Sample records for fast flux test

  1. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect (OSTI)

    Gantt, D.A.

    1993-08-01T23:59:59.000Z

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  2. The Fast Flux Test Facility built on safety

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    No other high-tech industry has grown as fast as the nuclear industry. The information available to the general public has not kept pace with the rapid growth of nuclear data---its growth has outpaced its media image and the safety of nuclear facilities has become a highly debated issue. This book is an attempt to bridge the gap between the high-tech information of the nuclear industry and its understanding by the general public. It explains the three levels of defense at the Fast Flux Test Facility (FFTF) and why these levels provide an acceptable margin to protect the general public and on-site personnel, while achieving FFTF's mission to provide research and development for the US Department of Energy (DOE).

  3. FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation

    SciTech Connect (OSTI)

    Pierce, B.F.

    1986-07-01T23:59:59.000Z

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.

  4. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  5. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

    2013-07-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  6. Voluntary Protection Program Onsite Review, Fluor Hanford Fast Flux Test Facility Recertification- October 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Fluor Hanford Fast Flux Test Facility is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. Knowledge Management at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.

    2013-06-01T23:59:59.000Z

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  8. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    SciTech Connect (OSTI)

    WJ Apley

    1997-12-01T23:59:59.000Z

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  9. EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown...

  10. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect (OSTI)

    NIELSEN, D L

    2004-02-26T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  11. Criticality experiments with fast flux test facility fuel pins

    SciTech Connect (OSTI)

    Bierman, S.R.

    1990-11-01T23:59:59.000Z

    A United States Department of Energy program was initiated during the early seventies at the Hanford Critical Mass Laboratory to obtain experimental criticality data in support of the Liquid Metal Fast Breeder Reactor Program. The criticality experiments program was to provide basic physics data for clean well defined conditions expected to be encountered in the handling of plutonium-uranium fuel mixtures outside reactors. One task of this criticality experiments program was concerned with obtaining data on PuO{sub 2}-UO{sub 2} fuel rods containing 20--30 wt % plutonium. To obtain this data a series of experiments were performed over a period of about twelve years. The experimental data obtained during this time are summarized and the associated experimental assemblies are described. 8 refs., 7 figs.

  12. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  13. Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future

    SciTech Connect (OSTI)

    Vincent, J.R.

    1990-09-01T23:59:59.000Z

    The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs.

  14. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    FARABEE, O.A.

    2006-02-24T23:59:59.000Z

    In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

  15. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    LESPERANCE, C.P.

    2007-05-23T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  16. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10T23:59:59.000Z

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  17. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24T23:59:59.000Z

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

  18. Closure of the Fast Flux Test Facility: Current Status and Future Plans

    SciTech Connect (OSTI)

    Farabee, O.A. [US Department of Energy, PO Box 550, Richland, WA 99352 (United States); Witherspoon, W.V. [Fluor Hanford, PO Box 1000 N2-51, Richland, WA 99352 (United States)

    2008-01-15T23:59:59.000Z

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (NaK) that was used as an intermediate cooling fluid in several FFTF systems has been drained and removed or flushed to sodium systems where it became mixed with the sodium. The in-containment hot cell has minimal sodium contamination, is currently inerted with argon and is being used for loading of the T-3 transportation cask with the sodium-bonded fuel for transportation to Idaho National Laboratory. The majority of the fuel handling machines are still operational and being used for loading the sodium-bonded fuel into the T-3 casks. This equipment will be shut down immediately following completion of shipment of the sodium-bonded fuel. The majority of hotel systems are still operating. Four of the eight 400-ton chillers have been shut down and four of the cooling towers have been shut down. The argon system is operational and supplying gas for sodium systems cover gas, in-containment hot cell atmosphere and fuel handling systems. The nitrogen system remains in service supplying cover gas to the demineralized water system and fire suppression systems. Eleven of the facilities nineteen transformers containing polychlorinated biphenyls (PCBs) have been removed and significant re-routing of power has been performed to support the long term minimum cost surveillance mode. Future plans include the complete deactivation, the long-term surveillance and maintenance, the sodium disposition and the decontamination and decommissioning The most complex and costly activity during the decontamination and decommissioning phase will be the removal of the 'residual sodium' in the sodium systems. It was impractical to remove the residual sodium during the systems draining evolution. It is estimated that approximately 24,000 liters (6,400 gallons) remain within the systems. The complexity of design of the FFTF exceeds any sodium facility in the United States in which sodium removal has occurred. There are a total of 21 miles of sodium piping in the FFTF as well as three large vessels (the reactor vessel and two spent fuel pool vessels) that will require partial disassembly and drilli

  19. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Broader source: Energy.gov [DOE]

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  20. Cleaning residual NaK in the fast flux test facility fuel storage cooling system

    SciTech Connect (OSTI)

    Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

    2008-01-15T23:59:59.000Z

    The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

  1. Boosted Fast Flux Loop Final Report

    SciTech Connect (OSTI)

    Boosted Fast Flux Loop Project Staff

    2009-09-01T23:59:59.000Z

    The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006 that further funding for the project would be suspended. Remaining funds have been used to prepare and irradiate mini-plates of the proposed booster fuel. The current baseline design is for a set of three test positions inside an in-pile tube with a thermal neutron absorber and heat sink made of aluminum mixed with hafnium. Operating the ATR at power levels needed to achieve the required fast flux will result in an estimated increase in ATR fuel consumption between 15 and 20% above present rates and a reduction in the time between fuel replacements. Preliminary safety analyses conducted have indicted safe operation of the ATR with the GTL under normal, abnormal, and postulated accident conditions. More comprehensive analyses are needed.

  2. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  3. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  4. Fast neutron fluxes in pressure vessels using Monte Carlo methods

    SciTech Connect (OSTI)

    Edlund, M.C.; Thomas, J.R.

    1986-01-01T23:59:59.000Z

    The objective of this project is to determine the feasibility of calculating the fast neutron flux in the pressure vessel of a pressurized water reactor by Monte Carlo methods. Neutron reactions reduce the ductility of the steel and thus limit the useful life of this important reactor component. This work was performed for Virginia Power (VEPCO). VIM is a continuous-energy Monte Carlo code which provides a versatile geometrical capability and a neutron physics data base closely representing the EDNF/B-IV data from which it was derived.

  5. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect (OSTI)

    Isobe, M., E-mail: isobe@nifs.ac.jp; Takeiri, Y. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, The Graduate University for Advanced Studies, Toki 509-5292 (Japan); Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T. [National Institute for Fusion Science, Toki 509-5292 (Japan); Nakano, Y.; Watanabe, K.; Uritani, A. [Department of Materials, Physics and Energy Engineering, Nagoya University, Nagoya 464-8603 (Japan); Misawa, T. [Kyoto University Research Reactor Institute, Kumatori 590-0494 (Japan); Nishitani, T. [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S. [Toshiba Corporation, Fuchu 183-8511 (Japan); Yamauchi, M. [Toshiba Nuclear Engineering Services Corporation, Yokohama 235-8523 (Japan)

    2014-11-15T23:59:59.000Z

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ?5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  6. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Broader source: Energy.gov (indexed) [DOE]

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging...

  7. FAST

    Energy Science and Technology Software Center (OSTI)

    002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

  8. Homogeneous fast-flux isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19T23:59:59.000Z

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  9. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01T23:59:59.000Z

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  10. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01T23:59:59.000Z

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  11. 400 Area/Fast Flux Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025 PowerNetwork8th300 Quarter,400

  12. Investigation of failed fuel detection and location using a flux tilting method in a fast breeder reactor

    SciTech Connect (OSTI)

    Hamada, M.; Uehara, K.; Muramatsu, K. (Japan Atomic Power Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo 100 (JP)); Kamei, T.; Tamaoki, T.; Yamaoka, M.; Sonada, Y.; Sano, Y. (Toshiba Corp., Nuclear Engineering Lab., 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210 (JP))

    1992-04-01T23:59:59.000Z

    Detection and location of failed fuel in a liquid-metal fast breeder reactor (LMFBR) are very important both for safety and availability. When a fuel failure is detected, it is desirable to identify the failed subassembly quickly to reduce plant shutdown time. The flux tilting method is expected to effectively identify the defective subassembly. The feasibility of the flux tilting method is investigated for an LMFBR with a 100-MW (electric) homogeneous core. A numerical simulation is performed to estimate the viability of the flux tilting method, and a combination of the flux tilting method and the sipping method is found to be very effective in identifying the failed subassembly. In this paper a functional scheme for a computer-aided failed fuel detection and location system is discussed as part of a future on-line support system.

  13. Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor

    E-Print Network [OSTI]

    Ellis, Tyler Shawn

    2009-01-01T23:59:59.000Z

    Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

  14. Overview of US fast-neutron facilities and testing capabilities

    SciTech Connect (OSTI)

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01T23:59:59.000Z

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected.

  15. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect (OSTI)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-10-01T23:59:59.000Z

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  16. High heat flux testing capabilities at Sandia National Laboratories - New Mexico

    SciTech Connect (OSTI)

    Youchison, D.L.; McDonald, J.M.; Wold, L.S.

    1994-12-31T23:59:59.000Z

    High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

  17. Sandia National Laboratories: Beryllium High Heat Flux Testing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system, controls, and blast gun) is now used for electron beam test system vacuum vessel beryllium decontamination and has shortened the beryllium clean-up procedure from...

  18. Fast imaging applications in the Nuclear Test Program

    SciTech Connect (OSTI)

    Lear, R.

    1983-10-14T23:59:59.000Z

    Applications of fast imaging employ both streak cameras and fast framing techniques. Image intensifier tubes are gated to provide fast two-dimensional shutters of 2 to 3 ns duration with shatter ratios of greater than 10/sup 6/ and resolution greater than 10/sup 4/ pixels. Shutters of less than 1 ns have been achieved with experimental tubes. Characterization data demonstrate the importance of tube and pulser design. Streak cameras are used to simultaneously record temporal and intensity information from up to 200 spatial points. Streak cameras are combined with remote readout for downhole uses and are coupled to fiber optic cables for uphole uses. Optical wavelength multiplexing is being studied as a means of compressing additional image data onto optical fibers. Performance data demonstrate trade-offs between image resolution and system sensitivity.

  19. Fast Pyrolysis Conversion Tests of Forest Concepts’ Crumbles.

    SciTech Connect (OSTI)

    Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

    2012-04-02T23:59:59.000Z

    The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

  20. Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics

    E-Print Network [OSTI]

    Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y test was carried out for the non­irradiated and the irradiated detector modules. Efficiency, noise occupancy and performance in the edge regions were analyzed using the beam test data. High efficiency

  1. Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers

    E-Print Network [OSTI]

    Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers November 2006; published 4 May 2007. [1] Understanding factors that control methane exchange between soils-based technique to investigate the relative importance of three mechanisms for explaining landscape

  2. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Broader source: Energy.gov (indexed) [DOE]

    measure it: 23% to 99.7% 5 EVSE Testing - Conductive Li-Ion ESS Controls System Load Bank Smart Grid Emulator Charger ACDC J1772 Conductive EVSE (Level 1 or Level 2) Vehicle...

  3. Beam Test of a Large Area nonn Silicon Strip Detector with Fast Binary Readout Electronics

    E-Print Network [OSTI]

    Beam Test of a Large Area n­on­n Silicon Strip Detector with Fast Binary Readout Electronics Y­sided detector for the readout, its fabrication is similar to a double­sided device, because the backside, which

  4. Tensile and impact testing of an HFBR (High Flux Beam Reactor) control rod follower

    SciTech Connect (OSTI)

    Czajkowski, C.J.; Schuster, M.H.; Roberts, T.C.; Milian, L.W.

    1989-08-01T23:59:59.000Z

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (K{sub I}) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with K{sub max} values of 24.8 {plus minus} 1.0 Ksi{radical}in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs.

  5. Relativistic electron flux comparisons at low and high altitudes with fast time resolution and broad spatial coverage

    SciTech Connect (OSTI)

    Imhof, W.L.; Gaines, E.E.; McGlennon, J.P. [Lockheed Palo Alto Research Lab., CA (United States)] [and others] [Lockheed Palo Alto Research Lab., CA (United States); and others

    1994-09-01T23:59:59.000Z

    Analyses are presented for the first high-time resolution multisatellite study of the spatial and temporal characteristics of a relativistic electron enhancement event with a rapid onset. Measurements of MeV electrons were made from two low-altitude polar orbiting satellites and three spacecraft at synchronous altitude. The electron fluxes observed by the low-altitude satellites include precipitating electrons in both the bounce and drift loss cones as well as electrons that are stably trapped, whereas the observations at geosynchronous altitude are dominated by the trapped population. The fluxes of >1 MeV electrons at low-satellite altitude over a wide range of L shells tracked very well the fluxes >0.93 MeV at synchronous altitude. 10 refs., 5 figs., 1 tab.

  6. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A. [Centro NAST, Universita degli Studi di Roma Tor Vergata (Italy); Gorini, G.; Tardocchi, M. [Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca (Italy); Paccagnella, A.; Gerardin, S. [Dipartimento di Ingegneria dell'Informazione, Universita di Padova (Italy); Frost, C. D.; Ansell, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Platt, S. P. [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, Lancs. PR1 2HE (United Kingdom)

    2008-03-17T23:59:59.000Z

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  7. High-Flux Stress Testing of Encapsulants for Medium-Concentration CPV Applications

    SciTech Connect (OSTI)

    Kempe, M. D.; Kilkenny, M.; Moricone, T. J.; Zhang, J. Z.

    2009-09-01T23:59:59.000Z

    This study involved developing methods to expose transparent encapsulant materials to high (40 to 45 UV suns) optical fluxes of UV radiation to enable rapid evaluation of materials.

  8. High-power RF testing of a 352-MHZ fast-ferrite RF cavity tuner at the Advanced Photon Source.

    SciTech Connect (OSTI)

    Horan, D.; Cherbak, E.; Accelerator Systems Division (APS)

    2006-01-01T23:59:59.000Z

    A 352-MHz fast-ferrite rf cavity tuner, manufactured by Advanced Ferrite Technology, was high-power tested on a single-cell copper rf cavity at the Advanced Photon Source. These tests measured the fast-ferrite tuner performance in terms of power handling capability, tuning bandwidth, tuning speed, stability, and rf losses. The test system comprises a single-cell copper rf cavity fitted with two identical coupling loops, one for input rf power and the other for coupling the fast-ferrite tuner to the cavity fields. The fast-ferrite tuner rf circuit consists of a cavity coupling loop, a 6-1/8-inch EIA coaxial line system with directional couplers, and an adjustable 360{sup o} mechanical phase shifter in series with the fast-ferrite tuner. A bipolar DC bias supply, controlled by a low-level rf cavity tuning loop consisting of an rf phase detector and a PID amplifier, is used to provide a variable bias current to the tuner ferrite material to maintain the test cavity at resonance. Losses in the fast-ferrite tuner are calculated from cooling water calorimetry. Test data will be presented.

  9. Testing above-and below-canopy representations of turbulent fluxes in an energy balance snowmelt model

    E-Print Network [OSTI]

    Tarboton, David

    Testing above- and below-canopy representations of turbulent fluxes in an energy balance snowmelt and latent heat are important processes in the surface energy balance that drives snowmelt. Modeling in an energy balance snowmelt model, Water Resour. Res., 49, doi:10.1002/wrcr.20073. 1. Introduction [2

  10. Gas cooled fast reactor control rod drive mechanism deceleration unit. Test program

    SciTech Connect (OSTI)

    Wagner, T.H.

    1981-10-01T23:59:59.000Z

    This report presents the results of the airtesting portion of the proof-of-principle testing of a Control Rod Scram Deceleration Device developed for use in the Gas Cooled Fast Reactor (GCFR). The device utilizes a grooved flywheel to decelerate the translating assembly (T/A). Two cam followers on the translating assembly travel in the flywheel grooves and transfer the energy of the T/A to the flywheel. The grooves in the flywheel are straight for most of the flywheel length. Near the bottom of the T/A stroke the grooves are spiraled in a decreasing slope helix so that the cam followers accelerate the flywheel as they transfer the energy of the falling T/A. To expedite proof-of-principle testing, some of the materials used in the fabrication of certain test article components were not prototypic. With these exceptions the concept appears to be acceptable. The initial test of 300 scrams was completed with only one failure and the failure was that of a non-prototypic cam follower outer sleeve material.

  11. OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS

    SciTech Connect (OSTI)

    Bourouaine, Sofiane; Chandran, Benjamin D. G., E-mail: s.bourouaine@unh.edu [Space Science Center and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

    2013-09-10T23:59:59.000Z

    Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

  12. Consolidated fuel reprocessing program: Criticality experiments with fast test reactor fuel pins in an organic moderator

    SciTech Connect (OSTI)

    Bierman, S.R.

    1986-12-01T23:59:59.000Z

    The results obtained in a series of criticality experiments performed as part of a joint program on criticality data development between the United States Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan are presented in this report along with a complete description of the experiments. The experiments involved lattices of Fast Test Reactor (FTR) fuel pins in an organic moderator mixture similar to that used in the solvent extraction stage of fuel reprocessing. The experiments are designed to provide data for direct comparison with previously performed experimental measurements with water moderated lattices of FTR fuel pins. The same lattice arrangements and FTR fuel pin types are used in these organic moderated experimental assemblies as were used in the water moderated experiments. The organic moderator is a mixture of 38 wt % tributylphosphate in a normal paraffin hydrocarbon mixture of C{sub 11}H{sub 24} to C{sub 15}H{sub 32} molecules. Critical sizes of 1054.8, 599.2, 301.8, 199.5 and 165.3 fuel pins were obtained respectively for organic moderated lattices having 0.761 cm, 0.968 cm, 1.242 cm, 1.537 cm and 1.935 cm square lattice pitches as compared to 1046.9, 571.9, 293.9, 199.7 and 165.1 fuel pins for the same lattices water moderated.

  13. High heat flux testing of a two-tube copper panel specimen for LLNL at ASURF

    SciTech Connect (OSTI)

    Easoz, J.R.; Sink, D.A.

    1984-12-01T23:59:59.000Z

    This letter documents the results of the test program conducted for Lawrence Livermore National Laboratory (LLNL) by Westinghouse Advanced Energy Systems Division (AESD) in fulfillment of the Third Amendment to Subcontract 9125401. The original test matrix of 20,000 heating cycles on two test articles called for in the contract was not technically feasible due to the inability of the test articles supplied by LLNL to perform successfully at the required test conditions. Burnout occurred in one of the tubes of a two-tube target during the first series of tests. As a result, the work scope was changed by LLNL such that the tests on the milled copper plate panel specimen were replaced by a second set of heating tests on the second tube of the two-tube copper panel specimen to confirm the conditions for burnout failure. The testing requirements were completed following failure of the second tube at nominally identical conditions under which the first tube failed, and verification of these conditions. This letter completes all contractual obligations by serving as the final report on the test program.

  14. Three-dimensional discrete ordinates radiation transport calculations of neutron fluxes for beginning-of-cycle at several pressure vessel surveillance positions in the high flux isotope reactor

    SciTech Connect (OSTI)

    Pace, J.V. III; Slater, C.O.; Smith, M.S.

    1993-11-01T23:59:59.000Z

    The objective of this research was to determine improved thermal, epithermal, and fast fluxes and several responses at mechanical test surveillance location keys 2, 4, 5, and 7 of the pressure vessel of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR) for the beginning of the fuel cycle. The purpose of the research was to provide essential flux data in support of radiation embrittlement studies of the pressure vessel shell and beam tubes at some of the important locations.

  15. Columbia University Flow Instability Experimental Program, Volume 10: Critical Heat Flux Test Program data tables

    SciTech Connect (OSTI)

    Coutts, D.A.

    1993-09-01T23:59:59.000Z

    This report is one of a series of reports which document the flow instability testing conducted by Columbia University during 1989 through 1992. This report volume provides a hardcopy version of the twenty-six electronic media data files: CO515(A-D).DAT, CO525(A-G). DAT, CO530(A-K).DAT, CO718(A-E).DAT.

  16. Effect of radiation flux on test particle motion in the Vaidya spacetime

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Robert T. Jantzen; Oldrich Semerák

    2014-08-21T23:59:59.000Z

    Motion of massive test particles in the nonvacuum spherically symmetric radiating Vaidya spacetime is investigated, allowing for physical interaction of the particles with the radiation field in terms of which the source energy-momentum tensor is interpreted. This "Poynting-Robertson-like effect" is modeled by the usual effective term describing a Thomson-type radiation drag force. The equations of motion are studied for simple types of motion including free motion (without interaction), purely radial and purely azimuthal (circular) motion, and for the particular case of "static" equilibrium; appropriate solutions are given where possible. The results---mainly those on the possible existence of equilibrium positions---are compared with their counterparts obtained previously for a test spherically symmetric radiation field in a vacuum Schwarzschild background.

  17. Estimation of measured control rod worths in Fast Breeder Test Reactor -- Effect of different delayed neutron parameters

    SciTech Connect (OSTI)

    Mohanakrishnan, P.; Reddy, C.P.; Gopalakrishnan, V.; Arul, J. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Physics Div.

    1996-03-01T23:59:59.000Z

    Control rod worths have been measured by the inverse kinetics method in the small PuC-UC core of the Fast Breeder Test Reactor at Kalpakkam. Delayed neutron fractional yields based on Tuttle`s data, ENDF/B-VI data, and the full summation approach of Brady and England have been used to get measured control rod worths. Unreasonably large reductions in control rod worths are obtained by the ENDF/B-VI data. It is suspected that the procedure, of normalizing fractional yields obtained by the summation approach to earlier evaluated total yields, is inconsistent.

  18. U.S. Plans for the Next Fast Reactor Transmutation Fuels Irradiation Test

    SciTech Connect (OSTI)

    B. A. Hilton

    2007-09-01T23:59:59.000Z

    The U.S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposal and the long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is actinide-bearing transmutation fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Metallic alloy and oxide fuel forms are being developed as the near term options for fast reactor implementation.

  19. FAST Code Verification of Scaling Laws for DeepCwind Floating Wind System Tests: Preprint

    SciTech Connect (OSTI)

    Jain, A.; Robertson, A. N.; Jonkman, J. M.; Goupee, A. J.; Kimball, R. W.; Swift, A. H. P.

    2012-04-01T23:59:59.000Z

    This paper investigates scaling laws that were adopted for the DeepCwind project for testing three different floating wind systems at 1/50 scale in a wave tank under combined wind and wave loading.

  20. EU contract number RII3-CT-2003-506395 CARE-Note-07-004-SRF Radiation hardness tests of piezoelectric actuators with fast neutrons at liquid helium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RII3-CT-2003-506395 CARE-Note-07-004-SRF Introduction Motorized Fast Active Cold Tuning System (FACTS frequency in SRF cavities of various projects and Test facilities (e.g., TESLA [1], Test Facility (TTF) [2], XFEL [3], ILC [4]). The motorized mechanical part of the FACTS is used for long range (i.e., 1.9 mm

  1. Application of a Virtual Reactivity Feedback Control Loop in Non-Nuclear Testing of a Fast Spectrum Reactor

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, Huntsville, Al, 35812 (United States); Forsbacka, Matthew [NASA Headquarters, 300 E St. S, Washington, DC 20465 (United States)

    2004-07-01T23:59:59.000Z

    For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the Nasa Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. 'Virtual' reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of various core deformations. The power delivered to the SAFE-100 prototype was then adjusted accordingly via kinetics calculations. The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kWt to 10 kWt, held approximately constant at 10 kWt, and then allowed to decrease based on the negative thermal reactivity coefficient. (authors)

  2. Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components

    SciTech Connect (OSTI)

    Nelson, George W. [Department of Nuclear and Energy Engineering, University of Arizona, Tucson, AZ 85721 (United States)

    1986-07-01T23:59:59.000Z

    Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiography and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)

  3. RECENT TEST RESULTS OF THE FAST-PULSED 4 T COS DIPOLE GSI 001.

    SciTech Connect (OSTI)

    MORITZ, G.; KAUGERTS, J.; ESCALLIER, J.; GANETIS, G.; JAIN, A.; MARONE, A.; MURATORE, J.; THOMAS, R.; WANDERER, P.; ET AL.

