten salts in the IHTL2. The thermal efficiency of the power conversion unit is paramount to the success of this next generation technology. Current light water...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

344

Conversion | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContractOffice ofConversion |

345

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdf BSCmemo.pdfBetter BuildingsBetter Plants»NewsConversion

346

Addendum to Fast Scramblers  

E-Print Network [OSTI]

This paper is an addendum to [arXiv:0808.2096] in which I point out that both de Sitter space and Rindler space are fast scramblers. This fact naturally suggests that the holographic description of a causal patch of de Sitter space may be a matrix quantum mechanics at finite temperature. The same can be said of Rindler space. Some qualitative features of these spaces can be understood from the matrix description.

Leonard Susskind

2011-01-31T23:59:59.000Z

347

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

348

Facilities: NHMFL 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Citation: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization Fourier  

E-Print Network [OSTI]

with greater than 1% relative abundance in either phase are shown. Pyrolysis of solid biomass, in this case: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization of nitrogen-containing species identified in the peanut hull pyrolysis oil by FT-ICR mass spectrometry

Weston, Ken

349

Innovative design of uranium startup fast reactors  

E-Print Network [OSTI]

Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

Fei, Tingzhou

2012-01-01T23:59:59.000Z

350

Low temperature pyrolysis of black liquor and polymerization of products in alkali aqueous medium  

SciTech Connect (OSTI)

Atmospheric pressure pyrolysis for the production of liquids and gases from black liquor and its calcium salts and acidic precipitate have been carried out in a little stainless steel tube. Yields, sum of liquid and gas products, from black liquor and its calcium salts and acidic precipitate were 44.7%, 52.0% and 59.1% of dry basis respectively. The precipitates obtained from black liquor by acidifying with hydrochloric acid and passing carbon dioxide have been polymerized in aqueous acetone containing formaldehyde and ammonia, and converted a polymeric resin.

Demirbas, A. (Dept. of Chemical Education, Karadeniz Teknik Univ., Trabzon (TR)); Ucan, H. (Dept. of Chemistry, Selcuk Univ., Konya (TR))

1991-01-01T23:59:59.000Z

351

Biological Pyrolysis Oil Upgrading Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel CellsBiological Pyrolysis

352

Power conversion apparatus and method  

DOE Patents [OSTI]

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

353

Fast neutron dosimetry  

SciTech Connect (OSTI)

This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

DeLuca, P.M. Jr.; Pearson, D.W.

1992-01-01T23:59:59.000Z

354

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

355

Fast quench reactor method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

1999-08-10T23:59:59.000Z

356

Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil  

DOE Patents [OSTI]

In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

Knauss, Kevin G. (Livermore, CA); Copenhaver, Sally C. (Livermore, CA); Aines, Roger D. (Livermore, CA)

2000-01-01T23:59:59.000Z

357

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

358

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

359

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

360

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network [OSTI]

465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

362

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

363

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

364

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

365

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Energy Savers [EERE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

366

LED Street Lighting Conversion Workshop Presentations  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

367

Introduction to Solar Photon Conversion  

SciTech Connect (OSTI)

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

368

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network [OSTI]

overview of fast pyrolysis of biomass, Organic Geochemistry,presented a Pyrolysis and Gasification of Biomass and waste,

Luo, Qian

2012-01-01T23:59:59.000Z

369

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network [OSTI]

from   biomass  via  fast  pyrolysis,  hydrotreating  and  2.3   gal/gal  for  pyrolysis  of  woody  biomass  (Jones,  

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

370

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

Yi, W. , Li, B. , Flash pyrolysis of agricultural residuesalthough fast or flash pyrolysis technologies can achieve a

FAN, XIN

2012-01-01T23:59:59.000Z

371

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses  

E-Print Network [OSTI]

Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

Kane, Shaun K.

372

Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint  

DOE Patents [OSTI]

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

Moens, L.

1995-07-11T23:59:59.000Z

373

Low-temperature pyrolysis of coal to produce diesel-fuel blends  

SciTech Connect (OSTI)

Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

Shafer, T.B.; Jett, O.J.; Wu, J.S.

