National Library of Energy BETA

Sample records for fast flux test

  1. Startup Testing of the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Polzin, David L.

    2010-06-30

    This paper is one in a series documenting the current effort to retrieve, secure, and preserve critical information related to advanced reactors. . Information from this testing is being retrieved under the Fuel Cycle Research and Development (FCRD) program conducted by the Office of Nuclear Energy (NE) of the DOE. The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE).

  2. 400 Area/Fast Flux Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    325 Building 400 AreaFast Flux Test Facility 618-10 ... Test Facility D and DR Reactors Effluent Treatment ... (thermal) liquid-metal (sodium)-cooled nuclear research ...

  3. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  4. Use of the fast flux test facility for tritium production

    SciTech Connect (OSTI)

    Drell, S.; Hammer, D.; Cornwall, J.M.; Dyson, F.; Garwin, R.

    1996-10-25

    This report provides the results of a JASON review of the technical feasibility of using the Department of Energy`s (DOE`s) Fast Flux Test Facility (FFTF) to generate tritium needed for the enduring United States nuclear weapons stockpile.

  5. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2012-01-30

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors

  6. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-11-30

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy. This report provides a status update documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors.

  7. Fast Flux Test Facility Closure Project - Project Management Plan

    SciTech Connect (OSTI)

    BEACH, R.R.

    2002-09-26

    The Fast Flux Test Facility (FFTF) Closure Project, Project Management Plan, Revision 5, provides the scope, cost, and schedule to achieve the most cost effective and expeditious closure of the FFTF to an assumed final end-state with the reactor vessel and the containment building, below the 5504 grade level, being entombed in place. Closure will be completed by December 2009 at a cost of $547 million.

  8. Five years operating experience at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  9. Benchmarking transition costs for the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1996-12-31

    The Fast Flux Test Facility (FFTF) is a government-owned, 400-MW(thermal), sodium-cooled test reactor operated by Westinghouse Hanford Company. The reactor is shut down and is undergoing a transition to a long-term surveillance and maintenance state. The mission strategy for the FFTF transition project is to place the FFTF in a radiologically and industrially safe condition, completing the transition phase activities as soon as possible to drive down the current annual surveillance and maintenance costs from approximately $26 million/yr to roughly $1.5 million/yr. The effort to establish the shutdown and transition costs for this 7-yr, $260 million activity is a first of a kind for the U.S. Department of Energy (DOE).

  10. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect (OSTI)

    REYNOLDS, J.A.

    1999-04-13

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  11. FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation

    SciTech Connect (OSTI)

    Pierce, B.F.

    1986-07-01

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.

  12. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  13. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N.

    2013-07-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  14. Preserving physics knowledge at the fast flux test facility

    SciTech Connect (OSTI)

    Wootan, D.; Omberg, R.; Makenas, B. J.; Polzin, D. L.

    2012-07-01

    One of the goals of the Dept. of Energy's Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated. (authors)

  15. Knowledge Preservation at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.

    2011-12-30

    One of the goals of the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  16. Preserving Physics Knowledge at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-11-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  17. Knowledge Management at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.

    2013-06-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  18. Fast flux test facility radioisotope production and medical applications

    SciTech Connect (OSTI)

    Schenter, R.E.; Smith, S.G.; Tenforde, T.S.

    1997-12-01

    The Fast Flux Test Facility (FFTF) is a 400-MW, sodium-cooled reactor that operated successfully from 1982 to 1992, conducting work in support of the liquid-metal reactor industry by developing and testing fuel assemblies, control rods, and other core reactor components. Upon termination of this program, the primary mission of FFTF ended, and it was placed in a standby mode in 1993. However, in January 1997 the U.S. Secretary of Energy requested that FFTF be evaluated for a future mission that would consist of a primary goal of producing tritium for nuclear defense applications and a secondary goal of supplying medical isotopes for research and clinical applications. Production by FFTF of tritium for U.S. nuclear weapons would augment the dual-track strategy now under consideration for providing a long-term tritium supply in the United States (consisting of a light water reactor option and an accelerator option). A decision by the Secretary of Energy on proceeding with steps leading toward the possible reactivation of FFTF will be made before the end of 1998.

  19. Voluntary Protection Program Onsite Review, Fluor Hanford Fast Flux Test Facility Recertification- October 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Fluor Hanford Fast Flux Test Facility is continuing to perform at a level deserving DOE-VPP Star recognition.

  20. The Fast Flux Test Facility shutdown program plan

    SciTech Connect (OSTI)

    Guttenberg, S.; Jones, D.H.; Midgett, J.C.; Nielsen, D.L.

    1995-01-01

    The Fast Flux Test Facility (FFTF) is a 400 MWt sodium-cooled research reactor owned by the US Department of Energy (DOE) and operated by the Westinghouse Hanford Company (WHC) on the Hanford Site in southeastern Washington State. The decision was made by the DOE in December, 1993, to initiate shutdown of the FFTF. This paper describes the FFTF Transition Project Plan (1) (formerly the FFTF Shutdown Program Plan) which provides the strategy, major elements, and project baseline for transitioning the FFTF to an industrially and radiologically safe shutdown condition. The Plan, and its resource loaded schedule, indicate this transition can be achieved in a period of six to seven years at a cost of approximately $359 million. The transition activities include reactor defueling, fuel offload to dry cask storage, sodium drain and reaction, management of sodium residuals, shutdown of auxiliary systems, and preparation of appropriate environmental and regulatory documentation. Completion of these activities will involve resolution of many challenging and unique issues associated with shutdown of a large sodium reactor facility. At the conclusion of these activities, the FFTF will be in a safe condition for turnover to the Hanford Site Environmental Restoration Contractor for a long term surveillance and maintenance phase and decommissioning.

  1. Fast Flux Test Facility (FFTF) Briefing Book 1 Summary

    SciTech Connect (OSTI)

    WJ Apley

    1997-12-01

    This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

  2. Maintenance implementation plan for the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Boyd, J.A.

    1997-01-30

    This plan implements the U.S. Department of Energy (DOE) 4330.4B, Maintenance Management Program (1994), at the Fast Flux Test Facility (FFTF). The FFTF is a research and test reactor located near Richland, Washington, and is operated under contract for the DOE by the B&W Hanford Company (BWHC). The intent of this Maintenance Implementation Plan (MIP) is to describe the manner in which the activities of the maintenance function are executed and controlled at the FFTF and how this compares to the requirements of DOE 4330.4B. The MIP ii a living document that is updated through a Facility Maintenance Self- Assessment Program. During the continuing self-assessment program, any discrepancies found are resolved to meet DOE 4330.4B requirements and existing practices. The philosophy of maintenance management at the FFTF is also describe within this MIP. This MIP has been developed based on information obtained from various sources including the following: * A continuing self-assessment against the requirements of the Conduct of Maintenance Order * In-depth reviews conducted by the members of the task team that assembled this MIP * Inputs from routine audits and appraisals conducted at the facility The information from these sources is used to identify those areas in which improvements could be made in the manner in which the facility conducts maintenance activities. The action items identified in Rev. 1 of the MIP have been completed. The MIP is arranged in six sections. Section I is this Executive Summary. Section 2 describes the facility and its 0683 history. Section 3 describes the philosophy of the graded approach and how it is applied at FFTF. Section 3 also discusses the strategy and the basis for the prioritizing resources. Section 4 contains the detailed discussion of `the elements of DOE 4330.4B and their state of implementation. Section 5 is for waivers and requested deviations from the requirements of the order. Section 6 contains a copy of the Maintenance

  3. EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown...

  4. Fast flux test reactor fuel canister. (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Fast flux test reactor fuel canister. Citation Details ... 952779 Report Number(s): SAND2004-2604J TRN: US0902577 DOE Contract Number: AC04-94AL85000 Resource Type: Journal ...

  5. Status of fuel, blanket, and absorber testing in the fast flux test facility

    SciTech Connect (OSTI)

    Baker, R.B.; Bard, F.E.; Leggett, R.D.; Pitner, A.L. )

    1992-01-01

    On December 2, 1980, the Fast Flux Test Facility (FFTF) reached its full design power of 400 MW for the first time. From the start, the FFTF provided a modern liquid-metal reactor (LMR) test facility recognized for excellence, innovation, and efficiency of operation. Its unique instrumentation and special test capabilities have allowed the facility to stay at the cutting edge of technology. Prototypical size and core environment allow the FFTF to demonstrate core components and directly support design optimization of LMRs. Since December 1980, the FFTF has irradiated > 64,000 mixed-oxide driver and test fuel pins, > 1,000 metal-fueled pins, > 100 carbide-fueled pins, and > 35 nitride-fueled pins (supporting the U.S. space reactor program). This paper reviews the status of one of the major activities at the FFTF for its first 12 yr of operation - DOE-sponsored testing and development of fuel, blanket, and absorber assemblies for commercial LMRs.

  6. FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE

    SciTech Connect (OSTI)

    NIELSEN, D L

    2004-02-26

    The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

  7. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  8. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy’s Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  9. Securing Operating Data From Passive Safety Tests at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

    2011-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to operate in the United States, from 1982 to 1992. The technologies employed in designing and constructing this reactor, along with information obtained from tests conducted during its operation, are currently being secured and archived by the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program. This report is one in a series documenting the overall project efforts to retrieve and preserve critical information related to advanced reactors. A previous report summarized the initial efforts to review, retrieve and preserve the most salient documents related to Passive Safety Testing (PST) in the FFTF. Efforts continue to locate, secure, and retrieve record copies of original plant data tapes for the series of passive safety tests conducted between 1986 and 1991.

  10. Summary description of the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Cabell, C.P.

    1980-12-01

    This document has been compiled and issued to provide an illustrated engineering summary description of the FFTF. The document is limited to a description of the plant and its functions, and does not cover the extensive associated programs that have been carried out in the fields of design, design analysis, safety analysis, fuels development, equipment development and testing, quality assurance, equipment fabrication, plant construction, acceptance testing, operations planning and training, and the like.

  11. Burnup Predictions for Metal Fuel Tests in the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Wootan, David W.; Nelson, Joseph V.

    2012-06-01

    The Fast Flux Test Facility (FFTF) is the most recent Liquid Metal Reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The FFTF operated successfully from initial startup in 1980 through the end of the last operating cycle in March, 1992. A variety of fuel tests were irradiated in FFTF to provide performance data over a range of conditions. The MFF-3 and MFF-5 tests were U10Zr metal fuel tests with HT9 cladding. The MFF-3 and MFF-5 tests were both aggressive irradiation tests of U10Zr metal fuel pins with HT9 cladding that were prototypic of full scale LMR designs. MFF-3 was irradiated for 726 Effective Full Power Days (EFPD), starting from Cycle 10C1 (from November 1988 through March 1992), and MFF-5 was irradiated for 503 EFPD starting from Cycle 11B1 (from January 1990 through March 1992). A group of fuel pins from these two tests are undergoing post irradiation examination at the Idaho National Laboratory (INL) for the Fuel Cycle Research and Development Program (FCRD). The generation of a data package of key information on the irradiation environment and current pin detailed compositions for these tests is described. This information will be used in interpreting the results of these examinations.

  12. Scoping assessment on medical isotope production at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Scott, S.W.

    1997-08-29

    The Scoping Assessment addresses the need for medical isotope production and the capability of the Fast Flux Test Facility to provide such isotopes. Included in the discussion are types of isotopes used in radiopharmaceuticals, which types of cancers are targets, and in what way isotopes provide treatment and/or pain relief for patients.

  13. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  14. A decade of radiological and shielding experience at the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Bunch, W.L.

    1990-01-01

    The Fast Flux Test Facility (FFTF) was designed to permit irradiation testing of fuels and materials to support the commercial development of liquid-metal-cooled fast reactors (LMRs). A secondary objective was to gain experience in the design, construction, and operation of a relatively large LMR. The radiological experience gained from the operation of the facility as it applies to the area of radiation protection and shielding is presented. Experience from 8 yr of FFTF operation has demonstrated that radiological safety can be achieved in large LMRs. Layout of plant equipment in shielded compartments, careful operational planning, and adherence to procedures have combined to minimize personnel doses at FFTF and the release of radioactivity to the environment. The experience derived form the design, construction, and operation of FFTF should be of inestimable value in supporting future LMR development.

  15. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    BURKE, T.M.

    2005-04-13

    Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

  16. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  17. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    FARABEE, O.A.

    2006-02-24

    In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

  18. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    SciTech Connect (OSTI)

    Chen, W.W.; Chang, S.J.

    1996-06-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building`s concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask`s structural integrity for this accident condition.

  19. Fast Flux Test Facility transition project resource loaded schedule. Revision 1

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1994-10-31

    Revision 1 of the Fast Flux Test Facility (FFTF) Transition Project Resource Loaded Schedule (RLS) provides detail to manage the major elements, project baseline and cost estimate for the FFF Transition Project within the Advanced Reactors Transition Program, comprised of Activity Data Sheets (ADS) 6640, 6641, and 6642. The scope includes all work in the Budget and Reporting categories of Program Integration (PI), Surveillance and Maintenance (S and M), and Deactivation/Compliance (D/C). The transition activities are necessary to bring the FFTF and related facilities to a safe deactivation state, while maintaining worker health and safety. The scope of ADS 6640 and 6642 is the FFTF Transition Project while the scope of ADS 6641 is the Hanford Site Nuclear Energy Legacies.

  20. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect (OSTI)

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  1. Closure of the Fast Flux Test Facility: current status and future plans

    SciTech Connect (OSTI)

    Lesperance, C. P.; Doebler, S. V.; Burke, T. M.

    2007-07-01

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been de-fueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D and D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D and D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009. (authors)

  2. CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS

    SciTech Connect (OSTI)

    LESPERANCE, C.P.

    2007-05-23

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

  3. Physics of sup 238 Pu production in the Fast Flux Test Facility

    SciTech Connect (OSTI)

    Rawlins, J.A.; Schmittroth, F.A.; Mann, F.M.; Schenter, R.E.; Lu, A.H.; Carter, L.L.; Wootan, D.W.; Schwarz, R.A.; Brager, H.R.; Matsumoto, W.Y.

    1989-11-01

    Westinghouse Hanford Company conducted an assessment of producing {sup 238}Pu in the Fast Flux Test Facility (FFTF), a U.S. Department of Energy (DOE) reactor located near Richland, Washington. The goal of the assessment was to determine whether the FFTF can produce at least 15 kg/yr of {sup 238}Pu to support the needs of the U.S. space program. Plutonium-238, with its 87.7-yr half-life and relatively pure alpha-particle decay mode, is an ideal power source for deep-space missions. The DOE is evaluating options for future {sup 238}Pu production, and the FFTF is a preferred candidate. The key technical issue for FFTF production is the isotopic purity of the product plutonium. FFTF production of at least 15 kg/yr of {sup 238}Pu is feasible. An FFTF physics test was completed and will reduce the large calculational uncertainties in {sup 236}Pu content, and the final test results will allow final production assembly design optimization. Use of the FFTF for {sup 238}Pu production can satisfy the needs of the U.S. space program for many years with a modern reactor that has an outstanding operational record.

  4. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  5. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  6. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified

  7. Closure of the Fast Flux Test Facility: Current Status and Future Plans

    SciTech Connect (OSTI)

    Farabee, O.A.; Witherspoon, W.V.

    2008-01-15

    The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (Na

  8. Cleaning residual NaK in the fast flux test facility fuel storage cooling system

    SciTech Connect (OSTI)

    Burke, T.M.; Church, W.R.; Hodgson, K.M.

    2008-01-15

    The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the

  9. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Broader source: Energy.gov [DOE]

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  10. Pretest predictions of the Fast Flux Test Facility Passive Safety Test Phase IIB transients using United States derived computer codes and methods

    SciTech Connect (OSTI)

    Heard, F.J.; Harris, R.A.; Padilla, A.

    1992-07-01

    The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios can be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.

  11. Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system

    SciTech Connect (OSTI)

    Dautel, W.A.

    1996-10-01

    The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

  12. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  13. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  14. Fast Flux Test Facility (FFTF) standby plan

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  15. Fast flux test facility, transition project plan

    SciTech Connect (OSTI)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  16. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E.; Doman, Marvin J.; Wilson, Edward C.

    1992-01-01

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  17. Wide dynamic range neutron flux monitor having fast time response for the Large Helical Device

    SciTech Connect (OSTI)

    Isobe, M. Takeiri, Y.; Ogawa, K.; Miyake, H.; Hayashi, H.; Kobuchi, T.; Nakano, Y.; Watanabe, K.; Uritani, A.; Misawa, T.; Nishitani, T.; Tomitaka, M.; Kumagai, T.; Mashiyama, Y.; Ito, D.; Kono, S.; Yamauchi, M.

    2014-11-15

    A fast time response, wide dynamic range neutron flux monitor has been developed toward the LHD deuterium operation by using leading-edge signal processing technologies providing maximum counting rate up to ∼5 × 10{sup 9} counts/s. Because a maximum total neutron emission rate over 1 × 10{sup 16} n/s is predicted in neutral beam-heated LHD plasmas, fast response and wide dynamic range capabilities of the system are essential. Preliminary tests have demonstrated successful performance as a wide dynamic range monitor along the design.

  18. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Testing Reports DC Fast Charge Impacts on Battery Life and Vehicle Performance INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

  19. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging ...

  20. Fast ion instability at the Cornell Electron Storage Ring Test...

    Office of Scientific and Technical Information (OSTI)

    Fast ion instability at the Cornell Electron Storage Ring Test Accelerator Citation Details In-Document Search Title: Fast ion instability at the Cornell Electron Storage Ring Test ...

  1. The materials test station: a fast spectrum irradiation facility

    SciTech Connect (OSTI)

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  2. Homogeneous fast-flux isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

  3. FAST

    Energy Science and Technology Software Center (OSTI)

    002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0 https://software.sandia.gov/trac/fast

  4. AVTA: Hasdec DC Fast Charging Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hasdec DC Fast Charging Testing Results AVTA: Hasdec DC Fast Charging Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Hasdec DC fast

  5. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  6. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    SciTech Connect (OSTI)

    Chou, W.; Tajima, C.T.; Matsumoto, R. |; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  7. Fast Flux Test Facility Reactor Vessel Removal Study

    SciTech Connect (OSTI)

    BOWMAN, B.R.