    2005-05-26T23:59:59.000Z

    For the FAIR-project at GSI a model dipole was built at BNL with the nominal field of 4 T and a nominal ramp rate of 1 T/S. The magnet design was similar to the RHIC dipole, with some changes for loss reduction and better cooling. The magnet was already successfully tested in a vertical cryostat, with good training behavior. Cryogenic losses were measured and first results of field harmonics were published. However, for a better understanding of the cooling process, quench currents at several ramp rates were investigated. Detailed measurements of the field harmonics at 2 T/S between 0 and 4 T were performed.

  4. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  5. A Novel Detector for High Neutron Flux Measurements

    SciTech Connect (OSTI)

    Singo, T. D.; Wyngaardt, S. M. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Papka, P. [Department of Physics, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa); Nuclear Physics group, iThemba labs, P. O. Box 722, Somerset West 7129 (South Africa); Dobson, R. T. [Department of Mechanical and Mechatronic Engineering, University of Stellenbosch, Private bag X1, Matieland, Stellenbosch (South Africa)

    2010-01-05T23:59:59.000Z

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of {sup 6}Li and {sup 12}C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  6. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    SciTech Connect (OSTI)

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia [National Institute of R and D for Physics and Nuclear Engineering-Horia Hulubei, Reactorului 30 St, P.O.BOX MG-6,Magurele, cod 077125 (Romania)

    2013-12-16T23:59:59.000Z

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  7. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  8. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect (OSTI)

    Larsen, R

    2009-10-17T23:59:59.000Z

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  9. Design of a Gas Test Loop Facility for the Advanced Test Reactor

    SciTech Connect (OSTI)

    C. A. Wemple

    2005-09-01T23:59:59.000Z

    The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

  10. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01T23:59:59.000Z

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  11. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06T23:59:59.000Z

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  12. Irradiation data for the MFA-1 and MFA-2 tests in the FFTF

    SciTech Connect (OSTI)

    Nelson, J.V.

    1997-04-24T23:59:59.000Z

    This report provides key information on the irradiation environment of the MONJU fuel tests MFA-1 and MFA-2 in the Fast Flux Test Facility (FFTF). This information includes the fission powers, neutron fluxes, sodium temperatures and sodium flow rates in MFA-I, MFA-2 and adjacent assemblies. It also includes MFA-1 and MFA-2 compositions as a function of exposure. The work was performed at the request of Power Reactor and Nuclear Fuels Corporation (PNC) of Japan.

  13. Blade Motion and Nutrient Flux to the Kelp, Eisenia arborea

    E-Print Network [OSTI]

    Denny, Mark

    Blade Motion and Nutrient Flux to the Kelp, Eisenia arborea MARK DENNY* AND LORETTA ROBERSON- plore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp-averaged flux to both kelp mor- phologies, but not to the plate. In fast flow (equivalent to 20 cm s 1 in water

  14. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01T23:59:59.000Z

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  15. Pulse flux measuring device

    DOE Patents [OSTI]

    Riggan, William C. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  16. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01T23:59:59.000Z

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  17. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun Off From A GovernmentFast

  18. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01T23:59:59.000Z

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a signal for fast neutron capture.

  19. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  20. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    E-Print Network [OSTI]

    V. I. Klyukhin; N. Amapane; A. Ball; B. Curé; A. Gaddi; H. Gerwig; A. Hervé; M. Mulders; R. Loveless

    2012-12-06T23:59:59.000Z

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line and integrated off-line to obtain the magnetic flux in the steel yoke close to the muon chambers at full excitations of the solenoid. The 3-D Hall sensors installed on the steel-air interfaces give supplementary information on the components of magnetic field and permit to estimate the remanent field in steel to be added to the magnetic flux density obtained by the voltages integration. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The results of the measurements and calculations are presented, compared and discussed.

  1. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect (OSTI)

    Frances M. Marshall

    2005-04-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  2. Automatic Test Factoring for Java

    E-Print Network [OSTI]

    Saff, David

    2005-06-08T23:59:59.000Z

    Test factoring creates fast, focused unit tests from slow system-widetests; each new unit test exercises only a subset of the functionalityexercised by the system test. Augmenting a test suite with factoredunit tests ...

  3. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15T23:59:59.000Z

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  4. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    E-Print Network [OSTI]

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01T23:59:59.000Z

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  5. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Timothy A. Hyde

    2012-06-01T23:59:59.000Z

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  6. A study of black aurora from aircraft-based optical observations and plasma measurements on FAST

    E-Print Network [OSTI]

    California at Berkeley, University of

    A study of black aurora from aircraft-based optical observations and plasma measurements on FAST L 2002. [1] Black aurora was observed on 30 January 1998 in a narrow-field camera forty seconds before. Electron energy flux measured by FAST provided strong evidence that FAST passed over black aurora

  7. Gas Test Loop Facilities Alternatives Assessment Report Rev 1

    SciTech Connect (OSTI)

    William J. Skerjanc; William F. Skerjanc

    2005-07-01T23:59:59.000Z

    An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

  8. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  9. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  10. A Fast Algorithm for Total Variation Image Reconstruction from ...

    E-Print Network [OSTI]

    2010-01-12T23:59:59.000Z

    we propose, analyze, and test a fast alternating minimization algorithm for image ... The per-iteration cost of the proposed algorithm involves a linear time.

  11. Research Program of a Super Fast Reactor

    SciTech Connect (OSTI)

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

    2006-07-01T23:59:59.000Z

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  12. Solar Magnetic Flux Ropes

    E-Print Network [OSTI]

    Filippov, Boris; Srivastava, Abhishek K; Uddin, Wahab

    2015-01-01T23:59:59.000Z

    The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they loose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field which is estimated as decay index (n). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are therefore good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by the comparison of observed filament heights with...

  13. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Feline Tests Feline Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 Tests, Equine Cushings Tests , Feline Adrenal Function Tests, or Appendix C. Endocrinology22.00 ACTH

  14. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  15. Interim status report on lead-cooled fast reactor (LFR) research and development.

    SciTech Connect (OSTI)

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.; Smith, C. F.; de Caro, M.; Halsey, W. G.; Li, N.; Hosemann, P.; Zhang, J.; Bolind, A.; LLNL; LANL; Univ. of Illinois

    2008-03-31T23:59:59.000Z

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigation of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup 15} (n/cm{sup 2}-s) and the initially 563 MWt PHENIX reactor attained 2.0 x 10{sup 15} (n/cm{sup 2}-s) before one of three intermediate cooling loops was shut down due to concerns about potential steam generator tube failures. The calculations do not assume a test assembly location for advanced fuels and materials irradiation in place of a fuel assembly (e.g., at the center of the core); the calculations have not examined whether it would be feasible to replace the central assembly by a test assembly location. However, having only fifteen driver assemblies implies a significant effect due to perturbations introduced by the test assembly. The peak neutron fast flux is low compared with the fast fluxes previously achieved in FFTF and PHENIX. Furthermore, the peak neutron fluence is only about half of the limiting value (4 x 10{sup 23} n/cm{sup 2}) typically used for ferritic steels. The results thus suggest that a larger power level (e.g., 400 MWt) and a larger core would be better for a TPP based upon the ELSY fuel assembly design and which can also perform irradiation testing of advanced fuels and materials. In particular, a core having a higher power level and larger dimensions would achieve a suitable average discharge burnup, peak fast flux, peak fluence, and would support the inclusion of one or more test assembly locations. Participation in the Generation IV International Forum Provisional System Steering Committee for the LFR is being maintained throughout FY 2008. Results from the analysis of samples previously exposed to flowing lead-bismuth eutectic (LBE) in the DELTA loop are summarized and a model for the oxidation/corrosion kinetics of steels in heavy liquid metal coolants was applied to systematically compare the calculated long-term (i.e., following several years of growth) oxide layer thicknesses of several steels.

  16. Verification and validation of the maximum entropy method for reconstructing neutron flux, with MCNP5, Attila-7.1.0 and the GODIVA experiment

    SciTech Connect (OSTI)

    Douglas S. Crawford; Tony Saad; Terry A. Ring

    2013-03-01T23:59:59.000Z

    Verification and validation of reconstructed neutron flux based on the maximum entropy method is presented in this paper. The verification is carried out by comparing the neutron flux spectrum from the maximum entropy method with Monte Carlo N Particle 5 version 1.40 (MCNP5) and Attila-7.1.0-beta (Attila). A spherical 100% 235U critical assembly is modeled as the test case to compare the three methods. The verification error range for the maximum entropy method is 15–21% where MCNP5 is taken to be the comparison standard. Attila relative error for the critical assembly is 20–35%. Validation is accomplished by comparing a neutron flux spectrum that is back calculated from foil activation measurements performed in the GODIVA experiment (GODIVA). The error range of the reconstructed flux compared to GODIVA is 0–10%. The error range of the neutron flux spectrum from MCNP5 compared to GODIVA is 0–20% and the Attila error range compared to the GODIVA is 0–35%. The maximum entropy method is shown to be a fast reliable method, compared to either Monte Carlo methods (MCNP5) or 30 multienergy group methods (Attila) and with respect to the GODIVA experiment.

  17. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  18. The Momentum flux in two-phase flow

    E-Print Network [OSTI]

    Andeen, Gerry B.

    1965-01-01T23:59:59.000Z

    The average momentum flux at a section of a pipe with twophase upflow has been measured by the impulse technique. Steamwater and air-water mixtures were tested in one-inch and onehalf inch nominal pipes. Homogeneous ...

  19. Status of axial heterogeneous liquid-metal fast breeder reactor core design studies and research and development

    SciTech Connect (OSTI)

    Nakagawa, H.; Inagaki, T.; Yoshimi, H.; Shirakata, K.; Watari, Y.; Suzuki, M.; Inoue, K.

    1988-11-01T23:59:59.000Z

    The current status of axial heterogeneous core (AHC) design development in Japan, which consists of an AHC core design in a pool-type demonstration fast breeder reactor (DFBR) and research and development activities supporting AHC core design, is presented. The DFBR core design objectives developed by The Japan Atomic Power Company include (a) favorable core seismic response, (b) core compactness, (c) high availability, and (d) lower fuel cycle cost. The AHC concept was selected as a reference pool-type DFBR core because it met these objectives more suitably than the homogeneous core (HOC). The AHC core layouts were optimized emphasizing the reduction of the burnup reactivity swing, peak fast fluence, and power peaking. The key performance parameters resulting from the AHC, such as flat axial power/flux distribution, lower peak fast fluence, lower burnup reactivity swing, etc., were evaluated in comparison with the HOC. The critical experiments at the Japan Atomic Energy Research Institute's Fast Critical Assembly facility demonstrate the key AHC performance characteristics. The large AHC engineering benchmark experiments using the zero-power plutonium reactor and the AHC fuel pin irradiation test program using the JOYO reactor are also presented.

  20. HIGS Flux Performance Projection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGS flux performance table

  1. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Smith, H. M.; Marsch, E. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Helander, P., E-mail: hakan.smith@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2012-07-01T23:59:59.000Z

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  2. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Equine Tests Equine Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 4 hours for equine. For more information, see Equine Cushing's Tests or AppendixC. For Equine only

  3. Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments

    E-Print Network [OSTI]

    Keinan, Alon

    Animal Health Diagnostic Center Test and Fee Schedule Test Name Test Fee Discipline Test Days Lag** Samples Container Coolant Comments Canine Tests Canine Tests Acid Fast Stain (for bacteria) M-F 1-2 days 1 in insulated container with ice pack. For more information, see Canine Adrenal & Pituitary Function Tests

  4. Fast electromigration crack in nanoscale aluminum film

    SciTech Connect (OSTI)

    Emelyanov, O. A., E-mail: oaemel2@gmail.com; Ivanov, I. O. [St. Petersburg State Polytechnical University, Saint-Petersburg (Russian Federation)

    2014-08-14T23:59:59.000Z

    The current-induced breakage of 20?nm thin aluminum layers deposited onto capacitor grade polypropylene (PP) films is experimentally studied. Biexponential current pulses of different amplitude (10–15?A) and duration (0.1–1??s) were applied to the samples. Breakage occurred after fast development of electromigrating ?200?nm-wide cracks with initial propagation velocity of ?1?m/s under a high current density of ?10{sup 12?}A/m{sup 2}. The cracks stopped when their lengths reached 250–450??m. This behavior is explained by the balance of electromigration and stress-induced atomic fluxes.

  5. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21T23:59:59.000Z

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  6. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  7. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01T23:59:59.000Z

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  8. FAST Final Technical Report

    SciTech Connect (OSTI)

    Toister, Elad

    2014-11-06T23:59:59.000Z

    The FAST project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  9. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27T23:59:59.000Z

    Significant research at the Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) is being conducted to develop ways to increase (1) torque, (2) speed range, and (3) efficiency of traction electric motors for hybrid electric vehicles (HEV) within existing current and voltage bounds. Current is limited by the inverter semiconductor devices' capability and voltage is limited by the stator wire insulation's ability to withstand the maximum back-electromotive force (emf), which occurs at the upper end of the speed range. One research track has been to explore ways to control the path and magnitude of magnetic flux while the motor is operating. The phrase, real time flux control (RTFC), refers to this mode of operation in which system parameters are changed while the motor is operating to improve its performance and speed range. RTFC has potential to meet an increased torque demand by introducing additional flux through the main air gap from an external source. It can augment the speed range by diverting flux away from the main air gap to reduce back-emf at high speeds. Conventional RTFC technology is known as vector control [1]. Vector control decomposes the stator current into two components; one that produces torque and a second that opposes (weakens) the magnetic field generated by the rotor, thereby requiring more overall stator current and reducing the efficiency. Efficiency can be improved by selecting a RTFC method that reduces the back-emf without increasing the average current. This favors methods that use pulse currents or very low currents to achieve field weakening. Foremost in ORNL's effort to develop flux control is the work of J. S. Hsu. Early research [2,3] introduced direct control of air-gap flux in permanent magnet (PM) machines and demonstrated it with a flux-controlled generator. The configuration eliminates the problem of demagnetization because it diverts all the flux from the magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  10. Physics of String Flux Compactifications

    E-Print Network [OSTI]

    Frederik Denef; Michael R. Douglas; Shamit Kachru

    2007-01-06T23:59:59.000Z

    We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.

  11. Fluxes, Gaugings and Gaugino Condensates

    E-Print Network [OSTI]

    J. -P. Derendinger; C. Kounnas; P. M. Petropoulos

    2006-02-10T23:59:59.000Z

    Based on the correspondence between the N = 1 superstring compactifications with fluxes and the N = 4 gauged supergravities, we study effective N = 1 four-dimensional supergravity potentials arising from fluxes and gaugino condensates in the framework of orbifold limits of (generalized) Calabi-Yau compactifications. We give examples in heterotic and type II orientifolds in which combined fluxes and condensates lead to vacua with small supersymmetry breaking scale. We clarify the respective roles of fluxes and condensates in supersymmetry breaking, and analyze the scaling properties of the gravitino mass.

  12. An Advanced Fast Steering Mirror for optical communication

    E-Print Network [OSTI]

    Kluk, Daniel Joseph

    2007-01-01T23:59:59.000Z

    I describe in this thesis the design, fabrication, assembly, and testing of an Advanced Fast Steering Mirror (AFSM) for precision optical platforms. The AFSM consists of a mirror driven in two rotational axes by normal ...

  13. Irradiation testing of a niobium-molybdenum developmental thermocouple

    SciTech Connect (OSTI)

    Knight, R.C.; Greenslade, D.L.

    1991-10-01T23:59:59.000Z

    A need exists for a radiation-resistant thermocouple capable of monitoring temperatures in excess of the limits of the chromel/alumel system. Tungsten/rhenium and platinum/rhodium thermocouples have sufficient temperature capability but have proven to be unstable because of irradiation-induced decalibration. The niobium/molybdenum system is believed to hold great potential for nuclear applications at temperatures up to 2000 K. However, the fragility of pure niobium and fabrication problems with niobium/molybdenum alloys have limited development of this system. Utilizing the Fast Flux Test Facility, a developmental thermocouple with a thermoelement pair consisting of a pure molybdenum and a niobium-1%zirconium alloy wire was irradiated fro 7200 hours at a temperature of 1070 K. The thermocouple performed flawlessly for the duration of the experiment and exhibited stability comparable to a companion chromel/alumel unit. A second thermocouple, operating at 1375 K, is currently being employed to monitor a fusion materials experiment in the Fast Flux Test Facility. This experiment, also scheduled for 7200 hours, will serve to further evaluate the potential of the niobium-1%zirconium/molybdenum thermoelement system. 7 refs., 7 figs.

  14. Flux Measurements of Volatile Organic Compounds from an Urban Tower Platform in Houston, Texas: Trends and Tracers

    E-Print Network [OSTI]

    Hale, Martin C

    2014-05-08T23:59:59.000Z

    and traffic counts except during variable working hours. To assign measured fluxes to local sources, we tested a bulk flux footprint model (Kormann and Meixner model) designed for uniform emission surface areas in this urban, heterogeneous landscape. Tracer...

  15. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    SciTech Connect (OSTI)

    Duran, I. [Institute of Plasma Physics AS CR, v. v. i., Association EURATOM/IPP.CR, 182 00 Prague 8 (Czech Republic); Bolshakova, I.; Holyaka, R. [Magnetic Sensor Laboratory, Lviv Polytechnic National University, 790 31 Lviv (Ukraine); Viererbl, L.; Lahodova, Z. [Nuclear Research Institute plc., 250 68 Husinec-Rez (Czech Republic); Sentkerestiova, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague 1 (Czech Republic); Bem, P. [Nuclear Physics Institute AS CR, v. v. i., 250 68 Husinec-Rez (Czech Republic)

    2010-10-15T23:59:59.000Z

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10{sup 16} cm{sup -2} was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  16. Method of fission heat flux determination from experimental data

    DOE Patents [OSTI]

    Paxton, Frank A. (Schenectady, NY)

    1999-01-01T23:59:59.000Z

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  17. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01T23:59:59.000Z

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  18. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  19. A review of experiments and results from the transient reactor test (TREAT) facility.

    SciTech Connect (OSTI)

    Deitrich, L. W.

    1998-07-28T23:59:59.000Z

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

  20. Solderability test system

    DOE Patents [OSTI]

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27T23:59:59.000Z

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  1. Solderability test system

    DOE Patents [OSTI]

    Yost, Fred (Cedar Crest, NM); Hosking, Floyd M. (Albuquerque, NM); Jellison, James L. (Albuquerque, NM); Short, Bruce (Beverly, MA); Giversen, Terri (Beverly, MA); Reed, Jimmy R. (Austin, TX)

    1998-01-01T23:59:59.000Z

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  2. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect (OSTI)

    Perkins, Roy

    2013-06-21T23:59:59.000Z

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  3. THE PHOTOSPHERIC ENERGY AND HELICITY BUDGETS OF THE FLUX-INJECTION HYPOTHESIS

    SciTech Connect (OSTI)

    Schuck, P. W., E-mail: peter.schuck@nasa.go [NASA Goddard Space Flight Center, Room 250, Building 21 Space Weather Laboratory, Code 674, Heliophysics Science Division, 8801 Greenbelt Rd., Greenbelt, MD 20771 (United States)

    2010-05-01T23:59:59.000Z

    The flux-injection hypothesis for driving coronal mass ejections (CMEs) requires the transport of substantial magnetic energy and helicity flux through the photosphere concomitant with the eruption. Under the magnetohydrodynamics approximation, these fluxes are produced by twisting magnetic field and/or flux emergence in the photosphere. A CME trajectory, observed 2000 September 12 and fitted with a flux-rope model, constrains energy and helicity budgets for testing the flux-injection hypothesis. Optimal velocity profiles for several driving scenarios are estimated by minimizing the photospheric plasma velocities for a cylindrically symmetric flux-rope magnetic field subject to the flux budgets required by the flux-rope model. Ideal flux injection, involving only flux emergence, requires hypersonic upflows in excess of the solar escape velocity 617 km s{sup -1} over an area of 6 x 10{sup 8} km{sup 2} to satisfy the energy and helicity budgets of the flux-rope model. These estimates are compared with magnetic field and Doppler measurements from Solar and Heliospheric Observatory/Michelson Doppler Imager on 2000 September 12 at the footpoints of the CME. The observed Doppler signatures are insufficient to account for the required energy and helicity budgets of the flux-injection hypothesis.

  4. Lignin Fast Pyrolysis: Results from an International Collaboration

    SciTech Connect (OSTI)

    Nowakowski, Daniel J.; Bridgwater, Anthony V.; Elliott, Douglas C.; Meier, Dietrich; de Wild, Paul

    2010-05-01T23:59:59.000Z

    An international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized bed reactors and entrained flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized bed fast pyrolysis systems.

  5. A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A NOVEL MICROMEGAS DETECTOR FOR IN-CORE NUCLEAR REACTOR NEUTRON FLUX MEASUREMENTS S. ANDRIAMONJE Talence Cedex, France Future fast nuclear reactors designed for energy production and transmutation to neutron detection inside nuclear reactor is given. The advantage of this detector over conventional

  6. Flux Expulsion - Field Evolution in Neutron Stars

    E-Print Network [OSTI]

    M. Jahan-Miri

    1999-10-27T23:59:59.000Z

    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.

  7. The Solar Wind Energy Flux

    E-Print Network [OSTI]

    Chat, G Le; Meyer-Vernet, N

    2012-01-01T23:59:59.000Z

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

  8. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect (OSTI)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01T23:59:59.000Z

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

  9. Addendum to Fast Scramblers

    E-Print Network [OSTI]

    Leonard Susskind

    2011-01-31T23:59:59.000Z

    This paper is an addendum to [arXiv:0808.2096] in which I point out that both de Sitter space and Rindler space are fast scramblers. This fact naturally suggests that the holographic description of a causal patch of de Sitter space may be a matrix quantum mechanics at finite temperature. The same can be said of Rindler space. Some qualitative features of these spaces can be understood from the matrix description.

