National Library of Energy BETA

Sample records for fast charge tucson

  1. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast Charging Report AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  2. Solar Policy Environment: Tucson

    Broader source: Energy.gov [DOE]

    The Tucson Solar Initiative seeks to institutionalize the value of nine years of solar energy development experience, secure the promise of renewable energy investment funds, facilitate the installation of a significant volume of installations in the community and establish a mechanism for sustainable solar integration for the future.

  3. AVTA: Bidirectional Fast Charging Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bidirectional Fast Charging Report AVTA: Bidirectional Fast Charging Report The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's

  4. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  5. Category:Tucson, AZ | Open Energy Information

    Open Energy Info (EERE)

    VFullServiceRestaurant Tucson AZ Arizona Public Service Co.png SVFullServiceRestauran... 75 KB SVHospital Tucson AZ Arizona Public Service Co.png SVHospital Tucson AZ A... 88 KB...

  6. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources (Redirected from Tucson, AZ) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2217429, -110.926479 Show Map Loading map......

  7. AVTA: Hasdec DC Fast Charging Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hasdec DC Fast Charging Testing Results AVTA: Hasdec DC Fast Charging Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from testing done on the Hasdec DC fast

  8. DC Fast Charging at the Workplace

    Broader source: Energy.gov [DOE]

    Most employers offering plug-in electric vehicle (PEV) charging install Level 1 or Level 2 charging stations, but there are some cases where employers may want to consider installing DCFC. Level 1...

  9. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Battery Testing - DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  10. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  11. Tucson Solar Village: Project management

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    The Tucson Solar Village is a Design/Build Project In Sustainable Community Development which responds to a broad spectrum of energy, environmental, and economic challenges. This project is designed for 820 acres of undeveloped State Trust Land within the Tucson city limits; residential population will be five to six thousand persons with internal employment provided for 1200. This is a 15 year project (for complete buildout and sales) with an estimated cost of $500 million. Details of the project are addressed with emphasis on the process and comments on its transferability.

  12. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage | Department of Energy Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss076_markel_2012_o.pdf More Documents & Publications Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast Charging Report

  13. Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tucson, Arizona Environmentally Protective Power Generation EPPG Ethanol Capital Management Expert Solar Systems General Plasma Inc Genesis Solar LLC GeoInnovation Global...

  14. A hybrid fast-multipole technique for space-charge tracking with halos

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: A hybrid fast-multipole technique for space-charge tracking with halos Citation Details In-Document Search Title: A hybrid fast-multipole technique for space-charge tracking with halos The simulation of injection and accumulation of intense proton beams in synchrotrons and accumulator rings requires a flexible and robust treatment of space-charge effects. In particular, the simulation must be able to correctly incorporate the

  15. Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy |

    Office of Environmental Management (EM)

    Department of Energy Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy September 26, 2014 - 3:34pm Addthis Deputy Secretary Daniel Poneman test drove the Hyundai Tucson Fuel Cell vehicle when the car made an appearance at the Department of Energy headquarters in Washington, D.C. Deputy Secretary Daniel Poneman test drove the Hyundai Tucson Fuel Cell vehicle when the car made an appearance at the

  16. Tucson, Arizona: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  17. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  18. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  19. WM'02 Conference, February 24-28, 2002, Tucson, AZ

    Office of Scientific and Technical Information (OSTI)

    WM'02 Conference, February 24-28, 2002, Tucson, AZ 1 COMPOSITION OF INSOLUBLE RESIDUES GENERATED DURING SPENT FUEL DISSOLUTION Y. Pokhitonov, V. Aleksandruk, B. Bibichev, G....

  20. South Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tucson, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.199521, -110.968425 Show Map Loading map... "minzoom":false,"mappingservice...

  1. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  2. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-in Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables Preprint M. Simpson and T. Markel Presented at the International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 26 (EVS26) Los Angeles, California May 6 - 9, 2012 Conference Paper NREL/CP-5400-53914 August 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  3. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  4. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Broader source: Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  5. Corona de Tucson, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Corona de Tucson is a census-designated place in Pima County, Arizona.1 References US...

  6. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  7. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect (OSTI)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  8. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    2013-11-19

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  9. Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tucson Well on Its Way to Go Electric to someone by E-mail Share Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Facebook Tweet about Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Twitter Bookmark Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Google Bookmark Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Delicious Rank Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Digg

  10. FAST

    Energy Science and Technology Software Center (OSTI)

    002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0  https://software.sandia.gov/trac/fast 

  11. Tucson Request for Proposal for 1-5 MW PV PPA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Tucson Request for Proposal for 1-5 MW PV PPA Tucson Request for Proposal for 1-5 MW PV PPA The mission of Tucson Water, a Department of the City of Tucson (the City), is to ensure that its customers receive high quality water and excellent service in a cost efficient, safe and environmentally responsible manner. In the interest of furthering Tucson Waters mission, the City is seeking a Contractor to finance, design, build, commission, own, operate and maintain up to a 1

  12. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect (OSTI)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  13. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect (OSTI)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  14. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY

  15. Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ - Building America Top Innovation Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ - Building America Top Innovation Photo of the front of a Tucson home. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Pulte Homes' Civano

  16. Application for Presidential Permit OE Docket No. PP-229 Tucson Electric

    Energy Savers [EERE]

    Power Company | Department of Energy Company Application for Presidential Permit OE Docket No. PP-229 Tucson Electric Power Company Application from Tucson Electric Power Company to construct, operate and maintain electric transmission facilities at the U.S. - Mexico Border. PDF icon Application for Presidential Permit OE Docket No. PP-229 Tucson Electric Power Company More Documents & Publications Application for Presidential Permit OE Docket No. PP-235 Sempra Energy Resources.

  17. Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-06-01

    This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

  18. Apparatus and method for fast recovery and charge of insulation gas

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-09-03

    An insulation gas recovery and charge apparatus is provided comprising a pump, a connect, an inflatable collection device and at least one valve.

  19. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  20. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect (OSTI)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  1. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV...

    Broader source: Energy.gov (indexed) [DOE]

    the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to...

  2. Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Model Car Competitions - News Releases | NREL Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel Cell Model Car Competitions National "Battle of the Brains" continues June 19 with academic face off June 18, 2004 Golden, Colo. - Doolen Middle School from Tucson, Ariz., captured top place in the model hydrogen fuel cell stock competition and Jenkins Middle School from Colorado Springs, Colo., captured top place in the open class model car competitions on

  3. Application for Presidential Permit OE Docket No. PP-229 Tucson Electric

    Energy Savers [EERE]

    Power Company: Federal Register Notice Volume 65, No. 183 - Sep. 20, 2000 | Department of Energy Company: Federal Register Notice Volume 65, No. 183 - Sep. 20, 2000 Application for Presidential Permit OE Docket No. PP-229 Tucson Electric Power Company: Federal Register Notice Volume 65, No. 183 - Sep. 20, 2000 Application from Tucson Electric Power Company to construct, operate and maintain electric transmission facilities at the U.S. - Mexico Border: Federal Register Notice. PDF icon

  4. Plasmon excitations in C{sub 60} by fast charged particle beams

    SciTech Connect (OSTI)

    Li, C. Z.; Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 ; Miskovic, Z. L.; Goodman, F. O.; Wang, Y. N.

    2013-05-14

    For an isolated C{sub 60} molecule, we study plasmon excitations that are induced by an external, fast moving electron, by using a two-dimensional, spherical, two-fluid hydrodynamic model for the dynamic response of the {sigma} and {pi} electrons in the carbon nanostructure. Second quantization of the linearized hydrodynamic model allows us to discuss how effective is multiple excitation of various plasmon modes. Mean numbers of the excited plasmon modes, differential cross sections, and the total energy loss of the incident electron are calculated by both a quantized model with zero damping and by a semi-classical model with phenomenological damping. Our calculated differential cross sections are compared with experiment.

  5. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

    SciTech Connect (OSTI)

    Lv, DP; Shao, YY; Lozano, T; Bennett, WD; Graff, GL; Polzin, B; Zhang, JG; Engelhard, MH; Saenz, NT; Henderson, WA; Bhattacharya, P; Liu, J; Xiao, J

    2014-09-11

    In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.

  6. Tucson, Arizona: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE)

    Broader source: Energy.gov [DOE]

    This brochure provides an overview of the challenges and successes of Tucson, AZ, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. Field Test and Evaluation Report Five Photovoltaic Power Systems for the City of Tucson

    Broader source: Energy.gov [DOE]

    Members of the DOE solar energy Tiger Team tested five municipally owned, grid connected photovoltaic (PV) power systems for the City of Tucson on March 26 and 27, 2008. The five PV systems tested were Southeast Service Center, Clements Fitness Center, and Thonydale water treatment plant systems 1, 2, and 3. During all tests, skies were virtually cloudless with only occasional, high cirrus present, and none during array testing.

  8. Best Practices Case Study: John Wesley Miller Companies - Armory Park Del Sol, Tucson, AZ

    SciTech Connect (OSTI)

    2009-10-01

    Case study of John Wesley Miller Companies, who built two net zero energy homes plus 97 other solar homes in Tucson, AZ. Masonry block walls with rigid foam exterior sheathing, rigid foam over the roof deck plus R-38 in the attic, ducts in conditioned space, 4.2 kW and 5.7 kW photovoltaics and solar water heating yielded HERS scores of 0 on the two homes.

  9. EIS-0336: Presidential Permit Application, Tucson Electric Power Company, Sahuarita, AZ

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a Presidential Permit application to construct a double-circuit 345,000 volt (345-kV) electric transmission line to transmit 500 MW of electricity. The transmission line would begin south of Tucson, Arizona, in the vicinity of Sahuarita, cross the U.S.-Mexico border near Nogales, Arizona, and continue into Mexico. The proponent anticipates using 400 MW of capability for transport of energy between the United States and Mexico.

  10. New Whole-House Solutions Case Study: John Wesley Miller Companies, Tucson, AZ

    Energy Savers [EERE]

    home visionary John Wesley Miller teamed with the U.S. Department of Energy to build two zero-energy homes at his award-winning 99-unit development in Tucson's historic Armory Park neighborhood. Miller was one of four builders selected to work on DOE's net zero- energy homes initiative. Through the initiative, Miller worked with the National Association of Home Builders Research Center (NAHBRC), the National Renewable Energy Laboratory, Devereaux and Associates Architects, and a team of

  11. Building America Top Innovations Hall of Fame Profile Â… Community Scale High-Performance with Solar: Pulte Homes, Tucson, AZ

    Energy Savers [EERE]

    Homes' Civano project in Tucson, Arizona, is one of the few communities in the United States to integrate passive and active solar with a comprehensive building science strategy. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Pulte Homes' Civano project in Tucson, Arizona, have an extraordinary impact, demonstrating the business case for adopting proven

  12. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Summit Automakers and Workplace Charging Washington, D.C. 18 November 2014 Britta K. Gross Director, Advanced Vehicle Commercialization Policy Infrastructure Charging is more convenient than ever before * 120V outlets (overnight or during the work day) * 240V hardwired (several hours) * DC fast-charging (20-30 minutes) Clear charging patterns are emerging * Home charging - 60-80% of all charging is at home * Workplace charging - proving to be the most helpful promoter of PEVs

  13. New Whole-House Solutions Case Study: CDC Realty Inc., Tucson, AZ

    Energy Savers [EERE]

    CDC Realty, Inc., of Tucson, Arizona, approached U.S. Department of Energy Building America partner Building Science Corporation (BSC) for guidance in building a community of compact, single-story homes aimed at first-time home buyers and retirees who could really benefit from the cost savings of energy-efficient homes. The 1,500 ft 2 homes are a simple, slab-on-grade design with a flat roof and 12-foot ceilings in the great room and kitchen and sloped 9-foot ceilings throughout the rest of the

  14. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect (OSTI)

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Miškovi?, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  15. EA-1878: U.S. Department of Energy Loan Guarantee to Southwestern Solar Power, LLC for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a DOE loan guarantee to Solar Power, LLC, for the Southwestern Solar Power Project in Palmdale, California, and near Tucson, Arizona. NOTE: EA has been cancelled.