    2002-10-23

    This study assesses the feasibility of removing the FFTF reactor vessel from its current location in the reactor cavity inside the Containment vessel to a transporter for relocation to a burial pit in the 200 Area.

  8. The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities

    SciTech Connect (OSTI)

    Ott, Larry J; McDuffee, Joel Lee

    2011-01-01

    The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

  9. Ultra-Fast Quantum Efficiency Solar Cell Test - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-Fast Quantum Efficiency Solar Cell Test National Renewable Energy Laboratory Contact NREL About This Technology Real-Time QE quickly measures how each solar cell responds to ...

  10. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  11. FASTGAS: Fast Gas Sampling for palladium exchange tests

    SciTech Connect (OSTI)

    Malinowski, M.E.; Stewart, K.D.; VerBerkmoes, A.A.

    1991-06-01

    A mass spectrometric technique for measuring the composition of gas flows in rapid H/D exchange reactions in palladium compacts has been developed. This method, called FASTGAS (Fast Gas Sampling)'' has been used at atmospheric pressures and above with a time response of better than 100 ms. The current implementation of the FASTGAS technique is described in detail and examples of its application to palladium hydride exchange tests are given. 12 refs., 10 figs.

  12. Anomalous fast ion losses at high β on the tokamak fusion test...

    Office of Scientific and Technical Information (OSTI)

    Anomalous fast ion losses at high on the tokamak fusion test reactor Citation Details In-Document Search Title: Anomalous fast ion losses at high on the tokamak fusion test ...

  13. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect (OSTI)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO[sub 3] or LiNbO[sub 3] as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm[sup 2] 10 kW/cm[sup 2] and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  14. Fast pyrobolometers for measurements of plasma heat fluxes and radiation losses in the MST Reversed Field Pinch

    SciTech Connect (OSTI)

    Fiksel, G.; Frank, J.; Holly, D.

    1993-01-07

    Two types of fast bolometers are described for the plasma energy transport study in the Madison Symmetric Torus plasma confinement device. Both types use pyrocrystals of LiTaO{sub 3} or LiNbO{sub 3} as the sensors. One type is used for measurements of the radiated heat losses and is situated at the vacuum shell inner surface. Another type is insertable in the plasma and measures the plasma particle heat flux. The frequency response of the bolometers is measured to be in the 150--200 kHz range. The range of the measured power fluxes is 0.1 W/cm{sup 2} 10 kW/cm{sup 2} and can be adjusted by changing the size of the entrance aperture. The lower limit is determined by the amplifier noise and the frequency bandwidth, the higher limit by destruction of the bolometer sensor.

  15. FAST - A Framework for Agile Software Testing v. 2.0

    Energy Science and Technology Software Center (OSTI)

    2009-03-25

    The FAST software package contains a variety of Python packages for applying and managing software tests. In version 2.0, FAST includes (1) the EXACT package, which supports the definition and execution of computational experiments, (2) the FAST package, which manages the distributed execution of software builds, and (3) general tools related to the PyUnit testing framework.

  16. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    SciTech Connect (OSTI)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  17. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    SciTech Connect (OSTI)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  18. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; Gray, T.; Grierson, B. A.; Kramer, G. J.; Lanctot, M.; Pace, D. C.; Van Zeeland, M. A.; Mclean, A. G.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 tomore » 2.6±0.5 MW/m-2.« less

  19. Fast Pyrolysis Conversion Tests of Forest Concepts' Crumbles™. Final Report

    SciTech Connect (OSTI)

    Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

    2012-04-02

    The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

  20. Direct evidence of an eruptive, filament-hosting magnetic flux rope leading to a fast solar coronal mass ejection

    SciTech Connect (OSTI)

    Chen, Bin; Gary, D. E.; Bastian, T. S.

    2014-10-20

    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultraviolet (EUV) observations from Solar Dynamics Observatory/Atmospheric Imaging Assembly, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than 1 hr prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.

  1. INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Systems | Department of Energy INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss096_francfort_2013_o.pdf (2.28 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Wireless & Conductive

  2. High-flux, high-temperature thermal vacuum qualification testing of a solar receiver aperture shield

    SciTech Connect (OSTI)

    Kerslake, T.W.; Mason, L.S.; Strumpf, H.J.

    1997-12-31

    As part of the International Space Station (ISS) Phase 1 program, NASA Lewis Research Center (LeRC) and the Russian Space Agency (RSA) teamed together to design, build and flight test the world`s first orbital Solar Dynamic Power System (SDPS) on the Russian space station Mir. The Solar Dynamic Flight Demonstration (SDFD) program was to operate a nominal 2 kWe SDPS on Mir for a period up to 1-year starting in late 1997. Unfortunately, the SDFD mission was demanifested from the ISS Phase 1 shuttle program in early 1996. However, substantial flight hardware and prototypical flight hardware was built including a heat receiver and aperture shield. The aperture shield comprises the front face of the cylindrical cavity heat receiver and is located at the focal plane of the solar concentrator. It is constructed of a stainless steel plate with a 1-m outside diameter, a 0.24-m inside diameter and covered with high-temperature, refractory metal multi-foil insulation (MFI). The aperture shield must minimize heat loss from the receiver cavity, provide a stiff, high strength structure to accommodate shuttle launch loads and protect receiver structures from highly concentrated solar fluxes during concentrator off-pointing events. To satisfy Mir operational safety protocols, the aperture shield was required to accommodate direct impingement of the intensely concentrated solar image for a 1-hour period. To verify thermal-structural durability under the anticipated high-flux, high-temperature loading, an aperture shield test article was constructed and underwent a series of two tests in a large thermal vacuum chamber configured with a reflective, point-focus solar concentrator and a solar simulator. The test article was positioned near the focal plane and exposed to concentrated solar flux for a period of 1-hour. In the first test, a near equilibrium temperature of 1862 K was attained in the center of the shield hot spot. In the second test, with increased incident flux, a near

  3. X-RAY REAL-TIME IMAGING FOR NONDESTRUCTIVE TESTING OF FAST FLUX...

    Office of Scientific and Technical Information (OSTI)

    MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: ...

  4. Historical Review of U.S. Transient Fast Reactor Fuel Testing

    SciTech Connect (OSTI)

    Carmack, William J.; MacLean, Heather J.; Crawford, Douglas C.

    2007-07-01

    Development of fast spectrum nuclear fuels in the United States has been pursued over the course of approximately 30 years including the EBR-I and FERMI reactors and continuing through the early 1990's culminating with the FFTF and the EBR-II Integral Fast Reactor programs. These programs primarily focused on oxide and metallic fuels and the development process provided sufficient evidence for licensing of the 20%Pu-MOX oxide fuel and the ternary U-Pu-Zr metallic alloy. The development of a transuranic, actinide burning fuel system will require significant development including the investigation and testing of the behavior of candidate fuel systems under transient conditions. This paper will review the historical status of both metallic and oxide fuel transient testing completed under previous U.S. fast reactor fuel development programs. (authors)

  5. Full-length U-xPu-10Zr (x=0, 8, 19 wt%) Fast Reactor Fuel Test in FFTF

    SciTech Connect (OSTI)

    D. L. Porter; H.C. Tsai

    2012-08-01

    The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt%) metallic fast reactor test with commercial-length (91.4 cm active fuel column length) conducted to date. With few remaining test reactors there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning of life (BOL) peak cladding temperature of the hottest pin was 608?C, cooling to 522?C at end of life (EOL). Selected fuel pins were examined non destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3 cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ~0.7 X/L axial location along the fuel column. This resulted from a lower production of rare earth fission products higher in the fuel column as well as a much smaller delta-T between fuel center and cladding, and therefore less FCCI, despite the higher cladding temperature. This behavior could

  6. Influence of fast magnetic pulses on the superconducting magnet test facility TOSKA

    SciTech Connect (OSTI)

    Biro, O.; Maurer, W.

    1994-09-01

    An overview is given about the influence of fast magnetic field pulses (up to 40 T/s) on components of the TOSKA magnet test facility at KfK, Karlsruhe. Such fast magnetic field changes occur during the operation of poloidal field coils and accidental plasma disruptions in a Tokamak and also during safety discharges of superconducting magnets. Induced eddy currents in surrounding conductive components can cause some detrimental damage. FEM calculations were performed in order to study the influence on critical components of TOSKA and to identify necessary modifications of the facility. The paper presents the results of these calculations.

  7. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the /sup 240/Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies.

  8. Fast Reactor Technology Preservation

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.

    2008-01-11

    There is renewed worldwide interest in developing and implementing a new generation of advanced fast reactors. International cooperative efforts are underway such as the Global Nuclear Energy Partnership (GNEP). Advanced computer modeling and simulation efforts are a key part of these programs. A recognized and validated set of Benchmark Cases are an essential component of such modeling efforts. Testing documentation developed during the operation of the Fast Flux Test Facility (FFTF) provide the information necessary to develop a very useful set of Benchmark Cases.

  9. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    SciTech Connect (OSTI)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-03-17

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

  10. Failure analysis of beryllium tile assembles following high heat flux testing for the ITER program

    SciTech Connect (OSTI)

    B. C. Odegard, Jr.; C. H. Cadden; N. Y. C. Yang

    2000-05-01

    The following document describes the processing, testing and post-test analysis of two Be-Cu assemblies that have successfully met the heat load requirements for the first wall and dome sections for the ITER (International Thermonuclear Experimental Reactor) fusion reactor. Several different joint assemblies were evaluated in support of a manufacturing technology investigation aimed at diffusion bonding or brazing a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Judicious selection of materials and coatings for these assemblies was essential to eliminate or minimize interactions with the highly reactive beryllium armor material. A thin titanium layer was used as a diffusion barrier to isolate the copper heat sink from the beryllium armor. To reduce residual stresses produced by differences in the expansion coefficients between the beryllium and copper, a compliant layer of aluminum or aluminum-beryllium (AlBeMet-150) was used. Aluminum was chosen because it does not chemically react with, and exhibits limited volubility in, beryllium. Two bonding processes were used to produce the assemblies. The primary process was a diffusion bonding technique. In this case, undesirable metallurgical reactions were minimized by keeping the materials in a solid state throughout the fabrication cycle. The other process employed an aluminum-silicon layer as a brazing filler material. In both cases, a hot isostatic press (HIP) furnace was used in conjunction with vacuum-canned assemblies in order to minimize oxidation and provide sufficient pressure on the assemblies for full metal-to-metal contact and subsequent bonding. The two final assemblies were subjected to a suite of tests including: tensile tests and electron and optical metallography. Finally, high heat flux testing was conducted at the electron beam testing system (EBTS) at Sandia National Laboratories, New Mexico. Here, test mockups were fabricated and subjected to normal heat loads to

  11. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be

  12. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  13. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  14. FAST | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAST v8 Offers New Modeling and Analysis Features FAST v8 Offers New Modeling and Analysis Features May 11, 2016 - 5:34pm Addthis Researchers at NREL recently released version 8.15 of FAST (FAST v8), an open-source, multiphysics engineering software tool used to design and analyze wind turbines. FAST v8 is also an open-source modular platform for creating, testing, and demonstrating new modeling and analysis capabilities. The new features in FAST v8 include: The ability to model advanced

  15. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  16. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  17. Fast and thermal data testing of {sup 233}U critical assemblies

    SciTech Connect (OSTI)

    Wright, R.Q.; Jordan, W.C.; Leal, L.C.

    1999-09-01

    Many sources have been used to obtain {sup 233}U benchmark descriptions. Unfortunately, some of these are not reliable since a thorough and complete benchmark evaluation often has not been done. For 24 yr a principal source for {sup 233}U benchmarks has been the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications. The CSEWG specifications included only two fast benchmarks and three thermal benchmarks. The thermal benchmarks were H{sub 2}O-moderated thorium-oxide exponential lattices. Since the thorium-oxide lattices were exponential experiments, they have not been widely used. CSEWG has also used the {sup 233}U Oak Ridge National Laboratory (ORNL) spheres for many years. One advantage of the CSEWG fast benchmarks, JEZEBEL-23 and FLATTOP-23, is that experiments were done for central-reaction-rate ratios. These reaction-rate ratios provide very valuable information to data testers and evaluators that would not otherwise be available. In recent years the International Handbook of Evaluated Criticality Safety Benchmark Experiments has, in general, been a very useful and reliable source. The Handbook does not include central-reaction-rate ratio experiments, however. A new set of {sup 233}U benchmark experiments has been added to the most recent release of the Handbook, U233-SOL-THERM-004. These are paraffin-reflected cylinders of {sup 233}U uranyl-nitrate solutions. Unfortunately, the estimated benchmark uncertainties are on the order of 0.9 to 1.0% in k{sub eff}. Benchmark testing has been done for some of these U233-SOL-THERM-004 experiments. The authors have also discovered that the benchmark specifications for the Thomas uranyl-nitrate experiments given in Ref. 5 are incorrect. One problem with the Ref. 5 specifications is that the excess acid was not included. As part of this work, the authors developed revised specifications that include an excess acid correlation based on information from the experimental logbook.

  18. OBSERVATIONAL TEST OF STOCHASTIC HEATING IN LOW-{beta} FAST-SOLAR-WIND STREAMS

    SciTech Connect (OSTI)

    Bourouaine, Sofiane; Chandran, Benjamin D. G.

    2013-09-10

    Spacecraft measurements show that protons undergo substantial perpendicular heating during their transit from the Sun to the outer heliosphere. In this paper, we use Helios 2 measurements to investigate whether stochastic heating by low-frequency turbulence is capable of explaining this perpendicular heating. We analyze Helios 2 magnetic field measurements in low-{beta} fast-solar-wind streams between heliocentric distances r = 0.29 AU and r = 0.64 AU to determine the rms amplitude of the fluctuating magnetic field, {delta}B{sub p}, near the proton gyroradius scale {rho}{sub p}. We then evaluate the stochastic heating rate Q{sub stoch} using the measured value of {delta}B{sub p} and a previously published analytical formula for Q{sub stoch}. Using Helios measurements we estimate the ''empirical'' perpendicular heating rate Q{sub Up-Tack emp} = (k{sub B}/m{sub p}) BV (d/dr) (T{sub Up-Tack p}/B) that is needed to explain the T{sub p} profile. We find that Q{sub stoch} {approx} Q{sub emp}, but only if a key dimensionless constant appearing in the formula for Q{sub stoch} lies within a certain range of values. This range is approximately the same throughout the radial interval that we analyze and is consistent with the results of numerical simulations of the stochastic heating of test particles in reduced magnetohydrodynamic turbulence. These results support the hypothesis that stochastic heating accounts for much of the perpendicular proton heating occurring in low-{beta} fast-wind streams.

  19. High heat flux testing of HIP bonded DS-Cu/316SS first wall panel for fusion experimental reactors

    SciTech Connect (OSTI)

    Hatano, Toshihisa; Sato, Kazuyoshi; Dairaku, Masayuki

    1996-12-31

    A shielding blanket design in a fusion reactor such as ITER has been proposed to be a modulator structure integrated with the first wall. In terms of the fabrication, HIP (Hot Isostatic Pressing) method has been proposed for the joining of dispersion strengthened copper (DS-Cu) and type 316L stainless steel (SS316L) at FW. High heat flux tests of HIP bonded DS-Cu/SS316L first wall panel were performed at particle Beam Engineering Facility in JAERI to investigate its thermo-mechanical performance. After four campaigns of high heat flux testing, the FW panel was cut to observe the HIP bonded interface and heated surface of DS-Cu. Though melting of DS-Cu surface was observed, there were no cracks at the HIP bonded interface. 2 refs., 11 figs., 1 tab.

  20. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  1. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  2. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  3. Testing neutrino spectra formation in collapsing stars with the diffuse supernova neutrino flux

    SciTech Connect (OSTI)

    Lunardini, Cecilia

    2007-04-01

    I address the question of what can be learned from the observation of the diffuse supernova neutrino flux in the precision phase, at next generation detectors of Megaton scale. An analytical study of the spectrum of the diffuse flux shows that, above realistic detection thresholds of 10 MeV or higher, the spectrum essentially reflects the exponential-times-polynomial structure of the original neutrino spectrum at the emission point. There is only a weak (tens of percent) dependence on the power {beta} describing the growth of the supernova rate with the redshift. Different original neutrino spectra correspond to large differences in the observed spectrum of events at a water Cherenkov detector: for typical supernova rates, the ratio of the numbers of events in the first and second energy bins (of 5 MeV width) varies in the interval 1.5-4.3 for pure water (energy threshold 18 MeV) and in the range 1-2.5 for water with gadolinium (10 MeV threshold). In the first case, discrimination would be difficult due to the large errors associated with background. With gadolinium, instead, the reduction of the total error down to the 10%-20% level would allow spectral sensitivity, with a dramatic improvement of precision with respect to the SN1987A data. Even in this latter case, for typical neutrino luminosity the dependence on {beta} is below sensitivity, so that it can be safely neglected in data analysis.

  4. Substation voltage upgrading. Volume 2, Substation insulation tests and design for fast front lightning impulses: Final report

    SciTech Connect (OSTI)

    Panek, J.; Elahi, H.; Lux, A.; Imece, A.F.; LaPanse, R.A.; Stewart, J.R.

    1992-04-01

    This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

  5. FAST Code Verification of Scaling Laws for DeepCwind Floating Wind System Tests: Preprint

    SciTech Connect (OSTI)

    Jain, A.; Robertson, A. N.; Jonkman, J. M.; Goupee, A. J.; Kimball, R. W.; Swift, A. H. P.

    2012-04-01

    This paper investigates scaling laws that were adopted for the DeepCwind project for testing three different floating wind systems at 1/50 scale in a wave tank under combined wind and wave loading.