  10. FLUXCAP: A flux-coupled ac/dc magnetizing device

    E-Print Network [OSTI]

    Gopman, Daniel B; Kent, Andrew D

    2012-01-01T23:59:59.000Z

    We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

  11. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect (OSTI)

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01T23:59:59.000Z

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  12. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01T23:59:59.000Z

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  13. Construction and Test Results on Dowel Bar Retrofit HVS Test Sections 556FD, 557FD, 558FD, and 559FD: State Route 14, Los Angeles County at Palmdale

    E-Print Network [OSTI]

    Bian, Yi; Harvey, John T; Ali, Abdikarim

    2008-01-01T23:59:59.000Z

    Simulator testing to investigate concrete pavement designand Testing of Fast-Setting Hydraulic Cement Concrete inConcrete Properties 10 Condition after Original HVS Testing

  14. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  15. The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility

    SciTech Connect (OSTI)

    S. Blaine Grover

    2008-09-01T23:59:59.000Z

    The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

  16. Fast neutron dosimetry

    SciTech Connect (OSTI)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01T23:59:59.000Z

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  17. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  18. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10T23:59:59.000Z

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  19. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  20. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J. (Murrysville, PA); Goldstein, Norman P. (Murrysville, PA)

    1990-01-01T23:59:59.000Z

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  1. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  2. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14T23:59:59.000Z

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  3. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  4. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  5. Renewed experimentation with Ranchero flux compression genereators

    SciTech Connect (OSTI)

    Goforth, James H [Los Alamos National Laboratory; Herrera, Dennis H [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Torres, David T [Los Alamos National Laboratory; Atchison, W. L. [Los Alamos National Laboratory; Colgate, S. A. [Los Alamos National Laboratory; Griego, J. R. [Los Alamos National Laboratory; Guzik, J. [Los Alamos National Laboratory; Holtkamp, D. B. [Los Alamos National Laboratory; Idzorek, G. [Los Alamos National Laboratory; Kaul, A [Los Alamos National Laboratory; Kirkpatrick, R. C. [Los Alamos National Laboratory; Menikoff, R. [Los Alamos National Laboratory; Meyer, R. K. [Los Alamos National Laboratory; Oona, H. [Los Alamos National Laboratory; Reardon, P. T. [Los Alamos National Laboratory; Reinovsky, R. E. [Los Alamos National Laboratory; Rousculp, C. L. [Los Alamos National Laboratory; Sgro, A. G. [Los Alamos National Laboratory; Tabaka, L. J. [Los Alamos National Laboratory; Watt, R. G. [Los Alamos National Laboratory; Riesman, D. B. [LLNL

    2010-11-08T23:59:59.000Z

    In the late 1990s, Los Alamos pursued a coaxial flux compression generator (FCG) concept that was described in several publications under the name 'Ranchero.' These FCGs were designed to be cost effective high current generators, and a variety of configurations were tested. The Ranchero armature is a 152 mm diameter aluminum cylinder with a 6 mm thick wall. The high explosive (HE) is detonated simultaneously on axis, and as the armature expands a factor of two, the wall thins to {approx}3 mm. At the final 300 mm diameter, the circumference is over 900 mm, and this should allow currents to be generated in the 90 MA range. No tests significantly over 50 MA have been performed but an experiment is planned. We have recently begun using Ranchero devices for a new application and we continue to improve the design. In this paper we describe recent tests of Ranchero and its subsystems. The load for our new application is an imploding aluminum liner that would deform due to the magnetic pressure applied during the initial flux loading. It will, however, implode properly when powered only during the {approx}29 {micro}s Ranchero flux compression time. This gives rise to a new system with explOSively formed fuse (EFF) opening switches and an integral closing switch that isolates the load. A capacitor bank delivers 2.8 MA to the Ranchero circuit in {approx}85 {micro}s. During this time, four parallel 63.5 mm wide EFFs, external to the coaxial system, complete the circuit. After armature motion begins, insulation which initially isolates the load is severed, connecting the load to the FCG in parallel with the EFFs. External HE charges are initiated on each of the EFFs to produce a resistance rise timed to not precede closure of the load isolation switch. The EFFs achieve significant resistance, and the flux remaining in the 191 nH generator and 3 nH transmission line is compressed to generate 30.85 MA in a {approx}12.5 nH static load. On three tests, the EFF system has operated flawlessly, and only {approx}100kA is driven back into the EFFs during peak voltage of the generator output. A test incorporating a 19.5 nH dual liner dynamic load has also been completed, and these results are also presented. Ranchero generators have been operated with armatures from 43 cm to 1.4 m long, corresponding to initial inductances from 56 to 191 nH. MHD code modeling gives better agreement with experiments using modules 43 cm long than the 1.4 m modules, and these results will also be presented.

  6. IMAGE and FAST observations of substorm recovery phase aurora Stephen B. Mende, Harald U. Frey, Charles W. Carlson, and J. McFadden

    E-Print Network [OSTI]

    California at Berkeley, University of

    IMAGE and FAST observations of substorm recovery phase aurora Stephen B. Mende, Harald U. Frey aurora. In agreement with IMAGE, the highest intensity proton flux measured by FAST was concentrated latitude diffuse oval occasional structured auroras were embedded. These structured auroras were mostly

  7. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01T23:59:59.000Z

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.

  8. An Analysis of Fluxes by Duality

    E-Print Network [OSTI]

    Paul S. Aspinwall

    2005-04-05T23:59:59.000Z

    M-theory on K3xK3 with non-supersymmetry-breaking G-flux is dual to M-theory on a Calabi-Yau threefold times a 2-torus without flux. This allows for a thorough analysis of the effects of flux without relying on supergravity approximations. We discuss several dual pairs showing that the usual rules of G-flux compactifications work well in detail. We discuss how a transition can convert M2-branes into G-flux. We see how new effects can arise at short distances allowing fluxes to obstruct more moduli than one expects from the supergravity analysis.

  9. The High Flux Beam Reactor at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Shapiro, S.M.

    1994-12-31T23:59:59.000Z

    Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

  10. Introduction to FAST Data Analysis

    E-Print Network [OSTI]

    California at Berkeley, University of

    available for download from the SSL- FAST web site. SDT operates under Unix or Linix and can access data on SDT can be found at: http://sprg.ssl.berkeley.edu/fast/scienceops/docs A tar file of the complete software package (including IDL routines) can be found at: http://sprg.ssl

  11. Time dependences of atmospheric Carbon dioxide fluxes

    E-Print Network [OSTI]

    DeSalvo, Riccardo

    2014-01-01T23:59:59.000Z

    Understanding the lifetime of CO2 in the atmosphere is critical for predictions regarding future climate changes. A simple mass conservation analysis presented here generates tight estimations for the atmosphere's retention time constant. The analysis uses a leaky integrator model that combines the observed deficit (only less than 40% of CO2 produced from combustion of fossil fuels is actually retained in the atmosphere, while more than 60% is continuously shed) with the exponential growth of fossil fuel burning. It reveals a maximum characteristic time of less than 23 year for the transfer of atmospheric CO2 to a segregation sink. This time constant is further constrained by the rapid disappearance of 14C after the ban of atmospheric atomic bomb tests, which provides a lower limit of 18 years for this transfer. The study also generates evaluations of other CO2 fluxes, exchange time constants and volumes exchanged. Analysis of large harmonic oscillations of atmospheric CO2 concentration, often neglected in th...

  12. Center vortices as composites of monopole fluxes

    E-Print Network [OSTI]

    Deldar, Sedigheh

    2015-01-01T23:59:59.000Z

    We study the relation between the flux of a center vortex obtained from the center vortex model and the flux formed between monopoles obtained from the Abelian gauge fixing method. Motivated by the Monte Carlo simulations which have shown that almost all monopoles are sitting on the top of vortices, we construct the fluxes of center vortices for $SU(2)$ and $SU(3)$ gauge groups using fractional fluxes of monopoles. Then, we compute the potentials in the fundamental representation induced by center vortices and fractional fluxes of monopoles. We show that by combining the fractional fluxes of monopoles one can produce the center vortex fluxes for $SU(3)$ gauge group in a "center vortex model". Comparing the potentials, we conclude that the fractional fluxes of monopoles attract each other.

  13. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01T23:59:59.000Z

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  14. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    SciTech Connect (OSTI)

    Eric Nixon; Michelle Pantoya

    2009-07-01T23:59:59.000Z

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  15. Designing, testing, and analyzing coupled, flux transformer heat

    E-Print Network [OSTI]

    Renzi, Kimberly Irene

    1998-01-01T23:59:59.000Z

    of identical effective length, this research shows that sufficient heat can be transferred across the system to work effectively in situations where the single heat pie will fail to operate. The thermal resistance in the condenser and evaporator sections need...

  16. Sandia National Laboratories: Beryllium High Heat Flux Testing at PMTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latent curing epoxyBPU

  17. Today's Material Gauss' Law and Flux

    E-Print Network [OSTI]

    Ashlock, Dan

    by the contents of the box, the box must contain zero net electric charge. Slide 27-31 #12;Gauss' Law and Flux: · The Concept of Flux · Calculating Electric Flux · Symmetry · Gauss's Law · Using Gauss's Law · Conductors that the box must contain net positive electric charge. Slide 27-29 #12;© 2013 Pearson Education, Inc

  18. Fast Traveling-Wave Reactor of the Channel Type

    E-Print Network [OSTI]

    Rusov, Vitaliy D; Vashchenko, Volodymyr N; Chernezhenko, Sergei A; Kakaev, Andrei A; Pantak, Oksana I

    2015-01-01T23:59:59.000Z

    The main aim of this paper is to solve the technological problems of the TWR based on the technical concept described in our priority of invention reference, which makes it impossible, in particular, for the fuel claddings damaging doses of fast neutrons to excess the ~200 dpa limit. Thus the essence of the technical concept is to provide a given neutron flux at the fuel claddings by setting the appropriate speed of the fuel motion relative to the nuclear burning wave. The basic design of the fast uranium-plutonium nuclear traveling-wave reactor with a softened neutron spectrum is developed, which solves the problem of the radiation resistance of the fuel claddings material.

  19. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01T23:59:59.000Z

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  20. Progress reports for Gen IV sodium fast reactor activities FY 2007.

    SciTech Connect (OSTI)

    Cahalan, J. E.; Tentner, A. M.; Nuclear Engineering Division

    2007-10-04T23:59:59.000Z

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being for prevention of progression into severe accident conditions (prevention of core melting) or for mitigation of severe accident consequences (mitigation of the impact of core melting to protect public health and safety). Because design measures for severe accident prevention and mitigation are beyond the normal design basis, established regulatory guidelines and codes do not provide explicit identification of the design performance requirements for severe accident accommodation. The treatment of severe accidents is one of the key issues of R&D plans for the Gen IV systems in general, and for the Sodium Fast Reactor (SFR) in particular. Despite the lack of an unambiguous definition of safety approach applicable for severe accidents, there is an emerging consensus on the need for their consideration for the design. The US SFR program and Argonne National Laboratory (ANL) in particular have actively studied the potential scenarios and consequences of Hypothetical Core Disruptive Accidents (HCDA) for SFRs with oxide fuel during the Fast Flux Test Facility (FFTF) and Clinch River Breeder Reactor Plant (CRBRP) programs in the 70s and 80s. Later, the focus of the US SFR safety R&D activities shifted to the prevention of all HCDAs through passive safety features of the SFRs with metal fuel in the Integral Fast Reactor (IFR) program, and the study of severe accident consequences was de-emphasized. The goal of this paper is to provide an overview of the current SFR safety approach and the role of severe accidents in Japan and France, in preparation for an expected and more active collaboration in this area between the US, Japan, and France.

  1. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30T23:59:59.000Z

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  2. THE MATERIALS OF FAST BREEDER REACTORS

    E-Print Network [OSTI]

    Olander, Donald R.

    2013-01-01T23:59:59.000Z

    metal fast breeder reactor (LMFBR) concern the behavior ofmetal fast breeder reactor (LMFBR). Despite the simplicityinduced by irradiation. LMFBR funding is the largest single

  3. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling...

  4. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  5. Portfolio for fast reactor collaboration

    SciTech Connect (OSTI)

    Rippon, S.

    1981-12-01T23:59:59.000Z

    The development of the LMFBR type reactor in the United Kingdom is reviewed. Design characteristics of a commercial demonstration fast reactor are presented and compared with the Super Phenix reactor.

  6. Interfacial effects in fast reactors

    E-Print Network [OSTI]

    Saidi, Mohammad Said

    1979-01-01T23:59:59.000Z

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed ...

  7. Fast Verification of Wind Turbine Power Summary of Project Results

    E-Print Network [OSTI]

    Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

  8. The oscillations of a magnetic flux tube and its application to sunspots

    SciTech Connect (OSTI)

    Evans, D.J.; Roberts, B. (Saint Andrews Univ. (Scotland))

    1990-01-01T23:59:59.000Z

    The modes of oscillation of an isolated magnetic flux tube in the absence of gravity is examined, with parameters chosen to mimic a sunspot. Gravitational stratification of the umbral atmosphere leads to consider two cases, distinguished primarily by the ordering of the Alfven speed and the external sound speed. The transition between these two regimes occurs at about the level where the optical depth, tau(c), is equal to 1 in the umbra. The modes given by the model, taken together with the observations, suggest that 3 minute oscillations are slow-body modes (driven by overstable convection) and that a sunspot consists of a bundle of pore-sized flux tubes rather than a single monolithic one. Fast-body modes are identified in the tube with the observed 5 minute oscillations of the umbral photosphere and below. The excitation of these modes propagating up or down the tube may explain the recent observation that sunspots act as sinks for p-modes propagating in their environment. Running penumbral waves are associated with fast- and slow-surface modes. The fast-surface wave could arise from fast-body modes driven below the level where tau(c) = 1; the slow-surface waves may arise from granular buffeting or overstable convection. 55 refs.

  9. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25T23:59:59.000Z

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  10. Determining heat fluxes from temperature measurements made in massive walls

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.

    1980-01-01T23:59:59.000Z

    A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

  11. Nutrition, Weight Control and Fast Food.

    E-Print Network [OSTI]

    Sweeten, Mary K.

    1980-01-01T23:59:59.000Z

    Page in Original Bulletin] Nutrition, Weight Control and Fast Food Mary K. Sweeten* The Fast Food Trend More people are eating fewer meals at home and more snack-type meals at fast food ' restaurants. Fast food sales in 1978 in the United States...

  12. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01T23:59:59.000Z

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  13. Fast two-bit operations in inductively coupled flux qubits J. Q. You,1,2,

    E-Print Network [OSTI]

    Nori, Franco

    .25.Cp, 03.67.Lx I. INTRODUCTION Josephson-junction circuits can exhibit quantum behav- iors. Among qubits based on Josephson-junction circuits, the charge qubit realized in a Cooper-pair box can with one3 or three Josephson junctions4 have been studied and some of these have shown quantum dynamics.5

  14. On solar neutrino fluxes in radiochemical experiments

    E-Print Network [OSTI]

    R. N. Ikhsanov; Yu. N. Gnedin; E. V. Miletsky

    2005-12-08T23:59:59.000Z

    We analyze fluctuations of the solar neutrino flux using data from the Homestake, GALLEX, GNO, SAGE and Super Kamiokande experiments. Spectral analysis and direct quantitative estimations show that the most stable variation of the solar neutrino flux is a quasi-five-year periodicity. The revised values of the mean solar neutrino flux are presented in Table 4. They were used to estimate the observed pp-flux of the solar electron neutrinos near the Earth. We consider two alternative explanations for the origin of a variable component of the solar neutrino deficit.

  15. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W. (Lower Burrell, PA); Podey, Larry L. (Greensburg, PA); Meyer, Thomas N. (Murrysville, PA)

    2002-11-05T23:59:59.000Z

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  16. Measurement of FLux Fluctuations in Diffusion in the Small-Numbers Limit

    E-Print Network [OSTI]

    Effrosyni Seitaridou; Mandar M. Inamdar; Rob Phillips; Kingshuk Ghosh; Ken Dill

    2006-07-26T23:59:59.000Z

    Using a microfluidics device filled with a colloidal suspension of microspheres, we test the laws of diffusion in the limit of small particle numbers. Our focus is not just on average properties such as the mean flux, but rather on the features of the entire distribution of allowed microscopic trajectories that are possible during diffusive dynamics. The experiments show that: (1) the flux distribution is Gaussian; (2) Fick's Law --- that the average flux is proportional to the particle gradient --- holds even for particle gradients down to one or zero particles; (3) the variance in the flux is proportional to the sum of the particle numbers; and (4) there are backwards flows, where particles flow up a concentration gradient, rather than down it, and their numbers are well-predicted by theory and consistent with a new Flux Fluctuation Theorem.

  17. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N. [Russian Federal Nuclear Center - Zababakhin Institute of Applied Physics, Snezhinsk (Russian Federation); Rachkov, V.I.; Chebeskov, A.N. [State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering, Bondarenko Square, 1, Obninsk, Kaluga region, 249033 (Russian Federation)

    2013-07-01T23:59:59.000Z

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  18. F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST R. COULON, S. NORMAND, M. MICHEL, L. BARBOT, T. DOMENECH,

    E-Print Network [OSTI]

    Boyer, Edmond

    .F-84500 Bollène, France. ABSTRACT The Phénix nuclear power plant has been a French Sodium Fast Reactor. Drift between the measured ex-core neutron flux and the instant released thermal power (fission rate the research of power tagging agents. Then, simulation study has been done to evaluate measurability using high

  19. Derivation of criticality safety benchmarks from ZPR fast critical assemblies

    SciTech Connect (OSTI)

    Schaefer, R.W.; McKnight, R.D.

    1997-09-01T23:59:59.000Z

    Scores of critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9, and ZPPR fast critical assembly facilities. Most of the assemblies were mockups of various liquid-metal fast breeder reactor designs. These tended to be complex, containing, for example, mockups of control rods and control rod positions. Some assemblies, however, were `physics benchmarks`. These relatively `clean` assemblies had uniform compositions and simple geometry and were designed to test fast reactor physics data and methods. Assemblies in this last category are well suited to form the basis for new criticality safety benchmarks. The purpose of this paper is to present an overview of some of these benchmark candidates and to describe the strategy being used to create the benchmarks.

  20. High power l-band fast phase shifter

    SciTech Connect (OSTI)

    Terechkine, I.; Khabiboulline, T.; Solyak, N.; /Fermilab

    2008-10-01T23:59:59.000Z

    Following successful testing of a concept prototype of a waveguide-based high power phase shifter, a design of a fast, high power device has been developed. The shifter uses two magnetically biased blocks of Yttrium Iron Garnet (YIG) positioned along the side walls of a rectangular waveguide. The cross-section of the waveguide is chosen to suppress unwanted RF modes that could otherwise compromise performance of the phase shifter. Static bias field in the YIG blocks is created by employing permanent magnets. Low inductance coils in the same magnetic circuit excite fast component of the bias field. Design of the device ensures effective heat extraction from the YIG blocks and penetration of the fast magnetic field inside the waveguide with minimum delay. This paper summarizes main steps in this development and gives brief description of the system.

  1. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory

    2010-06-28T23:59:59.000Z

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  2. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÃ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  3. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01T23:59:59.000Z

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  4. Delayed neutron emission measurements from fast fission of U-235 and Np-237

    SciTech Connect (OSTI)

    Charlton, W.S.; Parish, T.A. [Texas A and M Univ., College Station, TX (United States); Raman, S. [Oak Ridge National Lab., TN (United States); Shinohara, Nubuo; Andoh, Masaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1996-09-01T23:59:59.000Z

    Experiments have been designed and conducted to measure the periods and yields of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np. These measurements were performed in a pool type reactor using a fast flux in-core irradiation device. The energy dependent neutron flux spectrum within the irradiation device was characterized using a foil activation technique and the SAND-II unfolding code. Five delayed neutron groups were measured. The total yield (sum of the five group yields) for {sup 235}U was found to be 0.0141 {+-} 0. 0009. The total yield for {sup 237}Np was found to be 0.0102 {+-} 0. 0008. The total delayed neutron yield data were found to be in good agreement with previous measurements. The individual group yields reported here are preliminary and are being further refined.

  5. Behavior of TPC`s in a high particle flux environment

    SciTech Connect (OSTI)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J. [Brookhaven National Lab., Upton, NY (United States); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. [City College of New York, New York (United States); Hallman, T.J.; Madansky, L. [Johns Hopkins Univ., Baltimore, MD (United States); Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B. [Bonner Nuclear Lab., Houston, TX (United States)

    1991-12-31T23:59:59.000Z

    TPC`s (Time Projection Chamber) used in E-810 at the TAGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10 minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  6. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated6-05.pdfATTENDEEES: Ashley Armstrong, DOEUpDepartment

  7. AVTA: Hasdec DC Fast Charging Testing Results | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated6-05.pdfATTENDEEES: Ashley Armstrong,ofDepartment

  8. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    SciTech Connect (OSTI)

    Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

    2014-02-18T23:59:59.000Z

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  9. Nonlocal fluxes at a plasma sheath

    SciTech Connect (OSTI)

    Marchand, R.; Abou-Assaleh, Z.; Matte, J.P. (INRS-Energie, C. P. 1020, Varennes, Quebec, J3X 1S2, Canada (CA))

    1990-06-01T23:59:59.000Z

    The particle and energy fluxes of electrons at the boundary of a plasma in contact with a perfectly absorbing plate are considered. In general, the fluxes are shown not to be determined by the plasma temperature and density at the plate but rather by a convolution of the plasma profiles in the vicinity of the plate. A simple empirical expression is proposed for the nonlocal fluxes, which approximately reproduces the results of a full kinetic calculation. The implications of this, to divertor plasmas near the neutralizer plate, are discussed.

  10. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  11. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-01-31T23:59:59.000Z

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  12. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11T23:59:59.000Z

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  13. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  14. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01T23:59:59.000Z

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  15. Operation of the ORNL High Particle Flux Helicon Plasma Source

    SciTech Connect (OSTI)

    Goulding, Richard Howell [ORNL; Biewer, Theodore M [ORNL; Caughman, John B [ORNL; Chen, Guangye [ORNL; Owen, Larry W [ORNL; Sparks, Dennis O [ORNL

    2011-01-01T23:59:59.000Z

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  16. Operation of the ORNL High Particle Flux Helicon Plasma Source

    SciTech Connect (OSTI)

    Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Chen, G. C.; Owen, L. W.; Sparks, D. O. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6169 (United States)

    2011-12-23T23:59:59.000Z

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes {Gamma}{sub p}10{sup 23} m{sup -3} s{sup -1}, and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of {approx}10 MW/m{sup 2}. An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength |B| in the antenna region up to {approx}0.15 T. Maximum densities of 3x10{sup 19} m{sup -3} in He and 2.5x10{sup 19} m{sup -3} in H have been achieved. Radial density profiles have been seen to be dependent on the axial |B| profile.

  17. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  18. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24T23:59:59.000Z

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  19. High-flux solar photon processes: Opportunities for applications

    SciTech Connect (OSTI)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-06-01T23:59:59.000Z

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  20. Soft pion emission from fat flux tubes

    SciTech Connect (OSTI)

    Kusnezov, D.; Danielewicz, P. (National Superconducting Cyclotron Laboratory and Department of Physics Astronomy, Michigan State University, East Lansing, Michigan (USA))

    1991-08-01T23:59:59.000Z

    The emission of pions from multiquark flux tubes is examined as an explanation of the soft pion puzzle. Although the soft pion spectra from the decay of fat flux tubes can account for some low {ital p}{sub {perpendicular}} enhancement, the dependence on the number of involved quarks is too weak to provide a plausible explanation of the observed enhancement in the pion spectrum at low transverse momenta.

  1. Novel Flux Coupling Machine without Permanent Magnets - U Machine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Flux Coupling Machine without Permanent Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle...