  16. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or conductors, and two neutral ground wires that would provide both lightning protection and fiber optic communications, on a single set of support structures. The transmission line would originate at TEP's existing South Substation (which TEP would expand), in the vicinity of Sahuarita, Arizona, and interconnect with the Citizens Communications (Citizens) system at a Gateway Substation that TEP would construct west of Nogales, Arizona. The double-circuit transmission line would continue from the Gateway Substation south to cross the U.S.-Mexico border and extend approximately 60 miles (mi) (98 kilometers [km]) into the Sonoran region of Mexico, connecting with the Comision Federal de Electricidad (CFE, the national electric utility of Mexico) at CFE's Santa Ana Substation.

  17. The differential algebra based multiple level fast multipole...

    Office of Scientific and Technical Information (OSTI)

    The differential algebra based multiple level fast multipole algorithm for 3D space charge ... Title: The differential algebra based multiple level fast multipole algorithm for 3D space ...

  18. Workplace Charging Challenge Partner: City of Beaverton, OR ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    encourage personal PEV use, explore PEV fleet options, adopt consistent PEV charging signage, and support PEV-related businesses. Fast Facts Joined the Workplace Charging...

  19. EA-2002: Right-of-Way Application for the Tucson-Apache 115-kV Transmission Line, Pima County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) and the Bureau of Indian Affairs (BIA), as joint lead agencies, prepared an EA that evaluates the potential environmental impacts of a proposal for BIA to grant Western a 150-foot right-of-way across tribal land along the existing Tucson-Apache Transmission Line to replace the previous 100-foot right-of-way, which has expired.

  20. EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy America's Plug-In Electric Vehicle Market Charges Forward EV Everywhere: America's Plug-In Electric Vehicle Market Charges Forward January 22, 2014 - 6:35pm Addthis Hyundai Fuel Cell 1 of 14 Hyundai Fuel Cell Pictured here is Secretary Moniz looking at the fuel cell and motor used to power Hyundai's Tucson fuel cell vehicle. Fuel cell vehicles use hydrogen to produce electricity, which powers an electric motor to make the vehicle and its accessories work. Image: Sarah

  1. EV Everywhere: Vehicle Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Vehicle Charging The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. The standard J1772 electric power receptacle (right) can receive power from Level 1 or Level 2 charging equipment. The CHAdeMO DC fast charge receptacle (left) uses a different type of connector. To get the most out of your plug-in electric vehicle (also

  2. Fast Faraday Cup With High Bandwidth

    DOE Patents [OSTI]

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  3. Workplace Charging Station Basics | Department of Energy

    Energy Savers [EERE]

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  4. Fast Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Ignition Researchers Study Fast Ignition University of California at San Diego researchers participate in experiments on the Titan laser at LLNL's Jupiter Laser Facility to study fast ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies on simultaneous compression and ignition of a spherical fuel capsule in an implosion, roughly like in a diesel engine (see

  5. DOE Research and Development Accomplishments: Fast Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Facts

  6. The differential algebra based multiple level fast multipole algorithm for

    Office of Scientific and Technical Information (OSTI)

    3D space charge field calculation and photoemission simulation (Journal Article) | DOE PAGES The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation This content will become publicly available on September 28, 2016 Title: The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation Coulomb interaction between charged particles inside a

  7. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump Location: Tucson, AZ and Chico, CA Partners: La Mirada Homes www.lamiradahomes.net Chico Green Builders Daikin www.daikinac.com ARBI http://arbi.davisenergy.com/ Building Component: HVAC, domestic hot water Application: New, single family Year Tested: 2011-2012 Applicable Climate Zones: Hot-dry, cold PERFORMANCE DATA Cost

  8. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their...

  9. Workplace Charging Challenge Partner: AeroVironment, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. Workplace Charging Challenge Partner: AeroVironment, Inc. AeroVironment, a developer and innovator of unmanned aircraft systems, EV charging solutions, and innovative technology systems, leads by example with workplace charging strategies. AeroVironment has about 20 electric vehicle charging stations and fast chargers installed at five of their work locations for employee use. Workplace charging is a core

  10. Workplace Charging Challenge Partner: FCA US LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCA US LLC Workplace Charging Challenge Partner: FCA US LLC FCA US LLC currently has six plug-in electric vehicle (PEV) charging stations available for employee use at its Auburn Hills headquarters. In support of the DOE's Workplace Charging Challenge, FCA US LLC will continue to evaluate existing and future workplace charging plans based on employees' PEV use. Fast Facts Joined the Workplace Charging Challenge: January 31, 2013 Headquarters: Auburn Hills, MI Charging Locations: Auburn Hills, MI

  11. Fast valve

    DOE Patents [OSTI]

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  12. Fast valve

    DOE Patents [OSTI]

    Van Dyke, William J. (Grafton, VA)

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  13. The differential algebra based multiple level fast multipole algorithm for

    Office of Scientific and Technical Information (OSTI)

    3D space charge field calculation and photoemission simulation (Journal Article) | SciTech Connect The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation Citation Details In-Document Search This content will become publicly available on September 28, 2016 Title: The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation Coulomb

  14. HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging HPSS Charging NERSC uses Storage Resource Units (SRUs) to help manage HPSS storage. The goal is to provide a balanced computing environment with appropriate amounts of storage and adequate bandwidth to keep the compute engines fed with data. Performance and usage tracking allows NERSC to anticipate demand and maintain a responsive storage environment. Storage management also recognizes storage as a distinct resource in support of an increasing amount of data intensive computing. Storage

  15. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV...

  16. Workplace Charging Challenge Partner: JEA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JEA Workplace Charging Challenge Partner: JEA Workplace Charging Challenge Partner: JEA By joining the Workplace Charging Challenge, JEA celebrates its community leadership role in the advancement of PEVs. JEA is actively engaged with the community to increase the awareness and education of the benefits of driving electric. Through the Workplace Charging Challenge, JEA is proud to demonstrate leadership and assist its customers to achieve their own workplace charging initiatives. Fast Facts

  17. Workplace Charging Challenge Partner: Bentley Systems, Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Workplace Charging Challenge Partner: Bentley Systems, Inc. Bentley Systems has committed to installing at least one plug-in electric vehicle (PEV) charging location at one of its U.S. office locations. The company will monitor and assess colleague feedback and explore additional installations at its corporate headquarters near Philadelphia, Pennsylvania. Fast Facts Joined the Workplace Charging

  18. Workplace Charging Challenge Partner: City of Benicia | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Benicia Workplace Charging Challenge Partner: City of Benicia Workplace Charging Challenge Partner: City of Benicia The City of Benicia has applied for and received a number of grants to install plug-in electric vehicle (PEV) charging stations at city facilities. Through work with local and regional partners, it has installed 3 Level 2 stations at two different city buildings and 1 dual port, solar-powered, battery-backed, fast charging station, for which it received a 2015

  19. Workplace Charging Challenge Partner: Dell Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Workplace Charging Challenge Partner: Dell Inc. Dell is committed to putting its technology and expertise to work where it can do the most good for people and planet. As part of that commitment, Dell seeks to minimize its environmental impact and help its team members do the same. Dell installed its first workplace charging systems in 2009 at its Round Rock, Texas headquarters campus. Fast Facts Joined the Workplace Charging Challenge:

  20. Workplace Charging Challenge Partner: Facebook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facebook Workplace Charging Challenge Partner: Facebook Workplace Charging Challenge Partner: Facebook Facebook employees are early adopters and the company now has a significant number of plug-in electric vehicles (PEVs) on campus to respond to employee demand. As part of Facebook's aggressive Transportation Demand Management (TDM) program, the company has committed to supplying free PEV charging to its Menlo Park employees. Currently, the campus has 1 DC Fast Charger and 25 Level 2 charging

  1. Workplace Charging Challenge Partner: Utilidata | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilidata Workplace Charging Challenge Partner: Utilidata Workplace Charging Challenge Partner: Utilidata Utilidata is proud to join the U.S. Department of Energy's Workplace Charging Challenge. Through its efforts, Utilidata is helping to reduce petroleum use and greenhouse gas emissions while also providing a valuable employee benefit. Utilidata is pleased to support this shared effort to move toward a cleaner energy future. Fast Facts Joined the Workplace Charging Challenge: June 12, 2015

  2. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  3. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA)

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  4. Will Your Battery Survive a World With Fast Chargers?

    SciTech Connect (OSTI)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  5. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  6. Workplace Charging Challenge Partner: University of Maine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As part of the LEED Gold certification awarded for its recent Offshore Wind Lab expansion, 4 PEV charging posts were planned adjacent to its main entrance. Fast Facts Joined the ...

  7. Workplace Charging Challenge Partner: SemaConnect, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employees are able to save money on their daily commute and enjoy the perks of driving a brand new PEV. Fast Facts Joined the Workplace Charging Challenge: July 21, 2014 ...

  8. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  9. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  10. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  11. FastForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FastForward CAL Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Exascale Computing » FastForward FastForward The FastForward program complements the DesignForward program and focused on co-design efforts between DOE centers and vendors with the goal of improving processor, memory, storage and I/O technologies. Furthermore, these improvements should be aimed at maximizing energy efficiency and concurrency while increasing performance, productivity, and reliability.

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  13. Workplace Charging Challenge Partner: City of Hillsboro | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hillsboro Workplace Charging Challenge Partner: City of Hillsboro Workplace Charging Challenge Partner: City of Hillsboro The City of Hillsboro is proud to offer plug-in electric vehicle (PEV) charging for employees, its fleets, and the public at multiple locations in the downtown area. Beginning in 2009, the City has installed 35 EVSE, including the state's first Level II chargers and one of the first DC Fast Chargers in the country. Electrified transportation is consistent with

  14. Workplace Charging Challenge Partner: Siemens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Workplace Charging Challenge Partner: Siemens Workplace Charging Challenge Partner: Siemens Currently, Siemens has installed charging stations at four of its largest U.S. sites: Orlando, FL; Iselin, NJ; Alpharetta, GA; and Wendell, NC. In 2011, Siemens surveyed a portion of its U.S. employees to gauge their interest in purchasing plug-in electric vehicles. Siemens will periodically update the survey to re-evaluate their employees' demand for stations. Fast Facts Joined the Workplace

  15. Workplace Charging Challenge Partner: Black & Veatch | Department of Energy

    Energy Savers [EERE]

    Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Black & Veatch is an independent engineering, consulting, and construction firm working in water, energy and telecommunications. The company supported the design and construction of the world's largest DC fast charging network in North America with its experience with utility and distributed generation systems. The company has made plug-in electric vehicle

  16. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  17. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  18. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  19. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the ... Etiquette 4 Workplace Charging Challenge Carrie Giles carrie.giles@icfi.com Learn More: ...

  20. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  1. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research...