1982-10-01T23:59:59.000Z

374

Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting  

SciTech Connect (OSTI)

Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

Cascarosa, Esther [Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), Universidad de Zaragoza (Spain); Boldrin, Alessio, E-mail: aleb@env.dtu.dk [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, Thomas [Department of Environmental Engineering. Technical University of Denmark, Kongens Lyngby (Denmark)

2013-11-15T23:59:59.000Z

375

Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint  

DOE Patents [OSTI]

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

Moens, Luc (Lakewood, CO)

1995-01-01T23:59:59.000Z

376

Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis  

SciTech Connect (OSTI)

A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

Thorsness, C. B., LLNL

1997-01-21T23:59:59.000Z

377

Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds  

DOE Patents [OSTI]

A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

Khan, M. Rashid (Morgantown, WV)

1988-01-01T23:59:59.000Z

378

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

379

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network [OSTI]

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

380

Gene conversion in the rice genome  

E-Print Network [OSTI]

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process of converting the ocean thermal energy into electricity. OTEC transfer function The relationship between

382

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

383

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

SciTech Connect (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL] [ORNL; Boyd, Alison C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

384

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

1999-01-01T23:59:59.000Z

385

Interdigitated photovoltaic power conversion device  

DOE Patents [OSTI]

A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

1999-04-27T23:59:59.000Z

386

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2  

E-Print Network [OSTI]

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2 Morwell Brown Coal seam3 4 Elodie Salmon a, c , Françoise Behar a , François Lorant force21 field to simulate the thermal stress. The Morwell coal has been selected to study the thermal22

Paris-Sud XI, Université de

387

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network [OSTI]

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

388

Introduction to FAST Data Analysis  

E-Print Network [OSTI]

available for download from the SSL- FAST web site. SDT operates under Unix or Linix and can access data on SDT can be found at: http://sprg.ssl.berkeley.edu/fast/scienceops/docs A tar file of the complete software package (including IDL routines) can be found at: http://sprg.ssl

California at Berkeley, University of

389

Solid Waste Energy Conversion Project, Reedy Creek Utilities Demonstration Plant: Environmental assessment  

SciTech Connect (OSTI)

The Solid Waste Energy Conversion (SWEC) facility proposed would produce high-temperature hot water from urban refuse and would also provide a demonstration pilot-plant for the proposed Transuranic Waste Treatment Facility (TWTF) in Idaho. The SWEC project would involve the construction of an incinerator facility capable of incinerating an average of 91 metric tons per day of municipal solid waste and generating high-temperature hot water using the off-gas heat. The facility is based on the Andco-Torrax slagging pyrolysis incineration process. The proposed action is described, as well as the existing environment at the site and identified potential environmental impacts. Coordination with federal, state, regional, or local plans and programs was examined, and no conflicts were identified. Programmatic alternatives to the proposed project were identified and their advantages, disadvantages, and environmental impacts were examined. It is found that the proposed action poses no significant environmental impacts, other than the short term effects of construction activities. (LEW)

Not Available

1980-06-01T23:59:59.000Z

390

S-1041 Multistate Research Project The Science and Engineering for a Biobased Industry  

E-Print Network [OSTI]

, Vonore, TN 37885 (865-441-1123) kgoddar3@utk.edu DISTRIBUTED FAST PYROLYSIS FOR CONVERSION OF BIOMASS Industry 2010 Symposium Proceedings 4 THERMOCHEMICAL CONVERSION OF BIOMASS TO ADVANCED BIOFUELS, U.S. DEPARTMENT OF ENERGY, BIOMASS PROGRAM............................................41 Jonathan L. Male

391

Energy conversion & storage program. 1994 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

392

Energy Conversion & Storage Program, 1993 annual report  

SciTech Connect (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

393

Investigation of proton focusing and conversion efficiency for proton fast ignition  

E-Print Network [OSTI]

After ignition, a thermonuclear burn wave spreads radiallythe shell to create the thermonuclear burn wave. At 10 keV,heating the plasma to thermonuclear temperatures. Protons

Bartal, Teresa Jean

2012-01-01T23:59:59.000Z

394

Technician's Perspective on an Ever-Changing Research Environment: Catalytic Conversion of Biomass to Fuels  

SciTech Connect (OSTI)