  2. CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...

    Broader source: Energy.gov (indexed) [DOE]

    Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

  3. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  4. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

  5. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

  6. CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A...

  7. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  8. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

  9. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope...

    Broader source: Energy.gov (indexed) [DOE]

    Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

  10. A STUDY OF FAST FLARELESS CORONAL MASS EJECTIONS

    SciTech Connect (OSTI)

    Song, H. Q.; Chen, Y.; Ye, D. D.; Han, G. Q.; Du, G. H.; Li, G. [Institute of Space Sciences and School of Space Science and Physics, Shandong University, Weihai, Shandong 264209 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Hu, Q., E-mail: yaochen@sdu.edu.cn [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-08-20T23:59:59.000Z

    Two major processes have been proposed to convert coronal magnetic energy into the kinetic energy of a coronal mass ejection (CME): resistive magnetic reconnection and the ideal macroscopic magnetohydrodynamic instability of a magnetic flux rope. However, it remains elusive whether both processes play a comparable role or one of them prevails during a particular eruption. To shed light on this issue, we carefully studied energetic but flareless CMEs, i.e., fast CMEs not accompanied by any flares. Through searching the Coordinated Data Analysis Workshops database of CMEs observed in Solar Cycle 23, we found 13 such events with speeds larger than 1000 km s{sup -1}. Other common observational features of these events are: (1) none of them originated in active regions, they were associated with eruptions of well-developed long filaments in quiet-Sun regions; (2) no apparent enhancement of flare emissions was present in soft X-ray, EUV, and microwave data. Further studies of two events reveal that (1) the reconnection electric fields, as inferred from the product of the separation speed of post-eruption ribbons and the photospheric magnetic field measurement, were generally weak; (2) the period with a measurable reconnection electric field is considerably shorter than the total filament-CME acceleration time. These observations indicate that for these fast CMEs, the magnetic energy was released mainly via the ideal flux-rope instability through the work done by the large-scale Lorentz force acting on the rope currents rather than via magnetic reconnections. We also suggest that reconnections play a less important role in accelerating CMEs in quiet-Sun regions of weak magnetic field than those in active regions of strong magnetic field.

  11. Estimation of reactive fluxes in gradient stochastic systems using an analogy with electric circuits

    SciTech Connect (OSTI)

    Cameron, M.K., E-mail: cameron@math.umd.edu

    2013-08-15T23:59:59.000Z

    Highlights: •The MaxFlux functional should be called the resistivity functional. •A Hamilton–Jacobi approach for computing transition paths in collective variables. •Conversion of the network of reactive channels into an electric circuit. •Test on the Alanine-Dipeptide. Perfect agreement. •Application to the problem of CO escape from Myoglobin. -- Abstract: We propose an approach for finding dominant reactive channels and calculating percentages of reactive flux through each channel in chemical systems driven by a deterministic potential force and a small thermal noise. We assume that the temperature is low enough so that the reactive flux focuses around a finite number of paths connecting the reactant and the product states. These paths can be found in a systematic way by solving a Hamilton–Jacobi equation for the so called MaxFlux functional. We argue that the name “MaxFlux” is misleading: it should be called the resistivity functional instead. Once the network of transition paths is found, one can define an equivalent electric circuit and find the currents through each of its wires. These currents give estimates of the reactive flux along the corresponding transition paths. We test our approach on the problem of finding transition paths in the Alanine-Dipeptide with two dihedral angles where the reactive current can be computed exactly. The percentages of the reactive flux through each reactive channel given by our approach turn out to be in remarkable agreement with the exact ones. We apply this approach to the problem of finding escape paths of a CO molecule from a Myoglobin protein. We find a collection of exit locations and establish percentages of the reactive flux through each of them.

  12. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01T23:59:59.000Z

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  13. Irradiation research capabilities at HFIR (High Flux Isotope Reactor) and ANS (Advanced Neutron Source)

    SciTech Connect (OSTI)

    Thoms, K.R.

    1990-01-01T23:59:59.000Z

    A variety of materials irradiation facilities exist in the High Flux Isotope Reactor (HFIR) and are planned for the Advanced Neutron Source (ANS) reactor. In 1986 the HFIR Irradiation Facilities Improvement (HIFI) project began modifications to the HFIR which now permit the operation of two instrumented capsules in the target region and eight capsules of 46-mm OD in the RB region. Thus, it is now possible to perform instrumented irradiation experiments in the highest continuous flux of thermal neutrons available in the western world. The new RB facilities are now large enough to permit neutron spectral tailoring of experiments and the modified method of access to these facilities permit rotation of experiments thereby reducing fluence gradients in specimens. A summary of characteristics of irradiation facilities in HFIR is presented. The ANS is being designed to provide the highest thermal neutron flux for beam facilities in the world. Additional design goals include providing materials irradiation and transplutonium isotope production facilities as good, or better than, HFIR. The reference conceptual core design consists of two annular fuel elements positioned one above the other instead of concentrically as in the HFIR. A variety of materials irradiation facilities with unprecedented fluxes are being incorporated into the design of the ANS. These will include fast neutron irradiation facilities in the central hole of the upper fuel element, epithermal facilities surrounding the lower fuel element, and thermal facilities in the reflector tank. A summary of characteristics of irradiation facilities presently planned for the ANS is presented. 2 tabs.

  14. The Influence of Filaments in the Private Flux Region on Divertor Particle and Power Deposition

    E-Print Network [OSTI]

    Harrison, J R; Thornton, A J; Walkden, N R

    2015-01-01T23:59:59.000Z

    The transport of particles via intermittent filamentary structures in the private flux region of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggests that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the private flux region (PFR) of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1-2cm in diameter. The most probable toroidal mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a sp...

  15. SERAPHIM: A propulsion technology for fast trains

    SciTech Connect (OSTI)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01T23:59:59.000Z

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  16. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect (OSTI)

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01T23:59:59.000Z

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  17. Fast-acting valve actuator

    DOE Patents [OSTI]

    Cho, Nakwon (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  18. Reactivity initiated accident test series Test RIA 1-4

    SciTech Connect (OSTI)

    Martinson, Z.R.; El-Genk, M.S.; Fukuda, S.K.; LaPointe, R.E.; Osetek, D.J.

    1980-05-01T23:59:59.000Z

    The Reactivity Initiated Accident (RIA) Test RIA 1-4, the first 9-rod fuel rod bundle RIA Test to be performed at BWR hot startup conditions, was completed on April 16, 1980. The test was performed in the Power Burst Facility (PBF). Objective for Test RIA 1-4 was to provide information regarding loss-of-coolable fuel rod geometry following a RIA event for a peak fuel enthalpy equivalent to the present licensing criteria of 280 cal/g. The most severe RIA is the postulated Boiling Water Reactor (BWR) control rod drop during reactor startup. Therefore the test was conducted at BWR hot startup coolant conditions (538 K, 6.45 MPa, 0.8 1/sec). The test sequence began with steady power operation to condition the fuel, establish a short-lived fission product inventory, and calibrate the calorimetric measurements and core power chambers, neutron flux and gamma flux detectors. The test train was removed from the in-pile tube (IPT) to replace one of the fuel rods with a nominally identical irradiated rod and twelve flux wire monitors. A 2.8 ms period power burst was then performed. Coolant flow measurements were made before and after the power burst to characterize the flow blockage that occurred as a result of fuel rod failure.

  19. GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge

    E-Print Network [OSTI]

    GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG3 Vehicle Test

  20. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Ofman, L.; Wang, T. J. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Davila, J. M. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States)

    2012-08-01T23:59:59.000Z

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  1. The Arecibo Legacy Fast ALFA Survey: X. The HI Mass Function and Omega_HI From the 40% ALFALFA Survey

    E-Print Network [OSTI]

    Martin, Ann M; Giovanelli, Riccardo; Haynes, Martha P; Springob, Christopher M; Stierwalt, Sabrina

    2010-01-01T23:59:59.000Z

    The Arecibo Legacy Fast ALFA (ALFALFA) survey has completed source extraction for 40% of its total sky area, resulting in the largest sample of HI-selected galaxies to date. We measure the HI mass function from a sample of 10,119 galaxies with 6.2 < log (M_HI/M_Sun) < 11.0 and with well-described mass errors that accurately reflect our knowledge of low-mass systems. We characterize the survey sensitivity and its dependence on profile velocity width, the effect of large-scale structure, and the impact of radio frequency interference in order to calculate the HIMF with both the 1/Vmax and 2DSWML methods. We also assess a flux-limited sample to test the robustness of the methods applied to the full sample. These measurements are in excellent agreement with one another; the derived Schechter function parameters are phi* = 4.8 (+/- 0.3) * 10^-3, log (M*/M_Sun) + 2 log(h_70) = 9.96 (+/- 0.2), and alpha = -1.33 (+/- 0.02). We find Omega_HI = 4.3 (+/- 0.3) * 10^-4, 16% larger than the 2005 HIPASS result, and ou...

  2. Knot energy in unstretching ergodic magnetic flux tubes

    E-Print Network [OSTI]

    de Andrade, Garcia

    2009-01-01T23:59:59.000Z

    Recently Titov et al [ApJ \\textbf{693},(2009) and ApJ (2007)] have made use of a covariant model to investigate magnetic reconnection of astrophysical plasmas. Earlier R Ricca [Phys Rev A (1991)] has used another covariant formalism, to investigated vortex filaments and solitons. This formalism, called Ricci rotation coefficients (RRC), is applied here, to the Chui and Moffatt [PRSA (1995)] knotted magnetic flux tube (MFT) Riemann metric in the case of vanishing stretch. It is shown that, the vanishing of some components of the (RRC) leads to unstretching knotted tubes. Computing of magnetic knot energy in terms of the RCC, shows that, uniform, unstretching and constant cross-section tubes leads to a marginal dynamo action over magnetic surfaces. Recent investigation on the role of stretching in plasma dynamo action showed that in diffusive media [Phys Plasma \\textbf{14} (2008)], unstretching unknotted tubes would not support fast dynamo action. This result was generalized here to much more general knotted MF...

  3. Super-radiance and flux conservation

    E-Print Network [OSTI]

    Petarpa Boonserm; Tritos Ngampitipan; Matt Visser

    2014-07-28T23:59:59.000Z

    The theoretical foundations of the phenomenon known as super-radiance still continues to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that super-radiance in a quantum field theory [QFT] context is not the same as super-radiance (super-fluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation, (and, in the presence of dissipation, a controlled amount of flux non-conservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of super-radiance. To help clarify the situation we present a simple exactly solvable toy model exhibiting both super-radiance and damping.

  4. Coronal mass ejections and magnetic flux buildup in the heliosphere

    E-Print Network [OSTI]

    California at Berkeley, University of

    electron heat flux. The first panel shows the preeruption heliospheric flux, which consists of the an open the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high

  5. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio (Rome, IT); Cohen, Samuel A. (Hopewell, NJ); Bennett, Timothy (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

    1993-01-01T23:59:59.000Z

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  6. Uniform flux dish concentrators for photovoltaic application

    SciTech Connect (OSTI)

    Jorgensen, G; Wendelin, T

    1992-05-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) have designed a unique and innovative molded dish concentrator capable of producing a uniform flux profile on a flat target plane. Concentration levels of 100--200 suns, which are uniform over an area of several square inches, can be directly achieved for collection apertures of a reasonable size ({approximately}1.5-m diameter). Such performance would be immediately applicable to photovoltaic (PV) use. Economic concerns have shown that the proposed approach would be less expensive thatn Fresnel lens concepts or other dish concentrator designs that require complicated and costly receivers to mix the flux to obtain a uniform distribution. 12 refs.

  7. Method and apparatus for measuring casing wall thickness using a flux generating coil with radial sensing coils and flux leakage sensing coils

    SciTech Connect (OSTI)

    Dew, E.G.

    1989-06-27T23:59:59.000Z

    This patent describes a casing wall inspection device controlled at an earth surface position for continual testing of well casing, comprising: a main coil axially aligned with the casing axis; means for energizing the main coil with an alternating current voltage to produce a primary flux distribution enveloping the casing adjacent the main coil; a plurality of radial sensing coils disposed in equi-spaced circumfery with each radial sensing coil placed radially outward from the main coil and providing a radial output; a plurality of flux leakage sensing coils supported in equal spacing in surround of the radial sensing coils and spring-urged against the casing wall with each providing a flux leakage output; transmitter means receiving input of the plural radial outputs and plural flux leakage outputs and transmitting a signal containing the radial and flux leakage outputs; and control means at the earth surface position for receiving the signal for processing to derive a continual evaluation of casing wall thickness.

  8. FastStokes : a fast 3-D fluid simulation program for micro-electro-mechanical systems

    E-Print Network [OSTI]

    Wang, Xin, 1972 Jan. 8-

    2002-01-01T23:59:59.000Z

    We have developed boundary integral equation formulas and a corresponding fast 3-D Stokes flow simulation program named FastStokes to accurately simulate viscous drag forces on geometrically complicated MEMS (micro- electro- ...

  9. High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak*

    E-Print Network [OSTI]

    Harilal, S. S.

    ,. 1. * . High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak Erosion of Carbon Fibre composite Materials in the TEXTOR Tokamak H. Bolt, T. Scholz, J. Boedo*, KH. The materials tested were carbon fibre reinforced materials w"th and without Si-addition. The probe w

  10. Flux Measurements of Volatile Organic Compounds from an Urban Tower Platform

    E-Print Network [OSTI]

    Park, Chang Hyoun

    2011-08-08T23:59:59.000Z

    ) and observe an integrated effect from what is called an upwind footprint area. Previous such studies have been limited to a few cities: Nemitz et al. (2002) and Dorsey et al. (2002) measured particle and CO 2 fluxes above the city of Edinburgh, UK, while M... intercomparison tests ..................................... 28 2.5.2. Quantification............................................................................. 30 2.5.3. Footprint analysis...

  11. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Dr. Benoit Forget; Michael Pope; Piet, Steven J.; Michael Driscoll

    2012-07-30T23:59:59.000Z

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  12. Radiation from Kinetic Poynting Flux Acceleration

    E-Print Network [OSTI]

    Edison Liang; Koichi Noguchi

    2007-11-18T23:59:59.000Z

    We derive analytic formulas for the power output and critical frequency of radiation by electrons accelerated by relativistic kinetic Poynting flux, and validate these results with Particle-In-Cell plasma simulations. We find that the in-situ radiation power output and critical frequency are much below those predicted by the classical synchrotron formulae. We discuss potential astrophysical applications of these results.

  13. 6, 52515268, 2006 Turbulent fluxes over

    E-Print Network [OSTI]

    Boyer, Edmond

    ´exico, 04510 Mexico City, Mexico Received: 24 March 2006 ­ Accepted: 10 May 2006 ­ Published: 26 June 2006 wind speed conditions (up to 25 ms -1 ). The estimates of total momentum flux and turbulent kinetic energy can be represented very5 accurately (r2 =0.99, when data are binned every 1 ms-1 ) by empirical

  14. Recommended Procedures for Measuring Radon Fluxes from

    E-Print Network [OSTI]

    of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission#12;#12;Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual'nat the average annual l'elease of radon-222 from the disposal sites to t.he atmosp~1er0 by residuai radioactive

  15. The prototype of a detector for monitoring the cosmic radiation neutron flux on ground

    SciTech Connect (OSTI)

    Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio [Instituto de Estudos Avancados - IEAv/DCTA - Sao Jose dos Campos, SP (Brazil); Semmler, Renato [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP - Sao Paulo, SP (Brazil)

    2013-05-06T23:59:59.000Z

    This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

  16. US fast reactor materials and structures program

    SciTech Connect (OSTI)

    Harms, W.O.; Purdy, C.M.

    1984-01-01T23:59:59.000Z

    Materials and structures problems are central to many critical issues concerning the economic competitiveness, reliable performance, and safety of liquid metal fast breeder reactor (LMFBR) power plants. The US Department of Energy has sponsored for many years a national LMFBR materials and structures program. The objectives of the program are (1) to provide the technological basis for assuring that LMFBR components and systems will be free from significant structural failures during their design lifetimes and (2) to develop materials, design methods and criteria, materials property data, and procedures - all aimed at providing for broad flexibility in LMFBR component and system design and operation. Technology areas included in the program are high-temperature structural design; seismic design; mechanical properties design data; fabrication; tribology (friction, wear, and self-welding); coolant technology (sodium and steam/water); advanced structural alloys; and nondestructive testing. It is the purpose of this study to indicate briefly for each of the program's technology areas the objective, the scope, and some significant accomplishments. Future directions for the program are also discussed.

  17. Discriminating MSW solutions to the solar neutrino problem with flux-independent information at SuperKamiokande and SNO

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; D. Montanino

    1998-03-11T23:59:59.000Z

    The two possible Mikheyev-Smirnov-Wolfenstein (MSW) solutions of the solar neutrino problem (one at small and the other at large mixing angle), up to now tested mainly through absolute neutrino flux measurements, require flux-independent tests both for a decisive confirmation and for their discrimination. To this end, we perform a joint analysis of various flux-independent observables that can be measured at the SuperKamiokande and Sudbury Neutrino Observatory (SNO) experiments. In particular, we analyze the recent data collected at SuperKamiokande after 374 days of operation, work out the corresponding predictions for SNO, and study the interplay between SuperKamiokande and SNO observables. It is shown how, by using only flux-independent observables from SuperKamiokande and SNO, one can discriminate between the two MSW solutions and separate them from the no oscillation case.

  18. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

    2014-07-15T23:59:59.000Z

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  19. FAST User's Guide - Updated August 2005

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L. Jr.

    2005-10-01T23:59:59.000Z

    The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.

  20. Fast algorithms for triangular Josephson junction arrays

    SciTech Connect (OSTI)

    Datta, S.; Sahdev, D. [Indian Institute of Technology, Kanpur (India)] [Indian Institute of Technology, Kanpur (India)

    1997-04-01T23:59:59.000Z

    We develop fast algorithms for the numerical study of two-dimensional triangular Josephson junction arrays. The Dirac bra-ket formalism is introduced in the context of such arrays. We note that triangular arrays can have both hexagonal and rectangular periodicity and develop algorithms for each. Boundaries are next introduced and fast algorithms for finite arrays are developed. 40 refs., 4 figs.

  1. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    SciTech Connect (OSTI)

    Bevard, Bruce Balkcom [ORNL] [ORNL

    2014-03-28T23:59:59.000Z

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  2. Effect of pressure vents on the fast cookoff of energetic materials.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William Wilding

    2013-10-01T23:59:59.000Z

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  3. The effect of nonuniform axial heat flux distribution on the critical heat flux

    E-Print Network [OSTI]

    Todreas, Neil E.

    1965-01-01T23:59:59.000Z

    A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

  4. Modulated active charge exchange fast ion diagnostic for the C-2 field-reversed configuration experiment

    SciTech Connect (OSTI)

    Korepanov, S.; Smirnov, A.; Clary, R.; Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Deichuli, P.; Kondakov, A.; Murakhtin, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2012-10-15T23:59:59.000Z

    A diagnostic technique for measuring the fast-ion energy distribution in a field-reversed configuration plasma was developed and tested on the C-2 experiment. A deuterium neutral beam modulated at 22 kHz is injected into the plasma, producing a localized charge-exchange target for the confined fast protons. The escaping fast neutrals are detected by a neutral particle analyzer. The target beam transverse size ({approx}15 cm) defines the spatial resolution of the method. The equivalent current density of the target beam is {<=}0.15 A/cm{sup 2}, which corresponds to a neutral density ({approx}6 Multiplication-Sign 10{sup 9} cm{sup -3}) that highly exceeds the background neutral density in the core of C-2. The deuterium fast-ions due to the target beam (E{approx}27 keV), are not confined in C-2 and thus make a negligible contribution to the measured signals.

  5. Energy Flux We discuss various ways of describing energy flux and related quantities.

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    .0.4 Radiance Radiance is the energy flux density per solid angle.[W/(m2 � steradian)] 6.0.5 Radiant Intensity Radiant intensity is the energy flux per solid angle [W/steradian] (radiometry) 6.0.6 Intensity Intensity)· ^Ndt (6.4) Intensity is again measured in [W/m2 ] 6.0.7 Fluence Fluence is radiant energy per area

  6. Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate

    SciTech Connect (OSTI)

    Eric S. Collins; Michelle L. Pantoya; Michael A. Daniels; Daniel J. Prentice; Eric D. Steffler; Steven P. D'Arche

    2012-03-01T23:59:59.000Z

    Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damage to a threshold heat flux of 4550 W/cm2 for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate.

  7. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11T23:59:59.000Z

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  8. ATLAS Fast Tracker Simulation Challenges

    E-Print Network [OSTI]

    Adelman, Jahred; The ATLAS collaboration; Borodin, Mikhail; Chakraborty, Dhiman; García Navarro, José Enrique; Golubkov, Dmitry; Kama, Sami; Panitkin, Sergey; Smirnov, Yuri; Stewart, Graeme; Tompkins, Lauren; Vaniachine, Alexandre; Volpi, Guido

    2015-01-01T23:59:59.000Z

    To deal with Big Data flood from the ATLAS detector most events have to be rejected in the trigger system. the trigger rejection is complicated by the presence of a large number of minimum-bias events – the pileup. To limit pileup effects in the high luminosity environment of the LHC Run-2, ATLAS relies on full tracking provided by the Fast TracKer (FTK) implemented with custom electronics. The FTK data processing pipeline has to be simulated in preparation for LHC upgrades to support electronics design and develop trigger strategies at high luminosity. The simulation of the FTK - a highly parallelized system - has inherent performance bottlenecks on general-purpose CPUs. To take advantage of the Grid Computing power, the FTK simulation is integrated with Monte Carlo simulations at the Production System level above the ATLAS workload management system PanDA. We report on ATLAS experience with FTK simulations on the Grid and next steps for accommodating the growing requirements for resources during the LHC R...

  9. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G. [Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Energy Department, Politecnico di Milano, Milano (Italy); Dipartimento di Fisica, Centro NAST, Universita degli Studi di Roma Tor Vergata, Roma (Italy); STFC, ISIS facility, Rutherford Appleton Laboratory, Chilton Didcot Oxfordshire (United Kingdom); Dipartimento di Fisica, Universita degli Studi di Milano-Bicocca, and Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy)

    2012-06-19T23:59:59.000Z

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  10. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01T23:59:59.000Z

    Gas Expansion Module Gas-cooled Fast Reactor High Enrichedfast reactors: gas-cooled fast reactor (GFR), sodium-cooledderived from the Gas cooled Fast Reactor (GFR). This core

  11. High Flux Commercial Illumination Solution with Intelligent Controls

    SciTech Connect (OSTI)

    Camil Ghiu

    2012-04-30T23:59:59.000Z

    This report summarizes the work performed at OSRAM SYLVANIA under US Department of Energy contract DE-EE0003241 for developing a high efficiency LED-based luminaire. A novel light engine module (two versions: standard and super), power supply and luminaire mechanical parts were designed and tested. At steady-state, the luminaire luminous flux is 3156 lumens (lm), luminous efficacy 97.4 LPW and CRI (Ra) 88 at a correlated color temperature (CCT) of 3507K. When the luminaire is fitted with the super version of the light engine the efficacy reaches 130 LPW. In addition, the luminaire is provided with an intelligent control network capable of additional energy savings. The technology developed during the course of this project has been incorporated into a family of products. Recently, the first product in the family has been launched.