  2. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Fast pulsed excitation wiggler or undulator

    DOE Patents [OSTI]

    van Steenbergen, Arie (Shoreham, NY)

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  4. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  5. fast-matmul

    SciTech Connect (OSTI)

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  6. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  7. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  8. fastKDE

    Energy Science and Technology Software Center (OSTI)

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  9. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  10. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  11. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  12. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  13. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  14. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  15. fast-matmul

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less

  16. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  17. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  18. Workplace Charging Challenge: Install and Manage PEV Charging at Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Install and Manage PEV Charging at Work Workplace Charging Challenge: Install and Manage PEV Charging at Work Workplace Charging Challenge: Install and Manage PEV Charging at Work Employers who install workplace charging for plug-in electric vehicles (PEVs) demonstrate leadership, show a willingness to adopt advanced technology, and increase consumer exposure and access to PEV charging. Workplace charging is an appealing incentive for many employees that can help attract

  19. FAST Final Technical Report

    SciTech Connect (OSTI)

    Toister, Elad

    2014-11-06

    The FAST project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  20. Workplace Charging Challenge

    Broader source: Energy.gov (indexed) [DOE]

    Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our nation's PEV charging infrastructure and offering a valuable employee benefit. A full transition to electric- drive vehicles (including all-electric vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles) could reduce U.S. dependence on imported

  1. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  2. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  3. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  4. Workplace Charging Challenge: Promote Charging at Work | Department of

    Office of Environmental Management (EM)

    Energy Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can encourage PEV adoption in their communities. Use the material below to engage and educate employers about the

  5. Ion charge state fluctuations in vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  6. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  7. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew (Shoreham, NY); Falkowski, Paul (Stony Brook, NY)

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  8. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsFast Analysis and Simulation Team content top Fast Analysis and Simulation Team

  9. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy agreement proposed by one municipality to register PEV drivers and inform staff of charging policy. PDF icon Sample Municipal Workplace Charging Agreement More Documents & Publications Workplace Charging Challenge: Sample Workplace Charging Policy Workplace Charging Challenge Summit 2014: Session 3, Track B Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan

  10. Determination of time zero from a charged particle detector

    DOE Patents [OSTI]

    Green, Jesse Andrew (Los Alamos, NM)

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  11. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Broader source: Energy.gov (indexed) [DOE]

    that will be needed to handle large vehicle charging loads. Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and customer charging...

  12. Workplace Charging Challenge: Install and Manage PEV Charging...

    Office of Environmental Management (EM)

    Station Basics Vehicle Basics - Learn more about the PEVs that employees may drive on the Alternative Fuels Data Center. Charging Station Basics - Learn how charging stations work...

  13. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  14. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  15. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K. (Livermore, CA); Hunt, Angus L. (Alamo, CA)

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  16. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  17. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but charging at work...

  18. Workplace Charging Challenge: Sample Workplace Charging Policy | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully. PDF icon Sample Workplace Charging Policy More Documents & Publications PEV Outreach Resources for Your Employees Workplace Charging Challenge Summit 2014: Session 1, Track A Vehicle Technologies Office: Workplace Charging Challenge Reports

  19. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  20. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID); Berry, Ray A. (Idaho Falls, ID)

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  1. Fast Ignitor coupling physics

    SciTech Connect (OSTI)

    Mason, R.J.; Tabak, M.

    1997-10-01

    The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or finding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship.

  2. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  3. Semiclassical eigenenergies in the wake of fast ions in solids

    SciTech Connect (OSTI)

    Mueller, J.; Burgdoerfer, J.; Noid, D.W. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics Oak Ridge National Lab., TN (USA))

    1990-01-01

    We compare the semiclassical and quantum mechanical eigenenergies of an electron in the wake of a fast, highly charged ion traversing a solid. The classical dynamics of this system shows a transition from regular to chaotic motion as a function of the binding energy. The transition can also be seen in the quantal spectra. We find evidence for a connection between bifurcation of tori and disorder in the energy level sequences. 21 refs., 4 figs.

  4. Workplace Charging Challenge: Promote PEVs and Charging at Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Promote PEVs and Charging at Work Workplace Charging Challenge: Promote PEVs and Charging at Work Workplace Charging Challenge: Promote PEVs and Charging at Work After you've installed plug-in electric vehicle (PEV) charging stations at your work site, you'll want to educate your employees on why and how they can take advantage of this employee benefit. Use the resources below to engage PEV- and non-PEV driving employees alike. Educate and Engage Employees Employee PEV

  5. Continuous Evaluation of Fast Processes...

    Office of Scientific and Technical Information (OSTI)

    FASTER project Continuous Evaluation of Fast Processes in Climate Models Using Arm Measurements Final Report PI: Minghua Zhang Under the support of this grant, we investigated the ...

  6. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  7. Tucson Electric Power Co | Open Energy Information

    Open Energy Info (EERE)

    37,668 399,592 362,594 22,153 216,496 35,381 19,733 294,679 632 79,554 910,767 398,607 2008-08 44,791 473,436 362,999 24,813 241,530 35,328 21,325 317,671 634 90,929...

  8. homogeneous charge compression ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    homogeneous charge compression ignition - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV N/A N/A approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations * Network * * Open or Proprietary - ability to change network * Creative scheduling (fees, hours) * Concentration of Stations * ADA 1% of spaces * LEED certification * Costs * Installation (L1, L2, split power) * Electrical Power (commercial v residential rates) * Fleet Wants and Needs Ability to monitor usage, develop

  10. Charging Your Time - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Exposition Charging Your Time About Us Charging Your Time Committee Members Contact Us Electronic Registration Form Exhibitor and Vendor Information EXPO 2016 Sponsors EXPO Award Criteria Special Events What is EXPO Why Should I Participate in EXPO Charging Your Time Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size How Do I Charge My Time Spent at EXPO? Each Hanford Prime Contractor may have different policies for attending EXPO during working

  11. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Update 2014 U.S. Department of Energy Sarah Olexsak Workplace Charging Challenge 2 Ambassador employer workshops & recognition events Workplace Charging Challenge 3 Workplace Charging Challenge Annual Survey Workplace Charging Challenge 4 Progress Update 2014: Employers Take Charge Available at energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative Growth in Workplace Locations with Charging Workplace Charging Challenge 6

  12. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  13. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  14. Workplace Charging Challenge Partner: Eli Lilly | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eli Lilly Workplace Charging Challenge Partner: Eli Lilly Workplace Charging Challenge Partner: Eli Lilly In 2012, Lilly installed several workplace charging stations at its two...

  15. High resolution printing of charge

    DOE Patents [OSTI]

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  16. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicle Workplace Charging 2  Vertically integrated Vermont utility  We serve  260,000 Customers  202 towns covering 7,500 square miles of service territory  We operate  32 Hydro Plants  6 Peaking Plants  12 Solar Projects  2 Wind Farms  2 100KW Wind Turbines  1 Joint-Owned Biomass Plant (McNeil)  We maintain  976 miles of transmission lines  11,273 miles of distribution lines  185 substations  Started in 2010 with Prius HyMotion

  17. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  18. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  19. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov [DOE]

    The Workplace Charging Challenge Progress Update 2014 highlights the progress of the Challenge and its partners as determined through the annual partner survey.

  20. Workplace Charging Toolkit: Workshop Speaker Outreach Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction...

  1. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment...

  2. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive...

  3. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa...

  4. Explosive bulk charge

    DOE Patents [OSTI]

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  5. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  6. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  7. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * Sustainability:  Reduce CO 2 footprint  CSR reporting * Brand image * Reduce fleet costs * Competitive pricing * Lower fuel expenses * EV range extension * Personal sustainability * Turnkey Package:  VPP pricing & infrastructure  Best practices consulting  Charging network operators  EV education * Special

  8. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Workplace Charging Challenge Partner: Raytheon

    Broader source: Energy.gov [DOE]

    Raytheon has installed fifteen dual 220-volt plug-in electric vehicle (PEV) charging stations spread across six operating locations in California, Colorado, Massachusetts, Texas and Virginia.

  10. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  11. Wireless Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss103_miller_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Wireless Charging Wireless Plug-in Electric Vehicle (PEV) Charging Wireless Plug-in Electric Vehicle (PEV)

  12. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  13. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  14. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  15. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jean Gough Southeast: Cornelius Willingham 18 Level 2 chargers under solar canopy 1 DC Fast Charger, and 2 Level 2 in visitor parking 5 Level 2 chargers in parking garage 2...

  16. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  17. Workplace Charging Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Workplace Charging Presentation Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of supporting these sustainable transportation technologies at your organization. File Workplace Charging Ambassador Outreach Presentation Template More Documents & Publications Workplace Charging Toolkit: Workshop Outreach Presentation Template Workplace

  18. Workplace Charging Challenge: Ambassadors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge: Ambassadors Workplace Charging Challenge: Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as ambassadors to promote and support workplace charging. Ambassadors, including Clean Cities coalitions across the country, are organizations that are knowledgeable about local incentives, best practices for workplace charging, and other aspects of plug-in electric vehicle (PEV) community readiness. Challenge partners can benefit from working

  19. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  20. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov (indexed) [DOE]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  1. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  2. Workplace Charging Management Policies: Sharing

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  3. Workplace Charging Management Policies: Pricing

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  4. Workplace Charging Management Policies: Administration

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  5. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K. (Berkeley, CA); Neyer, David W. (Castro Valley, CA); Schoeniger, Joseph S. (Oakland, CA); Garguilo, Michael G. (Livermore, CA)

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  6. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  7. Workplace Charging Challenge 2014 Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- 9:00 AM Opening Plenary (Plaza Ballroom C) Welcome (Patrick Davis, Director, DOE Vehicle Technologies Office) DOE Priorities & EV Everywhere (Dr. David Danielson, Assistant Secretary, DOE Office of Energy Efficiency and Renewable Energy) Advancing PEVs and the Future of PEV R&D and Deployment (Patrick Davis, Director, DOE Vehicle Technologies Office) Workplace Charging Challenge Progress Update (Sarah Olexsak, Coordinator, Workplace Charging Challenge) 10:00 -- 10:15 AM Track A (Plaza

  8. Workplace Charging Toolkit: Workshop Outreach Presentation Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Presentation Template Workplace Charging Toolkit: Workshop Outreach Presentation Template Educate workshop attendees and employers about the benefits of workplace charging...

  9. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  10. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  11. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  12. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  14. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their...

  15. Vehicle Technologies Office: Workplace Charging Challenge Reports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by...

  16. Workplace Charging Challenge: Signage Guidance | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Signage Guidance Workplace Charging Challenge: Signage Guidance Electric vehicle parking signage. No parking except for electric vehicle charging. Signage for plug-in...

  17. Workplace Charging Challenge Partner: Telefonix, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Partner: Telefonix, Inc. Workplace Charging Challenge Partner: Telefonix, Inc. As an ISO 1400 certified manufacturer of plug-in electric vehicle (PEV) ...

  18. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  19. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  20. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID); Fincke, James R. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  1. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  2. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  3. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  4. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  5. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  6. Workplace Charging Toolkit: Workshop Outreach Presentation Template |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Educate workshop attendees and employers about the benefits of workplace charging and the Challenge by selecting slides from this sample presentation. File General Workshop Outreach Presentation Template File Clean Cities Branded Workshop Outreach Presentation Template More Documents & Publications Workplace Charging Presentation Workplace Charging Challenge Summit 2014: Session 1, Track A Workplace Charging Challenge Overview Factsheet

  7. Cryogenic CMOS circuits for single charge digital readout.

    SciTech Connect (OSTI)

    Gurrieri, Thomas M.; Longoria, Erin Michelle; Eng, Kevin; Carroll, Malcolm S.; Hamlet, Jason R.; Young, Ralph Watson

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  8. Simulation of a cascaded longitudinal space charge amplifier for broadband radiation production using a superconducting linac

    SciTech Connect (OSTI)

    Halavanau, A.; Piot, P.

    2015-10-02

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab

  9. A hybrid fast-multipole technique for space-charge tracking with...

    Office of Scientific and Technical Information (OSTI)

    the large-amplitude beam halo which is known to arise from a variety of mechanisms. ... in a simulated beam that may include halo particles at arbitrarily large amplitudes. ...

  10. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  13. Charge amplifier with bias compensation

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  14. Fast-acting valve actuator

    DOE Patents [OSTI]

    Cho, Nakwon (Knoxville, TN)

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  15. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric vehicle (PEV) charging for its employees. With the advent of the modern Level 2 and DC Quick-Charging standards, PGE embarked on an ambitious workplace charging expansion program. Over the past four years, PGE has installed 38 PEV

  16. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower Technologies' core sustainability mission and they have found that workplace charging is a valuable benefit that

  17. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  18. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  19. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More than 250 employers have

  20. Stability of charged thin shells

    SciTech Connect (OSTI)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-05-15

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  1. Workplace Charging Challenge Summit 2014: Agenda | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Final Agenda for the 2014 Workplace Charging Challenge Summit PDF icon 2014 Workplace Charging Challenge Summit Agenda More Documents & Publications Workplace Charging Challenge Summit 2014: Opening Plenary Workplace Charging Toolkit: Workshop Agenda Template Workplace Charging Presentation

  2. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  3. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E. (Knoxville, TN)

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  4. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  5. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  6. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of solar radiation by the clear and cloudy atmosphere during the Atmospheric Radiation Measurements Enhanced Shortwave Experiments (ARESE) I and II: Observations and models." ...