  6. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 5. Neutron measurements. Part 2. External neutron- and gamma flux measurements by sample activation. Section 1

    SciTech Connect (OSTI)

    Biggers, W.A.; Brown, L.J.

    1985-09-01

    The Greenhouse operation consisted of a series of four shots conducted at Eniwetok during the Srping of 1951. The external neutron threshold measurements consisted of the use of good samples to measure integrated thermal neutron fluxes and sulfur, iodine, and zirconium samples to measure fluxes of higher-energy neutrons. The iodine also measured high-energy gamma-ray intensity. Measurements were also made on slow- and fast-neutron intensities as a function of time.

  7. Reusable fuel test assembly for the FFTF

    SciTech Connect (OSTI)

    Pitner, A.L.; Dittmer, J.O.

    1992-03-01

    A fuel test assembly for use in the Fast Flux Test Facility (FFTF) has been developed that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle. This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of different test pin types can be loaded in the reusable test assembly.

  8. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  9. Improvement on the prediction accuracy of transmutation properties for fast reactor core using the minor actinides irradiation test data on the Joyo MK-II CORE

    SciTech Connect (OSTI)

    Sugino, Kazuteru

    2007-07-01

    For a validation of MA nuclear data and improvement on the prediction accuracy of MA transmutation properties in fast reactor cores, MA sample irradiation test data of Joyo were utilized. Adopting MA cross-sections in JENDL-3.3, result of their evaluations showed good agreement with experimental data. Further, the present study clarified that utilization of these data with cross-section adjustment technique has a potential to reduce uncertainty of MA transmutation properties in fast reactor cores to less than half. (author)

  10. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  11. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  12. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Field, Kevin G.; Howard, Richard H.; Yamamoto, Yukinori

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  13. Next Generation Fast RF Interlock Module and ATCA Adapter for ILC High Availability RF Test Station Demonstration

    SciTech Connect (OSTI)

    Larsen, R

    2009-10-17

    High availability interlocks and controls are required for the ILC (International Linear Collider) L-Band high power RF stations. A new F3 (Fast Fault Finder) VME module has been developed to process both fast and slow interlocks using FPGA logic to detect the interlock trip excursions. This combination eliminates the need for separate PLC (Programmable Logic Controller) control of slow interlocks. Modules are chained together to accommodate as many inputs as needed. In the next phase of development the F3's will be ported to the new industry standard ATCA (Advanced Telecom Computing Architecture) crate (shelf) via a specially designed VME adapter module with IPMI (Intelligent Platform Management Interface). The goal is to demonstrate auto-failover and hot-swap for future partially redundant systems.

  14. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    SciTech Connect (OSTI)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  15. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fast ignition Fast Ignition Researchers Study Fast Ignition University of California at San Diego researchers participate in experiments on the Titan laser at LLNL's Jupiter Laser Facility to study fast ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies on simultaneous compression and ignition of a spherical fuel capsule in an implosion, roughly like in a diesel

  16. FFTF thermal-hydraulic testing results affecting piping and vessel component design in LMFBR's

    SciTech Connect (OSTI)

    Stover, R.L.; Beaver, T.R.; Chang, S.C.

    1983-01-01

    The Fast Flux Test Facility completed four years of pre-operational testing in April 1982. This paper describes thermal-hydraulic testing results from this period which impact piping and vessel component design in LMFBRs. Data discussed are piping flow oscillations, piping thermal stratification and vessel upper plenum stratification. Results from testing verified that plant design limits were met.

  17. SU-E-T-563: A Fast and Quantative Picket-Fence Test of a Submillimeter Patient Positioning System for Stereotactic Radiosurgery

    SciTech Connect (OSTI)

    Ma, L; Perez-Andujar, A; Chiu, J; McGuinness, C

    2014-06-01

    Purpose: Picket-fence test is a qualitative TG142-recommended quality assurance (QA) test for multileaf collimators. In study, we adopted the same concept and developed a fast but quantatitive QA test for an automatic patient positioning system that requires submilleter accuracy for a radiosurgical treatment. Methods: A piece of radiochromic film was first placed inside a spherical solid water phantom and then irradiated with a sequenence of linearly placed shots of same collimator size (e.g. 4-mm) via the Leskell Gamma Knife Perfexion system (PFX). The shots were positioned with either equal or non-equal gaps of approximately 4 mm to 8 mm depending on the location of the region of interest. A pattern recognization program was developed and then applied to measure the gap spacing between two adjacent shots. The measured distance was then compared with the initial preset values for the test. Results: By introducing variable systematic and random shifts of 0.1 mm to 0.5 mm to the shot sequence, the maximum gap variation from the described test was found to be 0.35 mm or less. On average the positioning uncertainty for the PFX delivery system was found to be 0.10.2 mm. No significant difference in the positioning uncertainty was noted for the centrally aligned shot sequence locations versus the peripherally aligned shot sequence locations. Conclusion: A new quantitative picket-fence type test was developed and demonstrated for routine QA of the submillimeter PFX patient positioning sytem. This test also enables independent verification of any patient-specific shot positioning for a critical treatment such as a tumor in brainstem. Dr Ma is currently on the board of international society of stereotactic Radiosurgery.

  18. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  19. RELAP5/MOD3 Analysis of Transient Steam-Generator Behavior During Turbine Trip Test of a Prototype Fast Breeder Reactor MONJU

    SciTech Connect (OSTI)

    Yoshihisa Shindo; Hiroshi Endo; Tomoko Ishizu; Kazuo Haga

    2006-07-01

    In order to develop a thermal-hydraulic model of the steam-generator (SG) to simulate transient phenomena in the sodium cooled fast breeder reactor (FBR) MONJU, Japan Nuclear Energy Safety Organization (JNES) verified the SG model using the RELAP5/MOD3 code against the results of the turbine trip test at a 40% power load of MONJU. The modeling by using RELAP5 was considered to explain the significant observed behaviors of the pressure and the temperature of the EV steam outlet, and the temperature of water supply distributing piping till 600 seconds after the turbine trip. The analysis results of these behaviors showed good agreement with the test results based on results of parameter study as the blow efficiency (release coef.) and heat transferred from the helical coil region to the down-comer (temperature heating down-comer tubes). It was found that the RELAP5/MOD3 code with a two-fluids model can predict well the physical situation: the gas-phase of steam generated by the decompression boiling moves upward in the down-comer tubes accompanied by the enthalpy increase of the water supply chambers; and that the pressure change of a 'shoulder' like shape is induced by the mass balance between the steam mass generated in the down-comer tubes and the steam mass blown from the SG. The applicability of RELAP5/MOD3 to SG modeling was confirmed by simulating the actual FBR system. (authors)

  20. Fast valve

    DOE Patents [OSTI]

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  1. Fast valve

    DOE Patents [OSTI]

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  2. Irradiation data for the MFA-1 and MFA-2 tests in the FFTF

    SciTech Connect (OSTI)

    Nelson, J.V.

    1997-04-24

    This report provides key information on the irradiation environment of the MONJU fuel tests MFA-1 and MFA-2 in the Fast Flux Test Facility (FFTF). This information includes the fission powers, neutron fluxes, sodium temperatures and sodium flow rates in MFA-I, MFA-2 and adjacent assemblies. It also includes MFA-1 and MFA-2 compositions as a function of exposure. The work was performed at the request of Power Reactor and Nuclear Fuels Corporation (PNC) of Japan.

  3. High Temperature Ultrasonic Transducers for In-Service Inspection of Liquid Metal Fast Reactors

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.; Jones, Anthony M.; Bond, Leonard J.

    2011-12-31

    In-service inspection of liquid metal (sodium) fast reactors requires the use of ultrasonic transducers capable of operating at high temperatures (>200°C), high gamma radiation fields, and the chemically reactive liquid sodium environment. In the early- to mid-1970s, the U.S. Atomic Energy Commission supported development of high-temperature, submersible single-element transducers, used for scanning and under-sodium imaging in the Fast Flux Test Facility and the Clinch River Breeder Reactor. Current work is building on this technology to develop the next generation of high-temperature linear ultrasonic transducer arrays for under-sodium viewing and in-service inspections.

  4. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  5. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities Cold Test Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  6. Instrumentation, Monitoring and NDE for New Fast Reactors

    SciTech Connect (OSTI)

    Bond, Leonard J.; Doctor, Steven R.; Bunch, Kyle J.; Good, Morris S.; Waltar, Alan E.

    2007-07-28

    The Global Nuclear Energy Partnership (GNEP) has been proposed as a viable system in which to close the fuel cycle in a manner consistent with markedly expanding the global role of nuclear power while significantly reducing proliferation risks. A key part of this system relies on the development of actinide transmutation, which can only be effectively accomplished in a fast-spectrum reactor. The fundamental physics for fast reactors is well established. However, to achieve higher standards of safety and reliability, operate with longer intervals between outages, and achieve high operating capacity factors, new instrumentation and on-line monitoring capabilities will be required--during both fabrication and operation. Since the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor – II (EBR-II) reactors were operational in the USA, there have been major advances in instrumentation, not the least being the move to digital systems. Some specific capabilities have been developed outside the USA, but new or at least re-established capabilities will be required. In many cases the only available information is in reports and papers. New and improved sensors and instrumentation will be required. Advanced instrumentation has been developed for high-temperature/high-flux conditions in some cases, but most of the original researchers and manufacturers are retired or no longer in business.

  7. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  8. Pulse flux measuring device

    DOE Patents [OSTI]

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  9. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  10. AVTA: Bidirectional Fast Charging Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  11. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  12. Removal of Retired Alkali Metal Test Systems

    SciTech Connect (OSTI)

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  13. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  14. Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Timothy A. Hyde

    2012-06-01

    The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

  15. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  16. DC Fast Charge Impacts on Battery Life and Vehicle Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing AVTA: 2011 Honda CRZ HEV Testing Results AVTA: 2011 ...

  17. LCLS Spectral Flux Viewer

    Energy Science and Technology Software Center (OSTI)

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  18. PHOTOSPHERIC FLUX CANCELLATION AND THE BUILD-UP OF SIGMOIDAL FLUX ROPES ON THE SUN

    SciTech Connect (OSTI)

    Savcheva, A. S.; Van Ballegooijen, A. A.; DeLuca, E. E.; Green, L. M.

    2012-11-10

    In this study we explore the scenario of photospheric flux cancellation being the primary formation mechanism of sigmoidal flux ropes in decaying active regions. We analyze magnetogram and X-ray observations together with data-driven non-linear force-free field (NLFFF) models of observed sigmoidal regions to test this idea. We measure the total and canceled fluxes in the regions from MDI magnetograms, as well as the axial and poloidal flux content of the modeled NLFFF flux ropes for three sigmoids-2007 February, 2007 December, and 2010 February. We infer that the sum of the poloidal and axial flux in the flux ropes for most models amounts to about 60%-70% of the canceled flux and 30%-50% of the total flux in the regions. The flux measurements and the analysis of the magnetic field structure show that the sigmoids first develop a strong axial field manifested as a sheared arcade and then, as flux cancellation proceeds, form long S-shaped field lines that contribute to the poloidal flux. In addition, the dips in the S-shaped field lines are located at the sites of flux cancellation that have been identified from the MDI magnetograms. We find that the line-of-sight-integrated free energy is also concentrated at these locations for all three regions, which can be liberated in the process of eruption. Flare-associated brightenings and flare loops coincide with the location of the X-line topology that develops at the site of most vigorous flux cancellation.

  19. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  20. Collisional effects on the generation of fast electrons in fast ignition scheme

    SciTech Connect (OSTI)

    Wang Weiwu; Cai Hongbo; Jia Qing; Zhu Shaoping

    2013-01-15

    The effects of collision on the generation and transportation of fast electrons produced by ultra-intense laser pulse in overdense plasma for densities ranging from below to 400 times critical density are investigated by collisional particle-in-cell code. It is found that a relatively stable state of fast electron energy flux exists in the simulations, where collision contributes to increasing the production of fast electrons. The unexpected increase of production is attributed to the efficient local heating of the thermal electrons, which results in higher thermal pressure and less steepened interface. Therefore, fast electrons can be effectively accelerated through 2{omega} oscillation from J Multiplication-Sign B force in the collisional case, while it is suppressed in the collisionless case because of the highly steepened plasma density. The collisional effects on the transportation of fast electrons in the solid target are also discussed.

  1. HIGS Flux Performance Projection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIGS flux performance table for high-flux, quasi-CW operation, DFELL/TUNL, Nov. 9, 2010 (Version 2.3). HIGS Flux Performance Projection (2010 - 2011) Total Flux [g/s] CW Operation Two-Bunch (*) Collimated Flux (∆E γ /E γ = 5% FWHM) (#), (@) FEL λ [nm] Comment No-loss Mode : < 20 MeV Linear Pol. with OK-4 Circular Pol with OK-5 E γ = 1 - 2 MeV (E e = 237 - 336 MeV) 1 x 10 8 - 4 x 10 8 6 x 10 6 - 2.4 x 10 7 1064 Linear and Circular (a), (b) E γ = 2 - 2.9 MeV (E e = 336 - 405 MeV) 4 x 10

  2. A Code to Produce Cell Averaged Cross Sections for Fast Critical Assemblies and Fast Power Reactors.

    Energy Science and Technology Software Center (OSTI)

    1987-05-14

    Version 00 SLAROM solves the neutron integral transport equations to determine the flux distribution and spectra in a fast reactor lattice and calculates cell averaged effective cross sections. The code uses multigroup data of the type in DLC-111/JFS that use Bondarenko factors for resonance effects.

  3. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  4. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRCs current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols

  5. Notice of Intent to Prepare an Environmental Impact Statement for the Decommissioning of the Fast Flux Test Facility at the Hanford Site, Richland, WA (DOE/EIS-0364) (08/13/04)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    76 Federal Register / Vol. 69, No. 156 / Friday, August 13, 2004 / Notices Houston Ship Channel (Mile -3) to SH 146 (Mile 11.4); (2) Deepening and widening the channel from Mile 3 to Mile 11.4 to match the currently maintained channel from the Houston Ship Channel to Mile 3 (10 ft deep and 100 ft wide); (3) Deepening the channel to 9 feet from Mile 3 to Mile 11.4; (4) Eliminating a series of tight bends known as the Devil's Elbow by dredging a new channel (Devil's Elbow Cutoff) to the north of

  6. ARM - Measurement - Actinic flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Actinic flux The quantity of light in the atmosphere available to molecules at a...

  7. FastForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FastForward CAL Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Exascale Computing » FastForward FastForward The FastForward program complements the DesignForward program and focused on co-design efforts between DOE centers and vendors with the goal of improving processor, memory, storage and I/O technologies. Furthermore, these improvements should be aimed at maximizing energy efficiency and concurrency while increasing performance, productivity, and reliability.

  8. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    SciTech Connect (OSTI)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  9. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect (OSTI)

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  10. ENGINEERING TEST REACTOR

    DOE Patents [OSTI]

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  11. On fast reactor kinetics studies

    SciTech Connect (OSTI)

    Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.

    2012-07-01

    The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

  12. Quantum flux parametron

    SciTech Connect (OSTI)

    Hioe, W. ); Goto, E. )

    1991-01-01

    The quantum flux parametron (QFP) is an offspring of the parametron, an early flux-based logic device, and the Josephson junction. It is a single flux quantum device that works completely in the superconductive mode. While it has the speed of other Josephson devices that work on switching between the voltage and superconductive modes, its power is about one thousand times less. Hence, it promises to be an attractive alternative to both transistors and other Josephson devices. This book reports the latest research results on QFP applications as a logic device. In particular, a number of auxiliary circuits and a new logic gate are proposed for improving the device margin. Samples of these circuits and logic gate have been fabricated.

  13. Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER

    SciTech Connect (OSTI)

    Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R; Combs, Stephen Kirk; Ericson, Milton Nance; Ezell, N Dianne Bull; Meitner, S. J.; Rasmussen, David A; Warmack, Robert J Bruce; Maruyama, So; Kiss, Gabor

    2015-01-01

    Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supply have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.

  14. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  15. fast-matmul

    SciTech Connect (OSTI)

    Grey Ballard, Austin Benson

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  16. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  17. Irradiation data for the MFA-1 and MFA-2 tests during FFTF cycles 10A and 10B

    SciTech Connect (OSTI)

    Nelson, J.V.

    1996-10-30

    This report provides key information on the irradiation environment of the MONJU fuel test MFA-1 and MFA-2 in the Fast Flux Test Facility (FFTF) during operating cycles 10A and 10B.This information includes the fission powers, neutron fluxes, sodium temperatures and sodium flow rates in MFA-1, MFA-2, and adjacent assemblies. It also includes MFA-1 and MFA-2 compositions as a function of exposure during cycles 10A and 10B. The work was performed at the request of Power Reactor and Nuclear Fuels (PNC) of Japan.

  18. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  19. fastKDE

    SciTech Connect (OSTI)

    O'Brien, Travis A.; Kashinath, Karthik

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  20. NEUTRON FLUX INTENSITY DETECTION

    DOE Patents [OSTI]

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  1. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect (OSTI)

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  2. ARM - Measurement - Sensible heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time ...

  3. ARM - Measurement - Latent heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time ...

  4. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  5. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  6. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  7. fast-matmul

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less

  8. High flux reactor

    DOE Patents [OSTI]

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  9. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Smith, H. M.; Marsch, E. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Helander, P., E-mail: hakan.smith@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2012-07-01

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  10. Interim status report on lead-cooled fast reactor (LFR) research and development.