  12. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06T23:59:59.000Z

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  13. High Flux Isotope Reactor power upgrade status

    SciTech Connect (OSTI)

    Rothrock, R.B.; Hale, R.E. [Oak Ridge National Lab., TN (United States); Cheverton, R.D. [Delta-21 Resources Inc., Oak Ridge, TN (United States)

    1997-03-01T23:59:59.000Z

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

  14. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  15. ARM - VAP Product - lblch1flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) byProductsbsrncalcbsrncalc Documentation Data Management Facility PlotsuthProductslbllblch1flux

  16. NREL: Wind Research - FAST Revs Up with a v8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorkingCompetitionFAST

  17. Coupling spin ensembles via superconducting flux qubits

    E-Print Network [OSTI]

    Yueyin Qiu; Wei Xiong; Lin Tian; J. Q. You

    2014-09-10T23:59:59.000Z

    We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. In the ultrastrong-coupling regime, it exhibits quasiparticle excitations separated from the ground state by an energy gap. Moreover, these quasiparticle excitations and the ground state are stable under a certain condition that is tunable via the external magnetic field. This may provide an experimentally accessible method to probe the instability of the system.

  18. Heat flux dynamics in dissipative cascaded systems

    E-Print Network [OSTI]

    Salvatore Lorenzo; Alessandro Farace; Francesco Ciccarello; G. Massimo Palma; Vittorio Giovannetti

    2014-12-19T23:59:59.000Z

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the beginning can considerably affect the heat flux rate. We carry out our study in two paradigmatic cases -- a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes -- and compare the corresponding behaviours. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

  19. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    statistical regression of EC energy fluxes (sensible and latent heat) against available energy (net radiation, less soil heat flux). While incomplete (R2 0.77 for 1:1 line),...

  20. CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

  1. Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office R&D Pathways: Fast Pyrolysis and Hydroprocessing In fast pyrolysis and hydrotreating, biomass is rapidly heated in a fluidized bed to create...

  2. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  3. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE...

  4. Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces

    E-Print Network [OSTI]

    O'Hanley, Harrison Fagan

    2012-01-01T23:59:59.000Z

    The separate effects of surface wettability, porosity, and roughness on critical heat flux (CHF) and heat transfer coefficient (HTC) were examined using carefully-engineered surfaces. All test surfaces were prepared on ...

  5. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A.

    2012-05-01T23:59:59.000Z

    With the intent of improving simulation tools, a 1/50th-scale floating wind turbine atop a TLP was designed based on Froude scaling by the University of Maine under the DeepCwind Consortium. This platform was extensively tested in a wave basin at MARIN to provide data to calibrate and validate a full-scale simulation model. The data gathered include measurements from static load tests and free-decay tests, as well as a suite of tests with wind and wave forcing. A full-scale FAST model of the turbine-TLP system was created for comparison to the results of the tests. Analysis was conducted to validate FAST for modeling the dynamics of this floating system through comparison of FAST simulation results to wave tank measurements. First, a full-scale FAST model of the as-tested scaled configuration of the system was constructed, and this model was then calibrated through comparison to the static load, free-decay, regular wave only, and wind-only tests. Next, the calibrated FAST model was compared to the combined wind and wave tests to validate the coupled hydrodynamic and aerodynamic predictive performance. Limitations of both FAST and the data gathered from the tests are discussed.

  6. Energy flux of timeharmonic waves in anisotropic dissipative media

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Energy flux of time­harmonic waves in anisotropic dissipative media Vlastislav Ÿ Cerven 2, Czech Republic. E­mail vcerveny@seis.karlov.m#.cuni.cz Summary The energy flux of time to consider the average energy flux, which is real­valued and time­independent. An extension

  7. SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT

    E-Print Network [OSTI]

    Seamons, Kent E.

    SEDIMENT FLUX THROUGH THE RIO GRANDE RIVER: A MONSOONAL EFFECT Troy C.Hiatt A thesis submitted University August 2010 Copyright © 2010 Troy C. Hiatt All Rights Reserved #12;ABSTRACT Sediment Flux through Climate has historically been recognized as an influence on sediment flux and deposition. The North

  8. Model of Trace Gas Flux in Boundary Layer

    E-Print Network [OSTI]

    I. I. Vasenev; I. S. Nurgaliev

    2013-03-04T23:59:59.000Z

    Mathematical model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the nonzero vorticity. Generalized advection-diffusion-reaction equation is derived for arbitrary number components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers.

  9. Spheromak reactor with poloidal flux-amplifying transformer

    DOE Patents [OSTI]

    Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)

    1987-01-01T23:59:59.000Z

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  10. Radial power flattening in sodium fast reactors

    E-Print Network [OSTI]

    Krentz-Wee, Rebecca (Rebecca Elizabeth)

    2012-01-01T23:59:59.000Z

    In order to improve a new design for a uranium startup sodium cooled fast reactor which was proposed at MIT, this thesis evaluated radial power flattening by varying the fuel volume fraction at a fixed U-235 enrichment of ...

  11. Heterogeneous effects in fast breeder reactors

    E-Print Network [OSTI]

    Gregory, Michael Vladimir

    1973-01-01T23:59:59.000Z

    Heterogeneous effects in fast breeder reactors are examined through development of simple but accurate models for the calculation of a posteriori corrections to a volume-averaged homogeneous representation. Three distinct ...

  12. Fast Adaptive Silhouette Area based Template Matching

    E-Print Network [OSTI]

    Zachmann, Gabriel

    Fast Adaptive Silhouette Area based Template Matching Daniel Mohr and Gabriel Zachmann If (Technical Informatics and Computer Systems) Prof. Dr. Gabriel Zachmann (Computer Graphics) Prof. Dr Template Matching Daniel Mohr and Gabriel Zachmann Clausthal University of Technology, Department

  13. Codes for the fast SSS QR eigens

    E-Print Network [OSTI]

    Fortran 90 codes (zip file); Matlab codes (zip file). Please email. A fast O(n^2) time QR eigensolver for companion matrices/polynomials. Fortran 90 codes (zip ...

  14. Status of fast-breeder-reactor safety

    SciTech Connect (OSTI)

    Avery, R.

    1982-01-01T23:59:59.000Z

    The current state of knowledge of fast breeder reactors is reviewed. The primary focus on the analysis of postulated accident sequences and the implications to fast-reactor design. The accidents considered include loss-of-collant flow and transient overpower, both with a postulated failure to scram. The associated accident phenomena considered largely relate to the potential for energetic disassembly and include fuel, clad, and coolant motions during the accident sequence, fuel-coolant thermal interactions, and potential recriticality phenomena.

  15. Electromagnetic design considerations for fast acting controllers

    SciTech Connect (OSTI)

    Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

    1996-07-01T23:59:59.000Z

    Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

  16. AmeriFlux Network Data from the ORNL AmeriFlux Website

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.

  17. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01T23:59:59.000Z

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

  18. RENEW: A Tool for Fast and Efficient Implementation of Checkpoint Protocols

    E-Print Network [OSTI]

    Neves, Nuno

    RENEW: A Tool for Fast and Efficient Implementation of Checkpoint Protocols Nuno Neves W. Kent that allows the rapid testing of checkpoint protocols with standard benchmarks. To achieve this goal, RENEW evaluated using the RENEW envi- ronment with SPEC and NAS benchmarks on a network of workstations connected

  19. RENEW: A Tool for Fast and Efficient Implementation of Checkpoint Protocols

    E-Print Network [OSTI]

    Neves, Nuno

    RENEW: A Tool for Fast and Efficient Implementation of Checkpoint Protocols Nuno Neves W. Kent that allows the rapid testing of checkpoint protocols with standard benchmarks. To achieve this goal, RENEW evaluated using the RENEW envi­ ronment with SPEC and NAS benchmarks on a network of workstations connected

  20. Fast neutron thermionic-converters for high-power space nuclear power systems. [Na; K

    SciTech Connect (OSTI)

    Pupko, V.Y.; Vizgalov, A.V.; Raskach, F.P.; Shestjorkin, A.G.; Almambetov, A.K. (Obninsk, Kaluga region, USSR (SU)); Bystrov, P.I.; Yuditsky, V.D.; Sobolev, Y.A.; Sinyavsky, V.V.; Bakanov, Y.A.; Lipovy, N.M. (SIA Energiya'', Kaliningrad, Moscow (USSR)); Gryaznov, G.M.; Serbin, V.I.; Trykhanov, Y.L. (SIA Krasnaya Zvezda'', Moscow (USSR))

    1991-01-05T23:59:59.000Z

    The results of tests with a thermionic reactor-converter utilizing fast neutrons and a high temperature cooling system are described. The reactor can be useful for a wide range of applications with a specific mass of about 20 kg/kW and power level of 2500 kW. (AIP)

  1. Cosmic-ray Muon Flux In Belgrade

    SciTech Connect (OSTI)

    Banjanac, R.; Dragic, A.; Jokovic, D.; Udovicic, V. [Institute of Physics, University of Belgrade, Belgrade (Serbia and Montenegro); Puzovic, J.; Anicin, I. [Faculty of Physics, University of Belgrade, Belgrade (Serbia and Montenegro)

    2007-04-23T23:59:59.000Z

    Two identical plastic scintillator detectors, of prismatic shape (50x23x5)cm similar to NE102, were used for continuous monitoring of cosmic-ray intensity. Muon {delta}E spectra have been taken at five minute intervals, simultaneously from the detector situated on the ground level and from the second one at the depth of 25 m.w.e in the low-level underground laboratory. Sum of all the spectra for the years 2002-2004 has been used to determine the cosmic-ray muon flux at the ground level and in the underground laboratory.

  2. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01T23:59:59.000Z

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  3. Parametric amplification by coupled flux qubits

    SciTech Connect (OSTI)

    Rehák, M.; Neilinger, P.; Grajcar, M. [Department of Experimental Physics, Comenius University, SK-84248 Bratislava (Slovakia); Institute of Physics, Slovak Academy of Science, 845 11 Bratislava (Slovakia); Oelsner, G.; Hübner, U.; Meyer, H.-G. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Il'ichev, E. [Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena (Germany); Novosibirsk State Technical University, 20 K. Marx Ave., 630092 Novosibirsk (Russian Federation)

    2014-04-21T23:59:59.000Z

    We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3?×?10{sup ?3}) and a measured gain of about 20?dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.

  4. Flux Power Incorporated | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFlux Power Incorporated Jump to:

  5. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3EutecticMinding the GapThe Neutrino Flux

  6. Optimisation of a transverse flux linear PM generator using 3D Finite Element Analysis.

    E-Print Network [OSTI]

    Schutte, Jacques

    2011-01-01T23:59:59.000Z

    ??ENGLISH ABSTRACT: Several transverse flux and longitudinal flux linear generator topologies exist for freepiston Stirling engine applications. In this thesis the transverse flux permanent magnet… (more)

  7. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21T23:59:59.000Z

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  8. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01T23:59:59.000Z

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  9. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01T23:59:59.000Z

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  10. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01T23:59:59.000Z

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  11. The physics of fast Z pinches

    SciTech Connect (OSTI)

    Ryutov, D.D. [Lawrence Livermore National Lab., CA (United States); Derzon, M.S.; Matzen, M.K. [Sandia National Labs., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references.

  12. The Physics of Fast Z Pinches

    SciTech Connect (OSTI)

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25T23:59:59.000Z

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  13. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2010-10-15T23:59:59.000Z

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  14. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    SciTech Connect (OSTI)

    Patel, Kiran; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2010-04-15T23:59:59.000Z

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  15. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12T23:59:59.000Z

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  16. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    SciTech Connect (OSTI)

    Friesel, M.A.; Dawson, J.F.

    1992-08-01T23:59:59.000Z

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  17. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31T23:59:59.000Z

    The research and development project supported the engineering, design and implementation of onroad Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: ? Short Commute: Defined as EVs performing in limited duration, routine commutes. ? Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. ? Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehiclerelated greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  18. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24T23:59:59.000Z

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  19. Anomalous diffusion modifies solar neutrino fluxes

    E-Print Network [OSTI]

    Kaniadakis, G; Lissia, M; Quarati, P

    1998-01-01T23:59:59.000Z

    Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be u...

  20. A three-dimensional fast solver for arbitrary vorton distributions

    SciTech Connect (OSTI)

    Strickland, J.H.; Baty, R.S.

    1994-05-01T23:59:59.000Z

    A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

  1. A pragmatic overview of fast multipole methods

    SciTech Connect (OSTI)

    Strickland, J.H.; Baty, R.S.

    1995-12-01T23:59:59.000Z

    A number of physics problems can be modeled by a set of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only 0 (N lnN) or O (N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.

  2. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11T23:59:59.000Z

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  3. FAST Spacecraft Reveals Fundamental Plasma Wave Emission NASA's Fast Auroral Snapshot (FAST) Small Explorer has traveled to the source

    E-Print Network [OSTI]

    Strangeway, Robert J.

    electric fields to create the population inversion in the plasma that drives the instability. Background that parallel electric fields played a minor role for the maser, mainly acting to reduce the density. FAST has demonstrated that the parallel electric fields which accelerate the precipitating electrons to auroral energies

  4. Mock Object Creation for Test Factoring David Saff Michael D. Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Mock Object Creation for Test Factoring David Saff Michael D. Ernst MIT Computer Science & Artificial Intelligence Lab {saff,mernst}@csail.mit.edu Abstract Test factoring creates fast, focused unit tests from slow system- wide tests; each new unit test exercises only a subset of the func- tionality

  5. Automatic Test Factoring for Java David Saff Shay Artzi Jeff H. Perkins Michael D. Ernst

    E-Print Network [OSTI]

    Ernst, Michael

    Automatic Test Factoring for Java David Saff Shay Artzi Jeff H. Perkins Michael D. Ernst MIT {saff,artzi,jhp,mernst}@csail.mit.edu Abstract Test factoring creates fast, focused unit tests from slow system-wide tests; each new unit test exercises only a subset of the functionality exercised

  6. COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE

    SciTech Connect (OSTI)

    O. GASNAULT; W. FELDMAN; ET AL

    2001-01-01T23:59:59.000Z

    The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.

  7. Simplified model for determining local heat flux boundary conditions for slagging wall

    SciTech Connect (OSTI)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15T23:59:59.000Z

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  8. HOMOLOGOUS EXTREME ULTRAVIOLET WAVES IN THE EMERGING FLUX REGION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Zheng Ruisheng; Jiang Yunchun; Yang Jiayan; Bi Yi; Hong Junchao; Yang, B.; Yang Dan, E-mail: zhrsh@ynao.ac.cn [National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2012-03-01T23:59:59.000Z

    Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present four homologous extreme ultraviolet (EUV) waves within 3 hr on 2010 November 11. All EUV waves emanated from the same emerging flux region (EFR), propagated in the same direction, and were accompanied by surges, weak flares, and faint coronal mass ejections (CMEs). The waves had the basically same appearance in all EUV wavebands of the Atmospheric Imaging Assembly on SDO. The waves propagated at constant velocities in the range of 280-500 km s{sup -1}, with little angular dependence, which indicated that the homologous waves could be likely interpreted as fast-mode waves. The waves are supposed to likely involve more than one driving mechanism, and it was most probable that the waves were driven by the surges, due to their close timing and location relations. We also propose that the homologous waves were intimately associated with the continuous emergence and cancellation of magnetic flux in the EFR, which could supply sufficient energy and trigger the onsets of the waves.

  9. The flux-coordinate independent approach applied to X-point geometries

    SciTech Connect (OSTI)

    Hariri, F., E-mail: Farah.Hariri@epfl.ch; Hill, P.; Ottaviani, M.; Sarazin, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2014-08-15T23:59:59.000Z

    A Flux-Coordinate Independent (FCI) approach for anisotropic systems, not based on magnetic flux coordinates, has been introduced in Hariri and Ottaviani [Comput. Phys. Commun. 184, 2419 (2013)]. In this paper, we show that the approach can tackle magnetic configurations including X-points. Using the code FENICIA, an equilibrium with a magnetic island has been used to show the robustness of the FCI approach to cases in which a magnetic separatrix is present in the system, either by design or as a consequence of instabilities. Numerical results are in good agreement with the analytic solutions of the sound-wave propagation problem. Conservation properties are verified. Finally, the critical gain of the FCI approach in situations including the magnetic separatrix with an X-point is demonstrated by a fast convergence of the code with the numerical resolution in the direction of symmetry. The results highlighted in this paper show that the FCI approach can efficiently deal with X-point geometries.

  10. as4 flux morfologiya: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guido D'Amico; Roberto Gobbetti; Matthew Kleban; Marjorie Schillo 2012-11-14 11 Solar Magnetic Flux Ropes CERN Preprints Summary: The most probable initial magnetic...

  11. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  12. annual particle flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a cascade Wehrli, Bernhard 20 Earth Planets Space, 62, 333345, 2010 Cosmic ray and solar energetic particle flux in paleomagnetospheres Biology and Medicine Websites Summary:...

  13. Ising interaction between capacitively-coupled superconducting flux qubits

    E-Print Network [OSTI]

    Takahiko Satoh; Yuichiro Matsuzaki; Kosuke Kakuyanagi; Koichi Semba; Hiroshi Yamaguchi; Shiro Saito

    2015-01-30T23:59:59.000Z

    Here, we propose a scheme to generate a controllable Ising interaction between superconducting flux qubits. Existing schemes rely on inducting couplings to realize Ising interactions between flux qubits, and the interaction strength is controlled by an applied magnetic field On the other hand, we have found a way to generate an interaction between the flux qubits via capacitive couplings. This has an advantage in individual addressability, because we can control the interaction strength by changing an applied voltage that can be easily localized. This is a crucial step toward the realizing superconducting flux qubit quantum computation.

  14. Gaugino Condensates and Fluxes in N = 1 Effective Superpotentials

    E-Print Network [OSTI]

    Jean-Pierre Derendinger; Costas Kounnas; P. Marios Petropoulos

    2008-01-30T23:59:59.000Z

    In the framework of orbifold compactifications of heterotic and type II orientifolds, we study effective N = 1 supergravity potentials arising from fluxes and gaugino condensates. These string solutions display a broad phenomenology which we analyze using the method of N = 4 supergravity gaugings. We give examples in type II and heterotic compactifications of combined fluxes and condensates leading to vacua with naturally small supersymmetry breaking scale controlled by the condensate, cases where the supersymmetry breaking scale is specified by the fluxes even in the presence of a condensate and also examples where fluxes and condensates conspire to preserve supersymmetry.

  15. antineutrino flux measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Terrestrial Antineutrino Flux Measurements CERN Preprints Summary: Uranium and thorium are the main heat producing elements in the earth. Their quantities and...

  16. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17T23:59:59.000Z

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing, and fracture toughness master curve issues.

  17. As-Run Thermal Analysis of the GTL-1 Experiment Irradiated in the ATR South Flux Trap

    SciTech Connect (OSTI)

    Donna P. Guillen

    2011-05-01T23:59:59.000Z

    The GTL-1 experiment was conducted to assess corrosion the performance of the proposed Boosted Fast Flux Loop booster fuel at heat flux levels {approx}30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 W/cm2 to 593 W/cm2. Miniplates fabricated with three different fuel variations (without fines, annealed, and with standard powder) performed equally well, with negligible irradiation-induced swelling and a normal fission density gradient. Both the standard and the modified prefilm procedures produced hydroxide films that adequately protected the miniplates from failure. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective south lobe power of 25.4 MW(t). Results of the thermal analysis are given at four times during the cycle: BOC at 0 effective full power days (EFPD), middle of cycle (MOC) at 18 EFPD, MOC at 36 EFPD, and end of cycle at 48.9 EFPD. The highest temperatures and heat fluxes occur at the BOC and decrease in a linear manner throughout the cycle. Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant-hydroxide interface temperatures were calculated using the average measured hydroxide thickness on each miniplate. The hydroxide layers are the largest on miniplates nearest to the core midplane, where heat flux and temperature are highest. The hydroxide layer thickness averages 20.4 {mu}m on the six hottest miniplates (B3, B4, C1, C2, C3, and C4). This tends to exacerbate the heating of these miniplates, since a thicker hydroxide layer reduces the heat transfer from the fuel to the coolant. These six hottest miniplates have the following thermal characteristics at BOC: (1) Peak fuel centerline temperature >300 C; (2) Peak cladding temperature >200 C; (3) Peak hydroxide temperature >190 C; (4) Peak hydroxide-water interface temperature >140 C; and (5) Peak heat flux >565 W/cm2.

  18. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  19. Implementation and Test of Numerical Optimization

    E-Print Network [OSTI]

    performance tests, and it is found that libopti is fast compared to scripting based solutions, and as much in its class. #12;ii #12;Summary (Danish) MÃ¥let for denne afhandling er at beskrive dobbelt-dimensional problems, their solution time is very large.[JN00] Because of this, optimization as we know it today did

  20. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    SciTech Connect (OSTI)

    Man-Li C. Wu (NASA Goddard Space Flight Center, Greenbelt, MD (United States))

    1990-04-15T23:59:59.000Z

    The theoretical studies shown here indicate that the best bands to measure and derive the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression are (1) the band between 800 and 1,200 cm{sup {minus}1} for OLR, (2) the band between 500 and 660 cm{sup {minus}1} or 660 and 800 cm{sup {minus}1} for SDF, and (3) the band between 660 and 800 cm{sup {minus}1} for CRs. These results are obtained from scatter plots of total fluxes and cooling rates associated with the various bands. The advanced very high resolution radiometer OLR is damped compared with the Nimbus 7 Earth radiation budget (ERB) OLR, which is derived from the broadband, narrow field of view ERB instrument, owing to its use of only one narrow band (centered around the 11-{mu}m window region) measurement.

  1. Geodesic dynamo chaotic flows and non-Anosov maps in twisted magnetic flux tubes

    E-Print Network [OSTI]

    Garcia de Andrade

    2008-11-21T23:59:59.000Z

    Recently Tang and Boozer [{\\textbf{Phys. Plasmas (2000)}}], have investigated the anisotropies in magnetic field dynamo evolution, from local Lyapunov exponents, giving rise to a metric tensor, in the Alfven twist in magnetic flux tubes (MFTs). Thiffeault and Boozer [\\textbf{Chaos}(2001)] have investigated the how the vanishing of Riemann curvature constrained the Lyapunov exponential stretching of chaotic flows. In this paper, Tang-Boozer-Thiffeault differential geometric framework is used to investigate effects of twisted magnetic flux tube filled with helical chaotic flows on the Riemann curvature tensor. When Frenet torsion is positive, the Riemann curvature is unstable, while the negative torsion induces an stability when time $t\\to{\\infty}$. This enhances the dynamo action inside the MFTs. The Riemann metric, depends on the radial random flows along the poloidal and toroidal directions. The Anosov flows has been applied by Arnold, Zeldovich, Ruzmaikin and Sokoloff [\\textbf{JETP (1982)}] to build a uniformly stretched dynamo flow solution, based on Arnold's Cat Map. It is easy to show that when the random radial flow vanishes, the magnetic field vanishes, since the exponential Lyapunov stretches vanishes. This is an example of the application of the Vishik's anti-fast dynamo theorem in the magnetic flux tubes. Geodesic flows of both Arnold and twisted MFT dynamos are investigated. It is shown that a constant random radial flow can be obtained from the geodesic equation. Throughout the paper one assumes, the reasonable plasma astrophysical hypothesis of the weak torsion. Pseudo-Anosov dynamo flows and maps have also been addressed by Gilbert [\\textbf{Proc Roy Soc A London (1993)}

  2. Fast System Level Benchmarks for Multicore Architectures

    E-Print Network [OSTI]

    Sen, Alper

    Fast System Level Benchmarks for Multicore Architectures Alper Sen, Gokcehan Kara Etem Deniz, Smail level synthetic benchmarks from traditional bench- marks. Synthetic benchmarks have similar performance behavior as the original benchmarks that they are generated from and they can run faster. Synthetics can

  3. Fast K System Generators of Pseudorandom Numbers

    E-Print Network [OSTI]

    Akopov, N Z; Nersessian, A B; Savvidy, G K; Greiner, W

    1993-01-01T23:59:59.000Z

    We suggest fast algorithm for the matrix generator of pseudorandom numbers based on Kolmogorov-Anosov K systems which has been earliar proposed in \\cite{savvidy1,akopov1}. This algorithm reduces $N^{2}$ operation of the matrix generator to $NlnN$ and essentially reduces the generation time. It also clarifies the algebraic structure of this type of K system generators.