  7. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): ... DOESC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure ...

  8. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DOE Review of the Atmospheric Radiation Measurement (ARM) Climate Research Facility ... 1. INTRODUCTION The Atmospheric Radiation Measurement (ARM) Program was created in ...

  9. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  10. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to develop the following opportunities: File...

  11. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C. (Livermore, CA)

    1996-01-01

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  12. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, L.C. Jr.

    1996-06-04

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

  13. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  14. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  15. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G. (San Ramon, CA)

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  16. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  17. Method for controlled hydrogen charging of metals

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  18. Workplace Charging Challenge Partner: Suffolk County Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a pair of electric vehicle charging stations. McKay attached the charger to a plug-in Toyota Prius Hyrbid. Each station can rapid-charge two electric or hybridelectric vehicles...

  19. Workplace Charging Challenge Partner: Heartland Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Heartland Community College values ethical decision-making and responsible use of environmental, financial, and community resources to promote a sustainable future. The college installed two Level 2 plug-in electric vehicle charging stations for employee use, at no cost to them. The provision of workplace charging

  20. Linear Thermite Charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Thermite Charge Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication Linear Thermite Charge Picture (40 KB) PDF Document Publication Linear Thermite Charge Patent (207 KB) Technology Marketing Summary The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. Description Broadly, the invention provides for

  1. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and national security. Argonne provides its employees with access to electric vehicle charging stations for a nominal fee.

  2. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing electric vehicle charging stations in 2016 is one of many efforts that publically demonstrates Eastern's commitment

  3. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  4. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  5. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  6. EV Everywhere Workplace Charging Challenge: Benefits of Joining

    Broader source: Energy.gov [DOE]

    Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness...

  7. Leading the Charge: Christine Klein

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands. In this issue, we talk to Christine Klein, an adopted Haida who is leading efforts to help Alaska Native villages address their energy challenges in her role as Vice President and Chief Operating Officer of the Calista Corporation.

  8. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  9. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  10. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  11. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    moves fast Cloud computing * Many stakeholdersplayers that must come together * Millenials don't give a &@ about vehicles * Government incentives regulations laws *...

  12. ADA Requirements for Workplace Charging Installation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADA Requirements for Workplace Charging Installation ADA Requirements for Workplace Charging Installation PDF icon ADA Requirements for Workplace Charging Installation More Documents & Publications Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Workplace Charging Presentation Request for Proposal Guidance

  13. Workplace Charging Challenge Partner: Capital One Financial Corporatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation ...

  14. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  15. FastBit: Interactively Searching Massive Data

    SciTech Connect (OSTI)

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  16. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  17. Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six Smart Grid Investment Grant Projects

    Office of Environmental Management (EM)

    December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page i U.S. Department of Energy |December 2014 Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors Page ii Table of Contents Executive Summary ......................................................................................................................... iii 1. Introduction

  18. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to industry. The NERSC project involves selecting particular technologies of interest, partnering with the vendor, assessing their hardware, and providing feedback or co-development to improve the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to

  19. Workplace Charging Management Policies Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Learn about effective workplace charging policies and procedures in the areas of administration, registration and liability, pricing and sharing. Read the text version. PDF icon Workplace Charging Management Policies Presentation More Documents & Publications Workplace Charging Challenge Summit 2014: Session 2, Track B Workplace Charging Presentation Workplace Charging Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar

  20. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  1. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  2. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  3. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  4. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Conference: Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u)...

  5. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  6. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels Title Supply Chain Sustainability Analysis of Fast Pyrolysis and...

  7. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  8. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and ...

  9. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of

  10. Workplace Charging Challenge Partner: Appalachian State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Appalachian State University Workplace Charging Challenge Partner: Appalachian State University Workplace Charging Challenge Partner: Appalachian State University Appalachian State University recognizes the strategic value of enabling alternative commuting strategies to lower the environmental footprint of its mountain campus. The University's transportation department has installed two charging stations on campus and a plug-in electric vehicle (PEV) is available to all

  11. Workplace Charging Challenge Partner: Sears Holdings Corporation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Sears Holdings Corporation (SHC) strives to build a team of engaged associates who embrace change and technology. Offering plug-in electric vehicle (PEV) charging stations at its corporate headquarters in Hoffman Estates, Illinois aligns with the organization's mission and contributes to the company's rich culture.

  12. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits the University to promoting another great initiative, increasing the usage of plug-in electric vehicles (PEVs) at

  13. Workplace Charging Challenge Partner: WESCO International, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting technology that improves energy efficiency, energy management, and renewable energy, and considers PEV infrastructure a significant part of its

  14. Particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  15. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning Plug-in electric vehicles (PEVs) use electricity as either their primary fuel or to improve fuel efficiency. Fifteen new PEVs are expected for market availability in 2013, expanding driver options. We are considering the installation of charging infrastructure to assist employees who drive PEVs to work. Your responses to this survey will be used to determine employee interest in this benefit. Participation in

  16. ChargePoint America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ChargePoint America ChargePoint America 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt073_vss_gogineni_2012_o.pdf More Documents & Publications ChargePoint America Electric Drive Vehicle Infrastructure Deployment Vehicle Technologies Office: 2011 Vehicle and Systems Simulation and Testing R&D Annual Progress Report

  17. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  18. Smart Charge Adaptor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart EV-charging infrastructure with applications world-wide across residential, workplace, and public locations. The SCA is EV and EVSE agnostic, so customers are not limited...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  1. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupcreportoutcaci.pdf More Documents & Publications EV Everywhere...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  3. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  4. First charge breeding results at CARIBU EBIS

    SciTech Connect (OSTI)

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  5. Workplace Charging Challenge Partner: National Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the garage enables NREL researchers to test various plug-in electric vehicle charging scenarios on the utility electrical distribution network. In addition to the research purpose,...

  6. Workplace Charging Challenge Partner: Northwest Evaluation Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is one of the many initiatives...

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  8. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  9. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  10. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  11. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  12. Workplace Charging Toolkit: Workshop Speaker Instruction Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Inform speakers participating in the employer experience panel about their role in the event. File General ...

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive ... Strategies for developing spintronic semiconductors have been based on surface doping or ...

  14. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    to enable widespread residentialMDU and workplace charging infrastructure * Include use case data collected to date and collect data not available * Work with DOT and planning...

  15. An optimization framework for workplace charging strategies ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addressing different eligible levels of charging technology and employees' demographic distributions. The optimization model is to minimize the lifetime cost of...

  16. Workplace Charging Challenge Partner: Kankakee Community College...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    equipment (EVSE) installed at its LEED Gold North Extension Center and plans to ... our new North Extension Center that's a LEED gold building with an EV charging station." ...

  17. Workplace Charging Challenge Partner: JLA Public Involvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing a plug-in electric vehicle (PEV) and installing a charging station has expanded JLA Public Involvement's sustainability efforts and allowed them to achieve Gold ...

  18. Workplace Charging Challenge Partner: Melink Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steve Melink commented, "The installation of Telefonix PowerPost charging stations fits well with our sustainability leadership brand. Our employees are increasingly interested in ...

  19. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Appeal to potential employees * Build your brand 2 What's your story? * What makes your organization unique? * How does the Workplace Charging Challenge contribute to that story? ...

  20. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect (OSTI)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  1. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  2. Charge state evolution in the solar wind. III. Model comparison with observations

    SciTech Connect (OSTI)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  3. Condition for production of circulating proton beam with intensity greater than space charge limit.

    SciTech Connect (OSTI)

    Vadim Dudnikov

    2002-11-19

    Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.

  4. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  5. AVTA: ChargePoint AC Level 2 Charging System Testing Results | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy ChargePoint AC Level 2 Charging System Testing Results AVTA: ChargePoint AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results

  6. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following

  7. A First Preliminary Look: Are Corridor Charging Stations Used to Extend the Range of Electric Vehicles in The EV Project?

    SciTech Connect (OSTI)

    John Smart

    2013-01-01

    A preliminary analysis of data from The EV Project was performed to begin answering the question: are corridor charging stations used to extend the range of electric vehicles? Data analyzed were collected from Blink brand electric vehicle supply equipment (EVSE) units based in California, Washington, and Oregon. Analysis was performed on data logged between October 1, 2012 and January 1, 2013. It should be noted that as additional AC Level 2 EVSE and DC fast chargers are deployed, and as drivers become more familiar with the use of public charging infrastructure, future analysis may have dissimilar conclusions.

  8. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  9. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  10. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  11. The Physics of Fast Z Pinches

    SciTech Connect (OSTI)

    RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH

    1999-10-25

    The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.

  12. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig.

  13. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  14. Electronically shielded solid state charged particle detector

    DOE Patents [OSTI]

    Balmer, David K. (155 Coral Way, Broomfield, CO 80020); Haverty, Thomas W. (1173 Logan, Northglenn, CO 80233); Nordin, Carl W. (7203 W. 32nd Ave., Wheatridge, CO 80033); Tyree, William H. (1977 Senda Rocosa, Boulder, CO 80303)

    1996-08-20

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite.

  15. Survey Says: Workplace Charging is Growing in Popularity and Impact |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact November 18, 2014 - 3:54pm Addthis Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Survey Says: Workplace Charging is Growing in Popularity and Impact Sarah Olexsak Workplace Charging

  16. Workplace Charging Equipment and Installation Costs | Department of Energy

    Energy Savers [EERE]

    Equipment and Installation Costs Workplace Charging Equipment and Installation Costs The costs for a workplace charging program include the costs for charging equipment, installation, maintenance, and supplying electricity. Charging equipment costs depend on the type of charging station you decide to install in your workplace. Level 1 ($300-$1,500) and Level 2 ($400-$6,500) charging stations are commonly installed at workplaces. Explore how charging station equipment features affect the total

  17. Working with DOE to Promote your Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with DOE to Promote your Workplace Charging Program Sarah Olexsak U.S. Department of Energy Workplace Charging Challenge Partner profile and partner map 2 Workplace Charging Challenge DOE social media opportunities 3 Workplace Charging Challenge Sample shot Group photo of all PEV-driving employees in front of their vehicles 4 Workplace Charging Challenge Sample shot PEV-driving employees at the charging station (getting out of car, plugging in, unplugging, leaving) 5 Workplace Charging

  18. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Employers Take Charge | Department of Energy Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update highlights the findings from this

  19. Collisional effects on the generation of fast electrons in fast ignition scheme

    SciTech Connect (OSTI)

    Wang Weiwu; Cai Hongbo; Jia Qing; Zhu Shaoping

    2013-01-15

    The effects of collision on the generation and transportation of fast electrons produced by ultra-intense laser pulse in overdense plasma for densities ranging from below to 400 times critical density are investigated by collisional particle-in-cell code. It is found that a relatively stable state of fast electron energy flux exists in the simulations, where collision contributes to increasing the production of fast electrons. The unexpected increase of production is attributed to the efficient local heating of the thermal electrons, which results in higher thermal pressure and less steepened interface. Therefore, fast electrons can be effectively accelerated through 2{omega} oscillation from J Multiplication-Sign B force in the collisional case, while it is suppressed in the collisionless case because of the highly steepened plasma density. The collisional effects on the transportation of fast electrons in the solid target are also discussed.