The biomass thermochemical conversion platform at the National Renewable Energy Laboratory (NREL) develops and demonstrates processes for the conversion of biomass to fuels and chemicals including gasification, pyrolysis, syngas clean-up, and catalytic synthesis of alcohol and hydrocarbon fuels. In this talk, I will discuss the challenges of being a technician in this type of research environment, including handling and working with catalytic materials and hazardous chemicals, building systems without being given all of the necessary specifications, pushing the limits of the systems through ever-changing experiments, and achieving two-way communication with engineers and supervisors. I will do this by way of two examples from recent research. First, I will describe a unique operate-to-failure experiment in the gasification of chicken litter that resulted in the formation of a solid plug in the gasifier, requiring several technicians to chisel the material out. Second, I will compare and contrast bench scale and pilot scale catalyst research, including instances where both are conducted simultaneously from common upstream equipment. By way of example, I hope to illustrate the importance of researchers 1) understanding the technicians' perspective on tasks, 2) openly communicating among all team members, and 3) knowing when to voice opinions. I believe the examples in this talk will highlight the crucial role of a technical staff: skills attained by years of experience to build and operate research and production systems. The talk will also showcase the responsibilities of NREL technicians and highlight some interesting behind-the-scenes work that makes data generation from NREL's thermochemical process development unit possible.

Thibodeaux, J.; Hensley, J.

2013-01-01T23:59:59.000Z

395

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

High-e?ciency direct conversion of heat to electrical energyJ. Yu and M. Ikura, “Direct conversion of low-grade heat tois concerned with direct conversion of thermal energy into

Lee, Felix

2012-01-01T23:59:59.000Z

396

KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY  

SciTech Connect (OSTI)

The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

2013-10-29T23:59:59.000Z

397

Energy Conversion and Transmission Facilities (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain...

398

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

399

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

400

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

402

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

403

Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production  

SciTech Connect (OSTI)

We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a �demonstration� size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

2012-09-29T23:59:59.000Z

404

Pyrolysis for waste management: A life cycle assesment of biodegradable waste, bioenergy generation and biochar production in Glasgow and Clyde valley   

E-Print Network [OSTI]

Biochar production and waste treatment by pyrolysis represent an attractive solution to decrease carbon dioxide atmospheric concentrations and to enhance the enrichment of soils by treating in a more sustainable way the ...

Ibarrola, Rodrigo

2009-01-01T23:59:59.000Z

405

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

406

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

407

Process Design and Economics for the Conversion of Lignocellulosic...  

Broader source: Energy.gov (indexed) [DOE]

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

408

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

409

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

410

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

411

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

412

Conversation/Culture Partner Program Would you like to help  

E-Print Network [OSTI]

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

413

Energy Conversion and Thermal Efficiency Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed...

414

aspergillus fumigatus conversion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

135 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

415

antidiabetic bis-maltolato-oxovanadiumiv conversion: Topics by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

88 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

416

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

417

Trends in Contractor Conversion Rates | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contractor Conversion Rates Trends in Contractor Conversion Rates Better Buildings Residential Network Workforce Business Partners Peer Exchange Call Series: Trends in Contractor...

418

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

419

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

420

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

Hawai'i at Manoa, University of

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Conversion Technologies for Advanced Biofuels - Bio-Oil Production...  

Energy Savers [EERE]

Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels...

422

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

423

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Presentation from the...

424

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

425

THE MATERIALS OF FAST BREEDER REACTORS  

E-Print Network [OSTI]

metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

Olander, Donald R.

2013-01-01T23:59:59.000Z

426

Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF  

SciTech Connect (OSTI)

The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.

Ma, T

2010-04-21T23:59:59.000Z

427

CATALYTIC LIQUEFACTION BY ZINC CHLORIDE MELTS AT PRE-PYROLYSIS TEMPERATURE  

E-Print Network [OSTI]

solubles ("oils" and "asphaltenes"). Characteristically, the50 and 80°C, and the asphaltenes between 120 and 200°C. A i~in the conversion of asphaltenes to oils, and raises the

Vermeulen, T.

2012-01-01T23:59:59.000Z

428

Portfolio for fast reactor collaboration  

SciTech Connect (OSTI)

The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

Rippon, S.