  4. Fast K System Generators of Pseudorandom Numbers

    E-Print Network [OSTI]

    N. Z. Akopov; E. M. Madounts; A. B. Nersesian; G. K. Savvidy; W. Greiner

    1993-11-19T23:59:59.000Z

    We suggest fast algorithm for the matrix generator of pseudorandom numbers based on Kolmogorov-Anosov K systems which has been earliar proposed in \\cite{savvidy1,akopov1}. This algorithm reduces $N^{2}$ operation of the matrix generator to $NlnN$ and essentially reduces the generation time. It also clarifies the algebraic structure of this type of K system generators.

  5. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04T23:59:59.000Z

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  6. Fast Wind Turbine Design via Geometric Programming

    E-Print Network [OSTI]

    Abbeel, Pieter

    Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

  7. Stanford Radiology LPCH Fast Pediatric MRI

    E-Print Network [OSTI]

    California at Berkeley, University of

    Stanford Radiology LPCH Fast Pediatric MRI Shreyas Vasanawala, MD/PhD Stanford University Lucile Radiology LPCH Thank you Par Lab Briefer, lighter, safer anesthesia for pediatric MRI #12; practice #12;Stanford Radiology LPCH #12;Stanford Radiology LPCH Current Solution INVASIVE LIMITS ACCESS

  8. Fast Bayesian People Detection Gwenn Englebienne a

    E-Print Network [OSTI]

    Englebienne, Gwenn

    linearly on the number of people in the scene. When many people are present in the frame, detecting allFast Bayesian People Detection Gwenn Englebienne a Ben J.A. Kr¨ose a a Universiteit van Amsterdam for tracking people with fixed cameras, which automatically detects the number of people in a frame, is robust

  9. Fast Globally Convergent Reconstruction in Emission Tomography

    E-Print Network [OSTI]

    Rangarajan, Anand

    considerable speedup by using only a subset of the projection data per sub- iteration. However, OSEM1 Fast Globally Convergent Reconstruction in Emission Tomography Using COSEM, an Incremental EM globally convergent incremental EM algorithms for reconstruction in emission tomography, COSEM- ML

  10. Fast Food with Slow Cookers SESSION GOALS

    E-Print Network [OSTI]

    Fast Food with Slow Cookers SESSION GOALS: Participants will learn how to use a slow cooker to help cooker. SESSION OBJECTIVES: By participating in today's session, participants will be able to: 1. Demonstrate an understanding of key food safety principles when using a slow cooker. 2. Prepare more

  11. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  12. Carriers mobility of InAs- and InP- rich InAs-InP solid solutions irradiated by fast neutrons

    SciTech Connect (OSTI)

    Khutsishvili, Elza; Khomasuridze, David; Gabrichidze, Leonti [Ferdinand Tavadze Institute of Metallurgy and Materials Science,15 Kazbegi str, 0160 Tbilisi (Georgia); Kvirkvelia, Bella; Kekelidze, David; Guguchia, Zurab [Iv.Javakhishvili Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi (Georgia); Aliyev, Vugar [Institute of Physics of National Academy of Sciences, 33 H. Cavid Avenue, 1143 Baku (Azerbaijan); Kekelidze, Nodar [Ferdinand Tavadze Institute of Metallurgy and Materials Science,15 Kazbegi str, 0160 Tbilisi (Georgia); Iv.Javakhishvili Tbilisi State University, 1 Chavchavadze Ave., 0179 Tbilisi (Georgia)

    2013-12-04T23:59:59.000Z

    We have studied the low temperature charge carriers mobility in bulk single crystals of InAs- and InP- rich InAs-InP solid solutions irradiated with maximum integral flux 2?10{sup 18} n/cm{sup 2} of fast neutrons. Influence of minor component small addition in InAs-InP solid solutions has been revealed. There are also presented data of radiation defects thermal stability.

  13. ANALYTICAL NEUTRONIC STUDIES CORRELATING FAST NEUTRON FLUENCE TO MATERIAL DAMAGE IN CARBON, SILICON, AND SILICON CARBIDE

    SciTech Connect (OSTI)

    Jim Sterbentz

    2011-06-01T23:59:59.000Z

    This study evaluates how fast neutron fluence >0.1 MeV correlates to material damage (i.e., the total fluence spectrum folded with the respective material’s displacements-per- atom [dpa] damage response function) for the specific material fluence spectra encountered in Next Generation Nuclear Plant (NGNP) service and the irradiation tests conducted in material test reactors (MTRs) for the fuel materials addressed in the white paper. It also reports how the evaluated correlations of >0.1 MeV fluence to material damage vary between the different spectral conditions encountered in material service versus testing.

  14. All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA)

    E-Print Network [OSTI]

    Maino, D; Baccigalupi, C; Perrotta, F; Banday, A J; Bedini, L; Burigana, C; Zotti, G D; Górski, K M; Salerno, E

    2001-01-01T23:59:59.000Z

    We present a new, fast, algorithm for the separation of astrophysical components superposed in maps of the sky, based on the fast Independent Component Analysis technique (FastICA). It allows to recover both the spatial pattern and the frequency scalings of the emissions from statistically independent astrophysical processes, present along the line-of-sight, from multi-frequency observations. We apply FastICA to simulated observations of the microwave sky with angular resolution and instrumental noise at the mean nominal levels for the Planck satellite, containing the most important known diffuse signals: the Cosmic Microwave Background (CMB), Galactic synchrotron, dust and free-free emissions. A method for calibrating the reconstructed maps of each component at each frequency has been devised. The spatial pattern of all the components have been recovered on all scales probed by the instrument. In particular, the CMB angular power spectra is recovered at the percent level up to $\\ell_{max}\\simeq 2000$. Freque...

  15. Design of fast kickers for the ISABELLE beam abort system

    SciTech Connect (OSTI)

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01T23:59:59.000Z

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module.

  16. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect (OSTI)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10T23:59:59.000Z

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  17. Anomalous diffusion modifies solar neutrino fluxes

    E-Print Network [OSTI]

    G. Kaniadakis; A. Lavagno; M. Lissia; P. Quarati

    1997-10-16T23:59:59.000Z

    Density and temperature conditions in the solar core suggest that the microscopic diffusion of electrons and ions could be nonstandard: Diffusion and friction coefficients are energy dependent, collisions are not two-body processes and retain memory beyond the single scattering event. A direct consequence of nonstandard diffusion is that the equilibrium energy distribution of particles departs from the Maxwellian one (tails goes to zero more slowly or faster than exponentially) modifying the reaction rates. This effect is qualitatively different from temperature and/or composition modification: Small changes in the number of particles in the distribution tails can strongly modify the rates without affecting bulk properties, such as the sound speed or hydrostatic equilibrium, which depend on the mean values from the distribution. This mechanism can considerably increase the range of predictions for the neutrino fluxes allowed by the current experimental values (cross sections and solar properties) and can be used to reduce the discrepancy between these predictions and the solar neutrino experiments.

  18. Wave momentum flux parameter: a descriptor for nearshore waves

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

  19. Thermal neutron flux perturbation due to indium foils in water

    E-Print Network [OSTI]

    Stinson, Ronald Calvin

    1961-01-01T23:59:59.000Z

    press) 13. Axford, R. A. , and Day, G. M. , personnel communication. 14. Ritchie, R. H. , Thermal Neutron Flux De ression, Health Physics Division Annual Prog. Rep. July, 1958, ORNL-2806, p. 133. 27 i 5, Walker, J. V. , "The Measurement of Absolute... Fluxes in Water and Graphite, " 'ORNL- 2842, 204 (f959). ...

  20. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  1. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  2. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    SciTech Connect (OSTI)

    Watson, R.D. (ed.)

    1986-09-01T23:59:59.000Z

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update. (LSP)

  3. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01T23:59:59.000Z

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  4. An initial measurement of a fast neutral spectrum for ion cyclotron range of frequency heated plasma using two-channel compact neutral particle analyzers in KSTAR

    SciTech Connect (OSTI)

    Kim, S. H.; Park, M.; Kim, S. K. [Nuclear Fusion Engineering and Technology Development Center, KAERI, Daejeon 305-353 (Korea, Republic of)] [Nuclear Fusion Engineering and Technology Development Center, KAERI, Daejeon 305-353 (Korea, Republic of); Wang, S. J. [Nuclear Fusion Plasmas Research Center, NFRI, Daejeon 305-806 (Korea, Republic of)] [Nuclear Fusion Plasmas Research Center, NFRI, Daejeon 305-806 (Korea, Republic of)

    2013-11-15T23:59:59.000Z

    The accurate measurement of fast neutral particles from high energy ion tails is very important since it is a measure of ion cyclotron range of frequency (ICRF) or neutral beam (NB) ion heating. In KSTAR, fast neutral measurements have been carried out using a compact neutral particle analyzer based on the silicon photo diode since 2010. As a result, the fast neutral spectrum was observed consistent with the ion temperature, diamagnetic energy, and neutron flux in 2011. However, there was fast neutral count beyond the injected neutral beam energy in NB-only heating. Since it is difficult to expect the count unless the temperature is high enough to diffuse the fast ions beyond the beam energy it was required to identify what it is. During the 2012 campaign, the two-channel diode detectors with and without a particle stopper were used to distinguish fast neutral counts and other counts by a hard X-ray or neutrons. As a result, it was confirmed that the high energy component beyond the beam energy originated from a hard X-ray or neutrons. Finally, it was observed that faster neutrals are generated by ICRF heating and enhanced by electron cyclotron heating compared to NB-only heating.

  5. E-Print Network 3.0 - advanced fast reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ANNULAR FAST REACTOR (3000 MWth) Fuel... and NRE Design Class., "Advances in the Subcritical, Gas-Cooled Fast Transmutation Reactor Concept", Nucl... Cooled, Fast, ... Source:...

  6. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    E-Print Network [OSTI]

    Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo

    2012-01-01T23:59:59.000Z

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the pres...

  7. Acoustic emission from magnetic flux tubes in the solar network

    E-Print Network [OSTI]

    Vigeesh, G

    2013-01-01T23:59:59.000Z

    We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

  8. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

    2009-05-01T23:59:59.000Z

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  9. Distinguishing Pu Metal From Pu Oxide Using Fast Neutron Counting

    SciTech Connect (OSTI)

    Verbeke, J M; Chapline, G F; Nakae, L; Wurtz, R; Sheets, S

    2012-05-29T23:59:59.000Z

    We describe a method for simultaneously determining the {alpha}-ratio and k{sub eff} for fissile materials using fast neutrons. Our method is a generalization of the Hage-Cifarrelli method for determining k{sub eff} for fissile assemblies which utilizes the shape of the fast neutron spectrum. In this talk we illustrate the method using Monte Carlo simulations of the fast neutrons generated in PuO{sub 2} to calculate the fast neutron spectrum and Feynman correlations.

  10. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01T23:59:59.000Z

    Physics Optimization of Breed and Burn Fast Reactor Systems.reactors: Fabrication and properties and their optimization.

  11. Joachim Skov Johansen Fast-Charging Electric Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    Joachim Skov Johansen Fast-Charging Electric Vehicles using AC Master's Thesis, September 2013 #12;#12;Joachim Skov Johansen Fast-Charging Electric Vehicles using AC Master's Thesis, September 2013 #12;#12;Fast-Charging Electric Vehicles using AC This report was prepared by Joachim Skov Johansen Contact

  12. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect (OSTI)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao [Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Liu Yu, E-mail: guojuan@bao.ac.c [Yunnan Astronomical Observatory, National Astronomical Observatories, Kunming 650011 (China)

    2010-03-10T23:59:59.000Z

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  13. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  14. Fast optimal transition between two equilibrium states

    SciTech Connect (OSTI)

    Schaff, Jean-Francois; Song Xiaoli; Vignolo, Patrizia; Labeyrie, Guillaume [Universite de Nice-Sophia Antipolis, Institut non Lineaire de Nice, CNRS, 1361 route des Lucioles, F-06560 Valbonne (France)

    2010-09-15T23:59:59.000Z

    We demonstrate a technique based on invariants of motion for a time-dependent Hamiltonian, allowing a fast transition to a final state identical in theory to that obtained through a perfectly adiabatic transformation. This method is experimentally applied to the fast decompression of an ultracold cloud of {sup 87}Rb atoms held in a harmonic magnetic trap in the presence of gravity. We are able to decompress the trap by a factor of 15 within 35 ms with a strong suppression of the sloshing and breathing modes induced by the large vertical displacement and curvature reduction of the trap. When compared to a standard linear decompression, we achieve a gain of a factor of 37 on the transition time.

  15. An overview of fast multipole methods

    SciTech Connect (OSTI)

    Strickland, J.H.; Baty, R.S.

    1995-11-01T23:59:59.000Z

    A number of physics problems may be cast in terms of Hilbert-Schmidt integral equations. In many cases, the integrals tend to be zero over a large portion of the domain of interest. All of the information is contained in compact regions of the domain which renders their use very attractive from the standpoint of efficient numerical computation. Discrete representation of these integrals leads to a system of N elements which have pair-wise interactions with one another. A direct solution technique requires computational effort which is O(N{sup 2}). Fast multipole methods (FMM) have been widely used in recent years to obtain solutions to these problems requiring a computational effort of only O(Nln N) or O(N). In this paper we present an overview of several variations of the fast multipole method along with examples of its use in solving a variety of physical problems.

  16. Rotary fast tool servo system and methods

    DOE Patents [OSTI]

    Montesanti, Richard C. (Cambridge, MA); Trumper, David L. (Plaistow, NH)

    2007-10-02T23:59:59.000Z

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  17. The AmeriFlux Network of Long-Term CO{sub 2} Flux Measurement Stations: Methodology and Intercomparability

    SciTech Connect (OSTI)

    Hollinger, D. Y.; Evans, R. S.

    2003-05-20T23:59:59.000Z

    A portable flux measurement system has been used within the AmeriFlux network of CO{sub 2} flux measurement stations to enhance the comparability of data collected across the network. No systematic biases were observed in a comparison between portable system and site H, LE, or CO{sub 2} flux values although there were biases observed between the portable system and site measurement of air temperature and PPFD. Analysis suggests that if values from two stations differ by greater than 26% for H, 35% for LE, and 32% for CO{sub 2} flux they are likely to be significant. Methods for improving the intercomparability of the network are also discussed.

  18. A fast indexing algorithm for sparse matrices

    E-Print Network [OSTI]

    Nieder, Alvin Edward

    1971-01-01T23:59:59.000Z

    A FAST INDEXING ALGORITHM FOR SPARSE MATRICES A Thesis ALVIN EDWARD NIEDER Submitted to the Graduate College of Texas Algal University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1/71 Major Subject... INDEXING ALGORITHM FOR SPARSE MATRICES (December, 1/71) Alvin Edward Nieder B. S. , Texas AEZ University Directed by: Dr. Udo Pooch A sparse matrix is defined to be a matrix con- taining a high proportion of elements that are zeros. Sparse matrices...

  19. G-2 and CMS Fast Optical Calorimetry

    SciTech Connect (OSTI)

    Winn, David R

    2012-08-07T23:59:59.000Z

    Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter.

  20. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    SciTech Connect (OSTI)

    Prabha, H.; Marleau, G. [Institut de Genie Nucleaire, Ecole Polytechnique de Montreal, Stn. CV, P.O. Box 6079, Montreal, QC H3C 3A7 (Canada)

    2012-07-01T23:59:59.000Z

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)

  1. COBRA-WC pretest predictions and post-test analysis of the FOTA temperature distribution during FFTF natural-circulation transients

    SciTech Connect (OSTI)

    Khan, E.U.; George, T.L.; Rector, D.R.

    1982-06-23T23:59:59.000Z

    The natural circulation tests of the Fast Flux Test Facility (FFTF) demonstrated a safe and stable transition from forced convection to natural convection and showed that natural convection may adequately remove decay heat from the reactor core. The COBRA-WC computer code was developed by the Pacific Northwest laboratory (PNL) to account for buoyancy-induced coolant flow redistribution and interassembly heat transfer, effects that become important in mitigating temperature gradients and reducing reactor core temperatures when coolant flow rate in the core is low. This report presents work sponsored by the US Department of Energy (DOE) with the objective of checking the validity of COBRA-WC during the first 220 seconds (sec) of the FFTF natural-circulation (plant-startup) tests using recorded data from two instrumented Fuel Open Test Assemblies (FOTAs). Comparison of COBRA-WC predictions of the FOTA data is a part of the final confirmation of the COBRA-WC methodology for core natural-convection analysis.

  2. Fast, Cheap, and Under Control: Evaluating Revision Data Reliably Daghstuhl: Mining Programs and Processes Fast, Cheap and Under Control

    E-Print Network [OSTI]

    Godfrey, Michael W.

    release time Abram Hindle 5 #12;Fast, Cheap, and Under Control: Evaluating Revision Data ReliablyFast, Cheap, and Under Control: Evaluating Revision Data Reliably Daghstuhl: Mining Programs and Processes Fast, Cheap and Under Control: Evaluating Revision Data Reliably Abram Hindle, Michael W. Godfrey

  3. Lyman Alpha Flux Power Spectrum and Its Covariance

    E-Print Network [OSTI]

    Hu Zhan; Romeel Dave; Daniel Eisenstein; Neal Katz

    2005-08-10T23:59:59.000Z

    We analyze the flux power spectrum and its covariance using simulated Lyman alpha forests. We find that pseudo-hydro techniques are good approximations of hydrodynamical simulations at high redshift. However, the pseudo-hydro techniques fail at low redshift because they are insufficient for characterizing some components of the low-redshift intergalactic medium, notably the warm-hot intergalactic medium. Hence, to use the low-redshift Lyman alpha flux power spectrum to constrain cosmology, one would need realistic hydrodynamical simulations. By comparing one-dimensional mass statistics with flux statistics, we show that the nonlinear transform between density and flux quenches the fluctuations so that the flux power spectrum is much less sensitive to cosmological parameters than the one-dimensional mass power spectrum. The covariance of the flux power spectrum is nearly Gaussian. As such, the uncertainties of the underlying mass power spectrum could still be large, even though the flux power spectrum can be precisely determined from a small number of lines of sight.

  4. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04T23:59:59.000Z

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  5. Colour flux-tubes in static Pentaquark systems

    E-Print Network [OSTI]

    Pedro Bicudo; Nuno Cardoso; Marco Cardoso

    2011-11-01T23:59:59.000Z

    The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge invariant lattice operators, in a 24^3 x 48 lattice at beta=6.2 . We generate our quenched configurations with GPUs, and detail the respective benchmanrks in different SU(N) groups. While at smaller distances the coulomb potential is expected to dominate, at larger distances it is expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order to minimize the potential the fundamental flux tubes should connect at 120o angles. We compute the square of the colour fields utilizing plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and we have an X-shaped flux-tube, with one Steiner point. The pentaquark system is well described by a three-Y-shaped flux-tube where the three flux the junctions are Steiner points.

  6. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01T23:59:59.000Z

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  7. Plutonium Measurements with a Fast-Neutron Multiplicity Counter for Nuclear Safeguards Applications

    SciTech Connect (OSTI)

    Jennifer L. Dolan; Marek Flaska; Alexis Poitrasson-Riviere; Andreas Enqvist; Paolo Peerani; David L. Chichester; Sara A. Pozzi

    2014-11-01T23:59:59.000Z

    Measurements were performed at the Joint Research Centre in Ispra, Italy to field test a fast-neutron multiplicity counter developed at the University of Michigan. The measurements allowed the illustration of the system’s photon discrimination abilities, efficiency when measuring neutron multiplicity, ability to characterize 240Pueff mass, and performance relative to a currently deployed neutron coincidence counter. This work is motivated by the need to replace and improve upon 3He neutron detection systems for nuclear safeguards applications.

  8. Note: A timing micro-channel plate detector with backside fast preamplifier

    SciTech Connect (OSTI)

    Wang, Wei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China) [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Deyang, E-mail: d.yu@impcas.ac.cn; Lu, Rongchun; Liu, Junliang; Cai, Xiaohong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)] [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-03-15T23:59:59.000Z

    A timing micro-channel plate detector with a backside double-channel fast preamplifier was developed to avoid distortion during signal propagation from the anode to the preamplifier. The mechanical and electronic structure is described. The detector including its backside preamplifier is tested by a {sup 241}Am ?-source and a rise time of ?2 ns with an output background noise of 4 mV{sub rms} was achieved.

  9. Design considerations of translmission line superconductors for fast-cycling accelerator magnets

    SciTech Connect (OSTI)

    Piekarz, H.; /Fermilab

    2008-07-01T23:59:59.000Z

    Novel design options of HTS and LTS superconductor lines for fast-cycling accelerator magnets are presented. The cryogenic power losses in using these conductors in transmission line application to energize the accelerator magnet string are discussed. A test arrangement to measure power loss of the proposed superconductor lines operating up to 2 T/s ramp rate and 0.5 Hz repetition cycle is described.

  10. Pressure Change Measurement Leak Testing Errors

    SciTech Connect (OSTI)

    Pryor, Jeff M [ORNL] [ORNL; Walker, William C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  11. Direct control of air gap flux in permanent magnet machines

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  12. Energy flux fluctuations in a finite volume of turbulent flow

    E-Print Network [OSTI]

    Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

    2006-07-19T23:59:59.000Z

    The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

  13. Bounded limit for the Monte Carlo point-flux-estimator

    SciTech Connect (OSTI)

    Grimesey, R.A.

    1981-01-01T23:59:59.000Z

    In a Monte Carlo random walk the kernel K(R,E) is used as an expected value estimator at every collision for the collided flux phi/sub c/ r vector,E) at the detector point. A limiting value for the kernel is derived from a diffusion approximation for the probability current at a radius R/sub 1/ from the detector point. The variance of the collided flux at the detector point is thus bounded using this asymptotic form for K(R,E). The bounded point flux estimator is derived. (WHK)

  14. The Thermal Test and Analysis of Envelope in Existing Buildings

    E-Print Network [OSTI]

    Liu, X.; Li, X.; Sun, J.; Wang, Z.

    2006-01-01T23:59:59.000Z

    ). The thickness of polystyrene slab is in Tab .3. ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 The temperature and the heat flux distributing of wall are shown in Fig.2 and Fig.3. Tab. 2... The temperature distributing of wall ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 Fig3. The heat flux distributing of wall 5 CONCLUSIONS Through the thermal testing, calculation...