    SciTech Connect (OSTI)

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.; Smith, C. F.; de Caro, M.; Halsey, W. G.; Li, N.; Hosemann, P.; Zhang, J.; Bolind, A.; LLNL; LANL; Univ. of Illinois

    2008-03-31

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigation of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup

  11. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  12. Evaluation of a Heat Flux Sensor for Spray Cooling for the Die Casting Processes

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wu, Zhuoxi

    2007-02-01

    During the die casting process, lubricants are sprayed in order to cool the dies and facilitate the ejection of the casting. In this paper, a new technique for measuring the heat flux during lubricant application is evaluated. Data from experiments conducted using water spray are first presented. Water spray experiments were conducted for different initial plate temperatures. Measurements were conducted for the application of two different lubricants, of dilution ratios of 1/15 and 1/50 of lubricant in water. The measurement uncertainties were documented. The results show that the surface temperature decreases initially very fast. Numerical simulation results confirmed that the abrupt temperature drop is not an artifact but illustrates the thermal shock experienced by the dies during the initial stages of lubricant application. The lubricant experiments show that the sensor can be successfully used for testing die lubricants with typical dilution ratios encountered in the die casting process.

  13. Irradiation Environment of the Materials Test Station

    SciTech Connect (OSTI)

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  14. Real Time Flux Control in PM Motors

    SciTech Connect (OSTI)

    Otaduy, P.J.

    2005-09-27

    trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  15. HOMOLOGOUS FLUX ROPES OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Li, Ting; Zhang, Jun E-mail: zjun@nao.cas.cn

    2013-12-01

    We present the first Solar Dynamics Observatory observations of four homologous flux ropes in the active region (AR) 11745 on 2013 May 20-22. The four flux ropes are all above the neutral line of the AR, with endpoints anchoring at the same region, and have a generally similar morphology. The first three flux ropes rose with a velocity of less than 30km s{sup 1} after their appearance, and subsequently their intensities at 131 decreased and the flux ropes became obscure. The fourth flux rope erupted last, with a speed of about 130km s{sup 1} and formed a coronal mass ejection (CME). The associated filament showed an obvious anti-clockwise twist motion at the initial stage, and the twist was estimated at 4?. This indicates that kink instability possibly triggers the early rise of the fourth flux rope. The activated filament material was spatially within the flux rope and showed consistent evolution in the early stages. Our findings provide new clues for understanding the characteristics of flux ropes. Firstly, multiple flux ropes are successively formed at the same location during an AR evolution process. Secondly, a slow-rise flux rope does not necessarily result in a CME, and a fast-eruption flux rope does result in a CME.

  16. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsFast Analysis and Simulation Team content top Fast Analysis and Simulation Team

  17. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2)more » and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flash blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.« less

  18. Flux growth utilizing the reaction between flux and crucible

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  19. Fast Magnetic Reconnection in Laser-Produced Plasma Bubbles

    SciTech Connect (OSTI)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2011-05-27

    Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pileup at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.

  20. Impact of Transmutation Issues on Interpretation of Data Obtained From Fast Reactor Irradiation Experiments

    SciTech Connect (OSTI)

    Greenwood, Lawrence R.; Garner, Francis A.

    2004-04-15

    The subject of fission-fusion correlation is usually cast in terms of reactor-to-reactor differences, but recently the fusion community has become aware of the impact of differences within a given surrogate facility, especially in constant time experiments when different dose levels are attained in different positions of one reactor. For some materials, it is not safe to assume that in-reactor spectral variations are small and of no consequence. This point is illustrated using calculations for fusion-relevant materials that were irradiated in the Fast Flux Test Facility – Materials Open Test Assembly (FFTF-MOTA) over a wide range of in-core and out of core positions spanning more than two orders of magnitude in dpa rate. It is shown that although both the neutron spectrum and flux changes, the spectral effectiveness factor, dpa/10(22) superscript n/cm(2) superscript (E > 0.1 MeV), remains remarkably constant over this range. The transmutation rate per dpa varies strongly with reactor position, however.

  1. Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas

    SciTech Connect (OSTI)

    Rax, J. M.; Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2015-09-15

    The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.

  2. 70 Group Neutron Fast Reactor Cross Section Set and 25 Group Neutron Fast Reactor Cross Section Set.

    Energy Science and Technology Software Center (OSTI)

    1984-10-29

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  3. Metal fuel test program in the FFTF

    SciTech Connect (OSTI)

    Pitner, A.L.; Baker, R.B. )

    1992-01-01

    Aggressive irradiation testing of metal-fuel assemblies containing long fuel pins has been successfully conducted in the Fast Flux Test Facility (FFTF), and no cladding breaches have been observed up to burnups approaching 150 MWd/kg M. In-reactor measurements of performance indicate good behavior. Postirradiation examinations (under way and future) will characterize fuel and sodium bond performance, cladding strain behavior, fuel/cladding mechanical interaction, and other irradiation performance attributes. With continued FFTF operation, ultimate burnup capabilities and the breach mode in long metal-fuel pins will be determined. These results support the design development of the IFR fuel system, the design of the ALMR, and provide a potential advanced driver fuel design for the FFTF.

  4. ARM - Measurement - Soil moisture flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  5. Design of a Modular E-Core Flux Concentrating Axial Flux Machine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design of a Modular E-Core Flux Concentrating Axial Flux Machine Preprint Tausif Husain, 1 ... Design of a Modular E-Core Flux Concentrating Axial Flux Machine Tausif Husain (1) Yilmaz ...

  6. Heat flux characteristics in an atmospheric double arc argon plasma jet

    SciTech Connect (OSTI)

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-10-13

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions.

  7. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect (OSTI)

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  8. Method of fission heat flux determination from experimental data

    DOE Patents [OSTI]

    Paxton, Frank A.

    1999-01-01

    A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

  9. An analysis of the influence of impurities on fast particle attenuation and on fast ion spectral shape in LHD

    SciTech Connect (OSTI)

    Veshchev, Evgeny A.; Goncharov, Pavel R.; Ozaki, Tetsuo; Sudo, Shigeru

    2008-10-15

    Neutral particle fluxes measured by neutral particle analyzers can provide information about the ion temperature as well as the non-Maxwellian anisotropic ion distribution tails from neutral beam injection and ion cyclotron radio frequency heating. In the case of multidirectional diagnostics employing high resolution atomic energy spectrometers, the neutral atomic flux source is not localized in contrast to pellet charge exchange or diagnostic neutral beam methods. The correct interpretation of such measurements from plasma in a complex toroidally asymmetric geometry, like that of LHD, requires careful numerical modeling of the neutral flux formation. Previously a measured neutral flux calculation scheme was developed and was used for the LHD geometry and a suitable analytic expression for ionization cross sections {sigma}{sub s}{sup (z)}(E,n{sub e},T{sub e},Z{sub eff}) of impurities was formulated by Janev et al. [Nucl. Fusion 29, 2125 (1989)]. In this paper, the attenuation of fast particles by impurities is incorporated into the neutral flux calculation scheme and the influence of impurities on the calculated neutral flux spectra is shown. Finally, the behavior of the calculated and experimental suprathermal particle distributions is compared for pure hydrogen and for argon impurity seeded plasmas.

  10. AmeriFlux US-Sta Saratoga

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ewers, Brent [University of Wyoming; Pendall, Elise [University of Wyoming

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Sta Saratoga. Site Description - Sagebrush steppe ecosystem

  11. AmeriFlux US-Wdn Walden

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ewers, Brent [University of Wyoming; Pendall, Elise [University of Wyoming

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wdn Walden. Site Description - Sagebrush steppe ecosystem

  12. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  13. Fast Ignitor coupling physics

    SciTech Connect (OSTI)

    Mason, R.J.; Tabak, M.

    1997-10-01

    The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or finding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship.

  14. Simplified fast neutron dosimeter

    DOE Patents [OSTI]

    Sohrabi, Mehdi

    1979-01-01

    Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.

  15. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  16. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  17. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  18. Materials Compatibility and Aging for Flux and Cleaner Combinations.

    SciTech Connect (OSTI)

    Archuleta, Kim; Piatt, Rochelle

    2015-01-01

    A materials study of high reliability electronics cleaning is presented here. In Phase 1, mixed type substrates underwent a condensed contaminants application to view a worst- case scenario for unremoved flux with cleaning agent residue for parts in a silicone oil filled environment. In Phase 2, fluxes applied to copper coupons and to printed wiring boards underwent gentle cleaning then accelerated aging in air at 65% humidity and 30 O C. Both sets were aged for 4 weeks. Contaminants were no-clean (ORL0), water soluble (ORH1 liquid and ORH0 paste), and rosin (RMA; ROL0) fluxes. Defluxing agents were water, solvents, and engineered aqueous defluxers. In the first phase, coupons had flux applied and heated, then were placed in vials of oil with a small amount of cleaning agent and additional coupons. In the second phase, pairs of copper coupons and PWB were hand soldered by application of each flux, using tin-lead solder in a strip across the coupon or a set of test components on the PWB. One of each pair was cleaned in each cleaning agent, the first with a typical clean, and the second with a brief clean. Ionic contamination residue was measured before accelerated aging. After aging, substrates were removed and a visual record of coupon damage made, from which a subjective rank was applied for comparison between the various flux and defluxer combinations; more corrosion equated to higher rank. The ORH1 water soluble flux resulted in the highest ranking in both phases, the RMA flux the least. For the first phase, in which flux and defluxer remained on coupons, the aqueous defluxers led to worse corrosion. The vapor phase cleaning agents resulted in the highest ranking in the second phase, in which there was no physical cleaning. Further study of cleaning and rinsing parameters will be required.

  19. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Tomoyuki Uwaba; Masahiro Ito; Kozo Katsuyama; Bruce J. Makenas; David W. Wootan; Jon Carmack

    2011-05-01

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39 × 1026 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  20. Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

    SciTech Connect (OSTI)

    Uwaba, Tomoyuki; Ito, Masahiro; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, Bruce J.; Wootan, David W.; Carmack, Jon

    2011-06-16

    The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence (E > 0.1 MeV) of about 39E26 n/m2 as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

  1. Fast Resistive Bolometry

    SciTech Connect (OSTI)

    Deeney, C.; Fehl, D.L.; Hanson, D.L.; Keltner, N.R.; McGurn, J.S.; McKenney, J.L.; Spielman, R.B.

    1999-02-01

    Resistive bolometry is an accurate, robust, spectrally broadband technique for measuring absolute x-ray fluence and flux. Bolometry is an independent technique for x-ray measurements that is based on a different set of physical properties than other diagnostics such as x-ray diodes, photoconducting detectors, and P-I-N diodes. Bolometers use the temperature-driven change in element resistivity to determine the total deposited energy. The calibration of such a device is based on fundamental material properties and its physical dimensions. We describe the use of nickel and gold bolometers to measure x rays generated by high-power z pinches on Sandia's Saturn and Z accelerators. The Sandia bolometer design described herein has a pulse response of {approximately}1 ns. We describe in detail the fabrication, fielding, and data analysis issues leading to highly accurate x-ray measurements. The fundamental accuracy of resistive bolometry will be discussed.

  2. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  3. ARM - Measurement - Soil heat flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  4. Beta ray flux measuring device

    DOE Patents [OSTI]

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  5. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  6. FAST NEUTRON SPECTROMETER

    DOE Patents [OSTI]

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  7. FAST ACTING CURRENT SWITCH

    DOE Patents [OSTI]

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  8. FAST OPENING SWITCH

    DOE Patents [OSTI]

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  9. Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna

    SciTech Connect (OSTI)

    Perkins, Roy

    2013-06-21

    Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

  10. Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives

    Broader source: Energy.gov [DOE]

    A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

  11. Continuous Evaluation of Fast Processes...

    Office of Scientific and Technical Information (OSTI)

    FASTER project Continuous Evaluation of Fast Processes in Climate Models Using Arm ... development and evaluation of convection and cloud parameterizations in climate models. ...

  12. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  13. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  14. Effect of the electric field pattern on the generation of fast electrons in front of lower hybrid launchers

    SciTech Connect (OSTI)

    Valade, Laurent Ekedahl, Annika; Colas, Laurent; Goniche, Marc; Hillairet, Julien; Fuchs, Vladimir; Petrzilka, Vaclav; Li, Miaohui; Zhang, Bin

    2015-12-10

    The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be the consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)

  15. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    SciTech Connect (OSTI)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  16. Solderability test system

    DOE Patents [OSTI]

    Yost, Fred; Hosking, Floyd M.; Jellison, James L.; Short, Bruce; Giversen, Terri; Reed, Jimmy R.

    1998-01-01

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time.

  17. Solderability test system

    DOE Patents [OSTI]

    Yost, F.; Hosking, F.M.; Jellison, J.L.; Short, B.; Giversen, T.; Reed, J.R.

    1998-10-27

    A new test method to quantify capillary flow solderability on a printed wiring board surface finish. The test is based on solder flow from a pad onto narrow strips or lines. A test procedure and video image analysis technique were developed for conducting the test and evaluating the data. Feasibility tests revealed that the wetted distance was sensitive to the ratio of pad radius to line width (l/r), solder volume, and flux predry time. 11 figs.

  18. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N.; Goods, Steven Howard; Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  19. Fast sampling calorimetry with solid argon ionization chambers

    SciTech Connect (OSTI)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-12-31

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed.

  20. DC Fast Charge Impacts on Battery Life and Vehicle Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy DC Fast Charge Impacts on Battery Life and Vehicle Performance DC Fast Charge Impacts on Battery Life and Vehicle Performance 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss113_francfort_2013_o.pdf (1.71 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing AVTA: 2011 Honda CRZ HEV Testing

  1. Vertical transport and sources in flux models

    SciTech Connect (OSTI)

    Canavan, G.H.

    1997-01-01

    Vertical transport in flux models in examined and shown to reproduce expected limits for densities and fluxes. Disparities with catalog distributions are derived and inverted to find the sources required to rectify them.

  2. Updated flux information for neutron scattering and irradiation facilities at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Sengupta, S.; Greenwood, L.R.; Farrell, K.

    1997-08-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. While most reactors attempt to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9, used for neutron scattering and capture reactions, supporting physics, chemistry and biology experiments. All horizontal beam tubes were built tangential to the direction of the emerging neutrons, except for the H-2 beam tube, which looks directly at the core and has been used for neutron cross section measurements utilizing fast neutrons and for the TRISTAN fission product studies. In recent years, there have been some beam modifications and new instrumentation introduced at the HFBR. A high resolution neutron powder diffractometer instrument is now operating with a resolution of 5 {times} 10{sup {minus}4} at horizontal beam line H-1. To study scattering from liquid surfaces, a neutron reflection spectrometer was introduced on the CNF beam line at H-9. In the past year, a fourth beam line has been added to the CNF line at H-9. The existing beam plug at the H-6 beam line has recently been removed and a new plug, which will feature super mirrored surfaces, is now being installed. Last year, the vertical beam thimble, V-13, a fixed port filled with thirty year old samples used for HFBR material surveillance studies was replaced by a new thimble and charging station at the core edge creating an irradiation facility to substitute for the original V-13. A neutron dosimetry program has begun to measure and calculate the energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  3. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect (OSTI)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  4. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect (OSTI)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  5. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect (OSTI)

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  6. High-flux solar photon processes

    SciTech Connect (OSTI)

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  7. Apparatus for measuring a flux of neutrons

    DOE Patents [OSTI]

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  8. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  9. Vaporization, dispersion, and radiant fluxes from LPG spills. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools 25, 100, 400, and 1600 ft/sup 2/ in area. A Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes; the maximum effective flux emitted at the flame surface was about 50,000 Btu/h-ft/sup 2/. A few tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  10. FAST MAGNETIC RECONNECTION AND SPONTANEOUS STOCHASTICITY

    SciTech Connect (OSTI)

    Eyink, Gregory L.; Lazarian, A.; Vishniac, E. T.

    2011-12-10

    Magnetic field lines in astrophysical plasmas are expected to be frozen-in at scales larger than the ion gyroradius. The rapid reconnection of magnetic-flux structures with dimensions vastly larger than the gyroradius requires a breakdown in the standard Alfven flux-freezing law. We attribute this breakdown to ubiquitous MHD plasma turbulence with power-law scaling ranges of velocity and magnetic energy spectra. Lagrangian particle trajectories in such environments become 'spontaneously stochastic', so that infinitely many magnetic field lines are advected to each point and must be averaged to obtain the resultant magnetic field. The relative distance between initial magnetic field lines which arrive at the same final point depends upon the properties of two-particle turbulent dispersion. We develop predictions based on the phenomenological Goldreich and Sridhar theory of strong MHD turbulence and on weak MHD turbulence theory. We recover the predictions of the Lazarian and Vishniac theory for the reconnection rate of large-scale magnetic structures. Lazarian and Vishniac also invoked 'spontaneous stochasticity', but of the field lines rather than of the Lagrangian trajectories. More recent theories of fast magnetic reconnection appeal to microscopic plasma processes that lead to additional terms in the generalized Ohm's law, such as the collisionless Hall term. We estimate quantitatively the effect of such processes on the inertial-range turbulence dynamics and find them to be negligible in most astrophysical environments. For example, the predictions of the Lazarian and Vishniac theory are unchanged in Hall MHD turbulence with an extended inertial range, whenever the ion skin depth {delta}{sub i} is much smaller than the turbulent integral length or injection-scale L{sub i} .

  11. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    SciTech Connect (OSTI)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.

  12. Catalytic fast pyrolysis of lignocellulosic biomass (Journal...

    Office of Scientific and Technical Information (OSTI)

    Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass ...

  13. Category:Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Gas Flux Sampling page? For detailed information on Gas Flux...

  14. Production EVSE Fact Sheet: DC Fast Charger: Hasetec

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ProGrAM Production EVSE Fact Sheet: DC Fast Charger: Hasetec Specifcations Grid connection Hardwired Connector type CHAdeMo Approximate size (H x W x D inches) 38 x 69 x 21 Charge level DC Fast Charge Input voltage 480 VAC - 3 Phase Isolation Transformer 1 75 kVA Maximum input current 2 120 Amp Test Conditions Test date 10/23/2012 Supply frequency (Hz) 60 Initial ambient temperature (°F) 85 Vehicle Charged Make and model 2011 Nissan Leaf Battery type Li-ion Initial Leaf ESS State of Charge 3 9%

  15. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    SciTech Connect (OSTI)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  16. IN-CORE FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY.