1981-12-01T23:59:59.000Z

429

Interfacial effects in fast reactors  

E-Print Network [OSTI]

The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

Saidi, Mohammad Said

1979-01-01T23:59:59.000Z

430

A New Look at Mode Conversion in a Stratified Isothermal Atmosphere  

E-Print Network [OSTI]

Recent numerical investigations of wave propagation near coronal magnetic null points (McLaughlin and Hood: Astron. Astrophys. 459, 641,2006) have indicated how a fast MHD wave partially converts into a slow MHD wave as the disturbance passes from a low-beta plasma to a high-beta plasma. This is a complex process and a clear understanding of the conversion mechanism requires the detailed investigation of a simpler model. An investigation of mode conversion in a stratified, isothermal atmosphere, with a uniform, vertical magnetic field is carried out, both numerically and analytically. In contrast to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov: Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this paper studies the downward propagation of waves from a low-beta to high-beta environment. A simple expression for the amplitude of the transmitted wave is compared with the numerical solution.

A. M. D. McDougall; A. W. Hood

2007-07-05T23:59:59.000Z

431

Nutrition, Weight Control and Fast Food.  

E-Print Network [OSTI]

Page in Original Bulletin] Nutrition, Weight Control and Fast Food Mary K. Sweeten* The Fast Food Trend More people are eating fewer meals at home and more snack-type meals at fast food ' restaurants. Fast food sales in 1978 in the United States...

Sweeten, Mary K.

1980-01-01T23:59:59.000Z

432

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported  

E-Print Network [OSTI]

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

433

Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel  

SciTech Connect (OSTI)

Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

2014-12-01T23:59:59.000Z

434

Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW  

SciTech Connect (OSTI)

This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

none,

1992-10-01T23:59:59.000Z

435

Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333  

SciTech Connect (OSTI)

The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

Baldwin, R.

2012-07-01T23:59:59.000Z

436

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

437

Energy conversion & storage program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

438

Residual oil conversion in Ashland FCC Units  

SciTech Connect (OSTI)

Ashland Petroleum Company is a production-poor refining and marketing company. A company must have refining flexibility to compete in today's crude and marketing situation. Ashland has adopted a dual approach to achieving the required refining flexibility: development and construction of the RCC process, and development of techniques to practice residual oil conversion in Ashland FCC units. This paper discusses the operating techniques Ashland has used to allow residual oil conversion to be practiced in their present day FCC's and shows some of the yields which have been achieved.

Barger, D.F.; Miller, C.B.

1983-03-01T23:59:59.000Z

439

Methanol engine conversion feasibility study: Phase 1  

SciTech Connect (OSTI)

This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

Not Available

1983-03-01T23:59:59.000Z

440

Fast Ignition Program Presented at  

E-Print Network [OSTI]

-The advantages are significant · Efficiency ­ Typical energy efficiency for conversion of 1053 nm hot gas #12;FI program leverages both NNSA and international capabilities · Laser coupling States program is important ­ Nova was first PW in `96 ­ Proceeding with DoE high energy PW initiative

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fast reactors and nuclear nonproliferation  

SciTech Connect (OSTI)

Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

Avrorin, E.N. [Russian Federal Nuclear Center - Zababakhin Institute of Applied Physics, Snezhinsk (Russian Federation); Rachkov, V.I.; Chebeskov, A.N. [State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering, Bondarenko Square, 1, Obninsk, Kaluga region, 249033 (Russian Federation)

2013-07-01T23:59:59.000Z

442

Influence of the process parameters on the spray pyrolysis technique, on the synthesis of gadolinium doped-ceria thin film  

SciTech Connect (OSTI)

Graphical abstract: Gas-tight CGO made by spray pyrolysis suitable to be used as SOFC electrolyte. Display Omitted Highlights: ? Dense and crystalline CGO films deposited by spray pyrolysis on various substrates. ? Solvent did not have a strong influence on the film microstructure, defect concentration or thickness. ? The substrate did not have a strong influence on the film microstructure, defect concentration or thickness. ? Films with at least 2.5 ?m of thickness presented high impermeability. ? The films obtained are suitable to use as a SOFC electrolyte. -- Abstract: This work presents the results of a process of optimization applied to gadolinia-doped ceria (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9?x}, or CGO) thin films, deposited by spray pyrolysis (SP). Spray pyrolysis is a high thermal deposition method that combines material deposition and heat treatment. This combination is advantageous since the post-deposition heat treatment step is not necessary. However, stresses are solidified in the coating during the deposition, which may lead to the initiation of a crack in the coating. The aim of this work was to achieve thin, dense, and continuous CGO coatings, which may be used as gas separation membranes and as a solid state electrochemical interfaces. Dense, flat, low-defect substrates such as silica slides, silicon mono crystal wafers, and porous substrates were used as substrates in this work. Cerium ammonium nitrate and gadolinium acetylacetonate were dissolved in ethanol and butyl carbitol to form a precursor solution that was sprayed on the heated substrates. Process parameters such as solvent composition, deposition rate and different heating regimes were analyzed. The microstructure was analyzed by secondary electron microscopy (SEM) and was found that thin, dense, and defect-free films could be produced on dense and porous substrates. The results obtained show that it is possible to obtain a CGO dense film deposited by spray pyrolysis. X-ray diffraction (XRD) analysis showed that the films were crystalline after the deposition without requiring post-deposition heat treatment. The crystallite size does not vary significantly as a function of the annealing temperature.