  20. Application for Presidential Permit OE Docket No. PP-229 Tucson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources. Application for Presidential Permit OE Docket No. PP-334 Baja Wind Transmission, LLC Application for presidential permit OE Docket No. PP-234 Baja California Power, Inc

  1. City of Tucson- Solar Design Requirement for Homes

    Broader source: Energy.gov [DOE]

    To comply with this requirement, new homes must either have a complete solar water heating system installed or comply with one of two solar stub-out options. Option one requires the installation...

  2. Best Practices Solar Case Study: Pulte Homes - Civano, Tucson, Arizona

    SciTech Connect (OSTI)

    2007-06-01

    Building America factsheet on Pulte Homes, an energy-efficient home builder in hot dry climate using ducts in conditioned space, improved insulation, high-efficiency HVAC, and solar hot water.

  3. Application for Presidential Permit OE Docket No. PP-229 Tucson...

    Energy Savers [EERE]

    Register Notice, Volume 65, No. 183 More Documents & Publications EIS-0336: Draft Environmental Impact Statement EIS-0336: Final Environmental Impact Statement EIS-0336: DOE...

  4. Environmental Virology Workshop – Tucson, Arizona – Jan 7-12, 2013

    SciTech Connect (OSTI)

    Sullivan, Matthew

    2015-02-17

    A total of 66 researchers participated in this workshop, including 44 attendees, 3 program officers from private and federal funding agencies, and 19 workshop teachers. The workshop was incredibly productive and focused on identifying knowledge-gaps critical for predictive modeling, and developing the framework (experimental, informatic, theoretical) needed to obtain the data. All attendees developd a strong foundation in cutting-edge methods and a network of researchers that are now aiding in advancing environmental virology research. To more broadly reach Environmental Virologists, a subset of the attendees since proposed and ran a viromics workshop at the American Society of Microbiology meeting in 2014 in Boston, MA where the workshop sold-out. The workshop proposal was accepted again by ASM and is scheduled to occur at the New Orleans meeting in May, 2015. Additionally, PI Sullivan is co-convening a "Viromics: Tools and Concepts" session at the FEMS meeting in the Netherlands in June 2015 to continue getting the word out about Environmental Virology. A second formal Environmental Virology Workshop is being planned to occur in Scotland in summer 2016, likely held jointly with the Aquatic Virology Workshop. I wish to thank DOE for their critical support for this workshop which has helped galvanize the field.

  5. Fast ion confinement in 3D RFP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52 Please note that terms and conditions apply. Fast ion confinement in the three-dimensional helical reversed-field pinch View the table of contents for this issue, or go to the journal homepage for more 2014 Plasma Phys. Control. Fusion 56 094006 (http://iopscience.iop.org/0741-3335/56/9/094006) Home Search Collections Journals About Contact us My IOPscience Plasma Physics and Controlled Fusion Plasma Phys. Control. Fusion 56 (2014) 094006 (7pp) doi:10.1088/0741-3335/56/9/094006 Fast ion

  6. Optimal Decentralized Protocol for Electric Vehicle Charging

    SciTech Connect (OSTI)

    Gan, LW; Topcu, U; Low, SH

    2013-05-01

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guide their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.

  7. Workplace Charging Toolkit: Example Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Example Events Workplace Charging Toolkit: Example Events This section provides links to previous successful workplace charging events. These link directly to the organization's website and contain event agendas and presentation materials. Workplace Charging for Electric Vehicles - Chicago Area Clean Cities Workplace Charging: Employer Policy and Cost Considerations - Chicago Area Clean Cities Drive Electric Northern Colorado Workplace Charging Challenge Launch - Northern Colorado Clean Cities

  8. Workplace Charging Challenge Employer Workshop Best Practices Webinar |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Read the text version. Learn about the experiences of four event hosts and how they planned, organized, and administered successful workplace charging events. PDF icon Workplace Charging Employer Workshop Best Practices Presentation More Documents & Publications Workplace Charging Challenge Summit 2014: Session 1, Track A Workplace Charging Toolkit: Workshop Agenda Template Workplace Charging Toolkit: Workshop Host Outreach Letter Template

  9. Workplace Charging Toolkit: Press Release Template | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Raise the profile of employers in the community who are offering workplace charging and encourage the adoption of workplace charging among other employers through this press release template. File General Press Release Template File Clean Cities Branded Press Release Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Outreach Letter Template Workplace Charging Toolkit: Workshop Host Outreach

  10. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOE Patents [OSTI]

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  11. Multi-cylinder axial stratified charging studied

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Charge stratification can be obtained inside a noncylindrical combustion chamber of a fuel injected multi-cylinder engine by properly timing the injection event, directing the fuel spray into the inlet port, and imparting swirl to the inlet charge. A production 1.8-liter engine modified to operate as an axially stratified-charge engine showed 50% improvement in combustion stability, 3.5% lower fuel consumption, five research octane number lower octane requirement, and increased tolerance to dilute mixtures when compared with an unmodified engine.

  12. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  13. HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets UsingFast

    Office of Scientific and Technical Information (OSTI)

    Bitmap Indices (Conference) | SciTech Connect UsingFast Bitmap Indices Citation Details In-Document Search Title: HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets UsingFast Bitmap Indices Large scale scientific data is often stored in scientific data formats such as FITS, netCDF and HDF. These storage formats are of particular interest to the scientific user community since they provide multi-dimensional storage and retrieval. However, one of the drawbacks of these storage

  14. HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets usingFast

    Office of Scientific and Technical Information (OSTI)

    Bitmap Indices (Conference) | SciTech Connect usingFast Bitmap Indices Citation Details In-Document Search Title: HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets usingFast Bitmap Indices Large scale scientific data is often stored in scientific data formats such as FITS, netCDF and HDF. These storage formats are of particular interest to the scientific user community since they provide multi-dimensional storage and retrieval. However, one of the drawbacks of these storage

  15. Digital processing of solid state detector signals in pellet charge exchange measurements on LHD

    SciTech Connect (OSTI)

    Goncharov, P.R.; Ozaki, T.; Sudo, S.; Tamura, N.; Isobe, M.; Sasao, M.; Saida, T.; Krasilnikov, A.V.; Sergeev, V.Yu.

    2004-10-01

    Radially resolved measurements of the plasma ion distribution function by detecting charge exchange neutrals from an impurity pellet ablation cloud require a fast operating energy analyzer working at high count rates to build several spectra during the pellet flight. Currently a solid state detector in the pulse height analysis (PHA) mode is used for such measurements on the Large Helical Device. Traditional PHA techniques cannot provide the operating speed required for a good spatial resolution. An algorithm has been proposed based on digital processing of noisy data series containing charge-sensitive preamplifier signals with discontinuities corresponding to incident particles. The algorithm employs the modified Tikhonov regularization and the successive detection-estimation of signal increments at discontinuity points. Such an approach allows one to realize an ultrafast particle energy spectroscopy by taking advantage of detector/preamplifier capabilities without limiting the system throughput by subsequent electronics.

  16. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  17. High temperature charge amplifier for geothermal applications

    DOE Patents [OSTI]

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  18. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and one on the back parking lot so employees and visitors with electric vehicles can charge their cars during their stay at the medical center. UM BWMC's Green Health ...

  19. Workplace Charging Tools and Resources for Employees

    Broader source: Energy.gov [DOE]

    These publications, calculators and other online tools can help you inform employees about plug-in electric vehicles (PEVs) and charging infrastructure. You can post these links to your company’s...

  20. EV Everywhere - Charge to Breakout Sessions

    Broader source: Energy.gov (indexed) [DOE]

    Name or Ancillary Text eere.energy.gov EV Everywhere Charge to Breakout Sessions Steven Boyd Department of Energy Energy Efficiency & Renewable Energy steven.boyd@doe.gov July 24,...

  1. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  2. Workplace Charging Challenge Partner: Louisiana State University

    Broader source: Energy.gov [DOE]

    Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy efficiency...

  3. Workplace Charging Challenge Partners: EV Connect

    Broader source: Energy.gov [DOE]

    EV Connect develops and produces electric vehicle charging solutions. Leveraging their own workplace solution at their offices, more than half of EV Connect’s employees drive plug-in electric...

  4. Workplace Charging Challenge Partner: City of Sacramento

    Broader source: Energy.gov [DOE]

    In 2012, Sacramento's City Council adopted a resolution to proceed with a contract to implement "Electric Vehicle Charging Stations in Various City Public Parking Garages." The City of Sacramento...

  5. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes ... The ultimate goal of spintronics is to utilize electron spin-in addition to charge-for the ...

  6. Workplace Charging Management Policies: Registration & Liability

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, sharing, and pricing to...

  7. Workplace Charging Challenge Partner: Boulder County

    Broader source: Energy.gov [DOE]

    Boulder County strives to foster a sustainable environment for its residents and employees. By becoming a part of the Workplace Charging Challenge, Boulder County hopes to not only showcase and...

  8. Workplace Charging Challenge Partner: Southern California Edison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grade EVSE) at various company parking lots and buildings with the goal of determining the need for PEV charging at the workplace and the prospect for demand response application. ...

  9. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The STXM capabilities at ALS Beamline 5.3.2 and 11.0.2 allow researchers to not only map the particles' charges in freeze frame, but also enable in situ tracking during the...

  10. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or...

  11. Workplace Charging Challenge Partner: Cisco Systems, Inc.

    Broader source: Energy.gov [DOE]

    Cisco supports the use of plug-in electric vehicles (PEVs) to reduce the carbon footprint of its operations and reduce its employees' commuting costs. Cisco has installed charging stations at a...

  12. Workplace Charging Challenge Partner: Biogen Idec Inc.

    Broader source: Energy.gov [DOE]

    The installation of 10 charging stations at the Biogen Idec Research Triangle Park campus supplements the company's goal of reducing its environmental impact by encouraging employees to adopt an...

  13. Workplace Charging Challenge Partner: Alameda County, CA

    Broader source: Energy.gov [DOE]

    Alameda County has fully embraced plug-in electric vehicles (PEVs) to help meet its Climate Action goals. In 2013, Alameda County installed its first 40 PEV charging stations, the majority of which...

  14. Robust statistical reconstruction for charged particle tomography

    DOE Patents [OSTI]

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  15. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  16. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  17. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  18. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  19. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  20. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's Sustainability Tracking, Assessment & Rating System. The 2015 CSU Climate Action Plan delineates their action plan to deploy further

  1. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  2. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  3. Premix charge, compression ignition combustion system optimization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_gustafson.pdf More Documents & Publications Advanced Combustion Technology to Enable High Efficiency Clean Combustion Heavy-Duty HCCI Development

  4. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  5. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  6. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  7. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  8. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  9. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations

  10. Workplace Charging: Comparison of Sustainable Commuting Options

    Broader source: Energy.gov (indexed) [DOE]

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI calculation * Value Proposition for Employers - How are Lifecycle/Scope 3 GHG emissions affected? - What are my (employer) direct costs? - What is the Return on Investment (ROI)? - What are possible ancillary benefits? * How does Workplace Charging compare to: - Transit Subsidies - Vanpool Subsidies - Bike Purchase Subsidies 2 -

  11. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy

    SciTech Connect (OSTI)

    Cortesi, M.; Prasser, H.-M.; Dangendorf, V.; Zboray, R.

    2014-07-15

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  12. Electronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex

    SciTech Connect (OSTI)

    Haverkate, Lucas A.; Mulder, Fokko M.; Zbiri, Mohamed Johnson, Mark R.; Carter, Elizabeth; Kotlewski, Arek; Picken, S.

    2014-01-07

    Discotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10{sup ?2} electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B 116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems.