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois VIllard

    2014-12-01

    As part of an Idaho State University (ISU)–led Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) collaborative project that includes Idaho National Laboratory (INL) and the French Alternative Energies and Atomic Energy Commission (CEA), flux detector evaluations were completed to compare their accuracy, response time, and longduration performance. Special fixturing, developed by INL, allows real-time flux detectors to be inserted into various Advanced Test Reactor Critical Facility (ATRC) core positions to perform lobe power measurements, axial flux profile measurements, and detector crosscalibrations. Detectors initially evaluated in this program included miniature fission chambers, specialized self-powered neutron detectors (SPNDs), and specially developed commercial SPNDs. Results from this program provide important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and yield new flux data required for benchmarking models in the ATR Life Extension Program (LEP) Modeling Update Project.

  17. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect (OSTI)

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  18. Progress reports for Gen IV sodium fast reactor activities FY 2007.

    SciTech Connect (OSTI)

    Cahalan, J. E.; Tentner, A. M.; Nuclear Engineering Division

    2007-10-04

    for prevention of progression into severe accident conditions (prevention of core melting) or for mitigation of severe accident consequences (mitigation of the impact of core melting to protect public health and safety). Because design measures for severe accident prevention and mitigation are beyond the normal design basis, established regulatory guidelines and codes do not provide explicit identification of the design performance requirements for severe accident accommodation. The treatment of severe accidents is one of the key issues of R&D plans for the Gen IV systems in general, and for the Sodium Fast Reactor (SFR) in particular. Despite the lack of an unambiguous definition of safety approach applicable for severe accidents, there is an emerging consensus on the need for their consideration for the design. The US SFR program and Argonne National Laboratory (ANL) in particular have actively studied the potential scenarios and consequences of Hypothetical Core Disruptive Accidents (HCDA) for SFRs with oxide fuel during the Fast Flux Test Facility (FFTF) and Clinch River Breeder Reactor Plant (CRBRP) programs in the 70s and 80s. Later, the focus of the US SFR safety R&D activities shifted to the prevention of all HCDAs through passive safety features of the SFRs with metal fuel in the Integral Fast Reactor (IFR) program, and the study of severe accident consequences was de-emphasized. The goal of this paper is to provide an overview of the current SFR safety approach and the role of severe accidents in Japan and France, in preparation for an expected and more active collaboration in this area between the US, Japan, and France.

  19. ATRC Neutron Detector Testing Quick Look Report

    SciTech Connect (OSTI)

    Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe

    2013-08-01

    As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activation spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for

  20. DOE Research and Development Accomplishments: Fast Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE R&D Accomplishments: Fast Facts (also on YouTube) transcript

  1. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  2. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect (OSTI)

    Mumford, S. J.; Fedun, V.; Erdlyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above ? = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvn modes (?60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  3. Determining heat fluxes from temperature measurements made in massive walls

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.

    1980-01-01

    A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

  4. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  5. Fast electron generation and transport in a turbulent, magnetized plasma

    SciTech Connect (OSTI)

    Stoneking, W.R.

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 {times} 10{sup 6} m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 {times} 10{sup 11} cm{sup {minus}3} independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a{approximately}0.9, but rises the level of the expected total particle losses inside r/a{approximately}0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST.

  6. Fluxing agent for metal cast joining

    DOE Patents [OSTI]

    Gunkel, Ronald W.; Podey, Larry L.; Meyer, Thomas N.

    2002-11-05

    A method of joining an aluminum cast member to an aluminum component. The method includes the steps of coating a surface of an aluminum component with flux comprising cesium fluoride, placing the flux coated component in a mold, filling the mold with molten aluminum alloy, and allowing the molten aluminum alloy to solidify thereby joining a cast member to the aluminum component. The flux preferably includes aluminum fluoride and alumina. A particularly preferred flux includes about 60 wt. % CsF, about 30 wt. % AlF.sub.3, and about 10 wt. % Al.sub.2 O.sub.3.

  7. Enhanced Model for Fast Ignition

    SciTech Connect (OSTI)

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  8. Influence of Arctic cloud thermodynamic phase on surface shortwave flux

    SciTech Connect (OSTI)

    Lubin, D.; Vogelmann, A.

    2010-03-15

    As part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) an Analytical Spectral Devices (ASD, Inc.) spectroradiometer was deployed at the Barrow NSA site during April and May of 2008, and in April-October of 2009. This instrument recorded one-minute averages of surface downwelling spectral flux in the wavelength interval 350-2200 nm, thus sampling the two major near infrared windows (1.6 and 2.2 microns) in which the flux is influenced by cloud microphysical properties including thermodynamic phase and effective particle size. Aircraft in situ measurements of cloud properties show mostly mixed-phase clouds over Barrow during the campaign, but with wide variability in relative liquid versus ice water content. At fixed total optical depth, this variability in phase composition can yield of order 5-10 Watts per square meter in surface flux variability, with greater cloud attenuation of the surface flux usually occurring under higher ice water content. Thus our data show that changes in cloud phase properties, even within the 'mixed-phase' category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases. Analysis of this spectral radiometric data provides suggestions for testing new mixed-phase parameterizations in climate models.

  9. PHELIX for flux compression studies

    SciTech Connect (OSTI)

    Turchi, Peter J; Rousculp, Christopher L; Reinovsky, Robert E; Reass, William A; Griego, Jeffrey R; Oro, David M; Merrill, Frank E

    2010-06-28

    PHELIX (Precision High Energy-density Liner Implosion eXperiment) is a concept for studying electromagnetic implosions using proton radiography. This approach requires a portable pulsed power and liner implosion apparatus that can be operated in conjunction with an 800 MeV proton beam at the Los Alamos Neutron Science Center. The high resolution (< 100 micron) provided by proton radiography combined with similar precision of liner implosions driven electromagnetically can permit close comparisons of multi-frame experimental data and numerical simulations within a single dynamic event. To achieve a portable implosion system for use at high energy-density in a proton laboratory area requires sub-megajoule energies applied to implosions only a few cms in radial and axial dimension. The associated inductance changes are therefore relatively modest, so a current step-up transformer arrangement is employed to avoid excessive loss to parasitic inductances that are relatively large for low-energy banks comprising only several capacitors and switches. We describe the design, construction and operation of the PHELIX system and discuss application to liner-driven, magnetic flux compression experiments. For the latter, the ability of strong magnetic fields to deflect the proton beam may offer a novel technique for measurement of field distributions near perturbed surfaces.

  10. Atmospheric and soil-gas monitoring for surface leakage at the San Juan Basin CO{sub 2} pilot test site at Pump Canyon New Mexico, using perfluorocarbon tracers, CO{sub 2} soil-gas flux and soil-gas hydrocarbons

    SciTech Connect (OSTI)

    Wells, Arthur W.; Diehl, J. Rodney; Strazisar, Brian R.; Wilson, Thomas; H Stanko, Dennis C.

    2012-05-01

    Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period of 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 2030% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.

  11. Remote disassembly of the absorber open-test assembly at the FFTF/IEM cell

    SciTech Connect (OSTI)

    Ramsey, E.B.

    1990-01-01

    The Fast Flux Test Facility (FFTF) interim examination and maintenance (IEM) cell is used for the remote disassembly of irradiated fuel and material experiments. The absorber open-test assembly (AOTA) is a 12-m (40-ft)-long instrumented absorber (control-rod-material) test assembly. Its primary purpose is to characterize the FFTF control-rod-material reaction rate during reactor operation. Instrumentation allowed temperature and pressure measurements at various locations in several absorber pins during reactor operation. After residing several months in the reactor, the assembly was transferred to the IEM cell by the closed-loop ex-vessel machine (CLEM) for separation of the irradiated portion of the experiment from the instrument stalk. After separation, the 3.6-m (12-ft)-long assembly was processed through the sodium removal system and shipped off-site for examination. This success allowed the timely completion of a major task on the FFTF operations schedule.

  12. Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay

    SciTech Connect (OSTI)

    Chen, Jianwei; Lineberry, Michael

    2007-07-01

    Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)

  13. Heat flux viscosity in collisional magnetized plasmas

    SciTech Connect (OSTI)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  14. AmeriFlux US-Ivo Ivotuk

    SciTech Connect (OSTI)

    Oechel, Walter; Zona, Donatella

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ivo Ivotuk. Site Description - This site is 300 km south of Barrow and is located at the foothill of the Brooks Range and is classified as tussock sedge, dwarf-shrub, moss tundra.

  15. AmeriFlux US-Atq Atqasuk

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oechel, Walt [San Diego State University; Zona, Donatella [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Atq Atqasuk. Site Description - This site is 100 km south of Barrow, Alaska, Variety of moist-wet coastal sedge tundra, and moist-tussock tundra surfaces in the more well-drained upland.

  16. AmeriFlux US-Brw Barrow

    SciTech Connect (OSTI)

    Oechel, Walt; Zona, Donatella

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Brw Barrow. Site Description - The local landscape surrounding the Barrow site has a history absent of any disturbances. The terrain was not heavily glaciated during the last period of glaciation. The vegetation is mature in an unmanaged and undisturbed Arctic tundra.

  17. AmeriFlux US-Dia Diablo

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wharton, Sonia [Lawrence Livermore National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dia Diablo. Site Description - The site is on land owned by Lawrence Livermore National Laboratory (Site 300) and has no grazing or management history since the 1950's except for summer-time burning of selected acres for fire management (not included in the tower footprint).

  18. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    SciTech Connect (OSTI)

    Corradini, Michael; Wu, Qiao

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  19. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  20. 70 Group Neutron Fast Reactor Cross Section Set Based on JENDL-2B.

    Energy Science and Technology Software Center (OSTI)

    1984-02-06

    Version 00 These multigroup cross sections are used in fast reactor calculations. The benchmark calculations for the 23 fast critical assemblies used in the benchmark tests of JFS-2 were performed with one-dimensional diffusion theory by using the JFS-3-J2 set.

  1. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  2. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  3. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  4. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  5. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  6. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  7. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  8. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  9. Separation of polychlorinated biphenyls by fast gas chromatography.

    SciTech Connect (OSTI)

    Alvarado, J. S.; Silzer, J.; Lemley, F.; Erickson, M. D.; Environmental Research

    1997-12-01

    The separation of commercially available polychlorinated biphenyls (PCBs) by fast gas chromatography (fast GC) has been studied. Aroclor 1254 was separated by using two column types: DB-1 and SPB-608. The fast GC used a split-splitless injector to introduce the sample, followed by a cold trap at -90 C to focus the sample. Rapid heating was used to introduce the sample into the short chromatographic column to decrease band broadening. Hydrogen was the carrier gas at velocities of 100 to 125 cm s-1. Analyses were performed by using an electron capture detector (ECD). Separation was achieved with both columns in less than 6 min. With the greatly shortened run times, reproducibility can be tested quickly and consequently with low cost.

  10. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  11. Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation

    SciTech Connect (OSTI)

    Lu, S.; Lin, Y.; Wang, X. Y.; Lu, Q. M. Huang, C.; Wu, M. Y.; Wang, S.; Wang, R. S.

    2015-05-15

    Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection with multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=?30R{sub E}??15R{sub E} around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several R{sub E}, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several R{sub E} and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same time, the

  12. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  13. ARM - PI Product - Radiative Flux Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsRadiative Flux Analysis ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Radiative Flux Analysis The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and

  14. High-Flux Microchannel Solar Receiver

    Broader source: Energy.gov [DOE]

    This fact sheet describes a high-flux, microchannel solar receiver project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Oregon State University, is working to demonstrate a microchannel-based solar receiver capable of absorbing high solar flux, while using a variety of liquid and gaseous working fluids. High-flux microchannel receivers have the potential to dramatically reduce the size and cost of a solar receiver by minimizing re-radiation and convective losses.

  15. MiniBooNE Flux Data Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Neutrino Flux Prediction at MiniBooNE", arXiv:0806.1449 [hep-ex], Phys. Rev. D. 79, 072002 (2009) The following MiniBooNE information from the large flux paper in 2009 is made available to the public: Text files containing flux information for each neutrino species Positive horn polarity (neutrino-enhanced mode) Negative horn polarity (anti neutrino-enhanced mode) Contact Information For clarifications on how to use MiniBooNE public data or for enquiries about additional data not linked

  16. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  17. FAST NEUTRON DOSIMETER FOR HIGH TEMPERATURE OPERATION BY MEASUREMENT OF THE AMOUNT OF CESIUM 137 FORMED FROM A THORIUM WIRE

    DOE Patents [OSTI]

    McCune, D.A.

    1964-03-17

    A method and device for measurement of integrated fast neutron flux in the presence of a large thermal neutron field are described. The device comprises a thorium wire surrounded by a thermal neutron attenuator that is, in turn, enclosed by heat-resistant material. The method consists of irradiating the device in a neutron field whereby neutrons with energies in excess of 1.1 Mev cause fast fissions in the thorium, then removing the thorium wire, separating the cesium-137 fission product by chemical means from the thorium, and finally counting the radioactivity of the cesium to determine the number of fissions which have occurred so that the integrated fast flux may be obtained. (AEC)

  18. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    SciTech Connect (OSTI)

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction with DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under

  19. The appearance and propagation of filaments in the private flux region in Mega Amp Spherical Tokamak

    SciTech Connect (OSTI)

    Harrison, J. R.; Fishpool, G. M.; Thornton, A. J.; Walkden, N. R.

    2015-09-15

    The transport of particles via intermittent filamentary structures in the private flux region (PFR) of plasmas in the MAST tokamak has been investigated using a fast framing camera recording visible light emission from the volume of the lower divertor, as well as Langmuir probes and IR thermography monitoring particle and power fluxes to plasma-facing surfaces in the divertor. The visible camera data suggest that, in the divertor volume, fluctuations in light emission above the X-point are strongest in the scrape-off layer (SOL). Conversely, in the region below the X-point, it is found that these fluctuations are strongest in the PFR of the inner divertor leg. Detailed analysis of the appearance of these filaments in the camera data suggests that they are approximately circular, around 1–2 cm in diameter, but appear more elongated near the divertor target. The most probable toroidal quasi-mode number is between 2 and 3. These filaments eject plasma deeper into the private flux region, sometimes by the production of secondary filaments, moving at a speed of 0.5–1.0 km/s. Probe measurements at the inner divertor target suggest that the fluctuations in the particle flux to the inner target are strongest in the private flux region, and that the amplitude and distribution of these fluctuations are insensitive to the electron density of the core plasma, auxiliary heating and whether the plasma is single-null or double-null. It is found that the e-folding width of the time-average particle flux in the PFR decreases with increasing plasma current, but the fluctuations appear to be unaffected. At the outer divertor target, the fluctuations in particle and power fluxes are strongest in the SOL.

  20. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  1. Tetrakis-amido high flux membranes

    DOE Patents [OSTI]

    McCray, Scott B. (Bend, OR)

    1989-01-01

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  2. Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    the true flux of hydrothermal gases may affect the results of geochemical modeling of gas dispersion in the near-surface environment.3 References 1.0 1.1 Measuring...

  3. ARM - VAP Product - lblch2flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : LBLCH2FLUX AERI, line by line...

  4. AmeriFlux US-Bkg Brookings

    SciTech Connect (OSTI)

    Meyers, Tilden

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bkg Brookings. Site Description - The Brookings site is located in a private pasture, consisting of a mixture of C3 and C4 species actively used for grazing. Belonging to the Northern Great Plains Rangelands, the grassland is representative of many in the north central United States, with seasonal winter conditions and a wet growing season.

  5. Fast-acting valve actuator

    DOE Patents [OSTI]

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  6. METHOD AND APPARATUS FOR IMPROVING PERFORMANCE OF A FAST REACTOR

    DOE Patents [OSTI]

    Koch, L.J.

    1959-01-20

    A specific arrangement of the fertile material and fissionable material in the active portion of a fast reactor to achieve improvement in performance and to effectively lower the operating temperatures in the center of the reactor is described. According to this invention a group of fuel elements containing fissionable material are assembled to form a hollow fuel core. Elements containing a fertile material, such as depleted uranium, are inserted into the interior of the fuel core to form a central blanket. Additional elemenis of fertile material are arranged about the fuel core to form outer blankets which in tunn are surrounded by a reflector. This arrangement of fuel core and blankets results in substantial flattening of the flux pattern.

  7. SERAPHIM: A propulsion technology for fast trains

    SciTech Connect (OSTI)

    Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

    1995-06-01

    The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

  8. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge ...

  9. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    between chamber CO2 fluxes and the atmospheric parameters over a comparable time period. Energy balance closure was assessed by statistical regression of EC energy fluxes...

  10. MST Filterability Tests

    SciTech Connect (OSTI)

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  11. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    SciTech Connect (OSTI)

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  12. High-flux solar photon processes: Opportunities for applications

    SciTech Connect (OSTI)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. )

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  13. Fast breeder reactor protection system

    DOE Patents [OSTI]

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  14. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  15. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  16. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  17. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to ...

  18. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect (OSTI)

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  19. CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES

    SciTech Connect (OSTI)

    Pariat, E.; Masson, S.; Aulanier, G.

    2009-08-20

    The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma {beta} changes from >1 to <1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field.

  20. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-03-01

    Analysis and modeling is presented for a fast microwave tuner to operate at 700 MHz which incorporates ferroelectric elements whose dielectric permittivity can be rapidly altered by application of an external voltage. This tuner could be used to correct unavoidable fluctuations in the resonant frequency of superconducting cavities in accelerator structures, thereby greatly reducing the RF power needed to drive the cavities. A planar test version of the tuner has been tested at low levels of RF power, but at 1300 MHz to minimize the physical size of the test structure. This test version comprises one-third of the final version. The tests show performance in good agreement with simulations, but with losses in the ferroelectric elements that are too large for practical use, and with issues in bonding of ferroelectric elements to the metal walls of the tuner structure.