Halmenschlager, C.M., E-mail: cibelemh@yahoo.com.br [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil); National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Neagu, R. [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada)] [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Rose, L. [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada) [National Research Council, Institute for Fuel Cell Innovation NRC-IFCI, 4250 Wesbrook Mall, V6T 1W5 Vancouver, BC (Canada); Department of Materials Engineering, V6T 1Z1 Vancouver, BC (Canada); Malfatti, C.F. [Laboratory of Research in Corrosion LAPEC/PPGEM, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor 4, Prédio 75/2° Andar, CEP: 91501-970, Campus do Vale, Porto Alegre, RS (Brazil)] [Laboratory of Research in Corrosion LAPEC/PPGEM, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor 4, Prédio 75/2° Andar, CEP: 91501-970, Campus do Vale, Porto Alegre, RS (Brazil); Bergmann, C.P. [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil)] [Laboratory of Materials Ceramic LACER/PPGEM, Federal University of Rio Grande do Sul, Av. Osvaldo Aranha, 99/705C, CEP: 90035-190, Porto Alegre, RS (Brazil)

2013-02-15T23:59:59.000Z

443

On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks  

SciTech Connect (OSTI)

This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

Samuel Bays; Ayodeji Alajo

2010-05-01T23:59:59.000Z

444

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

445

Thermochemical Conversion Pilot Plant (Fact Sheet)  

SciTech Connect (OSTI)

The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

Not Available

2013-06-01T23:59:59.000Z

446

Soft materials for linear electromechanical energy conversion  

E-Print Network [OSTI]

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

447

Existing potato markers and marker conversions  

E-Print Network [OSTI]

Existing potato markers and marker conversions Walter De Jong PAA Workshop August 2009 1 #12;What of us will continue to use agarose gels for years to come #12;Example of a potato marker 4 PVY (Ryadg) ­ Kasai et al. 2000 Genome 43:1-8 allele specific amplification of a diagnostic product - potatoes

Douches, David S.

448

IntroductiontoProcessEngineering(PTG) conversion, balances,  

E-Print Network [OSTI]

#3/6 IntroductiontoProcessEngineering(PTG) VST rz13 1/118 3. Energy conversion, balances rz13 2/118 3.1: Energy #12;#3/6 IntroductiontoProcessEngineering(PTG) VST rz13 3/118 What is energy? · "Energy is any quantity that changes the state of a closed system when crossing the system boundary" (SEHB

Zevenhoven, Ron

449

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC) #12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000

450

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project  

E-Print Network [OSTI]

NAVFAC Ocean Thermal Energy Conversion (OTEC) Project Contract Number N62583-09-C-0083 CDRL A014 OTEC Mini-Spar Pilot Plant 9 December 2011 OTEC-2011-001-4 Prepared for: Naval Facilities; distribution is unlimited. #12; Configuration Report and Development Plan Volume 4 Site Specific OTEC

451

Materials for coal conversion and utilization  

SciTech Connect (OSTI)

The Fifth Annual Conference on Materials for Coal Conversion and Utilization was held October 7-9, 1980, at the National Bureau of Standards, Gaithersburg, Maryland. Sixty-six papers have been entered individually into ERA and EDB; two had been entered previously from other sources. (LTN)

Not Available

1980-01-01T23:59:59.000Z

452

Energy Conversion: Solid-State Lighting  

E-Print Network [OSTI]

8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

453

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

454

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents [OSTI]

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

McIntosh, M.J.; Arzoumanidis, G.G.