  13. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Dohun; Ward, D. R.; Simmons, C. B.; Gamble, John King; Blume-Kohout, Robin; Nielsen, Erik; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; et al

    2015-02-16

    An intuitive realization of a qubit is an electron charge at two well-defined positions of a double quantum dot. The qubit is simple and has the potential for high-speed operation because of its strong coupling to electric fields. But, charge noise also couples strongly to this qubit, resulting in rapid dephasing at all but one special operating point called the ‘sweet spot’. In previous studies d.c. voltage pulses have been used to manipulate semiconductor charge qubits but did not achieve high-fidelity control, because d.c. gating requires excursions away from the sweet spot. Here, by using resonant a.c. microwave driving wemore » achieve fast (greater than gigahertz) and universal single qubit rotations of a semiconductor charge qubit. The Z-axis rotations of the qubit are well protected at the sweet spot, and we demonstrate the same protection for rotations about arbitrary axes in the X–Y plane of the qubit Bloch sphere. We characterize the qubit operation using two tomographic approaches: standard process tomography and gate set tomography. Moreover, both methods consistently yield process fidelities greater than 86% with respect to a universal set of unitary single-qubit operations.« less

  14. Workplace Charging Challenge Partner: Hannah Solar, LLC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hannah Solar, LLC Workplace Charging Challenge Partner: Hannah Solar, LLC Workplace Charging Challenge Partner: Hannah Solar, LLC Hannah Solar installed three plug-in electric vehicle (PEV) charging stations at the company's energy net positive office building in Atlanta. The company installed the charging stations to demonstrate the effectiveness of workplace charging and encourage other companies to adopt alternative energy sources. The PEV charging stations also serve fleet

  15. Workplace Charging Challenge MidProgram Review Webinar | Department of

    Energy Savers [EERE]

    Energy MidProgram Review Webinar Workplace Charging Challenge MidProgram Review Webinar Read the text version. More Documents & Publications Workplace Charging Management Policies Webinar Workplace Charging Management Policies Webinar Workplace Charging Plug-In Electric Vehicle Ride and Drive Webinar Ride and Drive Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer Workshop Best Practices Webinar

  16. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo

  17. Sample Employee Survey for Workplace Charging Planning | Department of

    Energy Savers [EERE]

    Energy Survey for Workplace Charging Planning Sample Employee Survey for Workplace Charging Planning Employers considering whether workplace charging is right for their organization or employers considering how many plug-in electric vehicle charging stations to install will want to start by assessing employee demand. Partners in the Workplace Charging Challenge set a minimum goal of providing charging access for a portion of PEV-driving employees and a best practice goal of meeting all

  18. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  19. Workplace Charging Challenge: Join the Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » Workplace Charging Challenge » Workplace Charging Challenge: Join the Challenge Workplace Charging Challenge: Join the Challenge Workplace Charging Challenge: Join the Challenge Who Can Join The U.S. Department of Energy (DOE) Workplace Charging Challenge is open to employers of all sizes and industry types in the United States whose charging stations are primarily for employee use. Taking the Challenge offers benefits to employers who are

  20. Workplace Charging Challenge Partner: Township High School District...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joined the Workplace Charging Challenge: October 22, 2014 Headquarters: Arlington Heights, IL Charging Locations: Arlington Heights, IL; Buffalo Grove, IL; Elk Grove Village, IL; ...

  1. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion ...

  2. EV Everywhere Workplace Charging Challenge | Department of Energy

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge Join the...

  3. Vehicle Technologies Office: EV Everywhere Workplace Charging Challenge

    Broader source: Energy.gov [DOE]

    The EV Everywhere Workplace Charging Challenge page has moved to http://energy.gov/eere/vehicles/ev-everywhere-workplace-charging-challenge.

  4. Fact #717: March 5, 2012 Availability of Electric Charging Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Electric Charging Stations Has Increased Dramatically in Recent Years At the end of September 2009, there were just 465 electric vehicle charging stations nationwide....

  5. Workplace Charging Toolkit: Workshop Host Outreach Letter Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Host Outreach Letter Template Workplace Charging Toolkit: Workshop Host Outreach Letter Template Approach employers in your community that already have workplace charging to serve ...

  6. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior EV Everywhere ConsumerCharging Workshop: Target-Setting Framework and Consumer Behavior Presentation ...

  7. A New Mechanism of Charge Density Wave Discovered in Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...

  8. Centrality evolution of the charged-particle pseudorapidity density...

    Office of Scientific and Technical Information (OSTI)

    Centrality evolution of the charged-particle pseudorapidity density over a broad ... Citation Details In-Document Search Title: Centrality evolution of the charged-particle ...

  9. Power Charging and Supply System for Electric Vehicles - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics controller to operate in one of three modes: propulsion mode, for driving the vehicle; charging mode, for charging the battery; or sourcing mode, for supplying power to...

  10. Charged Particle Optics in Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Charged Particle Optics in Circular Higgs Factory Citation Details In-Document Search Title: Charged Particle Optics in Circular Higgs Factory You are accessing a document from...

  11. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in...

  12. Charging Infrastructure for Electric Vehicles (Smart Grid Project...

    Open Energy Info (EERE)

    level and remote onoff functionality. A onestopshop charging offer was tested on the market and further developed within the project. An internal development plan for charging...

  13. Workplace Charging Challenge Partner: Eastern Connecticut State University

    Broader source: Energy.gov [DOE]

    As part of the University's commitment to Sustainability, Eastern Connecticut State University installed its first Level 2 charging station in December 2014, creating two charging spots. Located in...

  14. Space Charge Correction on Emittance Measurement of Low Energy...

    Office of Scientific and Technical Information (OSTI)

    of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the...

  15. Ultrafast charge localization in a stripe-phase nickelate (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Ultrafast charge localization in a stripe-phase nickelate Citation Details In-Document Search Title: Ultrafast charge localization in a stripe-phase nickelate ...

  16. Workplace Charging Challenge Partner: San Diego Gas & Electric...

    Broader source: Energy.gov (indexed) [DOE]

    PEV charging load management, influenced by local energy management systems andor utility Demand Response (DR) systems. Workplace charging The project reinforces SDG&E's ...

  17. Where do Nissan Leaf drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper invesigates where Nissan Leaf drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at work, home, or some other location?

  18. Where do Chevrolet Volt drivers in The EV Project charge when they have the opportunity to charge at work?

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-03-01

    This paper investigates where Chevy Volt drivers in the EV Project charge when they have the opportunity to charge at work. Do they charge at home, work, or some other location.

  19. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    SciTech Connect (OSTI)

    Piel, Alexander Schmidt, Christian

    2015-05-15

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed.

  20. Ultra-fast framing camera tube

    DOE Patents [OSTI]

    Kalibjian, Ralph (1051 Batavia Ave., Livermore, CA 94550)

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  1. Rotary fast tool servo system and methods

    DOE Patents [OSTI]

    Montesanti, Richard C. (Cambridge, MA); Trumper, David L. (Plaistow, NH)

    2007-10-02

    A high bandwidth rotary fast tool servo provides tool motion in a direction nominally parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. Three or more flexure blades having all ends fixed are used to form an axis of rotation for a swing arm that carries a cutting tool at a set radius from the axis of rotation. An actuator rotates a swing arm assembly such that a cutting tool is moved in and away from the lathe-mounted, rotating workpiece in a rapid and controlled manner in order to machine the workpiece. A pair of position sensors provides rotation and position information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in-feed slide of a precision lathe.

  2. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Fast-Running Turbine Wake Model Home Renewable Energy Energy Water Power News News & Events Developing a Fast-Running Turbine Wake Model Previous Next Developing a...

  3. Patent: Fast computational methods for predicting protein structure from

    Office of Scientific and Technical Information (OSTI)

    primary amino acid sequence | DOEpatents Fast computational methods for predicting protein structure from primary amino acid sequence Citation Details Title: Fast computational methods for predicting protein structure from primary amino acid sequence

  4. Photon Speedway Puts Big Data In the Fast Lane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Speedway Puts Big Data In the Fast Lane Photon Speedway Puts Big Data In the Fast Lane Scientists from Berkeley Lab and SLAC are using NERSC and ESnet to achieve...

  5. Direct Fast-Neutron Detection: A Progress Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Direct Fast-Neutron Detection: A Progress Report Citation Details In-Document Search Title: Direct Fast-Neutron Detection: A Progress Report You are accessing a document from...

  6. Hydrogen Financial Analysis Scenario Tool (H2FAST)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H2FAST National Renewable Energy Laboratory The Hydrogen Financial Analysis Scenario Tool, H2FAST, provides a quick and convenient in-depth financial analysis for hydrogen fueling ...

  7. Hydrogen Financial Analysis Scenario Tool (H2FAST) (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Analysis Scenario Tool (H2FAST) Marc Melaina, Ph.D. Team Lead for Infrastructure ... NRELPR-5400-64138 Overview * Hydrogen Financial Analysis Simulation Tool (H2FAST) * ...

  8. Laser–plasma interactions for fast ignition

    SciTech Connect (OSTI)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.

  9. Laser–plasma interactions for fast ignition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-04-17

    In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser- plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multidimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporalmore » evolution. Scaling with irradiation conditions such as laser intensity, f-number and wavelength are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale fast ignition problem.« less

  10. Fast Superconducting Switch for Superconducting Power Devices - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Fast Superconducting Switch for Superconducting Power Devices Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Fast high-temperature superconductor switch for high current applications. (1,424 KB) Conceptual drawing of the fast superconducting switch.<br type="_moz" /> Conceptual drawing of the fast superconducting switch. Technology Marketing Summary Superconducting magnetic energy storage (SMES) offers

  11. New Version of FAST Released | Department of Energy

    Energy Savers [EERE]

    Version of FAST Released New Version of FAST Released September 12, 2014 - 11:16am Addthis The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released a more robust version of its FAST software under a modularization framework that represents a generational change in how computer-aided engineering (CAE) tools are developed. NREL's FAST has evolved over the past three decades into one of the most powerful and flexible CAE tools available through open source to

  12. Photovoltaic battery charging experience in the Philippines

    SciTech Connect (OSTI)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  13. Driving and Charging Behavior of Nissan Leafs in The EV Project with Access to Workplace Charging

    SciTech Connect (OSTI)

    Don Scoffield; Shawn Salisbury; John Smart

    2014-11-01

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  14. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  15. Method for charging a hydrogen getter

    DOE Patents [OSTI]

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  16. Method for charging a hydrogen getter

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Keyser, Matthew A. (Westminster, CO); Benson, David K. (Golden, CO)

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  17. Workplace Charging Toolkit: Outreach Letter Template | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Reach out to employers in your community who may be interested in offering workplace charging with this template. File General Outreach Letter Template File Clean Cities Branded Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Host Outreach Letter Template Workplace Charging Toolkit: Workshop Speaker Instruction

  18. Workplace Charging Toolkit: Workshop Agenda Template | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Develop a streamlined workshop with this half-day agenda focused on introductory-level PEV education and firsthand employer workplace charging experience. File General Workshop Agenda Template File Clean Cities Branded Workshop Agenda Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Workplace Charging Challenge Summit 2014: Session 1, Track A Workplace Charging Toolkit: Workshop Invitation

  19. Workplace Charging Toolkit: Workshop Host Outreach Letter Template |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Approach employers in your community that already have workplace charging to serve as a workshop host. File General Host Outreach Letter Template File Clean Cities Branded Host Outreach Letter Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Invitation Template Workplace Charging Toolkit: Workshop Speaker Instruction

  20. Workplace Charging Toolkit: Workshop Invitation Template | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Engage possible workplace charging event attendees with this template invitation. File General Workshop Invitation Template File Clean Cities Branded Workshop Invitation Template More Documents & Publications Workplace Charging Toolkit: Workshop Speaker Outreach Letter Template Workplace Charging Toolkit: Workshop Agenda Template Workplace Charging Toolkit: Workshop Host Outreach

  1. Extension of a Virtual Refrigerant Charge Sensor

    SciTech Connect (OSTI)

    Kim, Woohyun; Braun, J.