  1. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Hemispheric Flux Spectroradiometer ARM Data Discovery Browse Data Related Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) 2008.04.01, Ghan, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ISDAC - Hemispheric Flux Spectroradiometer 2008.03.31 - 2008.05.31 Lead Scientist : Dan Lubin For data sets, see below. Abstract In connection with ISDAC, this campaign further investigated the role of aerosol physics and chemistry

  2. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  3. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  4. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  5. AmeriFlux US-Akn Aiken

    SciTech Connect (OSTI)

    Leclerc, Monique

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Akn Aiken. Site Description - The Aiken site is located within the Atlantic Coastal Plain Providence on a U.S. Department of Energy reservation (806 sq km) at Savannah River National Laboratory. Areas of the site not used for industrial purposes were planted with forests starting in the early 1950s, including the site of the Aiken tower. The site measurements are representative of the southeastern US within a mixed agricultural, residential, and industrial zone.

  6. AmeriFlux US-Los Lost Creek

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  7. Fast estimation of reboiler reliability

    SciTech Connect (OSTI)

    Durand, A.A.; Bonilla, M.A.O.

    1995-08-01

    The problems one faces in evaluating the reliability of a reboiler design, or in judging the effect of modifications of process conditions on reboiler operation can be complex. To carry out such evaluations, it is necessary for engineers to perform some calculations to determine: heat transfer coefficients in convection boiling; temperature difference, for the onset of nucleate boiling; heat transfer coefficients in the nucleate boiling region; critical heat flux or critical temperature difference; minimum {Delta}T for film boiling; and heat transfer coefficients for the film boiling region. There are a number of correlations, graphs, and computer programs that can be used to make these calculations. However, besides being laborious, it is still difficult to get a suitable picture of the overall problem from just this data. To simplify the process, and to have a better understanding of the problem, a map of the different boiling regions and their boundaries is presented here. With this map it is possible to locate the design or operating point of a specific kettle reboiler among all the boiling regions, enabling one to make a clearer analysis of its behavior. The parameters used to develop this map are described.

  8. EUV mirror based absolute incident flux detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-03-23

    A device for the in-situ monitoring of EUV radiation flux includes an integrated reflective multilayer stack. This device operates on the principle that a finite amount of in-band EUV radiation is transmitted through the entire multilayer stack. This device offers improvements over existing vacuum photo-detector devices since its calibration does not change with surface contamination.

  9. Defect-free ultrahigh flux asymmetric membranes

    DOE Patents [OSTI]

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  10. SYNOPTIC MAPPING OF CHROMOSPHERIC MAGNETIC FLUX

    SciTech Connect (OSTI)

    Jin, C. L.; Harvey, J. W.; Pietarila, A. E-mail: jharvey@nso.edu

    2013-03-10

    We used daily full-disk Ca II 854.2 nm magnetograms from the Synoptic Optical Long Term Investigations of the Sun (SOLIS) facility to study the chromospheric magnetic field from 2006 April through 2009 November. We determined and corrected previously unidentified zero offsets in the SOLIS magnetograms. By tracking the disk passages of stable unipolar regions, the measured net flux densities were found to systematically decrease from the disk center to the limb by a factor of about two. This decrease was modeled using a thin flux tube model with a difference in signal formation height between the center and limb sides. Comparison of photospheric and chromospheric observations shows that their differences are largely due to horizontal spreading of magnetic flux with increasing height. The north polar magnetic field decreased nearly linearly with time during our study period while the south polar field was nearly constant. We used the annual change in the viewing angle of the polar regions to estimate the radial and meridional components of the polar fields and found that the south polar fields were tilted away from the pole. Synoptic maps of the chromospheric radial flux density distribution were used as boundary conditions for extrapolation of the field from the chromosphere into the corona. A comparison of modeled and observed coronal hole boundaries and coronal streamer positions showed better agreement when using the chromospheric rather than the photospheric synoptic maps.

  11. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

  12. Fast radial flows in transition disk holes

    SciTech Connect (OSTI)

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  13. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  14. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  15. Comparison of 10. 7 CM radio flux with SME solar Lyman alpha flux

    SciTech Connect (OSTI)

    Barth, C.A.; Tobiska, W.K.; Rottman, G.J. ); White, O.R.

    1990-04-01

    Measurements of the solar Lyman alpha flux that were made over a seven-and-one-half-year period between October 11, 1981 and April 13, 1989 have been compared with ground-based measurements of the solar 10.7 cm radio flux made over the same time period. There is a long-term correlation between these two measures of solar flux during the declining part of the solar cycle. During the solar minimum period, there is only a poor correlation between the two solar fluxes because the 10.7 cm radio flux reaches a minimum of 65 {times} 10{sup {minus}22} W m{sup {minus}2} Hz{sup {minus}1} and does not vary below this value while the Lyman alpha flux continues to decline and show long-term and short-term variations. During the early ascending phase of the new solar cycle, there is again a correlation between the two fluxes, although the constant of proportionality between the two is different from the constant during the declining phase of the previous solar cycle. Somewhat later, during the period November 25, 1988-April 13, 1989 a medium-term correlation exists and the proportionality of the two indices is once again similar to what it was during the declining phase of the previous solar cycle. A study of the correlation of the 10.7 cm flux with the Lyman alpha for a 999-day period during the declining phase showed that for the short-term (27-day) variation there is a correlation between the two fluxes but the proportionality between them varies from one solar rotation to the next.

  16. 70 MPa Fast-Fill Modeling and Validation Experiments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70 MPa Fast-Fill Modeling and Validation Experiments 70 MPa Fast-Fill Modeling and Validation Experiments These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. mpafastfill_modelingexperiments_ostw.pdf (1.78 MB) More Documents & Publications Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety Stakeholder Workshop Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings

  17. Mutual colliding impact fast ignition

    SciTech Connect (OSTI)

    Winterberg, Friedwardt

    2014-09-15

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  18. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  19. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  20. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  1. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  2. FAST v8 Offers New Modeling and Analysis Features

    Broader source: Energy.gov [DOE]

    Researchers at NREL recently released version 8.15 of FAST (FAST v8), an open-source, multiphysics engineering software tool used to design and analyze wind turbines. FAST v8 is also an open-source...

  3. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect (OSTI)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  4. Parallel 3D Fast Fourier Transform Functions

    Energy Science and Technology Software Center (OSTI)

    2008-12-19

    BigFFT is a scalable implementation of a three dimensional Fast Fourier Transform operation. Functions are included for forward and backward real-to-complex 3D transforms.

  5. FastBit: Interactively Searching Massive Data

    SciTech Connect (OSTI)

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  6. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    SciTech Connect (OSTI)

    Fu, Yao Song, Jeong-Hoon

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging.

  7. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to industry. The NERSC project involves selecting particular technologies of interest, partnering with the vendor, assessing their hardware, and providing feedback or co-development to improve the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to

  8. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOE Patents [OSTI]

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  9. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  10. Universal Fast Breeder Reactor Subassembly Counter manual

    SciTech Connect (OSTI)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  11. Traveling-wave device with mass flux suppression (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Traveling-wave device with mass flux suppression Title: Traveling-wave device with mass flux suppression A traveling-wave device is provided with the conventional moving pistons ...

  12. Muon fluxes and showers from dark matter annihilation in the...

    Office of Scientific and Technical Information (OSTI)

    We consider both the upward muon flux, when muons are created in the rock below the detector, and the contained flux when muons are created in the (ice) detector. We also calculate ...

  13. OSTIblog Articles in the High Flux Isotope Reactor Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    High Flux Isotope Reactor Topic The NXS Class of 2014 by Kathy Chambers 19 Nov, 2014 in ... National Laboratory, High Flux Isotope Reactor, National School on Neutron and X-ray ...

  14. AmeriFlux US-FR3 Freeman Ranch- Woodland

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heilman, Jim [Texas A& M University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-FR3 Freeman Ranch- Woodland. Site Description - Dense canopy of live oak and Ashe juniper

  15. Research on Fast-Doppler-Broadening of neutron cross sections

    SciTech Connect (OSTI)

    Li, S.; Wang, K.; Yu, G.

    2012-07-01

    A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)

  16. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  17. High heat flux engineering in solar energy applications

    SciTech Connect (OSTI)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  18. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and ...

  19. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) You are ...

  20. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Conference: Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) ...

  1. The differential algebra based multiple level fast multipole...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The differential algebra based multiple level fast multipole algorithm ... Title: The differential algebra based multiple level fast multipole algorithm for 3D space ...

  2. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  3. Continuous Evaluation of Fast Processes in Climate Models Using...

    Office of Scientific and Technical Information (OSTI)

    of Fast Processes in Climate Models Using Arm Measurements Citation Details In-Document Search Title: Continuous Evaluation of Fast Processes in Climate Models Using Arm ...

  4. Turbulence may be key to "fast magnetic reconnection" mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence may be key to "fast magnetic reconnection" mystery Turbulence may be key to "fast magnetic reconnection" mystery The new research could lead to better understanding of ...

  5. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  6. Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with...

    Office of Scientific and Technical Information (OSTI)

    Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Citation Details In-Document Search Title: Transient Safety Analysis of Fast Spectrum TRU Burning ...

  7. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels Title Supply Chain Sustainability Analysis of Fast Pyrolysis and...

  8. Adiabatic quantum-flux-parametron cell library adopting minimalist design

    SciTech Connect (OSTI)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-05-07

    We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.

  9. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-11-06

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant /sup 137/Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  10. Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III

    SciTech Connect (OSTI)

    Boyd, Ronald D.

    2014-08-31

    The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed and new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.

  11. Zero-flux planes, flux reversals and diffusion paths in ternary and quaternary diffusion

    SciTech Connect (OSTI)

    Dayananda, M.A.

    1986-05-23

    During isothermal multicomponent diffusion, interdiffusion fluxes of individual components can go to zero at zero-flux planes (ZFP) and exhibit flux reversals from one side to the other of such planes. Interdiffusion fluxes as well as the locations and compositions of ZFPs for components are determined directly from the concentration profiles of diffusion couples without the need for prior knowledge of interdiffusion coefficients. The development and identification of ZFPs is reviewed with the aid of single phase and two-phase diffusion couples investigated in the Cu-Ni-Zn system at 775/sup 0/C. ZFP locations in the diffusion zone nearly correspond to sections where the activity of a component is the same as its activity in either of the terminal alloys of a couple. Path slopes at ZFPs are uniquely dictated by the atomic mobility and thermodynamic data for the components. Discontinuous flux reversals for the components can also occur at interfaces in multiphase couples. Identification of ZFPs is also presented for diffusion in the Cu-Ni-Zn-Mn quaternary system. Analytical representation of diffusion paths for both ternary and quaternary diffusion couples is presented with the aid of characteristic path parameters.

  12. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    SciTech Connect (OSTI)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  13. Spheromak reactor with poloidal flux-amplifying transformer

    DOE Patents [OSTI]

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  14. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy ape034_hsu_2011_p.pdf (317.88 KB) More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  15. CORAL: a stepping stone for establishing the Indian fast reactor fuel reprocessing technology

    SciTech Connect (OSTI)

    Venkataraman, M.; Natarajan, R.; Raj, Baldev

    2007-07-01

    The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR) spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)

  16. Effect of pressure vents on the fast cookoff of energetic materials.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.; Erikson, William Wilding

    2013-10-01

    The effect of vents on the fast cookoff of energetic materials is studied through experimental modifications to the confinement vessel of the Radiant Heat Fast Cookoff Apparatus. Two venting schemes were investigated: 1) machined grooves at the EM-cover plate interface; 2) radial distribution of holes in PEEK confiner. EM materials of PBXN-109 and PBX 9502 were tested. Challenges with the experimental apparatus and EM materials were identified such that studying the effect of vents as an independent parameter was not realized. The experimental methods, data and post-test observations are presented and discussed.

  17. AmeriFlux Network Data from the ORNL AmeriFlux Website

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AmeriFlux network was established in 1996 to provide continuous observations of ecosystem level exchanges of CO2, water, energy and momentum spanning diurnal, synoptic, seasonal, and interannual time scales. It is fed by sites from North America, Central America, and South America. DOE's CDIAC stores and maintains AmeriFlux data, and this web site explains the different levels of data available there, with links to the CDIAC ftp site. A separate web-based data interface is also provided; it allows users to graph, query, and download Level 2 data for up to four sites at a time. Data may be queried by site, measurement period, or parameter. More than 550 site-years of level 2 data are available from AmeriFlux sites through the interface.

  18. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (OSTI)

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&Dmore » organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected

  19. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  20. Semiconducting glasses with flux pinning inclusions

    DOE Patents [OSTI]

    Johnson, William L.; Poon, Siu-Joe; Duwez, Pol E.

    1981-01-01

    A series of amorphous superconducting glassy alloys containing 1% to 10% by volume of flux pinning crystalline inclusions have been found to have potentially useful properties as high field superconducting magnet materials. The alloys are prepared by splat cooling by the piston and anvil technique. The alloys have the composition (TM).sub.90-70 (M).sub.10-30 where TM is a transition metal selected from at least one metal of Groups IVB, VB, VIB, VIIB or VIIIB of the Periodic Table such as Nb, Mo, Ru, Zr, Ta, W or Re and M is at least one metalloid such as B, P, C, N, Si, Ge or Al.

  1. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  2. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2002-03-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Bovine serum albumin (BSA) is a well-studied model solute in membrane filtration known for its fouling and concentration polarization capabilities. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using BSA solution as feed show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and operating transmembrane pressure.

  3. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  4. NuMI Low Energy Flux Prediction Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuMI Low Energy Flux Prediction Release Neutrino Flux Predictions for the NuMI Beam hep-ex/1607.00704 Data Ancillary data files for this result are available on arXiv at http://arxiv.org/src/1607.00704/anc.< /li> Among the available data files are: pdf file describing format of all the available files root file of all the available fluxes python code to read and process MINERvA's flux predictions Text Files of the flux, uncertainties, and covariance matrix, with units of neutrinos/m^2/POT,

  5. AmeriFlux US-WCr Willow Creek

    SciTech Connect (OSTI)

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cook et al, 2004 for details). Propane generator power.

  6. Analysis methods for fast impurity ion dynamics data

    SciTech Connect (OSTI)

    Den Hartog, D.J.; Almagri, A.F.; Prager, S.C.; Fonck, R.J.

    1994-08-01

    A high resolution spectrometer has been developed and used on the MST reversed-field pinch (RFP) to measure passively impurity ion temperatures and flow velocities with 10 {mu}s temporal resolution. Such measurements of MHD-scale fluctuations are particularly relevant in the RFP because the flow velocity fluctuation induced transport of current (the ``MHD dynamo``) may produce the magnetic field reversal characteristic of an RFP. This instrument will also be used to measure rapid changes in the equilibrium flow velocity, such as occur during locking and H-mode transition. The precision of measurements made to date is <0.6 km/s. The authors are developing accurate analysis techniques appropriate to the reduction of this fast ion dynamics data. Moment analysis and curve-fitting routines have been evaluated for noise sensitivity and robustness. Also presented is an analysis method which correctly separates the flux-surface average of the correlated fluctuations in u and B from the fluctuations due to rigid shifts of the plasma column.

  7. The Physics of Fast Z Pinches

    SciTech Connect (OSTI)

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  8. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  9. AmeriFlux US-GLE GLEES

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Massman, Bill [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-GLE GLEES. Site Description - The Glacier Lakes Ecosystem Experiments Site (GLEES) site is located on land owned by the U.S. government and managed by US Forest Service as part of the Medicine Bow National Forest. Many of the trees in the immediate vicinity of the site are older than 400 years, inter-dispersed among trees much younger in age. This widespread age distribution is most likely a derivation of one of two scenarios: 1) A widespread stand replacement about 400 years ago followed by a slow replacement; 2) Intermittent random disturbances over the past 400 years (Bradford et al. 2008). A decade long spruce beetle outbreak that peaked in 2008 resulted in the mortality of 85% of the forested basal area. There are a few private land holdings in the area, with scattered uncorked mining claims. Following the establishment of the National Forest, mining was banned and grazing was closed in the early 1990's in the upper portion of the GLEES site. Recreation in the winter, when snow can remain in patches into the summer months, snow mobiling and cross country skiing are popular. During the limited summer, hiking, camping and fishing are common activities. The site is accessible by vehicle only during the summer on Forest Road FDR 317, and in the winter, the tower is only reachable via snowmobile.

  10. Automated Nuclear Data Test Suite

    Energy Science and Technology Software Center (OSTI)

    2013-01-09

    Provides python routines to create a database of test problems in a user-defined directory tree, to query the database using user-defined parameters, to generate a list of test urns, to automatically run with user-defined particle transport codes. Includes natural isotope abundance data, and a table of benchmark effective for fast critical assemblies. Does not include input decks, cross-section libraries, or particle transport codes.

  11. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect (OSTI)

    Zhang, Z.D.; Liu, L.M. Shen, Y.; Wang, L.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  12. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect (OSTI)

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  13. Rapid enhancement of low energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Chao; Li, Wen; Reeves, Geoffrey D.; Nishimura, Yukitoshi; Zong, Qiugang; Ma, Qianli; Bortnik, Jacob; Thorne, Richard M.; Spence, Harlan E.; Kletzing, Craig A.; et al

    2016-07-15

    Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2more » October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less

  14. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see

  15. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  16. Asymptotic, multigroup flux reconstruction and consistent discontinuity factors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trahan, Travis J.; Larsen, Edward W.