1997-09-02T23:59:59.000Z

455

Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor  

SciTech Connect (OSTI)

The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

1991-12-31T23:59:59.000Z

456

Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor  

SciTech Connect (OSTI)

The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

1991-01-01T23:59:59.000Z

457

Determining the Effect of Concerted Elimination Reactions in the Pyrolysis of Lignin Using Model Compounds  

SciTech Connect (OSTI)

Lignin pyrolysis is a significant impediment in forming liquid fuel from biomass. Lignin pyrolyzes at a higher temperature than other biomass components (ie cellulose, hemicellulose) and tends to form radicals which lead to cross linking and ultimately char formation. A primary step in advances biomass-to-fuel technology will be to discover mechanisms that can disassemble lignin at lower temperatures and depolymerize lignin into more stable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin ({beta}-O4, {alpha}-O4, {beta}-{beta}, {beta}-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to the usually-assumed bond homolysis reactions, we have investigated a variety of concerted elimination pathways that will tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.

Robichaud, D.; Clark, J.; Nimlos, M.

2012-01-01T23:59:59.000Z

458

Synthesis and characterization of thorium phosphate phases by spray pyrolysis: chemistry of thorium phosphates  

SciTech Connect (OSTI)

This paper describes the synthesis of some thorium phosphate compounds with different Th/P ratio (1/2, 2/3 and 3/4) by a spray pyrolysis technique. The so-prepared rough compounds were annealed at different temperatures for 2 h and then analyzed by mainly X-ray diffraction on powder and infrared spectroscopy. Every rough compound is composed by very badly crystallized ThO{sub 2} phase polluted by carbon residue. An annealing treatment at 800 deg. C leads to the thorium diphosphate phase, {alpha}-ThP{sub 2}O{sub 7} in every case. At 900 deg. C, such a phase is decomposed into a thorium phosphate diphosphate phase (Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, called TPD). However, a thorium excess in the initial mixture (Th/P = 3/4) leads also to observe the ThO{sub 2} phase. The TPD phase is stable up to 1200 deg. C and does not react with the ThO{sub 2} compound. Beyond 1200 deg. C, the TPD phase is slowly decomposed into a thorium phosphate compound which should be a thorium oxide phosphate; this compound does not contain any diphosphate species.

Marchin, L.; Trombe, J.C.; Verelst, M

2004-10-04T23:59:59.000Z

459

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents [OSTI]

A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)

1997-01-01T23:59:59.000Z

460

A method and system including a double rotary kiln pyrolysis or gasification of waste material  

SciTech Connect (OSTI)

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, M.J.; Arzoumanidis, G.G.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids  

SciTech Connect (OSTI)

This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

2012-04-13T23:59:59.000Z

462

Optimization of the pyrolysis process of empty fruit bunch (EFB) in a fixed-bed reactor through a central composite design (CCD)  

SciTech Connect (OSTI)

The production of crude palm oil from the processing of palm fresh fruit bunches in the palm oil mills in Malaysia hs resulted in a huge quantity of empty fruit bunch (EFB) accumulated. The EFB was used as a feedstock in the pyrolysis process using a fixed-bed reactor in the present study. The optimization of process parameters such as pyrolysis temperature (factor A), biomass particle size (factor B) and holding time (factor C) were investigated through Central Composite Design (CCD) using Stat-Ease Design Expert software version 7 with bio-oil yield considered as the response. Twenty experimental runs were conducted. The results were completely analyzed by Analysis of Variance (ANOVA). The model was statistically significant. All factors studied were significant with p-values < 0.05. The pyrolysis temperature (factor A) was considered as the most significant parameter because its F-value of 116.29 was the highest. The value of R{sup 2} was 0.9564 which indicated that the selected factors and its levels showed high correlation to the production of bio-oil from EFB pyrolysis process. A quadratic model equation was developed and employed to predict the highest theoretical bio-oil yield. The maximum bio-oil yield of 46.2 % was achieved at pyrolysis temperature of 442.15 °C using the EFB particle size of 866 ?m which corresponded to the EFB particle size in the range of 710–1000 ?m and holding time of 483 seconds.

Mohamed, Alina Rahayu; Hamzah, Zainab; Daud, Mohamed Zulkali Mohamed [School of Bioprocess Engineering, Jejawi Complex of Academics (3), UniMAP, 02600 Arau Perlis (Malaysia)

2014-07-10T23:59:59.000Z

463

Novel Nuclear Powered Photocatalytic Energy Conversion  

SciTech Connect (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

464

Direct Conversion of Biomass to Fuel | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

465

Automotive Waste Heat Conversion to Electric Power using Skutterudites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3...