    2015-07-01

    The primary goal of the work described in this paper was to evaluate and extend a virtual refrigerant charge sensor (VRC) for determining refrigerant charge for equipment having variable-speed compressors and fans. To evaluate the accuracy of the VRC, data were first collected from previous laboratory tests for different systems and over a wide range of operating conditions. In addition, new laboratory tests were performed to consider conditions not available within the existing data set. The systems for the new laboratory tests were two residential ductless split heat pump systems that employ a variable-speed compressor and R-410a as the refrigerant. Based on the evaluations, the original virtual charge sensor (termed model I) was found to work well in estimating the refrigerant charge for systems with a variable-speed compressor under many operating conditions. However, for extreme test conditions such as low outdoor temperatures and low compressor speed, the VRC needed to be improved. To overcome the limitations, the model associated with the VRC sensor was modified to include a term involving the inlet quality to the evaporator estimated from the condenser outlet condition (termed model II). Both model I and II showed good performance in terms of predicting charge levels for systems with a constant speed compressor, but model II gave better performance for systems with a variable-speed compressor. However, when the superheat of the compressor was zero, neither model I nor II could accurately predict charge level. Therefore, a third approach (Model III) was developed that includes the discharge superheat of the compressor. This model improved performance for a laboratory-tested system that included a number of points with no superheat entering the compressor.

  2. EV Everywhere: Charging at Home | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Charging » EV Everywhere: Charging at Home EV Everywhere: Charging at Home Because residential charging is convenient and inexpensive, most plug-in electric vehicle (also known as electric cars or EVs) drivers do more than 80% of their charging at home. Charging in a single-family home, usually in a garage, allows you to take advantage of low, stable residential electricity rates. The cost to run your car over the course of a year can be less than running an air conditioner. Charging at

  3. Atomic physics with highly charged ions

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  4. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  5. Pressure enhanced penetration with shaped charge perforators

    DOE Patents [OSTI]

    Glenn, Lewis A. (Danville, CA)

    2001-01-01

    A downhole tool, adapted to retain a shaped charge surrounded by a superatmospherically pressurized light gas, is employed in a method for perforating a casing and penetrating reservoir rock around a wellbore. Penetration of a shaped charge jet can be enhanced by at least 40% by imploding a liner in the high pressure, light gas atmosphere. The gas pressure helps confine the jet on the axis of penetration in the latter stages of formation. The light gas, such as helium or hydrogen, is employed to keep the gas density low enough so as not to inhibit liner collapse.

  6. Validation of the fast neutron spectrum in the coupled fast-thermal system HERBE

    SciTech Connect (OSTI)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-12-31

    Methods applied in the calculation and interpretation of the measurements of the fast neutron spectrum in the NERBE coupled fast-thermal system are validated in this paper. When advantages and disadvantages of a He-filled semi-conductor-sandwich detector are compared to other neutron detectors, the former is found more appropriate. The neutron detection is based on the reaction {sup 3}He(n,p)T + 0.764 MeV and simultaneous detection of the reaction products in the silicon diodes. The pulses from the diodes are amplified and shaped in separate {open_quotes}energy{close_quotes} channels and summed to produce a single pulse with height proportional to the energy of the incident neutron plus the Q value of the reaction. A well-known measuring system of the He neutron spectrometer is used for the HERBE fast neutron spectrum measurement and calibration in a thermal neutron field.

  7. Workplace Charging at University Campuses | Department of Energy

    Office of Environmental Management (EM)

    at University Campuses Workplace Charging at University Campuses College and universities across the nation are educating our future workforce and doubling as hubs for innovation and technology. Higher education campuses are among a growing number of organizations at the forefront of promoting plug-in electric vehicle (PEV) adoption and its associated charging infrastructure. The Workplace Charging Challenge's case study, Workplace Charging: Charging Up University Campuses, explores the

  8. Workplace Charging Challenge Partner: Avista Utilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Workplace Charging Challenge Partner: Avista Utilities Avista Utilities is committed to effective support for plug-in electric vehicle (PEV) adoption in its service territories. Avista installed two stations for a total of four charging outlets for public and employee use in the Spokane metropolitan area, free of charge. Two charging outlets are located at Avista's Steam Plant office facility in downtown Spokane

  9. Workplace Charging Challenge Partner: General Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Motors Workplace Charging Challenge Partner: General Motors Workplace Charging Challenge Partner: General Motors GM has installed 269 workplace charging stations (including 74 powered by solar PV) for employees to use at 15 GM U.S. campuses, as well as an additional 400 "private" charging stations for executives and fleet development efforts. The majority of GM's workplace charge spots are located at 5 major sites in southeast Michigan including Detroit (33), Warren (113),

  10. Workplace Charging Challenge Partner: North Central College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy North Central College Workplace Charging Challenge Partner: North Central College Workplace Charging Challenge Partner: North Central College North Central College has two plug-in electric vehicle (PEV) charging stations. Both stations may be used free of charge by students, faculty, staff and campus visitors. Serious in its efforts to reduce vehicle emissions, North Central College hopes their charging station efforts will encourage a trend toward more sustainable vehicle use on its

  11. Workplace Charging Challenge Partner: Oak Ridge National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Oak Ridge National Laboratory's (ORNL's) Sustainable Campus Initiative contains a roadmap for development of electric vehicle charging stations, indicating that plug-in electric vehicle (PEV) charging is part of a broad sustainability focus for the Laboratory. ORNL has 44 charging stations on campus, 25 of

  12. Workplace Charging Challenge Partner: Purchase College, State University of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York | Department of Energy Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Workplace Charging Challenge Partner: Purchase College, State University of New York Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition to the two charging stations installed in 2012, the new Level 2 charging stations, installed in April 2015 are

  13. Workplace Charging Challenge Partner: Salt River Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Salt River Project Workplace Charging Challenge Partner: Salt River Project Workplace Charging Challenge Partner: Salt River Project The mission of Salt River Project's (SRP) Electric Vehicle Initiative is to encourage greater use of clean energy transportation. Under this program, SRP's headquarters received two Level 2 charging stations in 2010. When demand for workplace charging increased in 2012, SRP added eight Level 2 and five Level 1 charging stations for employee use.

  14. Workplace Charging Challenge Partner: Township High School District 214 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Township High School District 214 Workplace Charging Challenge Partner: Township High School District 214 Workplace Charging Challenge Partner: Township High School District 214 Workplace charging helps Township High School District 214's sustainability program by reducing its employees' carbon footprint in the community. The District currently has 8 charging stations with plans for an additional 10 more units by August 2015 for a total of 18 charging stations across

  15. Workplace Charging Challenge Partner: Verizon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verizon Workplace Charging Challenge Partner: Verizon Workplace Charging Challenge Partner: Verizon Verizon is committed to sustainability in all areas of our business, including making 'green driving' more convenient. Verizon now has three workplaces with charging stations: a retail store, data center, and call center. Verizon's most recent charging station deployment was on Earth Day 2013, when its first call center received a charging station. Verizon has engaged its employees through surveys

  16. Observation of Ordered Structures in Counterion Layers near Wet Charged

    Office of Scientific and Technical Information (OSTI)

    Surfaces: A Potential Mechanism for Charge Inversion (Journal Article) | SciTech Connect Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Citation Details In-Document Search Title: Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Authors: Miller, Mitchell ; Chu, Miaoqi ; Lin, Binhua ; Meron, Mati ; Dutta, Pulak [1] ; NWU) [2] + Show Author

  17. Help Your Employer Install Electric Vehicle Charging | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Help Your Employer Install Electric Vehicle Charging Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace Charging Hosts to learn more about charging stations at work. Explaining the Business Case to Your Employer Employee Guide to Workplace Charging - Use this guide by the California PEV Collaborative to navigate the process of asking your employer to

  18. Now Available: Evaluating Electric Vehicle Charging Impacts and Customer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Behaviors - Experiences from Six SGIG Projects (December 2014) | Department of Energy Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six SGIG Projects (December 2014) Now Available: Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six SGIG Projects (December 2014) December 18, 2014 - 10:28am Addthis The electric power industry expects a 400% growth in annual sales of plug-in electric

  19. Vehicle Technologies Office Merit Review 2014: Wireless Charging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless charging. PDF icon vss103_jones _2014_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles Wireless Charging Wireless Plug-in

  20. Electrostatic wire for stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, Daniel S. (Livermore, CA); Caporaso, George J. (Livermore, CA); Briggs, Richard J. (Livermore, CA)

    1985-01-01

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  1. Workplace Charging Challenge Mid-Program Review: Promising Progress from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Employers | Department of Energy Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers December 1, 2015 - 9:56am Addthis Workplace Charging Challenge Mid-Program Review: Promising Progress from U.S. Employers Sarah Olexsak Workplace Charging Challenge Coordinator The EV Everywhere Workplace Charging Challenge is celebrating a major milestone - it's now halfway to its

  2. Workplace Charging Challenge Overview Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Overview Factsheet Workplace Charging Challenge Overview Factsheet Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping build our nation's PEV charging infrastructure and offering a valuable employee benefit. A full transition to electric-drive vehicles (including all-electric vehicles, plug-in hybrid

  3. Workplace Charging Challenge Summit 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Workplace Charging Challenge Summit 2014 Challenge partners and ambassadors from across the country convened at the Workplace Charging Challenge Summit 2014 to network with their peers, participate in interactive breakout sessions, and return to their workplaces with new ideas and resources for accomplishing their workplace charging goals. The Summit featured presentations by Department of Energy (DOE) leadership

  4. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

  5. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels

  6. Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yu & James Cowin PNNL Fast Time-Resolved Aerosol Collector ......Fast TRAC...... Xiao-Ying Yu, Ali Hashim, Martin Iedema, and James Cowin Atmospheric Sciences, Chemical Sciences Pacific Northwest National Laboratory Richland, WA Research is supported by NOAA & DOE. *Patent Pending Xiao-Ying Yu & James Cowin PNNL Cloud Microstructures ≤ 1 m Want to know the aerosols at this resolution Aircraft flies at 150 m/s Need time resolution 1 m/150 m/s = 6 ms (!!!!!) Xiao-Ying Yu & James

  7. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  8. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  9. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, James A. (Espanola, NM)

    1982-01-01

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  10. Fast-acting valve and uses thereof

    DOE Patents [OSTI]

    Meyer, J.A.

    1980-05-16

    A very fast acting valve capable of producing a very well-defined plug of gas suitable for filling a theta pinch vacuum vessel is given. The valve requires no springs, instead being stopped mainly by a nonlinear force. Thus, the valve is not subject to bouncing; and the ratio of the size of the valve housing to the size of the valve stem is smaller than it would be if springs were needed to stop the valve stem. Furthermore, the valve can be used for thousands of valve firings with no apparent valve damage.

  11. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-03-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  12. Integral Fast Reactor fuel pin processor

    SciTech Connect (OSTI)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.

  13. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  14. Three-dimensional charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  15. Process for fabricating a charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  16. The PHEV Charging Infrastructure Planning (PCIP) Problem

    SciTech Connect (OSTI)

    Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL; Chinthavali, Madhu Sudhan [ORNL

    2010-01-01

    Increasing debates over a gasoline independent future and the reduction of greenhouse gas (GHG) emissions has led to a surge in plug-in hybrid electric vehicles (PHEVs) being developed around the world. The majority of PHEV related research has been directed at improving engine and battery operations, studying future PHEV impacts on the grid, and projecting future PHEV charging infrastructure requirements. Due to the limited all-electric range of PHEVs, a daytime PHEV charging infrastructure will be required for most PHEV daily usage. In this paper, for the first time, we present a mixed integer mathematical programming model to solve the PHEV charging infrastructure planning (PCIP) problem for organizations with thousands of people working within a defined geographic location and parking lots well suited to charging station installations. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results, indicates the viability of the modeling approach and substantiates the importance of considering both employee convenience and appropriate grid connections in the PCIP problem.

  17. MPACT Fast Neutron Multiplicity System Prototype Development

    SciTech Connect (OSTI)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  18. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  19. Fast CsI-phoswich detector

    DOE Patents [OSTI]

    Langenbrunner, James R. (1024 Osage Cir., Santa Fe, NM 87501)

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.

  20. Fast CsI-phoswich detector

    DOE Patents [OSTI]

    Langenbrunner, J.R.

    1996-05-07

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.