    2015-05-12

    Recent theoretical work has led to an asymptotically derived expression for reconstructing the neutron flux from lattice functions and multigroup diffusion solutions. The leading-order asymptotic term is the standard expression for flux reconstruction, i.e., it is the product of a shape function, obtained through a lattice calculation, and the multigroup diffusion solution. The first-order asymptotic correction term is significant only where the gradient of the diffusion solution is not small. Inclusion of this first-order correction term can significantly improve the accuracy of the reconstructed flux. One may define discontinuity factors (DFs) to make certain angular moments of the reconstructed fluxmore » continuous across interfaces between assemblies in 1-D. Indeed, the standard assembly discontinuity factors make the zeroth moment (scalar flux) of the reconstructed flux continuous. The inclusion of the correction term in the flux reconstruction provides an additional degree of freedom that can be used to make two angular moments of the reconstructed flux continuous across interfaces by using current DFs in addition to flux DFs. Thus, numerical results demonstrate that using flux and current DFs together can be more accurate than using only flux DFs, and that making the second angular moment continuous can be more accurate than making the zeroth moment continuous.« less

  17. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  18. The solar internetwork. I. Contribution to the network magnetic flux

    SciTech Connect (OSTI)

    Goi?, M.; Rubio, L. R. Bellot; Del Toro Iniesta, J. C.; Orozco Surez, D.; Katsukawa, Y.

    2014-12-10

    The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 10{sup 24} Mx day{sup 1} over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE.

  19. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  20. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  1. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  2. Plasma momentum meter for momentum flux measurements

    DOE Patents [OSTI]

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  3. HFBR handbook, 1992: High flux beam reactor

    SciTech Connect (OSTI)

    Axe, J.D.; Greenberg, R.

    1992-10-01

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance.

  4. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect (OSTI)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  5. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  6. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    SciTech Connect (OSTI)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  7. Narcotics detection using fast-neutron interrogation

    SciTech Connect (OSTI)

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  8. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  9. Fast Faraday Cup With High Bandwidth

    DOE Patents [OSTI]

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  10. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOE Patents [OSTI]

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  11. AmeriFlux US-PFa Park Falls/WLEF

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Desai, Ankur [University of Wisconsin

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-PFa Park Falls/WLEF. Site Description - The flux footprint encompasses a highly heterogeneous landscape of upland forests and wetlands (forested and nonforested). The forests are mainly deciduous but also include substantial coniferous coverage. The upland/lowland variability occurs on spatial scales of a few hundred meters. This heterogeneous landscape is further complicated by a nonuniform, small scale mosaic of thinning and clearcutting of the forest. At larger scales (1 km or greater) the forest cover mosaic is quite homogeneous for many kilometers. The site was chosen not for study of a simple stand, but for upscaling experiments. The daytime fetch of flux measurements from the 396m level is on the order of 5-10 km, yielding a flux footprint roughly 100x the area of a typical stand-level flux tower. AC power (tower is a TV transmitter).

  12. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  13. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Fermilab Accelerator Science and Technology Facility photo The Fermilab Accelerator Science and Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams and for accelerator research aimed at intensity frontier proton accelerators. FAST will also be unique in the United States as a particle beam research facility based on superconducting radio-frequency technology, on which nearly all proposed future accelerators in the world are

  14. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    SciTech Connect (OSTI)

    Bevard, Bruce Balkcom

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  15. High temperature materials experience at the Central Receiver Test Facility

    SciTech Connect (OSTI)

    Holmes, J.T.

    1982-01-01

    During four years of operation at the Central Receiver Test Facility (CRTF) ceramics have performed well in cyclic solar flux densities of less than 30 W/cm/sup 2/. Above 100 W/cm/sup 2/, serious limitations exist. Important application considerations include: the geometry, cyclic and long time exposures, flux density gradients, thermal shock, weathering, and soiling.

  16. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  17. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  18. AmeriFlux US-Wkg Walnut Gulch Kendall Grasslands

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Scott, Russell [United States Department of Agriculture

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wkg Walnut Gulch Kendall Grasslands. Site Description - This site is located in a small, intensively-studied, experimental watershed within USDA-ARS's Walnut Gulch Experimental Watershed. Eddy covariance measurements of energy, water and CO2 fluxes began in the spring of 2004, though meteorological (including Bowen ratio) and hydrological measurements are available much further back.

  19. THE SOLAR WIND AS A POSSIBLE SOURCE OF FAST TEMPORAL VARIATIONS OF THE HELIOSPHERIC RIBBON

    SciTech Connect (OSTI)

    Kucharek, H.; Lee, M. A.; Moebius, E.; Schwadron, N.; Fuselier, S. A.; McComas, D.; Wurz, P.; Pogorelov, N.; Borovikov, S.; Reisenfeld, D.; Funsten, H.

    2013-10-20

    We present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persists until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. With a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.

  20. SYNMAG PHOTOMETRY: A FAST TOOL FOR CATALOG-LEVEL MATCHED COLORS OF EXTENDED SOURCES

    SciTech Connect (OSTI)

    Bundy, Kevin; Yasuda, Naoki; Hogg, David W.; Higgs, Tim D.; Nichol, Robert C.; Masters, Karen L.; Lang, Dustin; Wake, David A.

    2012-12-01

    Obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. We present an alternative solution called 'synthetic aperture photometry' that exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures. Because aperture magnitudes are the most widely tabulated flux measurements in survey catalogs, producing synthetic aperture magnitudes (SYNMAGs) enables very fast matched photometry at the catalog level, without reprocessing imaging data. We make our code public and apply it to obtain matched photometry between Sloan Digital Sky Survey ugriz and UKIDSS YJHK imaging, recovering red-sequence colors and photometric redshifts with a scatter and accuracy as good as if not better than FWHM-homogenized photometry from the GAMA Survey. Finally, we list some specific measurements that upcoming surveys could make available to facilitate and ease the use of SYNMAGs.

  1. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2004-06-14

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In our previous report, we reported our work on UF of BSA. In this report, we report our continuing application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using pectin in apple juice as feed show that under flow reversal conditions, the

  2. FY 2009 Statistical Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... -- -- Funding from Naval Reactors......94,676 -- -- -- -- Fast flux test reactor facility ... Construction 06-D-401 Sodium bearing waste treatment ...

  3. Special Report: IG-0683

    Broader source: Energy.gov [DOE]

    Fast Flux Test Reactor: Re-evaluation of the Department’s Approach to Deactivation, Decontamination, and Decommissioning

  4. EA-1547: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Sodium Residual Reaction/Removal and Other Deactivation Work Activities, Fast Flux Test Facility Project, Hanford Site, Richland, Washington

  5. Novel Flux Coupling Machine without Permanent Magnets - U Machine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  6. Gas Flux Sampling At Steamboat Springs Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Steamboat Springs Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Steamboat Springs Area...

  7. Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...

    Open Energy Info (EERE)

    Desert Peak Area (Lechler And Coolbaugh, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And...

  8. Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Mean Fluxes of Visible Solar Radiation in Broken Clouds V. E. Zuev, G. A. Titov, ... Introduction Generally, radiation codes for general circulation models (GCMs) include, ...

  9. Flexible flux plane simulations of parasitic absorption in nanoplasmon...

    Office of Scientific and Technical Information (OSTI)

    thin-film silicon solar cells Prev Next Title: Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells Authors: Chung, H. ...

  10. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  11. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  12. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  13. Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005...

    Open Energy Info (EERE)

    2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity...

  14. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  15. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  16. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  17. FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL

    DOE Patents [OSTI]

    Foote, F.

    1958-08-26

    A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

  18. The Sensitivity of Radiative Fluxes to Parameterized Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these fields include cloud altitude, cloud amount, liquid and ice content, particle size spectra, and radiative fluxes at the surface and the TOA. Comparisons with Atmospheric...

  19. ARM - Field Campaign - Carbonyl Sulfide for Tracing Carbon Fluxes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCarbonyl Sulfide for Tracing Carbon Fluxes ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonyl Sulfide for Tracing Carbon Fluxes 2012.03.26 - 2012.06.07 Lead Scientist : Elliott Campbell For data sets, see below. Abstract Regional flux partitioning represents a critical knowledge gap due to a lack of robust methods for regional-scale flux partitioning and large uncertainties in

  20. Divertor Heat Flux Mitigation in the National Spherical Torus...

    Office of Scientific and Technical Information (OSTI)

    The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas ...

  1. ARM - Evaluation Product - Quality Controlled Eddy Correlation Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (QCECOR) ProductsQuality Controlled Eddy Correlation Flux (QCECOR) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Quality Controlled Eddy Correlation Flux (QCECOR) Eddy correlation flux measurement systems (ECOR) are used by ARM to provide surface turbulence flux measurements. With the help of the

  2. Role of ion flux on alignment of carbon nanofibers synthesized...

    Office of Scientific and Technical Information (OSTI)

    of carbon nanofibers synthesized by DC plasma on transparent insulating substrates Citation Details In-Document Search Title: Role of ion flux on alignment of carbon nanofibers ...

  3. High Heat Flux Thermoelectric Module Using Standard Bulk Material

    Broader source: Energy.gov [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

  4. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  5. Final Report - High Flux Microchannel Receiver Development with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awardee: Oregon State University Location: Corvallis, OR Subprogram: Concentrating Solar Power Funding Program: SunShot Concentrating Solar Power R&D Project: High Flux ...

  6. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  7. Technical Sessions Measurements of Surface Heat Flux Over Contrasting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During this field study, "direct" measurements of surface heat flux were made using point ... parameter (CT2) (sodar and minisodar), and line averages of CT2 (laser anemometer). ...

  8. Sandia Labs high-flux solar simulator with one-of-a-kind capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-flux solar simulator with one-of-a-kind capability - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  9. Calibration and Validation of a FAST Floating Wind Turbine Model of the DeepCwind Scaled Tension-Leg Platform: Preprint

    SciTech Connect (OSTI)

    Stewart, G.; Lackner, M.; Robertson, A.; Jonkman, J.; Goupee, A.

    2012-05-01

    With the intent of improving simulation tools, a 1/50th-scale floating wind turbine atop a TLP was designed based on Froude scaling by the University of Maine under the DeepCwind Consortium. This platform was extensively tested in a wave basin at MARIN to provide data to calibrate and validate a full-scale simulation model. The data gathered include measurements from static load tests and free-decay tests, as well as a suite of tests with wind and wave forcing. A full-scale FAST model of the turbine-TLP system was created for comparison to the results of the tests. Analysis was conducted to validate FAST for modeling the dynamics of this floating system through comparison of FAST simulation results to wave tank measurements. First, a full-scale FAST model of the as-tested scaled configuration of the system was constructed, and this model was then calibrated through comparison to the static load, free-decay, regular wave only, and wind-only tests. Next, the calibrated FAST model was compared to the combined wind and wave tests to validate the coupled hydrodynamic and aerodynamic predictive performance. Limitations of both FAST and the data gathered from the tests are discussed.

  10. THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS

    SciTech Connect (OSTI)

    Felipe, T.

    2012-10-20

    The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.

  11. COMBINED ANALYSIS OF THORIUM AND FAST NEUTRON DATA AT THE LUNAR SURFACE

    SciTech Connect (OSTI)

    O. GASNAULT; W. FELDMAN; ET AL

    2001-01-01

    The global distribution of the radioactive elements (U, K, Th) at the lunar surface is an important parameter for an understanding of lunar evolution, because they have provided continuous heat over the lifetime of the Moon. Today, only the thorium distribution is available for the whole lunar surface [1]. Another key parameter that characterize the surface of the Moon is the presence of mare basalts. These basalts are concentrated on the nearside and are represented by materials with high-Fe content, sometimes associated with high-Ti. We demonstrated elsewhere that the fast neutron measurement made by Lunar Prospector is representative of the average soil atomic mass [2]. is primarily dominated by Fe and Ti in basaltic terranes, and therefore the map of the fast neutrons provides a good delineation of mare basalts. We focus here on the correlated variations of thorium abundances and fast neutron fluxes averaged over areas of 360 km in diameter, in an attempt to provide a better understanding of the thorium emplacement on the surface of the Moon.

  12. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    SciTech Connect (OSTI)

    Olson, R. J.; Holladay, S. K.; Cook, R. B.; Falge, E.; Baldocchi, D.; Gu, L.

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  13. Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    map and times SEMEDX map and elemental analysis Xiao-Ying Yu, James Cowin PNNL Fast Framing * 240 framessec * 4 ms per frame * See 100 nm particles arriving New 100 nm...

  14. Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    map and times SEMEDX map and elemental analysis Xiao-Ying Yu & James Cowin PNNL Fast Framing * 240 framessec * 4 ms per frame * See 100 nm particles arriving New 100 nm...

  15. The Mark 101 flux compression generator: Development progress

    SciTech Connect (OSTI)

    Freeman, B.L.; Fowler, C.M.; Rickel, D.G.; Hodgdon, M.L.

    1989-01-01

    The Mark 101 explosive flux compression generator is a line-initiated, helical generator that offers the possibility of a theoretical dL/dt greater than or equal to 0.5 ..cap omega... The design and initial tests were reported by Fowler, et al. and Freeman, et al. Subsequent to the early results, which demonstrated current gains of only /approximately/1.2:1, the generator design was modified and now includes a low-density foam staging layer between the PBX 9501 explosive and the aluminum armature and a vinyl coating on the stator winding. This redesigned Mark 101 has an initial working inductance of 5.36 ..mu..H and a load inductance of 0.60 ..mu..H. The lossless current gain of this unit is 9.9:1, and the estimated practical gain is /approximately/5.5. Experiments have been performed using SF/sub 6/ and vacuum as the insulating media between the armature and stator. Measured current gains of /approximately/5.0:1 have been achieved. The maximum measured dI/dt of /approximately/1.2 /times/ 10/sup 11/ Amps/sec and V of /approximately/62 kV were significantly less than expected during high-current tests. However, a case motion experiment has shown that the armature is probably disintegrating during the last few microseconds of the armature run. Thus, the configuration of the staging layer between the explosive and the armature has been the subject of study. The results of the generator tests are presented. 5 refs., 8 figs.

  16. V-FASTR: THE VLBA FAST RADIO TRANSIENTS EXPERIMENT

    SciTech Connect (OSTI)

    Wayth, Randall B.; Tingay, Steven J.; Brisken, Walter F.; Deller, Adam T.; Majid, Walid A.; Thompson, David R.; Wagstaff, Kiri L.

    2011-07-10

    Recent discoveries of dispersed, non-periodic impulsive radio signals with single-dish radio telescopes have sparked significant interest in exploring the relatively uncharted space of fast transient radio signals. Here we describe V-FASTR, an experiment to perform a blind search for fast transient radio signals using the Very Long Baseline Array (VLBA). The experiment runs entirely in a commensal mode, alongside normal VLBA observations and operations. It is made possible by the features and flexibility of the DiFX software correlator that is used to process VLBA data. Using the VLBA for this type of experiment offers significant advantages over single-dish experiments, including a larger field of view, the ability to easily distinguish local radio-frequency interference from real signals, and the possibility to localize detected events on the sky to milliarcsecond accuracy. We describe our software pipeline, which accepts short integration ({approx} ms) spectrometer data from each antenna in real time during correlation and performs an incoherent dedispersion separately for each antenna, over a range of trial dispersion measures. The dedispersed data are processed by a sophisticated detector and candidate events are recorded. At the end of the correlation, small snippets of the raw data at the time of the events are stored for further analysis. We present the results of our event detection pipeline from some test observations of the pulsars B0329+54 and B0531+21 (the Crab pulsar).

  17. Fuel Development For Gas-Cooled Fast Reactors

    SciTech Connect (OSTI)

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic honeycomb structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  18. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  19. Flux harmonics in large SFR cores in relation with core characteristics such as power peaks

    SciTech Connect (OSTI)

    Rimpault, G.; Buiron, L.; Fontaine, B.; Sciora, P.; Tommasi, J.

    2013-07-01

    Designing future Sodium Fast Reactors (SFR) requires enhancing their operational performance and reducing the probability to go into core disruption. As a consequence of these constraints, these novel reactors exhibit rather unusual features compared to past designs. The cores are much larger with rather flat shape. The consequences of that shape on the core characteristics deserve to be studied. The approach taken in this paper is to calculate the eigenvalue associated to the first harmonic and its associated flux. It is demonstrated that these values are linked to some core features, in particular, those sensitive to spatial effects such as power peaks induced by the movement of control rods. The uncertainty associated to these characteristics is being tentatively studied and guidelines for further studied are being identified. In the development strategy of these new SFR designs, a first demonstration plant of limited installed power (around 1500 MWth) will have to be built first. Identifying the possibility of going later to higher power plants (around 3600 MWth) without facing new challenges is an important criterion for designing such a plant. That strategy is being studied, in this paper, focusing on some rather frequent initiator such as the inadvertent control rod withdrawal for different core sizes with the help of the perturbation theory and the flux harmonics. (authors)

  20. Design considerations for 100 MJ class flux compression pulse power systems

    SciTech Connect (OSTI)

    Reinovsky, R.E.; Lindemuth, I.R.

    1993-10-01

    With the cost of high performance, capacitor-discharge, pulse power systems continuing around $1--2 per joule and with energy requirements for experiments such as fast compression of magnetized plasmas ranging to 100 MJ and beyond, the need for economical, super-energy pulse power systems is being recognized. Explosively powered flux compressors, capable of delivering 100 MJ to a plasma physics experiment, can be designed, fabricated, and fielded at costs of less than $0.01J per shot. While less economical than laboratory pulsed power systems, if system life exceeds a few hundred full-energy shots, explosive pulse power techniques allow initial experiments to be performed quickly and economically at energies that are prohibitively costly, and hence unavailable, using conventional techniques. A variety of configurations for flux compressors suitable for 100-MJ operation can be considered. Among these, the disk configuration, pioneered by researchers at the All Russian Institute of Experimental Physics has demonstrated both high current and high energy capabilities.

  1. AmeriFlux Measurement Component (AMC) Handbook

    SciTech Connect (OSTI)

    Reichl, K.; Biraud, S. C.

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  2. EFFECT OF FAST NEUTRON IRRADIATION ON SINTERED ALUMINA AND MAGNESIA...

    Office of Scientific and Technical Information (OSTI)

    IRRADIATION; LATTICES; MAGNESIUM OXIDES; MONOCRYSTALS; NEUTRON FLUX; RADIATION DOSES; RADIATION EFFECTS; SINTERED MATERIALS; TEMPERATURE; THERMAL CONDUCTIVITY ALUMINUM OXIDES

  3. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect (OSTI)

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  4. Ultra-fast framing camera tube

    DOE Patents [OSTI]

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  5. Rotary fast tool servo system and methods

    DOE Patents [OSTI]

    Montesanti, Richard C.; Trumper, David L.

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  6. Compact fast analyzer of rotary cuvette type

    DOE Patents [OSTI]

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  7. Fast pulsed excitation wiggler or undulator

    DOE Patents [OSTI]

    van Steenbergen, Arie (Shoreham, NY)

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  8. AmeriFlux US-Wjs Willard Juniper Savannah

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Litvak, Marcy [University of New Mexico

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wjs Willard Juniper Savannah. Site Description - The Juniper Savanna site is located in the Southwestern Tablelands in central New Mexico on a private ranch. Its vegetation is composed of Juniperus monosperma and intermittently grazed C4 perennial grasses of which the dominant species is Bouteloua gracilis.

  9. Flux-induced Isometry Gauging in Heterotic Strings

    SciTech Connect (OSTI)

    Chuang, Wu-yen; Gao, Peng

    2007-01-05

    We study the effect of flux-induced isometry gauging of the scalar manifold in N = 2 heterotic string compactification with gauge fluxes. We show that a vanishing theorem by Witten provides the protection mechanism. The other ungauged isometries in hyper moduli space could also be protected, depending on the gauge bundle structure. We also discuss the related issue in IIB setting.

  10. AmeriFlux US-Me1 Metolius - Eyerly burn

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me1 Metolius - Eyerly burn. Site Description - An intermediate aged ponderosa pine forest that was severely burned in the 2002 Eyerly wildfire. All trees were killed (stand replacing event). Irvine et al (2007) GCB 13 (8), 1748–1760.

  11. AmeriFlux US-SRG Santa Rita Grassland

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Scott, Russell [United States Department of Agriculture

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SRG Santa Rita Grassland. Site Description - Semidesert C4 grassland, lies in Pasture 1 on the Santa Rita Experimental Range. This is the companion site for US-SRM, but has much less mesquite encroachment.

  12. AmeriFlux US-Ro1 Rosemount- G21

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota; Griffis, Timothy [University of Minnesota

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro1 Rosemount- G21. Site Description - This tower is located in a farm field farmed in accordance with the dominant farming practice in the region: a corn/soybean rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  13. AmeriFlux US-Ro3 Rosemount- G19

    SciTech Connect (OSTI)

    Baker, John; Griffis, Tim

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro3 Rosemount- G19. Site Description - This tower is located in a farm field farmed in accordance with the cominant farming practice in the region: a corn/soybean rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  14. AmeriFlux US-Wlr Walnut River Watershed (Smileyburg)

    SciTech Connect (OSTI)

    Cook, David; Coulter, Richard L.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wlr Walnut River Watershed (Smileyburg). Site Description - The Walnut River Watershed site rests on a C3/C4 mixed grassland, tallgrass prairie grazed by cattle. The land is owned by a local farmer and the land is leased on a year-to-year basis.

  15. Laser–plasma interactions for fast ignition

    SciTech Connect (OSTI)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.

  16. Laser–plasma interactions for fast ignition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less

  17. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect (OSTI)

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  18. Fast All-Sky Radiation Model for Solar Applications (FARMS):...

    Office of Scientific and Technical Information (OSTI)

    Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of ... Citation Details In-Document Search Title: Fast All-Sky Radiation Model for Solar ...

  19. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Fast-Running Turbine Wake Model Home Renewable Energy Energy Water Power News News & Events Developing a Fast-Running Turbine Wake Model Previous Next Developing a...

  20. Sodium-Cooled Fast Reactor: Past and Future | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sodium-Cooled Fast Reactor: Past and Future June 21, 2016 10:00AM to 11:00AM Presenter ... The United States designed, built, and operated fast reactors (mostly SFRs) from EBR-I ...

  1. Fast pyrolysis of sweet soghum bagasse in a fluidized bed

    SciTech Connect (OSTI)

    Palm, M.; Peacocke, C.; Bridgewater, A.V.; Piskorz, J.; Scott, D.S.

    1993-12-31

    Samples of Italian sorghum bagasse were dried and ground and then pyrolyzed in the Waterloo Fast Pyrolysis bench scale reactor unit. Results were typical of agricultural grasses of this kind, and resembled those obtained from similar tests of sugar cane bagasse. A maximum liquid yield (dry feed basis) of 68% by weight of dry feed was achieved, with a corresponding char yield (ash included) of 16%. The high ash content of the bagasse (9.2%) gave a char with a very high ash content ({approx}50%), with calcium as the most abundant cation. Yields of hydroxyacetaldehyde were comparable to those obtained from softwoods. Deionized bagasse gave significant yields of anhydrosugars on pyrolysis. Sorghum bagasse appears to be a suitable feedstock, either for pyrolysis to yield an alternative fuel oil, or after pretreatment and pyrolysis, to yield a solution of fermentable sugars.

  2. New Version of FAST Released | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Version of FAST Released New Version of FAST Released September 12, 2014 - 11:16am Addthis The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released a more robust version of its FAST software under a modularization framework that represents a generational change in how computer-aided engineering (CAE) tools are developed. NREL's FAST has evolved over the past three decades into one of the most powerful and flexible CAE tools available through open source to

  3. Hydrogen Financial Analysis Scenario Tool (H2FAST)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2FAST National Renewable Energy Laboratory The Hydrogen Financial Analysis Scenario Tool, H2FAST, provides a quick and convenient in-depth financial analysis for hydrogen fueling stations. H2FAST is available in two formats: an interactive online tool and a downloadable Excel spreadsheet. The spreadsheet version of H2FAST offers basic and advanced user interface modes for modeling individual stations or groups of up to 10 stations. It provides users with detailed annual finance projections in

  4. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  5. A FLUX ROPE ERUPTION TRIGGERED BY JETS

    SciTech Connect (OSTI)

    Guo Juan; Zhang Hongqi; Deng Yuanyong; Lin Jiaben; Su Jiangtao; Liu Yu

    2010-03-10

    We present an observation of a filament eruption caused by recurrent chromospheric plasma injections (surges/jets) on 2006 July 6. The filament eruption was associated with an M2.5 two-ribbon flare and a coronal mass ejection (CME). There was a light bridge in the umbra of the main sunspot of NOAA 10898; one end of the filament was terminated at the region close to the light bridge, and recurrent surges were observed to be ejected from the light bridge. The surges occurred intermittently for about 8 hr before the filament eruption, and finally a clear jet was found at the light bridge to trigger the filament eruption. We analyzed the evolutions of the relative darkness of the filament and the loaded mass by the continuous surges quantitatively. It was found that as the occurrence of the surges, the relative darkness of the filament body continued growing for about 3-4 hr, reached its maximum, and kept stable for more than 2 hr until it erupted. If suppose 50% of the ejected mass by the surges could be trapped by the filament channel, then the total loaded mass into the filament channelwill be about 0.57x10{sup 16} g with a momentum of 0.57x10{sup 22} g cm s{sup -1} by 08:08 UT, which is a non-negligible effect on the stability of the filament. Based on the observations, we present a model showing the important role that recurrent chromospheric mass injection play in the evolution and eruption of a flux rope. Our study confirms that the surge activities can efficiently supply the necessary material for some filament formation. Furthermore, our study indicates that the continuous mass with momentum loaded by the surge activities to the filament channel could make the filament unstable and cause it to erupt.

  6. Neutron-Induced Microstructural Evolution of Fe-15Cr-16Ni Alloys at ~400 C During Neutron Irradiation in the FFTF Fast Reactor

    SciTech Connect (OSTI)

    Okita, Taira; Sato, Toshihiko; Sekimura, Naoto; Garner, Francis A.; Greenwood, Lawrence R.; Wolfer, W. G.; Isobe, Yoshihiro

    2001-06-30

    An experiment conducted at ~400 degrees C on simple model austenitic alloys (Fe-15Cr-16Ni and Fe-15Cr-16Ni-0.25Ti, both with and without 500 appm boron) irradiated in the FFTF fast reactor at seven different dpa rates clearly shows that lowering of the atomic displacement rate leads to a pronounced reduction in the transient regime of void swelling. While the steady state swelling rate (~1%/dpa) of these alloys is unaffected by changes in the dpa rate, the transient regime of swelling can vary from <1 to ~60 dpa when the dpa rate varies over more than two orders of magnitude. This range of dpa rates covers the full span of fusion, PWR and fast reactor rates. The origin of the flux sensitivity of swelling arises first in the evolution of the Frank dislocation loop population, its unfaulting, and the subsequent evolution of the dislocation network. There also appears to be some flux sensitivity to the void nucleation process. Most interestingly, the addition of titanium suppresses the void nucleation process somewhat, but does not alter the duration of the transient regime of swelling or its sensitivity to dpa rate. Side-by-side irradiation of boron-modified model alloys in this same experiment shows that higher helium generation rates homogenize the swelling somewhat, but do not significantly change its magnitude or flux sensitivity. The results of this study support the prediction that austenitic alloys irradiated at PWR-relevant displacement rates will most likely swell more than when irradiated at higher rates characteristic of fast reactors. Thus, the use of swelling data accumulated in fast reactors may possibly lead to an under-prediction of swelling in lower-flux PWRs and fusion devices.

  7. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect (OSTI)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  8. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; et al

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  9. Material Open Test Assembly Specimen Retrieval from Hanford's Shielded Material Facility

    SciTech Connect (OSTI)

    Valdez, Patrick LJ; Rinker, Michael W.

    2009-06-14

    Hanford’s 324 Building, the Shielded Material Facility (SMF), was developed to provide containment for research and fabrication development studies on highly radioactive metallic and ceramic nuclear reactor fuels and structural materials. Between 1983 and 1992, the SMF was used in support of the Department of Energy (DOE)-funded Fast Flux Test Facility (FFTF) Materials Open Test Assembly (MOTA) program. In this program, metallurgical specimens were irradiated in FFTF and then sent to SMF for processing and storage in two cabinets. This effort was abruptly ended in early 1990s due to programmatic shifts within the DOE, leaving many specimens unexamined. In recent years, these specimens have become of high value to new DOE programs. Pacific Northwest National Laboratory (PNNL) was tasked with retrieving specimens from one of the cabinets in support of fuel clad and duct development for the Advanced Fuel Cycle Initiative. Cesium contamination of the cell and failure of the overhead crane system utilized for opening the cabinets prevented PNNL from using the built-in hot cell equipment to gain access to the cabinets. PNNL designed and tested a lifting device to fit through a standard 10 inch diameter mechanical manipulator port in the SMF South Cell wall. The tool was successfully deployed in June 2008 with the support of Washington Closure Hanford.

  10. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  11. FLUX ENHANCEMENT IN CROSSFLOW MEMBRANE FILTRATION: FOULING AND IT'S MINIMIZATION BY FLOW REVERSAL

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2005-01-25

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). In this report, we report our application of Flow Reversal technique in clarification of apple juice containing pectin. The presence of pectin in apple juice makes the clarification process difficult and is believed to cause membrane fouling. Of all compounds found in apple juice, pectin is most often identified as the major hindrance to filtration performance. Based on our ultrafiltration experiments with apple juice, we conclude that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. Thus, flow reversal

  12. G-2 and CMS Fast Optical Calorimetry

    SciTech Connect (OSTI)

    Winn, David R

    2012-08-07

    Final report on CMS funding for the construction, tests and installation of the Forward Hadron Calorimeter.

  13. A scintillating fission detector for neutron flux measurements

    SciTech Connect (OSTI)

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  14. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    SciTech Connect (OSTI)

    Greg J. Shott, Vefa Yucel, Lloyd Desotell; Non-Nstec Authors: G. Pyles and Jon Carilli

    2007-06-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.

  15. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    SciTech Connect (OSTI)

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  16. Vacuum magnetic fields with dense flux surfaces

    SciTech Connect (OSTI)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  17. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    SciTech Connect (OSTI)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I.

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  18. Benchmark specifications for EBR-II shutdown heat removal tests

    SciTech Connect (OSTI)

    Sofu, T.; Briggs, L. L.

    2012-07-01

    Argonne National Laboratory (ANL) is hosting an IAEA-coordinated research project on benchmark analyses of sodium-cooled fast reactor passive safety tests performed at the Experimental Breeder Reactor-II (EBR-II). The benchmark project involves analysis of a protected and an unprotected loss of flow tests conducted during an extensive testing program within the framework of the U.S. Integral Fast Reactor program to demonstrate the inherently safety features of EBR-II as a pool-type, sodium-cooled fast reactor prototype. The project is intended to improve the participants' design and safety analysis capabilities for sodium-cooled fast reactors through validation and qualification of safety analysis codes and methods. This paper provides a description of the EBR-II tests included in the program, and outlines the benchmark specifications being prepared to support the IAEA-coordinated research project. (authors)

  19. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect (OSTI)

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori [National Astronomical Observatory, Mitaka, Tokyo, 181-8588 (Japan); Lites, Bruce W.; Kubo, Masahito [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Yokoyama, Takaaki [Department of Earth and Planetary Science, School of Science, University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033 (Japan); Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M. [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover St., Palo Alto, CA 94304 (United States); Ichimoto, Kiyoshi; Nagata, Shin'ichi; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan); Shimizu, Toshifumi [ISAS/JAXA, Sagamihara, Kanagawa, 229-8510 (Japan)], E-mail: joten.okamoto@nao.ac.jp

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  20. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, Natalie J.; Martello, Donald; Schroeder, Karl; Granite, Evan

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  1. Environmental chamber measurements of mercury flux from coal utilization by-products

    SciTech Connect (OSTI)

    Pekney, N.J.; Martello, D.V.; Schroeder, K.T.; Granite, E.J.

    2009-05-01

    An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.

  2. Vaporization, dispersion, and radiant fluxes from LPG spills. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Both burning and non-burning spills of LPG (primarily propane) were studied. Vaporization rates for propane spills on soil, concrete, insulating concrete, asphalt, sod, wood, and polymer foams were measured. Thermal conductivity, heat transfer coefficients, and steady state vaporization rates were determined. Vapor concentrations were measured downwind of open propane pools and a Gaussian dispersion model modified for area sources provided a good correlation of measured concentrations. Emitted and incident radiant fluxes from propane fires were measured. Simplified flame radiation models were adequate for predicting radiant fluxes. Tests in which propane was sprayed into the air showed that at moderately high spray rates all the propane flashed to vapor or atomized; no liquid collected on the ground.

  3. Development of a new flux map processing code for moveable detector system in PWR

    SciTech Connect (OSTI)

    Li, W.; Lu, H.; Li, J.; Dang, Z.; Zhang, X.

    2013-07-01

    This paper presents an introduction to the development of the flux map processing code MAPLE developed by China Nuclear Power Technology Research Institute (CNPPJ), China Guangdong Nuclear Power Group (CGN). The method to get the three-dimensional 'measured' power distribution according to measurement signal has also been described. Three methods, namely, Weight Coefficient Method (WCM), Polynomial Expand Method (PEM) and Thin Plane Spline (TPS) method, have been applied to fit the deviation between measured and predicted results for two-dimensional radial plane. The measured flux map data of the LINGAO nuclear power plant (NPP) is processed using MAPLE as a test case to compare the effectiveness of the three methods, combined with a 3D neutronics code COCO. Assembly power distribution results show that MAPLE results are reasonable and satisfied. More verification and validation of the MAPLE code will be carried out in future. (authors)

  4. Validation of the fast neutron spectrum in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-12-31

    Methods applied in the calculation and interpretation of the measurements of the fast neutron spectrum in the NERBE coupled fast-thermal system are validated in this paper. When advantages and disadvantages of a He-filled semi-conductor-sandwich detector are compared to other neutron detectors, the former is found more appropriate. The neutron detection is based on the reaction {sup 3}He(n,p)T + 0.764 MeV and simultaneous detection of the reaction products in the silicon diodes. The pulses from the diodes are amplified and shaped in separate {open_quotes}energy{close_quotes} channels and summed to produce a single pulse with height proportional to the energy of the incident neutron plus the Q value of the reaction. A well-known measuring system of the He neutron spectrometer is used for the HERBE fast neutron spectrum measurement and calibration in a thermal neutron field.

  5. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect (OSTI)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  6. Direct control of air gap flux in permanent magnet machines

    DOE Patents [OSTI]

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  7. AmeriFlux US-Tw2 Twitchell Corn

    SciTech Connect (OSTI)

    Baldocchi, Dennis

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw2 Twitchell Corn. Site Description - The Twitchell Corn site is a corn field on peat soil. The tower was installed on May 17, 2012 and was equipped to analyze energy, H2O and CO2 fluxes. The field was planted in early May 2012 and harvested in early November 2012. The field was fallow during the non-growing season. The variety of corn used was ES-7477 hybrid corn commercialized by Eureka seeds. The site is near US-Tw1, US-Tw3 and US-Twt sites.

  8. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  9. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  10. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  11. Fast-neutron solid-state dosimeter

    DOE Patents [OSTI]

    Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

    1975-07-22

    This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

  12. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  13. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  14. Thermomechanical analysis of fast-burst reactors

    SciTech Connect (OSTI)

    Miller, J.D.

    1994-08-01

    Fast-burst reactors are designed to provide intense, short-duration pulses of neutrons. The fission reaction also produces extreme time-dependent heating of the nuclear fuel. An existing transient-dynamic finite element code was modified specifically to compute the time-dependent stresses and displacements due to thermal shock loads of reactors. Thermomechanical analysis was then applied to determine structural feasibility of various concepts for an EDNA-type reactor and to optimize the mechanical design of the new SPR III-M reactor.

  15. Side-welded fast response sheathed thermocouple

    DOE Patents [OSTI]

    Carr, Kenneth R.

    1981-01-01

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.

  16. Actinide management with commercial fast reactors

    SciTech Connect (OSTI)

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  17. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  18. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, J.A.

    1980-05-16

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  19. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, James A.

    1982-01-01

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  20. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect (OSTI)

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)