466

Genetic diversity and combining ability among sorghum conversion lines  

E-Print Network [OSTI]

on genetic similarities estimated using AFLP markers and (3) to estimate heterosis, general and specific combining ability for grain yield among the set of conversion lines. Genetic diversity was present in the set of conversion lines evaluated. For the lines...

Mateo Moncada, Rafael Arturo

2007-04-25T23:59:59.000Z

467

Thermoelectrici Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

468

Cross section generation strategy for high conversion light water reactors  

E-Print Network [OSTI]

High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

Herman, Bryan R. (Bryan Robert)

2011-01-01T23:59:59.000Z

469

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

470

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

Sands, M. D.

2011-01-01T23:59:59.000Z

471

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

SciTech Connect (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

472

Direct conversion of algal biomass to biofuel  

SciTech Connect (OSTI)

A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

2014-10-14T23:59:59.000Z

473

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides. Another objective of this analysis was to re-qualify the output of the previous revision (BSC 2003 [DIRS 164403]).

M. Wasiolek

2004-09-08T23:59:59.000Z

474

Materials for coal conversion and utilization  

SciTech Connect (OSTI)

The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

None,

1981-01-01T23:59:59.000Z

475

Biofuel Conversion Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014 BioenergyDepartmentforBiofuel Conversion

476

Fast neutron imaging device and method  

DOE Patents [OSTI]

A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

2014-02-11T23:59:59.000Z

477

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

478

Resource Limits and Conversion Efficiency with Implications for Climate Change  

E-Print Network [OSTI]

Repowering Project, Clean Coal Topical Report Number 20,P. and Nel, H. G. 2004, Clean coal conversion options using

Croft, Gregory Donald

2009-01-01T23:59:59.000Z

479

New Albany shale flash pyrolysis under hot-recycled-solid conditions: Chemistry and kinetics, II  

SciTech Connect (OSTI)

The authors are continuing a study of recycle retorting of eastern and western oil shales using burnt shale as the solid heat carrier. Stripping of adsorbed oil from solid surfaces rather than the primary pyrolysis of kerogen apparently controls the release rate of the last 10--20% of hydrocarbons. Thus, the desorption rate defines the time necessary for oil recovery from a retort and sets the minimum hold-time in the pyrolyzer. A fluidized-bed oil shale retort resembles a fluidized-bed cat cracker in this respect. Recycled burnt shale cokes oil and reduces yield. The kerogen H/C ratio sets an upper limit on yield improvements unless external hydrogen donors are introduced. Steam can react with iron compounds to add to the H-donor pool. Increased oil yield when New Albany Shale pyrolyzes under hot-recycled-solid, steam-fluidization conditions has been confirmed and compared with steam retorting of acid-leached Colorado oil shale. In addition, with retorted, but unburnt, Devonian shale present at a recycle ratio of 3, the authors obtain 50% more oil-plus-gas than with burnt shale present. Procedures to make burnt shale more like unburnt shale can realize some increase in oil yield at high recycle ratios. Reduction with H{sub 2} and carbon deposition are possibilities that the authors have tested in the laboratory and can test in the pilot retort. Also, eastern spent shale burned at a high temperature (775 C, for example) cokes less oil than does spent shale burned at a low temperature (475 C). Changes in surface area with burn temperature contribute to this effect. 15 refs., 8 figs., 4 tabs.

Coburn, T.T.; Morris, C.J.

1990-11-01T23:59:59.000Z

480

Pyrolysis/Steam Reforming Technology for Treatment of TRU Orphan Wastes  

SciTech Connect (OSTI)