  1. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors.

  2. Solid state cloaking for electrical charge carrier mobility control

    DOE Patents [OSTI]

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  3. A time-resolved spectroscopic diagnostic based on fast scintillator and optical fiber array for z-pinch plasmas

    SciTech Connect (OSTI)

    Ye Fan; Qin Yi; Jiang Shuqing; Xue Feibiao; Li Zhenghong; Yang Jianlun; Xu Rongkun; Anan'ev, S. S.; Dan'ko, S. A.; Kalinin, Yu. G.

    2009-10-15

    We report a specially designed type of temporal resolved x-ray spectroscopic diagnostic using a spherically bent quartz crystal for z-pinch plasmas. Registration of time-resolved spectra was accomplished by coupling fast plastic scintillator, an optical fiber array, an optical streak camera, and a charge coupled device as the recording medium of this diagnostic. The diagnostic has been tested in imploding wire array experiments on S-300 pulsed power facility. Time-resolved K-shell lines were successfully obtained for aluminum wire array implosion plasmas.

  4. EV Everywhere Workplace Charging Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-in Electric Vehicles & Batteries » EV Everywhere Workplace Charging Challenge EV Everywhere Workplace Charging Challenge <a href="http://energy.gov/node/955366">Join the Challenge!</a> Join the Challenge! The Workplace Charging Challenge aims to achieve a tenfold increase in the number of U.S. employers offering workplace charging by 2018. Read more Workplace Charging Challenge Mid-Program Review Now Available! Workplace Charging Challenge Mid-Program Review Now

  5. EV Everywhere Charges Up the Workplace | Department of Energy

    Office of Environmental Management (EM)

    EV Everywhere Charges Up the Workplace EV Everywhere Charges Up the Workplace January 31, 2013 - 1:45pm Addthis As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity, Energy Department. As part of the EV Everywhere Grand Challenge, the new Workplace Charging Challenge aims to expand access to charging stations in cities across the U.S. | Infographic by Sarah Gerrity,

  6. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  7. A NEW CONCEPTUAL DESIGN OF THE SNS FULL TURN FAST EXTRACTION KICKER POWER SUPPLY SYSTEM.

    SciTech Connect (OSTI)

    ZHANG,W.; SANDBERG,J.; TSOUPAS,N.; MI,J.; LAMBIASE,R.; PAI,C.; TUOZZOLO,J.; NEHRING,T.; WARBURTON,D.

    2001-06-18

    The new conceptual design of full turn fast extraction kicker power supply system of the Spallation Neutron Source main ring will be presented in this paper. In this design, the extraction kicker power modulators will be located outside of the tunnel, as requested by the SNS Project. Its purpose is to minimize the components inside of the synchrotron tunnel. The high voltage modulator will use Blumlein pulser and hollow-anode thyratron structure, a parallel termination resistor and two transmission cables. Main advantages include: flexible system configuration for unipolar single drive or push-pull double drive of the kicker magnets, lower charging voltage, lower beam impedance, lower number of high voltage cables, and large design margin for implementation and future upgrade.

  8. ELECTRON TRANSPORT IN THE FAST SOLAR WIND

    SciTech Connect (OSTI)

    Smith, H. M.; Marsch, E. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Helander, P., E-mail: hakan.smith@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2012-07-01

    The electron velocity distribution function is studied in the extended solar corona above coronal holes (i.e., the inner part of the fast solar wind) from the highly collisional corona close to the Sun to the weakly collisional regions farther out. The electron kinetic equation is solved with a finite-element method in velocity space using a linearized Fokker-Planck collision operator. The ion density and temperature profiles are assumed to be known and the electric field and electron temperature are determined self-consistently. The results show quantitatively how much lower the electron heat flux and the thermal force are than predicted by high-collisionality theory. The sensitivity of the particle and heat fluxes to the assumed ion temperature profile and the applied boundary condition at the boundary far from the Sun is also studied.

  9. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect (OSTI)

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  10. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  11. Update; Sodium advanced fast reactor (SAFR) concept

    SciTech Connect (OSTI)

    Oldenkamp, R.D.; Brunings, J.E. ); Guenther, E. ); Hren, R. )

    1988-01-01

    This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

  12. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  13. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  14. Method and apparatus for charged particle propagation

    DOE Patents [OSTI]

    Hershcovitch, A.

    1996-11-26

    A method and apparatus are provided for propagating charged particles from a vacuum to a higher pressure region. A generator includes an evacuated chamber having a gun for discharging a beam of charged particles such as an electron beam or ion beam. The beam is discharged through a beam exit in the chamber into a higher pressure region. A plasma interface is disposed at the beam exit and includes a plasma channel for bounding a plasma maintainable between a cathode and an anode disposed at opposite ends thereof. The plasma channel is coaxially aligned with the beam exit for propagating the beam from the chamber, through the plasma, and into the higher pressure region. The plasma is effective for pumping down the beam exit for preventing pressure increase in the chamber and provides magnetic focusing of the beam discharged into the higher pressure region 24. 7 figs.

  15. High gradient lens for charged particle beam

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  16. In-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect In-Situ Catalytic Fast Pyrolysis Technology Pathway Citation Details In-Document Search Title: In-Situ Catalytic Fast Pyrolysis Technology Pathway This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have

  17. Development of a fast position-sensitive laser beam detector

    SciTech Connect (OSTI)

    Chavez, Isaac; Huang Rongxin; Henderson, Kevin; Florin, Ernst-Ludwig; Raizen, Mark G. [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-10-15

    We report the development of a fast position-sensitive laser beam detector. The detector uses a fiber-optic bundle that spatially splits the incident beam, followed by a fast balanced photodetector. The detector is applied to the study of Brownian motion of particles on fast time scales with 1 A spatial resolution. Future applications include the study of molecule motors, protein folding, as well as cellular processes.

  18. Continuous Evaluation of Fast Processes in Climate Models Using ARM

    Office of Scientific and Technical Information (OSTI)

    Measurements (Technical Report) | SciTech Connect Technical Report: Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements Citation Details In-Document Search Title: Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements This five-year award supports the project "Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)". The goal of this project is to produce accurate, consistent and comprehensive

  19. Continuous Evaluation of Fast Processes in Climate Models Using Arm

    Office of Scientific and Technical Information (OSTI)

    Measurements (Technical Report) | SciTech Connect Continuous Evaluation of Fast Processes in Climate Models Using Arm Measurements Citation Details In-Document Search Title: Continuous Evaluation of Fast Processes in Climate Models Using Arm Measurements Under the support of this grant, we investigated the fast process of interaction of clouds, shallow convection, and boundary layer turbulence and their parameterizations. Main accomplishments involve two things. One is the understanding of

  20. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Ex-Situ Catalytic Fast Pyrolysis Technology Pathway Citation Details In-Document Search Title: Ex-Situ Catalytic Fast Pyrolysis Technology Pathway This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have

  1. A Fast Monte Carlo Simulation for the International Linear Collider

    Office of Scientific and Technical Information (OSTI)

    Detector (Technical Report) | SciTech Connect A Fast Monte Carlo Simulation for the International Linear Collider Detector Citation Details In-Document Search Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included

  2. Fast Company: Satellite imaging startup takes step forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite imaging startup takes step forward Fast Company: Satellite imaging startup takes step forward A Los Alamos startup that uses satellite images to decipher changes on the Earth's surface has received a new round of venture capital. December 6, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Agricultural corn yields mapped by Descartes Labs. From Descartes. Fast Company: Satellite imaging startup takes step forward

  3. ETA-NTP008 Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Ryan Harkins Approved by: ______________________________________________ Date: _______________ Donald B. Karner ©2004 Electric Transportation Applications All Rights Reserved Procedure ETA-NTP008 Revision 4 2 TABLE OF CONTENTS 1.0 Objectives 3 2.0 Purpose 3 3.0 Documentation 3 4.0 Initial Conditions and Prerequisites 4 5.0

  4. ETA-UTP008 - Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Revision 0 Effective March 23, 2001 Battery Charging Prepared by E Electric lectric T Transportation ransportation A Applications pplications Prepared by: _______________________________ Date: __________ Steven R. Ryan Approved by: ______________________________________________ Date: _______________ Jude M. Clark Procedure ETA-UTP008 Revision 0 2 ©2001 Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives 3 2.0 Purpose 3 3.0 Documentation 3 4.0 Initial

  5. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  6. WPEC subgroup 35 ""scattering angular distribution in the fast...

    Office of Scientific and Technical Information (OSTI)

    WPEC subgroup 35 ""scattering angular distribution in the fast energy range"" status report Citation Details In-Document Search Title: WPEC subgroup 35 ""scattering angular...

  7. Development of a Fast Microfluidic Mixer for Studies of Protein...

    Office of Scientific and Technical Information (OSTI)

    Studies of Protein Folding KineticsFinal Report Cover Page Citation Details In-Document Search Title: Development of a Fast Microfluidic Mixer for Studies of Protein Folding ...

  8. New Framework Transforms FAST Wind Turbine Modeling Tool (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Labora- tory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineer- ing tool under a new modularization framework. The new...

  9. New Modularization Framework Transforms FAST Wind Turbine Modeling Tool |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modularization Framework Transforms FAST Wind Turbine Modeling Tool New Modularization Framework Transforms FAST Wind Turbine Modeling Tool January 6, 2014 - 10:00am Addthis 2013qtr4_fast_large.gif This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a

  10. Dominican Republic-Fast-Track Development of TransformativeClimate...

    Open Energy Info (EERE)

    Fast-Track Development of Transformative Climate-Compatible Development Plans and Building of Regional and Local Capacities Jump to: navigation, search Logo: Dominican...

  11. Fast, Sensitive and Reliable Hydrogen Sensor | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Sensitive and Reliable Hydrogen Sensor Technology available for licensing Warm-up not required, and responds in less than 75 milliseconds in a 2% hydrogen atmosphere...

  12. A Fast Dynamic Language for Technical Computing Stefan Karpinski...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Dynamic Language for Technical Computing Stefan Karpinski, Jeff Bezanson, Viral B. Shah & Alan Edelman u a l j i Two Language Problem People love dynamic environments for...

  13. In-Situ Catalytic Fast Pyrolysis Technology Pathway | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified. In-Situ Catalytic Fast Pyrolysis Technology Pathway...

  14. Electrostatic attraction of charged drops of water inside dropwise cluster

    SciTech Connect (OSTI)

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000 ; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ? 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster with close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.

  15. Technology available for license: Charging of liquid energy storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis to charge liquid energy...

  16. Charge Transport within a Three-Dimensional DNA Nanostructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Transport within a Three-Dimensional DNA Nanostructure Framework Authors: Lu, N., Pei, H., Ge, Z., Simmons, C.R., Yan, H., and Fan, C. Title: Charge Transport within a...

  17. Workplace Charging Challenge Partner: Harris Civil Engineers, LLC

    Broader source: Energy.gov [DOE]

    Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric vehicle (PEV) charging for its employees. With the advent of the modern Level 2 and DC Quick-Charging standards,...

  18. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect (OSTI)

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  19. Technology available for license: Charging of liquid energy storage media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through radiolysis (ANL-IN-14-036) | Argonne National Laboratory Technology available for license: Charging of liquid energy storage media through radiolysis (ANL-IN-14-036) January 23, 2015 Tweet EmailPrint This technology utilizes radiolysis to charge liquid energy storage media including nanoelectrofuels. Charged liquid can be used in flow batteries for transportation and stationary energy-storage applications. Radiolysis charging can be conducted on aqueous and non-aqueous battery

  20. Proton's Weak Charge Determined for First Time | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weak Charge Determined for First Time Q-weak at Jefferson Lab has measured the proton's weak charge Q-weak at Jefferson Lab has measured the proton's weak charge. NEWPORT NEWS, VA, Sept. 17, 2013 - Researchers have made the first experimental determination of the weak charge of the proton in research carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). The results, accepted for publication in Physical Review Letters, also include the