  15. High flux isotope reactor cold source preconceptual design study report

    SciTech Connect (OSTI)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E. [and others

    1995-12-01T23:59:59.000Z

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

  16. Test Comparability

    E-Print Network [OSTI]

    Keller, Christine; Shulenburger, David E.

    2010-01-01T23:59:59.000Z

    KU ScholarWorks | http://kuscholarworks.ku.edu Test Comparability 2010 by Christine Keller and David Shulenburger This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication and Copyright. Please... and Shulenburger, David. “Test comparability,” with Christine Keller in the Letters section of Change, September/October 2010, p. 6. Published version: http://www.changemag.org/Archives/Back%20 Issues/September-October%202010/letters-to-editor.html Terms of Use...

  17. Evaluation of the delayed neutron characteristic for transmutation of the high-level waste using fast reactor technology

    SciTech Connect (OSTI)

    Ignatjev, S.V. [State Scientific Centre of Russian Federation, Obninsk (Russian Federation). Inst. of Physics and Power Engineering

    1995-12-31T23:59:59.000Z

    The method for evaluation of delayed fission neutron time and energy distributions is proposed. The method is tested for the case of U-235 thermal fission and used for Pu-238, Am-241, and Np-237 fission by the fast reactor spectrum neutrons. In the last case new data on different types of the delayed neutron spectra have been obtained.

  18. All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA)

    E-Print Network [OSTI]

    D. Maino; A. Farusi; C. Baccigalupi; F. Perrotta; A. J. Banday; L. Bedini; C. Burigana; G. De Zotti; K. M. Gorski; E. Salerno

    2001-08-22T23:59:59.000Z

    We present a new, fast, algorithm for the separation of astrophysical components superposed in maps of the sky, based on the fast Independent Component Analysis technique (FastICA). It allows to recover both the spatial pattern and the frequency scalings of the emissions from statistically independent astrophysical processes, present along the line-of-sight, from multi-frequency observations. We apply FastICA to simulated observations of the microwave sky with angular resolution and instrumental noise at the mean nominal levels for the Planck satellite, containing the most important known diffuse signals: the Cosmic Microwave Background (CMB), Galactic synchrotron, dust and free-free emissions. A method for calibrating the reconstructed maps of each component at each frequency has been devised. The spatial pattern of all the components have been recovered on all scales probed by the instrument. In particular, the CMB angular power spectra is recovered at the percent level up to $\\ell_{max}\\simeq 2000$. Frequency scalings and normalization have been recovered with better than percent precision for all the components at frequencies and in sky regions where their signal-to-noise ratio exceeds 1.5; the error increases at ten percent level for signal-to-noise ratios about 1. Runs have been performed on a Pentium III 600 MHz computer; FastICA typically took a time of the order of 10 minutes for all-sky simulations with 3.5 arcminutes pixel size. We conclude that FastICA is an extremly promising technique for analyzing the maps that will be obtained by the forthcoming high resolution CMB experiments.

  19. High frame rate CCD camera with fast optical shutter

    SciTech Connect (OSTI)

    Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)

    1998-09-01T23:59:59.000Z

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  20. Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes

    E-Print Network [OSTI]

    Abhijit Bandyopadhyay; Sandhya Choubey; Srubabati Goswami; S. T. Petcov

    2006-08-30T23:59:59.000Z

    We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.

  1. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    of the geothermal area. Ultimately for potential development of EGS. Notes A CO2 soil gas flux survey was conducted in areas recognized as geothermal upflow zones within the...

  2. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids...

  3. affecting carbon fluxes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IFN) (2 Paris-Sud XI, Universit de 43 High Heat Flux Erosion of Carbon Fibre Composite Materials in the TEXTOR Tokamak* Plasma Physics and Fusion Websites Summary: ,. 1. *...

  4. New constraints on Northern Hemisphere growing season net flux

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE L12807AL. : LARGER NORTH HEMISPHERE NET ECOSYSTEM EXCHANGE Levin,Northern Hemisphere growing season net flux Z. Yang, 1 R. A.

  5. Coherence characterization with a superconducting flux qubit through NMR approaches

    E-Print Network [OSTI]

    Yan, Fei, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis discusses a series of experimental studies that investigate the coherence properties of a superconducting persistent-current or flux qubit, a promising candidate for developing a scalable quantum processor. A ...

  6. OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Arnold, L.; Li, G.; Li, X. [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)] [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, Y., E-mail: gang.li@uah.edu [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2013-03-20T23:59:59.000Z

    Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

  7. atmospheric muon flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Sarcevic 1997-10-15 9 Measurement of the atmospheric muon flux with the ANTARES detector CERN Preprints Summary: ANTARES is a submarine neutrino telescope deployed in the...

  8. Determination of pool boiling Critical Heat Flux enhancement in nanofluids

    E-Print Network [OSTI]

    Truong, Bao H. (Bao Hoai)

    2007-01-01T23:59:59.000Z

    Nanofluids are engineered colloids composed of nano-size particles dispersed in common fluids such as water or refrigerants. Using an electrically controlled wire heater, pool boiling Critical Heat Flux (CHF) of Alumina ...

  9. Effect of tensile strain on grain connectivity and flux pinning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tensile strain on grain connectivity and flux pinning in Bi 2 Sr 2 Ca 2 Cu 3 O x tapes D. C. van der Laan and J. W. Ekin National Institute of Standards and Technology, Boulder,...

  10. Magnetic Flux Dynamics in Horizontally Cooled Superconducting Cavities

    E-Print Network [OSTI]

    Martinello, M; Grassellino, A; Crawford, A C; Melnychuk, O; Romanenko, A; Sergatkov, D A

    2015-01-01T23:59:59.000Z

    Previous studies on magnetic flux expulsion as a function of cooling details have been performed for superconducting niobium cavities with the cavity beam axis placed parallel respect to the helium cooling flow, and findings showed that for sufficient cooling thermogradients all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper we investigate the flux trapping and its impact on radio frequency surface resistance when the resonators are positioned perpendicularly to the helium cooling flow, which is representative of how superconducting radio-frequency (SRF) cavities are cooled in an accelerator. We also extend the studies to different directions of applied magnetic field surrounding the resonator. Results show that in the cavity horizontal configuration there is a different impact of the various field components on the final surface resistance, and that several parameters have to be considered to understand flux dynamics. A newly discovered phenomenon of concent...

  11. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  12. The flux measure of influence in engineering networks

    E-Print Network [OSTI]

    Schwing, Kyle Michael

    2009-01-01T23:59:59.000Z

    The objective of this project is to characterize the influence of individual nodes in complex networks. The flux metric developed here achieves this goal by considering the difference between the weighted outdegree and ...

  13. Model of critical heat flux in subcooled flow boiling

    E-Print Network [OSTI]

    Fiori, Mario P.

    1968-01-01T23:59:59.000Z

    The physical phenomenon occurring before and at the critical heat flux (CHF) for subcooled flow boiling has been investigated. The first phase of this study established the basic nature of the flow structure at CHF. A ...

  14. Global sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Global sea-to-air flux climatology Ko, M. K. W. , Poulet,Global sea-to-air flux climatology Vogt, R. , Sander, R. ,sea-to-air flux climatology for bromoform, dibromomethane

  15. Anthropogenic and Biogenic Carbon Dioxide Fluxes From Typical Land Uses in Houston, Texas

    E-Print Network [OSTI]

    Werner, Nicholas D

    2013-04-29T23:59:59.000Z

    correlation with measured traffic counts collected on local thoroughfares. Due to a presumed small bias in the flux calculation methodology, neither flux contribution truly measured zero, so anthropogenic and biogenic “background” fluxes were calculated (0...

  16. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

  17. Software Testing and Maintenance 1 Regression Testing

    E-Print Network [OSTI]

    Lei, Jeff Yu

    1 Software Testing and Maintenance 1 Regression Testing Introduction Test Selection Test Minimization Test Prioritization Summary Software Testing and Maintenance 2 What is it? Regression testing refers to the portion of the test cycle in which a program is tested to ensure that changes do not affect

  18. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  19. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01T23:59:59.000Z

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  20. Detecting gravity modes in the solar $^8B$ neutrino flux

    E-Print Network [OSTI]

    Ilídio Lopes; Sylvaine Turck-Chièze

    2014-08-28T23:59:59.000Z

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the $^{8}B$ neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order $2$, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than $5.8\\times 10^{-4}$. This study clearly shows that due to their high sensitivity to the temperature, the $^8B$ neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the $^{8}B$ neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  1. Modification of flux profiles using a faceted concentrator

    SciTech Connect (OSTI)

    Lewandowski, A; Scholl, K; Bingham, C

    1993-01-01T23:59:59.000Z

    The use of a faceted solar concentrator allows for some flexibility in aiming strategy and in the intensity of the resulting flux profile at the target. This can be an advantage when considering applications that do not necessarily require maximum concentration, particularly emerging, new applications in solar processed advanced materials. This paper will describe both an analysis of predicted flux profiles for several different aiming strategies using the SOLFUR computer code and experiments to characterize the actual flux profiles realized with a selected aiming strategy. The SOLFUR code models each of the furnace components explicitly. Aim points for each facet can be specified. Thus many strategies for adjusting aim points can be easily explored. One strategy calls for creating as uniform a flux over as large an area as possible. We explored this strategy analytically and experimentally. The experimental data consist of flux maps generated by a video imaging system calibrated against absolute flux measurements taken with circular foil calorimeters. Results from the analytical study and a comparison with the experimental data indicate that uniform profiles can be produced over fairly large areas.

  2. Field dynamics and tunneling in a flux landscape

    E-Print Network [OSTI]

    Matthew C Johnson; Magdalena Larfors

    2008-11-06T23:59:59.000Z

    We investigate field dynamics and tunneling between metastable minima in a landscape of Type IIB flux compactifications, utilizing monodromies of the complex structure moduli space to continuously connect flux vacua. After describing the generic features of a flux-induced potential for the complex structure and Type IIB axio-dilaton, we specialize to the Mirror Quintic Calabi--Yau to obtain an example landscape. Studying the cosmological dynamics of the complex structure moduli, we find that the potential generically does not support slow-roll inflation and that in general the landscape separates neatly into basins of attraction of the various minima. We then discuss tunneling, with the inclusion of gravitational effects, in many-dimensional field spaces. A set of constraints on the form of the Euclidean paths through field space are presented, and then applied to construct approximate instantons mediating the transition between de Sitter vacua in the flux landscape. We find that these instantons are generically thick-wall and that the tunneling rate is suppressed in the large-volume limit. We also consider examples where supersymmetry is not broken by fluxes, in which case near-BPS thin-wall bubbles can be constructed. We calculate the bubble wall tension, finding that it scales like a D- or NS-brane bubble, and comment on the implications of this correspondence. Finally, we present a brief discussion of eternal inflation in the flux-landscape.

  3. On the Chaotic Flux Dynamics in a Long Josephson Junction

    E-Print Network [OSTI]

    Z. C. Feng; Y. Charles Li

    2009-07-16T23:59:59.000Z

    Flux dynamics in an annular long Josephson junction is studied. Three main topics are covered. The first is chaotic flux dynamics and its prediction via Melnikov integrals. It turns out that DC current bias cannot induce chaotic flux dynamics, while AC current bias can. The existence of a common root to the Melnikov integrals is a necessary condition for the existence of chaotic flux dynamics. The second topic is on the components of the global attractor and the bifurcation in the perturbation parameter measuring the strength of loss, bias and irregularity of the junction. The global attractor can contain co-existing local attractors e.g. a local chaotic attractor and a local regular attractor. In the infinite dimensional phase space setting, the bifurcation is very complicated. Chaotic attractors can appear and disappear in a random fashion. Three types of attractors (chaos, breather, spatially uniform and temporally periodic attractor) are identified. The third topic is ratchet effect. Ratchet effect can be achieved by a current bias field which corresponds to an asymmetric potential, in which case the flux dynamics is ever lasting chaotic. When the current bias field corresponds to a symmetric potential, the flux dynamics is often transiently chaotic, in which case the ratchet effect disappears after sufficiently long time.

  4. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  5. Thermomechanical analysis of fast-burst reactors

    SciTech Connect (OSTI)

    Miller, J.D.

    1994-08-01T23:59:59.000Z

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  6. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08T23:59:59.000Z

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  7. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, James A. (Espanola, NM)

    1982-01-01T23:59:59.000Z

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  8. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, J.A.

    1980-05-16T23:59:59.000Z

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  9. Chemical analysis of biomass fast pyrolysis oils

    SciTech Connect (OSTI)

    Elliott, D.C.

    1994-09-01T23:59:59.000Z

    This paper reviews the development of the field of chemical analysis of biomass fast pyrolysis oils. The techniques applied to pyrolysis oil analysis are reviewed including proximate and ultimate analysis, water (moisture) analysis, and chemical component analysis by various forms of chromatography, solvent separations, and spectrophotometric analyses, like infrared and ultraviolet. Advanced analytical techniques such as nuclear magnetic resonance and molecular beam -- mass spectrometry are also discussed. This paper reviews and compares the methods and the results of the analyses. The advantages and shortcomings of the various methods applied are identified. Comparisons derived from the IEA Round Robin are incorporated.

  10. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01T23:59:59.000Z

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  11. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01T23:59:59.000Z

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  12. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    SciTech Connect (OSTI)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi; Tian, Fuqiang; Leung, Lai-Yung R.

    2013-12-10T23:59:59.000Z

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  13. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect (OSTI)

    Bertelli, N [PPPL; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P [PPPL; Green, D; LeBlanc, B [PPPL; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01T23:59:59.000Z

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  14. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, Nuclear and Advanced Propulsion Branch, ER-11, MSFC, AL 35812 (United States); Morton, T. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2006-01-20T23:59:59.000Z

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

  15. E-Print Network 3.0 - atp synthetic flux Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux Search Powered by Explorit Topic List Advanced Search Sample search results for: atp synthetic flux Page: << < 1 2 3 4 5 > >> 1 A genetically encoded fluorescent reporter...

  16. I. AN INTRODUCTION TO THE PROPELLANT-DRIVEN MAGNETIC FLUX COMPRESSION...

    Office of Scientific and Technical Information (OSTI)

    is perfectly conducting (R 0) , the well-known electrodynamic result of flux (LI) conservation is obtained. Under this condition the conservation of flux leads to the result:...

  17. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based...

  18. Optimization of superconducting flux qubit readout using near-quantum-limited amplifiers

    E-Print Network [OSTI]

    Johnson, Jedediah Edward Jensen

    2012-01-01T23:59:59.000Z

    junctions . . . . . . . 1.4 Superconducting QuantumInterference 1.5 Superconducting qubits . . . . . . . . .2 Superconducting flux qubits 2.1 The one-junction flux

  19. E-Print Network 3.0 - au flux diffus Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chauffage (Fig. l), le flux... lumineux diffus diminue au lieu d'augmenter. Temperature (OC) FIG. 1. -Etude du flux lumineux diffus par... ternaire perpendiculaire au...

  20. FPGA FFT(Fast Fourier Transform) 1 FPGA FFT(Fast Fourier Transform)

    E-Print Network [OSTI]

    Jang, Ju-Wook

    trade-offs using high-level performance estimation to obtain energy-efficient designs. We implemented Seon-il Choi Gokul Govindu Viktor K. Prasanna ABSTRACT In this paper, we develop energy efficient designs for the Fast Fourier Transform (FFT) on FPGAs. Architectures for FFT on FPGAs are designed

  1. Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment a...

    E-Print Network [OSTI]

    Egedal, Jan

    the high harmonic fast wave #HHFW# and energetic particles in a spherical torus #ST# #Ref. 1# is a new, Princeton, New Jersey 08543 R. W. Harvey CompX, Del Mar, California 92014 T. K. Mau University of California, Columbia University, New York, New York 10027 J. Egedal Plasma Science and Fusion Center, Massachusetts

  2. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect (OSTI)

    Youchison, D. L.

    2012-03-01T23:59:59.000Z

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  3. The Fast Track to Fusion Power

    SciTech Connect (OSTI)

    Smith, Chris Llewellyn (UKAEA, Culham) [UKAEA, Culham

    2005-04-28T23:59:59.000Z

    World energy use is predicted to double in the next 40 years. Today, 80% is provided by burning fossil fuels, but this is not sustainable indefinitely because (i) it is driving climate change, and (ii) fossil fuels will eventually be exhausted (starting with oil). The resulting potential energy crisis requires increased investment in energy research and development (which is currently very small on the scale of the $3 trillion p.a. energy market, and falling). The wide portfolio of energy work that should be supported must include fusion, which is one of very few options that are capable in principle of supplying a large fraction of need in an environmentally responsible manner. The case for fusion has been strengthened by recent advances in plasma physics and fusion technology and by studies of fusion power plants that address safety and cost issues. The big questions are, 'How can we deliver fusion power as fast as possible?' and 'How long is it likely to take?' I will review progress in fusion, and argue for a focused fast-track program that could deliver a working prototype power station in less than 30 years.

  4. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect (OSTI)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07T23:59:59.000Z

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  5. Fast CsI-phoswich detector

    DOE Patents [OSTI]

    Langenbrunner, J.R.

    1996-05-07T23:59:59.000Z

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  6. Fast CsI-phoswich detector

    DOE Patents [OSTI]

    Langenbrunner, James R. (1024 Osage Cir., Santa Fe, NM 87501)

    1996-01-01T23:59:59.000Z

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  7. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30T23:59:59.000Z

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  8. Bubble masks for time-encoded imaging of fast neutrons.

    SciTech Connect (OSTI)

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01T23:59:59.000Z

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is induced-typically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gaps-bubbles-propagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  9. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  10. Development of a fast position-sensitive laser beam detector

    SciTech Connect (OSTI)

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G. [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-10-15T23:59:59.000Z

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  11. Understanding the product distribution from biomass fast pyrolysis.

    E-Print Network [OSTI]

    Patwardhan, Pushkaraj Ramchandra

    2010-01-01T23:59:59.000Z

    ??Fast pyrolysis of biomass is an attractive route to transform solid biomass into a liquid bio-oil, which has been envisioned as a renewable substitute for… (more)

  12. Dominican Republic-Fast-Track Development of TransformativeClimate...

    Open Energy Info (EERE)

    Finally, an additional goal is to return the experiences made to the international political level." References "Fast-Track Development of Transformative Climate-Compatible...

  13. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions 2010 DOE Vehicle Technologies and...

  14. Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation

    E-Print Network [OSTI]

    Heidet, Florent

    2010-01-01T23:59:59.000Z

    selected as part of the Generation IV reactors .. - 4 -The development of Generation IV fast reactors can make aconcepts selected for the Generation IV reactors, three,

  15. acid fast bacilli: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Fast Bacilli in a Low- Incidence Setting CiteSeer Summary: Introduction: Light emitting diode fluorescence microscopes have many practical advantages over conventional...

  16. allowing fast fpga: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    components are injected separately and can be monitored separately using a fast current transformer (FCT) or an integrating current transformer (ICT). The signals from these...

  17. achieve fast exact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The BoxTree: Exact and Fast Collision Detection of Arbitrary Polyhedra Gabriel Zachmann Fraunhofer-convex polyhedra ef- ficiently. The approach attains its speed by a...

  18. Fast Generation of Potentials for Self-Assembly of Particles

    E-Print Network [OSTI]

    Philip du Toit

    2009-05-12T23:59:59.000Z

    May 12, 2009 ... Fast Generation of Potentials for Self-Assembly of Particles. Philip du Toit(pdutoit ***at*** cds.caltech.edu) Katalin Grubits(katalin ***at*** ...

  19. Dielectric liquid ionization chambers for detecting fast neutrons

    E-Print Network [OSTI]

    Boyd, Erin M

    2008-01-01T23:59:59.000Z

    Three ionization chambers with different geometries have been constructed and filled with dielectric liquids for detection of fast neutrons. The three dielectric liquids studied were Tetramethylsilane (TMS), Tetramethylpentane ...

  20. Fast, Low Cost Method for Manufacturing Porous Structures for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Fast, Low Cost Method for Manufacturing Porous Structures for Fuel Cells, Catalysts and Filtration...

  1. advanced fast rich: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Plasma Physics Fast reconnection and structure of diffusion regions in low-density hydrogen and pair plasmas Naoki Bessho and A. Bhattacharjee magnetic reconnection in...

  2. Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks

    SciTech Connect (OSTI)

    Robert J. Goldston

    2009-08-20T23:59:59.000Z

    The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

  3. The Dynamics of Flux Tubes in a High Beta Plasma

    E-Print Network [OSTI]

    E. T. Vishniac

    1994-07-21T23:59:59.000Z

    We suggest a new model for the structure of a magnetic field embedded high $\\beta$ turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter the macroscopic properties of the fluid or the large scale magnetic field. In either case we show that the Sweet-Parker reconnection rate is much faster than an eddy turnover time. Realistic stellar plasmas are expected to either be in the ideal limit (e.g. the solar photosphere) or the resistive limit (most of the solar convection zone). All current numerical simulations of three dimensional MHD turbulence are in the viscous regime and are inapplicable to stars or accretion disks.

  4. EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

  5. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01T23:59:59.000Z

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  6. Oxidation and Volatilization from Tungsten Brush High Heat Flux Armor During High Temperature Steam Exposure

    SciTech Connect (OSTI)

    Smolik, Galen Richard; Pawelko, Robert James; Anderl, Robert Andrew; Petti, David Andrew

    2000-05-01T23:59:59.000Z

    Tungsten brush accommodates thermal stresses and high heat flux in fusion reactor components such as plasma facing surfaces or armor. However, inherently higher surface areas are introduced with the brush design. We have tested a specific design of tungsten brush in steam between 500 and 1100°C. Hydrogen generation and tungsten volatilization rates were determined to address fusion safety issues. The brush prepared from 3.2-mm diameter welding rods had a packing density of 85 percent. We found that both hydrogen generation and tungsten volatilization from brush, fixtured to represent a unit within a larger component, were less than projections based upon the total integrated surface area (TSA). Steam access and the escape of hydrogen and volatile oxide from void spaces within the brush are restricted compared to specimens with more direct diffusion pathways to the test environment. Hydrogen generation rates from restrained specimens based on normal surface area (NSA) remain about five times higher than rates based on total surface areas from specimens with direct steam access. Volatilization rates from restrained specimens based upon normal surface area (NSA) were only 50 percent higher than our historic cumulative maximum flux plot (CMFP) for tungsten. This study has shown that hydrogen generation and tungsten volatilization from brush do not scale according to predictions with previously determined rates, but in fact, with higher packing density could approach those from flat surfaces.

  7. Verifying Test Hypotheses -HOL/TestGen Verifying Test Hypotheses -HOL/TestGen

    E-Print Network [OSTI]

    Verifying Test Hypotheses - HOL/TestGen Verifying Test Hypotheses - HOL/TestGen An Experiment in Test and Proof Thomas Malcher January 20, 2014 1 / 20 #12;Verifying Test Hypotheses - HOL/TestGen HOL/TestGen Outline Introduction Test Hypotheses HOL/TestGen - Demo Verifying Test Hypotheses Conclusion 2 / 20 #12

  8. Radial evolution of intermittency of density fluctuations in the fast solar wind

    E-Print Network [OSTI]

    Bruno, R; Primavera, L; Pietropaolo, E; D'Amicis, R; Sorriso-Valvo, L; Carbone, V; Malara, F; Veltri, P

    2014-01-01T23:59:59.000Z

    We study the radial evolution of intermittency of density fluctuations in the fast solar wind. The study is performed analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between $0.3$ and $0.9$ AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different time scales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with distance from the Sun, at odds with intermittency of both magnetic field and all the other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process....