Certain transuranic (TRU) waste streams within the Department of Energy (DOE) complex cannot be disposed of at the Waste Isolation Pilot Plant (WIPP) because they do not meet the shipping requirements of the TRUPACT-II or the disposal requirements of the Waste Analysis Plan (WAP) in the WIPP RCRA Part B Permit. These waste streams, referred to as orphan wastes, cannot be shipped or disposed of because they contain one or more prohibited items, such as liquids, volatile organic compounds (VOCs), hydrogen gas, corrosive acids or bases, reactive metals, or high concentrations of polychlorinated biphenyl (PCB), etc. The patented, non-incineration, pyrolysis and steam reforming processes marketed by THOR Treatment Technologies LLC removes all of these prohibited items from drums of TRU waste and produces a dry, inert, inorganic waste material that meets the existing TRUPACT-II requirements for shipping, as well as the existing WAP requirements for disposal of TRU waste at WIPP. THOR Treatment Technologies is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC (WGES) to further develop and deploy Studsvik's patented THORSM technology within the DOE and Department of Defense (DoD) markets. The THORSM treatment process is a commercially proven system that has treated over 100,000 cu. ft. of nuclear waste from commercial power plants since 1999. Some of this waste has had contact dose rates of up to 400 R/hr. A distinguishing characteristic of the THORSM process for TRU waste treatment is the ability to treat drums of waste without removing the waste contents from the drum. This feature greatly minimizes criticality and contamination issues for processing of plutonium-containing wastes. The novel features described herein are protected by issued and pending patents.

Mason, J. B.; McKibbin, J.; Schmoker, D.; Bacala, P.

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "fast pyrolysis conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Pathways, kinetics, and mechanisms for 2-dodecyl-9,10-dihydrophenanthrene pyrolysis  

SciTech Connect (OSTI)

The authors pyrolyzed 2-dodecyl-9,10-dihydrophenanthrene (DDPh) in batch microreactors. The reaction conditions included neat pyrolyses between 375--450C for times of 15--240 min and also pyrolyses in benzene at 400 C and 90 min but at different initial DDPh concentrations ranging from 0.0095 to 0.238 mol/L. The disappearance of DDPh followed first-order kinetics, and the global first-order rate constant had Arrhenius parameters of log{sub 10} A (s{sup {minus}1}) = 13.6 {+-} 2.8 and E (kcal/mol) = 54.5 {+-} 9.1, where the uncertainties are the 95% confidence intervals. The decomposition of DDPh can be described by a reaction network that possesses four parallel primary pathways. The major primary path, which involves dehydrogenation, leads to 2-dodecylphenanthrene. The other three primary paths involve C{single_bond}C bond cleavage, and they lead to 2-methyl-9,10-dihydrophenanthrene plus undecene, to 2-vinyl-9,10-dihydrophenanthrene plus decane, and to numerous minor products. Important secondary and tertiary reactions include the rapid reduction of 2-vinyl-9,10-dihydrophenanthrene to 2-ethyl-9,10-dihydrophenanthrene and the facile dehydrogenation of 2-methyl- and 2-ethyl-9,10-dihydrophenanthrene to form 2-methyl- and 2-ethylphenanthrene, respectively. The identities and relative abundances of the major products are consistent with a free-radical chain reaction mechanism for DDPh pyrolysis. Application is to the processing of hydrocarbon resources such as coals and heavy crude oils.

Savage, P.E.; Baxter, K.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

1996-05-01T23:59:59.000Z

482

Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4 U.S.1: Reforming Pyrolysis

483

Fast quench reactor and method  

DOE Patents [OSTI]

A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

484

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network [OSTI]

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

485

Method for conversion of .beta.-hydroxy carbonyl compounds  

DOE Patents [OSTI]

A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

2010-03-30T23:59:59.000Z

486

Fast superconducting magnetic field switch  

DOE Patents [OSTI]

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01T23:59:59.000Z

487

Nominal Performance Biosphere Dose Conversion Factor Analysis  

SciTech Connect (OSTI)

This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states (present day, monsoon, and glacial transition) considered in the TSPA-LA, as well as conversion factors for compliance evaluation with the groundwater protection standards. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from drinking water for beta- and photon-emitting radionuclides.

M.A. Wasiolek

2005-04-28T23:59:59.000Z

488

Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /  

E-Print Network [OSTI]

77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

Ghaffari, Azad

2013-01-01T23:59:59.000Z

489

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

490

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.recommendations for Ocean Thermal Energy Conversion (OTEC)

Sullivan, S.M.

2013-01-01T23:59:59.000Z

491

A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS  

E-Print Network [OSTI]

Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.for Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

Sullivan, S.M.

2013-01-01T23:59:59.000Z

492

COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO  

E-Print Network [OSTI]

assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

Ryan, Constance J.

2013-01-01T23:59:59.000Z

493