  9. GIF sodium fast reactor project R and D on safety and operation

    SciTech Connect (OSTI)

    Vasile, A.; Sofu, T.; Jeong, H. Y.; Sakai, T. [CEA DEN Cadarache, DER, 13108 Saint-Paul-Lez-Durance (France)

    2012-07-01T23:59:59.000Z

    The 'Safety and Operation' project is started in 2009 within the framework of Generation-IV International Forum (GIF) Sodium Fast Reactor (SFR) research and development program. In the safety area, the project involves R and D activities on phenomenological model development and experimental programs, conceptual studies in support of the design of safety provisions, preliminary assessment of safety systems, framework and methods for analysis of safety architecture. In the operation area, the project involves R and D activities on fast reactors safety tests and analysis of reactor operations, feedback from decommissioning, in-service inspection technique development, under-sodium viewing and sodium chemistry. This paper presents a summary of such activities and the main achievements. (authors)

  10. Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors

    SciTech Connect (OSTI)

    Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashi-ibaraki-gun, Ibaraki, 311-1393 (Japan)

    2007-07-01T23:59:59.000Z

    R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

  11. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    SciTech Connect (OSTI)

    Ruggles, A.E.

    1990-10-12T23:59:59.000Z

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

  12. Microgrid Testing

    SciTech Connect (OSTI)

    Shirazi, M.; Kroposki, B.

    2012-01-01T23:59:59.000Z

    With the publication of IEEE 1574.4 Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems, there is an increasing amount of attention on not only the design and operations of microgrids, but also on the proper operation and testing of these systems. This standard provides alternative approaches and good practices for the design, operation, and integration of microgrids. This includes the ability to separate from and reconnect to part of the utility grid while providing power to the islanded power system. This presentation addresses the industry need to develop standardized testing and evaluation procedures for microgrids in order to assure quality operation in the grid connected and islanded modes of operation.

  13. Fast 704 MHz Ferroelectric Tuner for Superconducting Cavities

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-12T23:59:59.000Z

    The Omega-P SBIR project described in this Report has as its goal the development, test, and evaluation of a fast electrically-controlled L-band tuner for BNL Energy Recovery Linac (ERL) in the Electron Ion Collider (EIC) upgrade of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner, that employs an electrically-controlled ferroelectric component, is to allow fast compensation to cavity resonance changes. In ERLs, there are several factors which significantly affect the amount of power required from the wall-plug to provide the RF-power level necessary for the operation. When beam loading is small, the power requirements are determined by (i) ohmic losses in cavity walls, (ii) fluctuations in amplitude and/or phase for beam currents, and (iii) microphonics. These factors typically require a substantial change in the coupling between the cavity and the feeding line, which results in an intentional broadening of the cavity bandwidth, which in turn demands a significant amount of additional RF power. If beam loading is not small, there is a variety of beam-drive phase instabilities to be managed, and microphonics will still remain an issue, so there remain requirements for additional power. Moreover ERL performance is sensitive to changes in beam arrival time, since any such change is equivalent to phase instability with its vigorous demands for additional power. In this Report, we describe the new modular coaxial tuner, with specifications suitable for the 704 MHz ERL application. The device would allow changing the RF-coupling during the cavity filling process in order to effect significant RF power savings, and also will provide rapid compensation for beam imbalance and allow for fast stabilization against phase fluctuations caused by microphonics, beam-driven instabilities, etc. The tuner is predicted to allow a reduction of about ten times in the required power from the RF source, as compared to a compensation system with narrower bandwidth. It is planned to build a 704 MHz version of the tuner, to check its underlying principles, and to make high-power tests at power densities aimed towards controlling 50 kW of average power. Steps towards this goal will be limited by, among other factors, losses in the actual ferroelectric elements in the ferroelectric assemblies. As the ferroelectric material loss tangent is reduced through efforts by the supplier Euclid TechLabs LLC, the concomitant power loss in its ferroelectric assemblies will drop, and the average power-handling capability of the Omega-P tuner will rise. It can thus be anticipated that the Phase II development project of the 704 MHz tuner will be iterative, but the pace and ultimate power-handling level of the tuner is difficult to predict at this early stage in Euclid's development program. Fortunately, since Omega-P's conceptual tuner is a simple module (nominally rated for 5 kW), so that the number of modules required in each tuner can be chosen, depending upon the cavity power level needed, plus the power for tuner losses.

  14. Fast beam studies of free radical photodissociation

    SciTech Connect (OSTI)

    Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.

  15. MATLAB tensor classes for fast algorithm prototyping.

    SciTech Connect (OSTI)

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2004-10-01T23:59:59.000Z

    Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.

  16. Fast computation algorithms for speckle pattern simulation

    SciTech Connect (OSTI)

    Nascov, Victor; Samoil?, Cornel; Ursu?iu, Doru [Transylvania University of Braov (Romania)

    2013-11-13T23:59:59.000Z

    We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes can be tilted each to other and the output domain can be off-axis shifted.

  17. Fast-acting nuclear reactor control device

    SciTech Connect (OSTI)

    Kotlyar, O.M.; West, P.B.

    1992-12-31T23:59:59.000Z

    This invention consists of a fast-acting nuclear reactor control device for moving and positioning a safety control rod to desired elevations within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump motor, an electric gear motor, and a solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch, allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  18. Advancements in the ADAPT Photospheric Flux Transport Model

    E-Print Network [OSTI]

    Kyle S. Hickmann; Humberto C. Godinez; Carl J. Henney; C. Nick Arge

    2014-10-22T23:59:59.000Z

    Maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind which makes photospheric simulations important predictors of solar events on Earth. However, observations of the solar photosphere are only made intermittently over small regions of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the ADAPT model and the implementation of the LETKF. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  19. Primary Cosmic Ray Proton Flux Measured by AMS-02

    E-Print Network [OSTI]

    C. Consolandi; on Behalf of the AMS-02 Collaboration

    2014-02-06T23:59:59.000Z

    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle detector designed to study origin and nature of cosmic rays up to a few TV from space. It was installed on the International Space Station (ISS) on May 19, 2011. During the first two years of operation AMS-02 performed precise measurements of the proton flux. In the low rigidity range, from 1 GV to 20 GV, the proton flux was daily measured with a statistical error less than 1%. In the same rigidity range a gradual decrease due to Solar modulation effect and transit variations due to Solar Flares and Coronal Mass Ejection were also observed. In the rigidity range from 20 GV up to 100 GV instead, AMS-02 data show no drastic variation and the results are consistent with other experiments. Above 100 GV, AMS-02 proton flux exhibits a single power low behavior with no fine structures nor brakes.

  20. Type II superconductivity and magnetic flux transport in neutrons stars

    E-Print Network [OSTI]

    P. B. Jones

    2005-10-13T23:59:59.000Z

    The transition to a type II proton superconductor which is believed to occur in a cooling neutron star is accompanied by changes in the equation of hydrostatic equilibrium and by the formation of proton vortices with quantized magnetic flux. Analysis of the electron Boltzmann equation for this system and of the proton supercurrent distribution formed at the transition leads to the derivation of a simple expression for the transport velocity of magnetic flux in the liquid interior of a neutron star. This shows that flux moves easily as a consequence of the interaction between neutron and proton superfluid vortices during intervals of spin-down or spin-up in binary systems. The differences between the present analysis and those of previous workers are reviewed and an error in the paper of Jones (1991) is corrected.

  1. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  2. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  3. A Description of the Full Particle Orbit Following SPIRAL Code for Simulating Fast-ion Experiments in Tokamaks

    SciTech Connect (OSTI)

    Kramer, G.J.; Budny, R.V.; Bortolon, A.; Fredrickson, E.D.; Fu, G.Y.; Heidbrink, W.W.; Nazikian, R.; Valeo, E.; Van Zeeland, M.A.

    2012-07-27T23:59:59.000Z

    The numerical methods used in the full particle-orbit following SPIRAL code are described and a number of physics studies performed with the code are presented to illustrate its capabilities. The SPIRAL code is a test-particle code and is a powerful numerical tool to interpret and plan fast-ion experiments in Tokamaks. Gyro-orbit effects are important for fast ions in low-field machines such as NSTX and to a lesser extent in DIII-D. A number of physics studies are interlaced between the description of the code to illustrate its capabilities. Results on heat loads generated by a localized error-field on the DIII-D wall are compared to measurements. The enhanced Triton losses caused by the same localized error-field are calculated and compared to measured neutron signals. MHD activity such as tearing modes and Toroidicity-induced Alfven Eigenmodes (TAEs) have a profound effect on the fast-ion content of Tokamak plasmas and SPIRAL can calculate the effects of MHD activity on the confined and lost fast-ion population as illustrated for a burst of TAE activity in NSTX. The interaction between Ion Cyclotron Range of Frequency (ICRF) heating and fast ions depends solely on the gyro-motion of the fast ions and is captured exactly in the SPIRAL code. A calculation of ICRF absorption on beam ions in ITER is presented. The effects of high harmonic fast wave heating on the beam-ion slowing-down distribution in NSTX is also studied.

  4. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia

    2015-01-02T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.

  5. COSMOLOGICAL FAST RADIO BURSTS FROM BINARY WHITE DWARF MERGERS

    SciTech Connect (OSTI)

    Kashiyama, Kazumi; Mészáros, Peter [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)] [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Ioka, Kunihito, E-mail: kzk15@psu.edu, E-mail: nnp@psu.edu, E-mail: kunihito.ioka@kek.jp [Theory Center, Institute of Particle and Nuclear Studies, KEK, Department of Particle and Nuclear Physics, the Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801 (Japan)] [Theory Center, Institute of Particle and Nuclear Studies, KEK, Department of Particle and Nuclear Physics, the Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801 (Japan)

    2013-10-20T23:59:59.000Z

    Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ?10{sup 4} sky{sup –1} day{sup –1}, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.

  6. Fast Tune Measurement System for the ELETTRA Booster

    E-Print Network [OSTI]

    Ferianis, M; Iazzourene, F

    2003-01-01T23:59:59.000Z

    Since several years, the Diagnostic Group at Laboratori Nazionali di Legnaro (LNL) has been designing Fast Faraday Cups (FFC) to be used on their Heavy Ion Accelerators; latest developments in this field include a stripline FFC, jointly developed with SNS, Oak Ridge. A collaborative partnership has been set-up between LNL and ELETTRA Laboratory to fully characterize new FFCs, using as electron source the ELETTRA 1 GeV Linac. Two FFCs, the stripline FFC, built at SNS, and a coaxial FFC, made at LNL, have been installed at ELETTRA who provided the wideband data acquisition and the remote control of the measurement. The first measurements carried out using 1 GHz oscilloscope allowed the proper set-up of remote control and a low jitter triggering. Wideband measurements were performed with a sampling scope equipped with 50 GHz head whereas the bandwidth of the stripline FFC is in the order of 10 GHz. A complete set of tests has been carried both on the coaxial FFC and on the stripline FFC. Thanks to the informatio...

  7. The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling

    E-Print Network [OSTI]

    Sugrue, Rosemary M

    2012-01-01T23:59:59.000Z

    The effects of orientation angle, subcooling, heat flux, mass flux, and pressure on bubble growth and detachment in subcooled flow boiling were studied using a high-speed video camera in conjunction with a two-phase flow ...

  8. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    E-Print Network [OSTI]

    Mor, I; Bar, D; Feldman, G; Goldberg, M B; Katz, D; Sayag, E; Shmueli, I; Cohen, Y; Tal, A; Vagish, Z; Bromberger, B; Dangendorf, V; Mugai, D; Tittelmeier, K; Weierganz, M

    2009-01-01T23:59:59.000Z

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  9. Improved approximate formulas for flux from cylindrical and rectangular sources

    SciTech Connect (OSTI)

    Wallace, O.J.; Bokharee, S.A.

    1993-03-01T23:59:59.000Z

    This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.

  10. Development of a passive soil gas flux sampler

    E-Print Network [OSTI]

    McQuown, Brian C

    2012-06-07T23:59:59.000Z

    DEVELOPMENT OF A PASSIVE SOIL GAS FLUX SAMPLER A Thesis by BRIAN C. McQUOWN Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991... Major Subject: Civil Engineering DEVELOPMENT OF A PASSIVE SOIL GAS FLUX SAMPLER A Thesis by BRIAN C. McQUOWN Approved as to style and content by: Stuart A. a terman (Co-chair of Committee) Andrew . cFa land (Member) Bill Batchelor (Co...

  11. DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS

    SciTech Connect (OSTI)

    Bhat, N. D. R. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia)] [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S. [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411007 (India)] [National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411007 (India); Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia)] [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia)

    2013-05-01T23:59:59.000Z

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg{sup 2} of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  12. Fast Valuation of Forward-Starting Basket Default Ken Jackson

    E-Print Network [OSTI]

    Toronto, University of

    Fast Valuation of Forward-Starting Basket Default Swaps Ken Jackson Alex Kreinin Wanhe Zhang swap (FBDS) is a BDS starting at a specified future time. Existing analytic or semi-analytic methods starts. This paper develops a fast approximation method for FBDS based on the conditional independence

  13. Polarization of fast particle beams by collisional pumping

    DOE Patents [OSTI]

    Stearns, J. Warren (Castro Valley, CA); Kaplan, Selig N. (El Cerrito, CA); Pyle, Robert V. (Berkeley, CA); Anderson, L. Wilmer (Madison, WI); Ruby, Lawrence (Berkeley, CA); Schlachter, Alfred S. (Oakland, CA)

    1988-01-01T23:59:59.000Z

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  14. Fast Machine Code for Modular Multiplication Michael Scott

    E-Print Network [OSTI]

    Bernstein, Daniel

    Fast Machine Code for Modular Multiplication Michael Scott School of Computer Applications Dublin, that is the calculation of a = b e mod n where for acceptable levels of security a, b, e, and n are large multiprecision will be not much larger than the number of bits in the binary representation of e. Therefore fast modular

  15. Fast Geodesic Active Contours Roman Goldenberg, Ron Kimmel,

    E-Print Network [OSTI]

    Kimmel, Ron

    Fast Geodesic Active Contours Roman Goldenberg, Ron Kimmel, Ehud Rivlin, and Michael Rudzsky use an unconditionally stable numerical scheme to im­ plement a fast version of the geodesic active objects by a dynamic model known as the `geodesic active contour' introduced in [4--7], see also [18, 28

  16. Design and control of a long stroke fast tool servo

    E-Print Network [OSTI]

    Byl, Marten F

    2005-01-01T23:59:59.000Z

    In this thesis, I detail the design and control of a linear long stroke fast tool servo (FTS) with integral balance mass. The long stroke fast tool servo consists of an air bearing stage driven by a unique three phase oil ...

  17. Fast Automated Demand Response to Enable the Integration of Renewable

    E-Print Network [OSTI]

    LBNL-5555E Fast Automated Demand Response to Enable the Integration of Renewable Resources David S The work described in this report was coordinated by the Demand Response Research Center and funded ABSTRACT This study examines how fast automated demand response (AutoDR) can help mitigate grid balancing

  18. MICROFLUIDIC DEVICE FOR SUPER-FAST EVALUATION OF MEMBRANE PROTEIN

    E-Print Network [OSTI]

    Stowell, Michael

    MICROFLUIDIC DEVICE FOR SUPER-FAST EVALUATION OF MEMBRANE PROTEIN CRYSTALLIZATION Hsin-Jui Wu1- throughput membraneless microfluidic device to fast produce the reconstitution of membrane protein in microfluidic channel can be completed in seconds to form protein/lipid particles under multiple conditions

  19. Queue Prediction: an efficient scheduler for fast ATM cell transmission

    E-Print Network [OSTI]

    Fenwick, Peter

    Queue Prediction: an efficient scheduler for fast ATM cell transmission Peter Fenwick Department, if not impossible within the time constraints of fast ATM transmission (622 Mbps or higher). This paper presents a solution to this problem. By scheduling in advance the transmissions from queues it allows all output

  20. Fast 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI..................................................10 Summary and Findings for Integration of Imperceptible Structured Lighting and SIS's 3D Snapshot

  1. Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials

    E-Print Network [OSTI]

    Baer, Roi

    Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials WanZhen Liang a,b,1; accepted 28 August 2003 Abstract Fast and effective algorithms are discussed for resumming matrix for resumming matrix polynomials with fewer matrix multiplications [12­16]. Perhaps the most effective algorithm

  2. Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    Fast Photovoltaic Array Reconfiguration for Partial Solar Powered Vehicles Jaemin Kim1 , Yanzhi during cruising using innovative fast photovoltaic array (PV) reconfiguration. Use of all the vehicle sur and partial PV array mounting by the car owner's driving pattern, which results in more than 20% PV cell cost

  3. Mixing Fast Trains on Freight Rail Corridors presented by

    E-Print Network [OSTI]

    Minnesota, University of

    Mixing Fast Trains on Freight Rail Corridors presented by: Minnesota Department of Transportation May 23, 2012 #12;Presentation Outline · State Plans for Fast (Passenger) Trains · Overarching) Suggest picture of CP grain train be inserted here #12;Passenger Rail Development Overarching Principles

  4. A Fast Algorithm for Data Mining CS 297 Report

    E-Print Network [OSTI]

    Pollett, Chris

    A Fast Algorithm for Data Mining CS 297 Report Aarathi Raghu Advisor: Dr.Chris Pollett December 2005 #12;A Fast Algorithm For Data Mining Abstract This report describes the data mining algorithms implemented and lessons learned during the course of my CS 297. Data Mining is a growing field and a plethora

  5. Acoustic emission monitoring of HFIR vessel during hydrostatic testing. Final report

    SciTech Connect (OSTI)

    Friesel, M.A.; Dawson, J.F.

    1992-08-01T23:59:59.000Z

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  6. Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics Processing Unit

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics solve Navier-Stokes equations and other transportation equations for energy and species at a speed of 50 it in parallel on a Graphics Processing Unit (GPU). This study validated the FFD on the GPU by simulating

  7. Fluctuations of energy flux in wave turbulence Eric Falcon,1

    E-Print Network [OSTI]

    Falcon, Eric

    Fluctuations of energy flux in wave turbulence ´Eric Falcon,1 S´ebastien Auma^itre,2 Claudio Falc gravity and capillary wave turbulence in a statistically stationary regime displays fluctuations much interactions transfer kinetic energy toward small scales where viscous dissipation takes place

  8. AHR 3/16/06 Equilibrium Flux Surface Calculations

    E-Print Network [OSTI]

    Hudson, Stuart

    preserved, with no flattening in edge stochastic region. · Assume zero net current (00 = 0). #12;#12;2 AHR 31 AHR 3/16/06 Equilibrium Flux Surface Calculations for W7AS and NCSX A. Reiman1, M. Zarnstorff1, D resonant magnetic field near plasma edge. Coil calculated to have little effect on rotational transform

  9. Self-field and magnetic-flux quantum mechanics

    E-Print Network [OSTI]

    Paul Harris

    2005-04-06T23:59:59.000Z

    Self-field and quantized magnetic-flux are employed to generate the quantum numbers n, m, and l of atomic physics. Wave-particle duality is shown to be a natural outcome of having a particle and its self-field.

  10. 4, 28772914, 2007 Air-sea O2 flux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Variability in air-sea O2 and CO2 fluxes and its impact on atmospheric potential oxygen (APO 2 1 National Center for Atmospheric Research, Boulder, Colorado, USA 2 Dept. of Marine Chemistry-friendly Version Interactive Discussion EGU Abstract A three dimensional, time-evolving field of atmospheric

  11. Solar Neutrino Fluxes Using The Exponential S-Factor

    SciTech Connect (OSTI)

    Kassim, Hasan Abu; Jalil, Ithnin Abdul; Yusof, Norhasliza [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2006-07-12T23:59:59.000Z

    Recently we propose an exponential form for the astrophysical S-factor. This form produces about 20% more solar 3He production through the 3He-3He reaction. In this note, we investigate the effects on the 7Be and 8B neutrino productions since the neutrino fluxes depend on the 3He abundance.

  12. Sediment permeability, distribution, and influence on fluxes in oceanic basement

    E-Print Network [OSTI]

    Fisher, Andrew

    6 Sediment permeability, distribution, and influence on fluxes in oceanic basement Glenn A. Spinelli, Emily R. Giambalvo, and Andrew T. Fisher 6.1 Introduction Sediments blanketing oceanic igneous basement rocks control the communication between fluid within the crust and the oceans. Seafloor sediments

  13. Analytical model for flux saturation in sediment transport

    E-Print Network [OSTI]

    T. Pähtz; E. J. R. Parteli; J. F. Kok; H. J. Herrmann

    2014-05-30T23:59:59.000Z

    The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment and for a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out-of-equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and can thus be applied under different physical conditions.

  14. Magnetic and Electric Flux Quanta: the Pion Mass

    SciTech Connect (OSTI)

    P Cameron

    2011-12-31T23:59:59.000Z

    The angular momentum of the magnetic flux quantum is balanced by that of the associated supercurrent, such that in condensed matter the resultant angular momentum is zero. The notion of a flux quantum in free space is not so simple, needing both magnetic and electric flux quanta to propagate the stable dynamic structure of the photon. Considering these flux quanta at the scale where quantum field theory becomes essential, at the scale defined by the reduced Compton wavelength of the electron, exposes variants of a paradox that apparently has not been addressed in the literature. Leaving the paradox unresolved in this note, reasonable electromagnetic rationales are presented that permit to calculate the masses of the electron, muon, pion, and nucleon with remarkable accuracy. The calculated mass of the electron is correct at the nine significant digit limit of experimental accuracy, the muon at a part in one thousand, the pion at two parts in ten thousand, and the nucleon at seven parts in one hundred thousand. The accuracy of the pion and nucleon mass calculations reinforces the unconventional common notion that the strong force is electromagnetic in origin.

  15. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  16. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  18. High flux heat transfer in a target environment

    E-Print Network [OSTI]

    McDonald, Kirk

    High flux heat transfer in a target environment T. Davenne High Power Targets Group Rutherford Valid for: Consider turbulent heat transfer in a 1.5mm diameter pipe ­ Dittus Boelter correlation Achenbach correlation for heat transfer in a packed bed of spheres Max power density for a sphere

  19. Section 2: Solar Energy Flux Variations H. S. Hudson

    E-Print Network [OSTI]

    Hudson, Hugh

    Section 2: Solar Energy Flux Variations H. S. Hudson Space Sciences Laboratory, University discuss this subject. We might also note for completeness the neutrino energy loss from the solar core of California, Berkeley The chapters in this section of the monograph deal with the basic raw material of solar

  20. ENTROPY PRODUCTION AND RADIATION ENTROPY FLUX OF THE EARTH SYSTEM

    E-Print Network [OSTI]

    the assumption of an isotropic gray-body Earth and isotropic reflecting TOA shortwave (SW) radiation. It is shown entropy flux can be improved by relaxing the commonly used Lambertian assumption. __________ NOTICE- 98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript