National Library of Energy BETA

Sample records for fast charge los

  1. AVTA: Bidirectional Fast Charging Report

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is an analysis of bi-directional fast charging, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  2. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory. PDF icon DC Fast Charge Effects on Battery ...

  3. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast ... AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  4. DC Fast Charging at the Workplace | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging at the Workplace DC Fast Charging at the Workplace Most employers offering plug-in electric vehicle (PEV) charging install Level 1 or Level 2 charging stations, but there are some cases where employers may want to consider installing DCFC. Level 1 and Level 2 charging can meet the needs of most employees that are parked during an average workday. During one hour of charging, Level 1 charging can replenish 2 to 5 miles of range and Level 2 charging can add about 10-20 miles of

  5. Plug-In Electric Vehicle Fast Charge Station Operational Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... assumptions that residential charging remains the dominant method will guide this study. ... when running low on energy. 2.1 Driving Profiles To simulate fast charge usage based on ...

  6. Fast Charging Electric Vehicle Research & Development Project

    SciTech Connect (OSTI)

    Heny, Michael

    2014-03-31

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.

  7. AVTA: Hasdec DC Fast Charging Testing Results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy GE Smart Grid Capable AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon GE Smart Grid Capable AC Level 2 - January 2014 More Documents & Publications AVTA: Aerovironment AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge

    Hasdec DC fast charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon DC Conductive EVSE Testing - Hasetec DC

  8. Bi-Directional Fast Charging Study Report

    SciTech Connect (OSTI)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  9. AVTA: Battery Testing- DC Fast Charging's Effects on PEV Batteries

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes DC fast charging's effects on plug-in electric vehicle batteries. This research was conducted by Idaho National Laboratory.

  10. A hybrid fast-multipole technique for space-charge tracking with halos

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: A hybrid fast-multipole technique for space-charge tracking with halos Citation Details In-Document Search Title: A hybrid fast-multipole technique for space-charge tracking with halos The simulation of injection and accumulation of intense proton beams in synchrotrons and accumulator rings requires a flexible and robust treatment of space-charge effects. In particular, the simulation must be able to correctly incorporate the

  11. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad

    2015-05-03

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) and level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.

  12. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)

    SciTech Connect (OSTI)

    Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  13. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  14. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect (OSTI)

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  15. Impact of Fast Charging on Life of EV Batteries (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Fast Charging on Life of EV Batteries Jeremy Neubauer 2 , Eric Wood 2 , Evan Burton 2 , Kandler Smith 2 , Ahmad A. Pesaran 1 1 (corresponding author) National Renewable Energy Laboratory, Golden, Colorado, ahmad.pesaran@nrel.gov 2 National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL/PR-5400-63700 Introduction and Overview I.

  16. Techno-Economic Analysis of BEVs with Fast Charging Infrastructure: Preprint

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage many potential purchasers. One proposed solution is to employ a subscription model under which a service provider assumes ownership of the battery while providing access to vast fast charging infrastructure. Thus, high upfront and subsequent battery replacement costs are replaced by a predictable monthly fee, and battery-limited range is replaced by a larger infrastructure-limited range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, and battery life. Herein the National Renewable Energy Laboratory applies its Battery Ownership Model to address these challenges and compare the economics and utility of a BEV fast charging service plan to a traditional direct ownership option. In single vehicle households, where such a service is most valuable, we find that operating a BEV under a fast charge service plan can be more cost-effective than direct ownership of a BEV, but it is rarely more cost-effective than direct ownership of a conventional vehicle.

  17. Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

  18. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    SciTech Connect (OSTI)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  19. FAST

    Energy Science and Technology Software Center (OSTI)

    002363MLTPL00 FAST - A Framework for Agile Software Testing v. 2.0 https://software.sandia.gov/trac/fast

  20. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect (OSTI)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  1. CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND

    SciTech Connect (OSTI)

    Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-12-10

    In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

  2. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mike Simpson National Renewable Energy Laboratory 8 May 2012 NREL/PR-5400-55080 GREAT MINDS THINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting Enablers Grid / Renewables Communities Vehicles SMART GRID & COMMUNI- CATION RENEWABLE GENERATION INTERMITTENCY POWER ELECTRONICS EFFICIENCY INFRASTRUCTURE CODES & STANDARDS BUILDING ENERGY

  3. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect (OSTI)

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  4. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  5. Workplace Charging Case Study: Charging Station Utilization at a Work Site with AC Level 1, AC Level 2, and DC Fast Charging Units

    SciTech Connect (OSTI)

    John Smart; Don Scoffield

    2014-06-01

    This paper describes the use of electric vehicle charging stations installed at a large corporate office complex. It will be published to the INL website for viewing by the general public.

  6. Apparatus and method for fast recovery and charge of insulation gas

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-09-03

    An insulation gas recovery and charge apparatus is provided comprising a pump, a connect, an inflatable collection device and at least one valve.

  7. A hybrid fast-multipole technique for space-charge tracking with...

    Office of Scientific and Technical Information (OSTI)

    on space charge physics in high intensity hadron rings, Shelter Island, NY (United ... Country of input: International Atomic Energy Agency (IAEA) Country of Publication: ...

  8. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  9. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect (OSTI)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  10. LOS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing the art of tuberculosis detection April 19, 2013 LOS ALAMOS, N.M., April 19, 2013-New work from Los Alamos National Laboratory shows promise for stemming the advance of tuberculosis (TB) by revealing how the bacterium interacts with its human hosts and thus providing a new pathway for early detection in patients.A recent publication from the Los Alamos Biosensor Team describes the association of a key tuberculosis virulence factor, lipoarabinomannan (LAM) with human high-density

  11. LOS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N.M., April 19, 2013-New work from Los Alamos National Laboratory shows promise for stemming the advance of tuberculosis (TB) by revealing how the bacterium interacts with its...

  12. Plasmon excitations in C{sub 60} by fast charged particle beams

    SciTech Connect (OSTI)

    Li, C. Z.; Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 ; Miskovic, Z. L.; Goodman, F. O.; Wang, Y. N.

    2013-05-14

    For an isolated C{sub 60} molecule, we study plasmon excitations that are induced by an external, fast moving electron, by using a two-dimensional, spherical, two-fluid hydrodynamic model for the dynamic response of the {sigma} and {pi} electrons in the carbon nanostructure. Second quantization of the linearized hydrodynamic model allows us to discuss how effective is multiple excitation of various plasmon modes. Mean numbers of the excited plasmon modes, differential cross sections, and the total energy loss of the incident electron are calculated by both a quantized model with zero damping and by a semi-classical model with phenomenological damping. Our calculated differential cross sections are compared with experiment.

  13. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

    SciTech Connect (OSTI)

    Lv, DP; Shao, YY; Lozano, T; Bennett, WD; Graff, GL; Polzin, B; Zhang, JG; Engelhard, MH; Saenz, NT; Henderson, WA; Bhattacharya, P; Liu, J; Xiao, J

    2014-09-11

    In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.

  14. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in quantum hydrodynamic model

    SciTech Connect (OSTI)

    Zhang, Ying-Ying; An, Sheng-Bai; Song, Yuan-Hong Wang, You-Nian; Kang, Naijing; Mikovi?, Z. L.

    2014-10-15

    We study the wake effect in the induced potential and the stopping power due to plasmon excitation in a metal slab by a point charge moving inside the slab. Nonlocal effects in the response of the electron gas in the metal are described by a quantum hydrodynamic model, where the equation of electronic motion contains both a quantum pressure term and a gradient correction from the Bohm quantum potential, resulting in a fourth-order differential equation for the perturbed electron density. Thus, besides using the condition that the normal component of the electron velocity should vanish at the impenetrable boundary of the metal, a consistent inclusion of the gradient correction is shown to introduce two possibilities for an additional boundary condition for the perturbed electron density. We show that using two different sets of boundary conditions only gives rise to differences in the wake potential at large distances behind the charged particle. On the other hand, the gradient correction in the quantum hydrodynamic model is seen to cause a reduction in the depth of the potential well closest to the particle, and a reduction of its stopping power. Even for a particle moving in the center of the slab, we observe nonlocal effects in the induced potential and the stopping power due to reduction of the slab thickness, which arise from the gradient correction in the quantum hydrodynamic model.

  15. INL Efficiency and Security Testing of EVSE, DC Fast Chargers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging ...

  16. Workplace Charging Challenge Partner: UCLA Smart Grid Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joined the Challenge: September 2014 Headquarters: Los Angeles, CA Charging Locations: Los Angeles, CA; Santa Monica, CA Domestic Employees: 31,000 UCLA Smart Grid Energy Research ...

  17. Workplace Charging Challenge Partners: EV Connect | Department...

    Office of Environmental Management (EM)

    Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Fast Facts Joined the Workplace Charging ...

  18. EV Everywhere: Charging on the Road | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EV Models Saving Money Vehicle Charging EV Benefits EV Stories EV Basics Most ... Most public charging uses Level 2 or DC fast-charge electric vehicle supply equipment ...

  19. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles...

  20. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF ...

  1. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupereportoutcaci.pdf More Documents & Publications EV Everywhere...

  2. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupareportoutcaci.pdf More Documents & Publications EV Everywhere...

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon groupdreportoutcaci.pdf More Documents & Publications EV Everywhere...

  4. EV Everywhere Consumer Acceptance and Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA...

  5. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  6. Fast Faraday Cup With High Bandwidth

    DOE Patents [OSTI]

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Charging Infrastructure Group E Breakout Report

    Broader source: Energy.gov [DOE]

    Breakout session presentation for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  8. DOE Research and Development Accomplishments: Fast Facts

    Office of Scientific and Technical Information (OSTI)

    Fast Facts

  9. Workplace Charging Challenge: Sample Workplace Charging Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Policy Workplace Charging Challenge: Sample Workplace Charging Policy Review the policy guidelines used by one Workplace Charging Challenge partner to keep their ...

  10. Los Alamos researchers uncover new properties in nanocomposite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors Alumni Link: Opportunities, News and Resources for Former ...

  11. Fast valve

    DOE Patents [OSTI]

    Van Dyke, William J.

    1992-01-01

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.

  12. Fast valve

    DOE Patents [OSTI]

    Van Dyke, W.J.

    1992-04-07

    A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.

  13. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  14. EV Everywhere Grand Challenge: Consumer Acceptance and Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon ...

  15. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop- Backsplash

    Broader source: Energy.gov [DOE]

    Backsplash for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA

  16. Workplace Charging Challenge Partner: EV Connect | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Connect Workplace Charging Challenge Partner: EV Connect Workplace Charging Challenge Partner: EV Connect Joined the Challenge: January 7, 2015 Headquarters: Los Angeles, CA Charging Location: Los Angeles, CA Domestic Employees: 20 EV Connect develops and produces electric vehicle charging solutions. Leveraging their own workplace solution at their offices, more than half of EV Connect's employees drive plug-in electric vehicles (PEVs). Meet Challenge Partners

  17. HPSS Charging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charging HPSS Charging NERSC uses Storage Resource Units (SRUs) to help manage HPSS storage. The goal is to provide a balanced computing environment with appropriate amounts of storage and adequate bandwidth to keep the compute engines fed with data. Performance and usage tracking allows NERSC to anticipate demand and maintain a responsive storage environment. Storage management also recognizes storage as a distinct resource in support of an increasing amount of data intensive computing. Storage

  18. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  19. The differential algebra based multiple level fast multipole algorithm for

    Office of Scientific and Technical Information (OSTI)

    3D space charge field calculation and photoemission simulation (Journal Article) | SciTech Connect Journal Article: The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation Citation Details In-Document Search This content will become publicly available on September 28, 2016 Title: The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission

  20. Biosurveillance A Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosurveillance A Los Alamos National Laboratory Implementation Plan for the Science of Signatures Signatures for biosecurity and public health Biosurveillance at Los Alamos Los Alamos National Laboratory's charge is to develop science and technology that will make the nation safer and enhance our global standing. This breadth of mission scope requires careful internal planning and effective cooperation with external partners and other governmental agencies. The document you are holding is one

  1. Living in Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Living in Los Alamos Living in Los Alamos The enchanting surroundings, extraordinary people, and rich history make Los Alamos so much more than just a place to do great work. Discover the many advantages of living and working in Los Alamos. AROUND LOS ALAMOS Communication KRSN Community Radio Los Alamos Daily Post Los Alamos Monitor Education Los Alamos Public Schools Pajarito Environmental Education Center University of New Mexico - Los Alamos The Arts Fuller Lodge Art Center Los Alamos Little

  2. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you ...

  3. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  4. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  5. Workplace Charging Challenge Partner: Black & Veatch | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Workplace Charging Challenge Partner: Black & Veatch Joined the Challenge: November 2015 Headquarters: Overland Park, KS Charging Location: Overland Park, KS Domestic Employees: 7,120 Black & Veatch is an independent engineering, consulting, and construction firm working in water, energy and telecommunications. The company supported the design and construction of the world's largest DC fast charging network in

  6. Workplace Charging Challenge Partner: NRG Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NRG Energy Workplace Charging Challenge Partner: NRG Energy Workplace Charging Challenge Partner: NRG Energy Joined the Challenge: February 2013 Headquarters: Princeton, NJ Charging Locations: Princeton, NJ; Phoenix, AZ; Carlsbad, CA; Emeryville, CA; Los Angeles, CA; Houston, TX Domestic Employees: 8,000 NRG Energy is a Fortune 500 company and a leader in changing how people think about and use energy. NRG offers workplace charging to its employees, alongside a corporate incentive for employees

  7. Will Your Battery Survive a World With Fast Chargers?

    SciTech Connect (OSTI)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  8. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  9. Fast Company: Satellite imaging startup takes step forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite imaging startup takes step forward Fast Company: Satellite imaging startup takes step forward A Los Alamos startup that uses satellite images to decipher changes on the Earth's surface has received a new round of venture capital. December 6, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Agricultural corn yields mapped by Descartes Labs. From Descartes. Fast Company: Satellite imaging startup takes step forward

  10. Los Alamos researchers uncover new properties in nanocomposite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors In a nanocomposite, the size of each of these grains is on the ...

  11. Workplace Charging Challenge: Promote Charging at Work

    Broader source: Energy.gov [DOE]

    Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that...

  12. Workplace Charging Challenge: Sample Workplace Charging Policy

    Broader source: Energy.gov [DOE]

    Review the policy guidelines used by one Workplace Charging Challenge partner to keep their program running safe and successfully.

  13. Workplace Charging Equipment Costs

    Broader source: Energy.gov [DOE]

    Charging stations are available from a variety of manufacturers in a range of models for all charging applications. For a single port charging station, Level 1 hardware costs range from $300-$1,500...

  14. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  15. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  16. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pioneering U.S. employers are accepting the EV Everywhere Workplace Charging Challenge, ... by increasing charging available in the workplace, is essential to making that transition. ...

  17. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    work EV Ambassador Work Attach "Ask me about my ... 13 ChargePoint charging stations scattered throughout ... GMP will provide on-site test drives GMP will offer ...

  18. Dynamic Wireless Charging

    SciTech Connect (OSTI)

    2015-03-13

    ORNL successfully demonstrated in-motion wireless charging in the laboratory using a small GEM vehicle and a series of six charging coils.

  19. Workplace Charging Challenge

    SciTech Connect (OSTI)

    2013-09-01

    Fact sheet about the EV Everywhere Workplace Charging Challenge which is to increase the number of American employers offering workplace charging by tenfold in the next five years.

  20. Workplace Charging Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workplace Charging Challenge, committing to install charging for plug-in electric vehicles (PEVs) at their worksites. By taking on this Challenge, they are helping...

  1. Electric Vehicle Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or Twitter Attend local EV events Share your story Currently have 13 ChargePoint charging stations scattered throughout Vermont 2015 - 12 Freedom Stations & 10...

  2. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles and the associated need and desire for workplace charging Aid in forecasting similar workplace charging needs with commercial customers across the Duke Energy ...

  3. FastForward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FastForward CAL Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Exascale Computing » FastForward FastForward The FastForward program complements the DesignForward program and focused on co-design efforts between DOE centers and vendors with the goal of improving processor, memory, storage and I/O technologies. Furthermore, these improvements should be aimed at maximizing energy efficiency and concurrency while increasing performance, productivity, and reliability.

  4. through Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area schools get new computers through Los Alamos National Laboratory, IBM partnership May 8, 2009 LOS ALAMOS, New Mexico, May 8, 2009-Thanks to a partnership between Los Alamos...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Los Alamos National Lab Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Los Alamos National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Los Alamos National Security, LLC FY 2015 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2014 FY 2014 Performance Evaluation Report, Los Alamos National Security, LLC FY 2014 Performance

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record...

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funds July 21, 2009 Funding will aid environmental cleanup and compliance Los Alamos, New Mexico, July 22, 2009-Los Alamos National Laboratory today announced plans to begin...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  11. Living in Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Center University of New Mexico - Los Alamos The Arts Fuller Lodge Art Center Los Alamos Little Theatre Reel Deal Movie Theater County Services Aquatic...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  14. EV Everywhere Grand Challenge: Consumer Acceptance and Charging

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Workshop Attendence List | Department of Energy Attnedance list for the EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon companies_in_attendance_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop - Backsplash EV Everywhere Grand Challenge: Consumer Acceptance and Charging Infrastructure Workshop Agenda EV

  15. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. How usage is charged

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usage is charged How usage is charged MPP Charging (Computational Systems) When a job runs on a NERSC MPP system, such as Hopper, charges accrue against one of the user's repository allocations. The unit of accounting for these charges is the "MPP Hour". A parallel job is charged for exclusive use of each multi-core node allocated to the job. The MPP charge for such a job is calculated as the product of: the job's elapsed wall-clock time in hours the number of nodes allocated to the

  17. Fast pulsed excitation wiggler or undulator

    DOE Patents [OSTI]

    van Steenbergen, Arie (Shoreham, NY)

    1990-01-01

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  18. Los Alamos VISTAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos VISTAS /newsroom/_assets/images/newsroom-icon.jpg Los Alamos VISTAS Los Alamos Vistas highlights the experimental physical sciences at Los Alamos-covering innovative, cross-disciplinary research and development-and producing breakthrough solutions to the most pressing national security challenges. All issues VISTAS cover Fall 2013: 70 years of making, modeling, measuring (pdf) VISTAS cover Winter 2012: Los Alamos NPAC research (pdf) VISTAS cover Fall 2010: MaRIE (pdf) VISTAS cover

  19. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  20. fast-matmul

    SciTech Connect (OSTI)

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.

  1. Workplace Charging Challenge: Promote Charging at Work | Department of

    Energy Savers [EERE]

    Energy Plug-in Electric Vehicles & Batteries » Workplace Charging Challenge » Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Workplace Charging Challenge: Promote Charging at Work Employees with access to workplace charging are six times more likely to drive a plug-in electric vehicle (PEV) than the average worker. Promoting PEV charging at workplaces is one great way that states, cities and other organizations can

  2. Workplace Charging Challenge: Install and Manage PEV Charging at Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Install and Manage PEV Charging at Work Workplace Charging Challenge: Install and Manage PEV Charging at Work pev_workplace_charging_hosts_150x194.jpg To determine if workplace charging is right for your organization, use the employer resources to learn more about PEVs and charging stations. The PEV Handbook for Workplace Charging Hosts is particularly helpful for employers deciding if and how to install charging stations to ensure a successful workplace charging

  3. Charge regulation circuit

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA)

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  4. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  5. DC Fast Charger Usage in the Pacific Northwest

    SciTech Connect (OSTI)

    Salisbury, Shawn; Smart, John

    2015-02-01

    This document will describe the use of a number of Direct Current Fast Charging Stations throughout Washington and Oregon as a part of of the West Coast Electric Highway. It will detail the usage frequency and location of the charging stations INL has data from. It will also include aggregated data from hundreds of privately owned vehicles that were enrolled in the EV Project regarding driving distance when using one of the West Coast Electric Highway fast chargers. This document is a white paper that will be published on the INL AVTA website.

  6. Workplace Charging Challenge: Higher Education PEV Charging Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Higher Education PEV Charging Webinar Workplace Charging Challenge: Higher Education PEV Charging Webinar Review the slides from our webinar which highlighted workplace ...

  7. fastKDE

    Energy Science and Technology Software Center (OSTI)

    2015-05-22

    This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.

  8. Charge exchange system

    DOE Patents [OSTI]

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Star Status recognition for safety excellence from Department of Energy October 8, 2014 Lab largest site in DOE complex to attain Star level LOS ALAMOS, N.M., Oct. 8, 2014-Los...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acknowledged for progress in safety excellence by Department of Energy August 4, 2010 Lab is awarded VPP Merit status LOS ALAMOS, New Mexico, August 4, 2010-Los Alamos National...

  11. exploration, Los Alamos Rover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA agreements advance Mars exploration, Los Alamos Rover instrument a key component June ... LOS ALAMOS, N.M., June 17, 2015-NASA Administrator Charles Bolden and Jean-Yves Le Gall, ...

  12. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes part in Blue Star Museums program May 16, 2012 Free admission for active duty military, their family members LOS ALAMOS, New Mexico, May 16, 2012-Los Alamos National...

  13. Thermite charge - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Trademark Office Marketing Summary: Linear Thermite Charge Abstract: The present invention provides for cutting operations using linear thermite charges; the charges cut one...

  14. Los Alamos National Security, LLC Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Security, LLC Los Alamos National Laboratory (LANL) Voluntary Protection Program (VPP) Assessment Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) Voluntary...

  15. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  16. Fast Breeder Reactor studies

    SciTech Connect (OSTI)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  17. fast-matmul

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less

  18. Reusable fast opening switch

    DOE Patents [OSTI]

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  19. Fast Global File Status

    Energy Science and Technology Software Center (OSTI)

    2013-01-01

    Fast Global File Status (FGFS) is a system software package that implimints a scalable mechanism to retrieve file information, such as its degree of distribution or replication and consistency.

  20. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - Charger usage peak is during shift-change when both shifts are charging More ... Happy to share this and make it available to anyone. EV Barriers and Opportunities * ...

  1. System Benefits Charge

    Broader source: Energy.gov [DOE]

    New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy efficiency programs and energy assistance programs for...

  2. Automakers and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Initiative Arguably the most important infrastructure strategy to accelerate adoption of PEVs. Why are we doing Workplace Charging? * PEV Market Growth - Critical now...

  3. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop:

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Acceptance and Public Policy Group C Breakout Report | Department of Energy on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon group_c_report_out_caci.pdf More Documents & Publications EV Everywhere Consumer Acceptance Workshop: Breakout Group B Report Out EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop: Consumer Acceptance and Public Policy Group B Breakout Report EV Everywhere Grand Challenge: Consumer Acceptance and Charging

  4. Ion charge state fluctuations in vacuum arcs

    SciTech Connect (OSTI)

    Anders, Andre; Fukuda, Kentaro; Yushkov, Georgy Yu

    2004-12-14

    Ion charge state distributions of cathodic vacuum arcs have been investigated using a modified time-of-flight method. Experiments have been done in double gate and burst gate mode, allowing us to study both systematic and stochastic changes of ion charge state distributions with a time resolution down to 100 ns. In the double gate method, two ion charge spectra are recorded with a well-defined time between measurements. The elements Mg, Bi, and Cu were selected for tests, representing metals of very different properties. For all elements it was found that large stochastic changes occur even at the limit of resolution. This is in agreement with fast changing arc properties observed elsewhere. Correlation of results for short times between measurements was found but it is argued that this is due to velocity mixing rather than due to cathode processes. The burst mode of time-of-flight measurements revealed the systematic time evolution of ion charge states within a single arc discharge, as opposed to previous measurements that relied on data averaged over many pulses. The technique shows the decay of the mean ion charge state as well as the level of material-dependent fluctuations.

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describes storm damage to environmental monitoring stations, canyons September 18, 2013 Stations supporting Santa Fe water utility returned to service LOS ALAMOS, N.M., Sept. 20, 2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental monitoring stations, monitoring wells, access roads and badly eroded canyon bottoms. - 2 - "Last week we experienced an epic

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commitment to lead by example and take charge on federal sustainability," said Amy Porter, acting federal chief sustainability officer, when addressing the award recipients at...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    said. "Our licensing and software teams have worked very hard to offer this specialized model for those wanting to quickly license Los Alamos technology." - 2 - The Express...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He was the third director of Los Alamos National Laboratory, succeeding Robert Oppenheimer and Norris Bradbury. He served from 1970 to 1979. Joined Manhattan Project in 1943 During ...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 13 construction forum in Albuquerque April 7, 2009 LOS ALAMOS, New Mexico, April 7, 2009- Companies big and small can learn about upcoming construction projects and...

  11. exploration, Los Alamos Rover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA agreements advance Mars exploration, Los Alamos Rover instrument a key component June 17, 2015 SuperCam's body to be built at Los Alamos and the mast in France LOS ALAMOS, N.M., June 17, 2015-NASA Administrator Charles Bolden and Jean-Yves Le Gall, president of the French space agency, Centre National d'Etudes Spatiales (CNES), signed an agreement Tuesday at the Paris Air Show for France to provide the mast unit for the SuperCam component of NASA's Mars 2020 rover. Los Alamos National

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazmat Challenge July 27, 2009 Competition test skills of hazardous materials response teams Los Alamos, New Mexico, July 27, 2009-Seven hazardous materials response teams from New...

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5th Hazmat Challenge July 27, 2011 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 27, 2011-Twelve hazardous materials response teams...

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th Hazmat Challenge July 22, 2010 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 22, 2010-Fourteen hazardous materials response teams...

  15. of Energy's Los Alamos National Laboratory and Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produce transparent, light- harvesting material November 3, 2010 Breakthrough could lead to solar-power-generating windows LOS ALAMOS, New Mexico, NOVEMBER 3, 2010-Scientists at the U.S. Department of Energy's Los Alamos National Laboratory and Brookhaven National Laboratory have fabricated transparent thin films capable of absorbing light and generating electric charge over a relatively large area. The material, described in the journal Chemistry of Materials, could be used in development of

  16. Los Alamos National Laboratory receives second Presidential Award as a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate champion LANL receives second Presidential Award as a climate champion Los Alamos National Laboratory receives second Presidential Award as a climate champion The awards honor federal teams, projects, facilities and programs that exemplify President Obama's charge to lead by example towards a clean energy economy. December 8, 2015 Los Alamos National Laboratory recently received a second presidential award as a climate champion. From left are: Mathew Moury, Associate Under Secretary

  17. Fast Reactor Technology Preservation

    SciTech Connect (OSTI)

    Wootan, David W.; Omberg, Ronald P.

    2008-01-11

    There is renewed worldwide interest in developing and implementing a new generation of advanced fast reactors. International cooperative efforts are underway such as the Global Nuclear Energy Partnership (GNEP). Advanced computer modeling and simulation efforts are a key part of these programs. A recognized and validated set of Benchmark Cases are an essential component of such modeling efforts. Testing documentation developed during the operation of the Fast Flux Test Facility (FFTF) provide the information necessary to develop a very useful set of Benchmark Cases.

  18. Determination of time zero from a charged particle detector

    DOE Patents [OSTI]

    Green, Jesse Andrew

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  19. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Z.; Falkowski, P.

    1997-02-11

    A fast repetition rate (FRR) flasher is described suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz. 14 figs.

  20. Fast repetition rate (FRR) flasher

    DOE Patents [OSTI]

    Kolber, Zbigniew; Falkowski, Paul

    1997-02-11

    A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.

  1. Fast Analysis and Simulation Team | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsFast Analysis and Simulation Team content top Fast Analysis and Simulation Team

  2. Wireless Charging | Department of Energy

    Energy Savers [EERE]

    Wireless Charging Wireless Charging 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss103_miller_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Wireless Charging Wireless Plug-in Electric Vehicle (PEV) Charging Wireless Plug-in Electric Vehicle (PEV) Charging

  3. Evaluating Electric Vehicle Charging Impacts and Customer Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors: Experiences from Six Smart Grid Investment Grant Projects (December 2014) Evaluating Electric Vehicle ...

  4. Societal Benefits Charge

    Broader source: Energy.gov [DOE]

    During 2011 and 2012 several minor changes were made to the originally enacted SBC law. In 2011 a section was added prohibiting gas utilities from imposing an SBC charge (or several other types o...

  5. Trends in Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Donofrio Ford Motor Company Trends in Workplace Charging Est EV NA NA approx 21 70-100 Miles: What Types of Chargers are Being Used? Considerations for Campus Installations *...

  6. Electrically charged targets

    DOE Patents [OSTI]

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  7. EV Everywhere Consumer Acceptance and Charging Infrastructure Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Introduction | Department of Energy Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 1_sandalow_caci.pdf More Documents & Publications EV Everywhere Framing Workshop Overview EV Everywhere Battery Workshop Introduction EV Everywhere Grand Challenge Blueprint

  8. Stockpile Stewardship: Los Alamos

    SciTech Connect (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2012-01-26

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  9. Stockpile Stewardship: Los Alamos

    ScienceCinema (OSTI)

    McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken

    2014-08-12

    "Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Around 10 a.m. Pyongyang Time on Wednesday, January 6, 2016, seismic analysts around the world picked up something unusual-a 5.1-magnitude seismic event in the northeast corner of North Korea. Earthquakes of this size aren't common on the Korean Peninsula, which likely meant the violent shaking was caused by something else: an explosion. Enter Los Alamos National Laboratory. Los Alamos isn't just in the business of developing, testing, and maintaining explosives. A

  12. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification 0341 dated 02/29/2016 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to to Modification 0341 dated 02/29/2016) LANL A008 (9/29/06) (pdf, 485KB) LANL A009

  13. Los Alamos, NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unusual light in dark space revealed by Los Alamos, NASA November 7, 2014 Near-infrared data could change the way we think about galaxies LOS ALAMOS, N.M., Nov. 7, 2014-By looking at the dark spaces between visible galaxies and stars the NASA/JPL CIBER sounding rocket experiment has produced data that could redefine what constitutes a galaxy. "What was very surprising is the brightness of many fluctuations that appear between stars and galaxies," said Los Alamos scientist Joseph Smidt,

  14. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nissan EV Workplace Charging Program Workplace Charging Value Creation Value Proposition Nissan Support For Employer For Employee For Employee * Unique employee benefit * ...

  15. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  16. Los Alamos National Laboratory - Los Alamos Canyon | Department...

    Office of Environmental Management (EM)

    - Los Alamos Canyon January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report Installation Name, State: Los Alamos National...

  17. LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ad Building demolition, recycling completed October 11, 2011 Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National...

  18. Los Alamos National Security LLC Selected to Manage Los Alamos...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the management and operations contractor for Los Alamos National Laboratory in New Mexico. ... Los Alamos community and state of New Mexico since it will guarantee the lab will ...

  19. LOS ALAMOS, New Mexico, September 1, 2010-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Buildings would replace existing facilities at Technical Area 54 LOS ALAMOS, New Mexico, September 1, 2010-Los Alamos National Laboratory today announced it has obtained...

  20. LOS ALAMOS, New Mexico, December 16, 2010-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 New LANL marks set for field investigations, shipments to WIPP LOS ALAMOS, New Mexico, December 16, 2010-Los Alamos National Laboratory finished 12 months worth of...

  1. [Los Alamos National Laboratory]; Durakiewicz, Tomasz [Los Alamos...

    Office of Scientific and Technical Information (OSTI)

    Time-resolved carrier distributions in graphene Gilbertson, Steve Michael Los Alamos National Laboratory; Durakiewicz, Tomasz Los Alamos National Laboratory; Zhu, Jian - Xin...

  2. Workplace Charging Challenge Partner: Siemens | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siemens Workplace Charging Challenge Partner: Siemens Workplace Charging Challenge Partner: Siemens Joined the Challenge: January 2013 Headquarters: Washington, DC Charging ...

  3. Los Alamos Employees' Scholarship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    silver scholarships: Kathy Lin of Los Alamos High School, Ian McMahon of Monte del Sol in Santa Fe, and Dennis Trujillo of McCurdy School in Espaola. And two students are...

  4. Los Alamos, NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unusual light in dark space revealed by Los Alamos, NASA November 7, 2014 Near-infrared ... The data suggests that galaxies shed many more of their stars into the intervening space ...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He has now found most of them at Livermore; the Defense Threat Reduction Information Analysis Center on Kirtland Air Force Base in Albuquerque, New Mexico; and Los Alamos National ...

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for...

  7. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to 150 million over five years LOS ALAMOS, N.M., May 14, ... businesses will compete for environmental work worth up to 150 million over five years. ...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in National Lab Day to increase awareness of science across the nation April 29, 2010 Events planned May 4-5 at Bradbury Science Museum LOS ALAMOS, New Mexico, April...

  10. Los Alamos Dynamics Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup Los Alamos Demolition Work Progresses Toward Goal of Completing Cleanup January 14, 2016 - 12:20pm Addthis The sewage treatment facility before demolition. The sewage treatment facility before demolition. Debris from the sewage treatment facility. Debris from the sewage treatment facility. Site of the demolished sewage treatment facility. Site of the demolished sewage treatment facility. The sewage

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th Hazmat Challenge July 22, 2010 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 22, 2010-Fourteen hazardous materials response teams from New Mexico and Oklahoma will test their skills at the 14th annual Hazmat Challenge July 27-30 sponsored by Los Alamos National Laboratory. The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. Held at the

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 23, 2013 Value of up to $400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to $400 million within a five-year period. The businesses were selected based on a technical proficiency and lowest price basis. The companies-Terranear PMC, Navarro Research and Engineering, Inc. and Portage, Inc.-were chosen from 11 prospective bidders.

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second Presidential Award as a climate champion December 8, 2015 LOS ALAMOS, N.M., Dec. 8, 2015-In recognition of their proactive commitment to protecting the environment of Northern New Mexico from the potential impacts of a changing climate, a consortium of Los Alamos National Laboratory's federal and contractor staff received the GreenGov Presidential Award on Nov. 30. "We recognized the need for a different approach after a devastating wildfire and a series of impactful environmental

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  1. Los Alamos National Laboratory,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS develop new mentor-protégé agreements July 8, 2008 Supporting Northern New Mexico business LOS ALAMOS, New Mexico, July 8, 2008-Los Alamos National Security, LLC recently entered into mentor-protégé agreements with two Northern New Mexico businesses, North Wind, Inc. and Performance Maintenance Inc. (PMI), under the auspices of a Department of Energy mentor-protégé program. The program provides developmental assistance to enhance the business and technical capabilities of small

  2. Vehicle Technologies Office: Workplace Charging Challenge Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In ...

  3. EV Everywhere: Workplace Charging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Charging EV Everywhere: Workplace Charging EV Everywhere: Workplace Charging Most plug-in electric vehicle (EV) owners charge their vehicles primarily at home, but ...

  4. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Los Alamos Canyon Cleanup Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Located along Los Alamos Canyon from 7th Street to the Pajarito Ski Hill, the Upper Los Alamos Canyon Project involves examining sites in present and former Laboratory

  5. Los Alamos National Laboratory top

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the longest-operating, farthest- traveling, most-productive Mars surface mission in history. Los Alamos laser instrument arrives on Red Planet's surfaceLos Alamos instrument to ...

  6. Los Alamos honors Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Fellows November 19, 2012 Engineering, physics and computer science leaders announced LOS ALAMOS, N.M., November 19, 2012-Three distinguished members of the Los Alamos...

  7. Los Alamos National Laboratory attracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...

  8. Manhattan Project: Los Alamos Scientists

    Office of Scientific and Technical Information (OSTI)

    Second row: Robert Oppenheimer, Richard P. Feynman, Phil B. Porter. Third row: Gregory ... Research at Los Alamos, 1943-1944 Los Alamos After the War Scientists Richard Feynman

  9. Los Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Leadership, Governance Los Alamos National Security, LLC Los Alamos National Security, LLC (LANS) The Lab's mission is to develop and apply science and technology to...

  10. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  11. Fast quench reactor method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  12. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  13. Fast Ignitor coupling physics

    SciTech Connect (OSTI)

    Mason, R.J.; Tabak, M.

    1997-10-01

    The Fast Ignitor is an alternate approach to ICF in which short pulse lasers are used to initiate burn at the surface of the compressed DT fuel. The aim is to avoid the need for careful central focusing of final shocks, and possibly to lower substantially the energy requirements for ignition. Ultimately, both goals may prove crucial to Science Based Stockpile Stewardship (SBSS). This will be the case should either emerging energetic needs, or finding difficulties render the presently planned radiative fusion approach to ignition with the NIF impractical. Ignition is a first step towards the achievement of substantial energy and neutron outputs for such Stewardship.

  14. Los Alamos National Security, LLC Los Alamos National Laboratory (LANL)

    Office of Environmental Management (EM)

    Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials

  15. Semiclassical eigenenergies in the wake of fast ions in solids

    SciTech Connect (OSTI)

    Mueller, J.; Burgdoerfer, J.; Noid, D.W. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics Oak Ridge National Lab., TN (USA))

    1990-01-01

    We compare the semiclassical and quantum mechanical eigenenergies of an electron in the wake of a fast, highly charged ion traversing a solid. The classical dynamics of this system shows a transition from regular to chaotic motion as a function of the binding energy. The transition can also be seen in the quantal spectra. We find evidence for a connection between bifurcation of tori and disorder in the energy level sequences. 21 refs., 4 figs.

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pledge $2.17 million in 2015 giving campaign November 25, 2014 More than 250 nonprofits, social service providers will benefit LOS ALAMOS, N.M., Nov. 25, 2014-The work of more than 250 community and social service organizations will benefit from the more than $2.17 million pledged by Los Alamos National Laboratory employees to United Way and other nonprofits during the Laboratory's 2015 Employee Giving Campaign. "We are proud to help the many community focused non-profit organizations

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On a broad mesquite plain in central New Mexico, a small crew fits a metal cylinder into a rocket the size of a baseball bat, then slips the rocket onto guide rods on a platform. A "Los Alamos" logo on the fuselage certifies this launch as official science by the world-famous national laboratory, not a weekend outing with the kids. Bryce Tappan and a handful of scientists, engineers, and students from Los Alamos National Laboratory and New Mexico Tech stand back as another crew member

  19. Los Alamos Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Patents Los Alamos Patents Our research has led to over 1,000 U.S. patents granted, and more globally. Explore a snapshot of our patent portfolio below. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Disclaimer This list is reviewed and updated quarterly. Some patents may no longer be maintained or available for licensing. This list includes, but may not be all inclusive of, U.S. patents granted in or

  20. Los Alamos researchers uncover new properties in nanocomposite oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ceramics for reactor fuel, fast-ion conductors New properties in nanocomposite oxide ceramics Los Alamos researchers uncover new properties in nanocomposite oxide ceramics for reactor fuel, fast-ion conductors In a nanocomposite, the size of each of these grains is on the order of nanometers, roughly 1000 times smaller than the width of a human hair. September 23, 2014 Schematic depicting distinct dislocation networks for SrO- and TiO2-terminated SrTiO3/MgO interface. Schematic depicting

  1. The materials test station: a fast spectrum irradiation facility

    SciTech Connect (OSTI)

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  2. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  3. FAST NEUTRON SPECTROMETER

    DOE Patents [OSTI]

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  4. FAST OPENING SWITCH

    DOE Patents [OSTI]

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  5. FAST ACTING CURRENT SWITCH

    DOE Patents [OSTI]

    Batzer, T.H.; Cummings, D.B.; Ryan, J.F.

    1962-05-22

    A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)

  6. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  7. Continuous Evaluation of Fast Processes...

    Office of Scientific and Technical Information (OSTI)

    FASTER project Continuous Evaluation of Fast Processes in Climate Models Using Arm ... development and evaluation of convection and cloud parameterizations in climate models. ...

  8. Distributed charging of electrical assets

    DOE Patents [OSTI]

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  9. Charging Your Time - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Exposition Charging Your Time About Us Charging Your Time Committee Members Contact Us Electronic Registration Form Exhibitor and Vendor Information EXPO 2016 Sponsors EXPO Award Criteria How to Get to TRAC Special Events What is EXPO Why Should I Participate in EXPO Charging Your Time Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size How Do I Charge My Time Spent at EXPO? Each Hanford Prime Contractor may have different policies for attending

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7th annual Hazmat Challenge July 23, 2013 Competition tests skills of hazardous materials response teams from three states Editor's Note: News media representatives interested in attending the Hazmat Challenge can contact the Laboratory's Communications Office at 505-667-7000 to coordinate travel to the site. LOS ALAMOS, N.M., July 23, 2013-Twelve hazardous materials response teams from New Mexico, Missouri and Oklahoma will test their skills at the 17th annual Hazmat Challenge July 30 through

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2015 Films of the U.S. atmospheric nuclear tests provide breathtaking reminders of the power of nuclear weapons. Now a new project is salvaging and mining these deteriorating films for fresh-and crucial- scientific data about the weapons' yields. To understand why Lawrence Livermore National Laboratory nuclear weapons physicist Greg Spriggs is spearheading, in partnership with Los Alamos, an urgent search-and-rescue mission to salvage several thousand films documenting U.S. atmospheric

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ~The Chemistry of Powder & Explosives by Tenney L. Davis 11 National Security Science April 2016 Scientists at Los Alamos are solving national security challenges, from the threat of toothpaste bombs on airliners to ensuring the safety of our nuclear stockpile. In February 2014, the U.S. Department of Homeland Security (DHS) got wind of a potential new bomb threat: explosives packed into a toothpaste tube that a terrorist planned to smuggle onto an airplane headed for the Winter Olympics at

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2016 THE HURT-LOCKER SCHOOL Scenes such as this explosion in Iraq have been typical in recent wars as insurgents and terrorists create homemade explosives that are often deployed as roadside improvised explosive devices (IEDs). Explosive Ordnance Disposal (EOD) technicians in the U.S. Air Force, Army, Marine Corps, and Navy tackle the tough job of detecting, rendering harmless, and disposing of a wide range of explosive materials. Los Alamos teaches EOD techs how to save lives by

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ii Judicial Science School * Los Alamos National Laboratory * UCSD Jacobs School of Engineering Foreword Scientific evidence is introduced in our courts with increasing frequency and greater complexity, which requires judges to have a better understanding of science. Preparing judges to competently rule on the admissibility of scientific evidence represents a new challenge in judicial education. The role of uncertainty in science requires special attention. What better way to educate judges

  15. Los Alamos physicist Hockaday

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration names four to Laboratory Fellows list Wednesday, December 11, 2013 - 4:39pm Four scientists have been inducted into the Los Alamos National Laboratory Fellows, a distinguished organization that honors outstanding contributions to science and technology. Today, Laboratory Director Charles McMillan appoints new Fellows Mark Chadwick, Cheryl Kuske, Geoff Reeves and Frank Pabian. The fellows are lauded for their sustained, high-level achievements and exceptional promise.

  16. Fast Hybrid and Monolithic CMOS Imagers in Multi-Frame Radiography

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Fast Hybrid and Monolithic CMOS Imagers in Multi-Frame Radiography Citation Details In-Document Search Title: Fast Hybrid and Monolithic CMOS Imagers in Multi-Frame Radiography Authors: Kwiatkowski, Kris K. [1] ; Mariam, Fesseha Gebre [1] ; Merrill, Frank Edward [1] ; Morris, Christopher [1] ; Nedrow, Paul [1] ; Saunders, Alexander [1] ; Douence, Vincent [2] ; Bai, Yibin [2] + Show Author Affiliations Los Alamos National Laboratory Teledyne Imaging Sensors

  17. WPEC subgroup 35 ""scattering angular distribution in the fast energy

    Office of Scientific and Technical Information (OSTI)

    range"" status report (Conference) | SciTech Connect WPEC subgroup 35 ""scattering angular distribution in the fast energy range"" status report Citation Details In-Document Search Title: WPEC subgroup 35 ""scattering angular distribution in the fast energy range"" status report Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-05-12 OSTI Identifier: 1067415 Report Number(s):

  18. Van Andel Research Institute, Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory to develop detailed computational model to study lung cancer September 14, 2015 LOS ALAMOS, N.M., Sept. 14, 2015-Scientists are developing a new...

  19. Los Alamos National Laboratory ships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ships last of high-activity drums to WIPP November 25, 2008 LOS ALAMOS, New Mexico, November 25, 2008- The last group of unvented high- activity drums left Los Alamos National...

  20. Los Alamos | Department of Energy

    Energy Savers [EERE]

    Los Alamos Los Alamos Administrative Order Requiring Compliance and Assessing Civil Penalty U.S. Department of Energy's Request for Hearing and Answer to Administrative Order Requiring Compliance and Assessing Civil Penalty

  1. Los Alamos National Laboratory medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Santa Fe Joined the Network Tatiana Canning Los Alamos H Taylor Los Alamos Frances Chavez Santa Fe Herbert Gonzales Santa Fe Michael Katz Santa Fe Jenny Laden Santa Fe...

  2. Los Alamos National Security awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants to 24 nonprofits in Northern New Mexico February 5, 2009 LOS ALAMOS, New Mexico, February 5, 2009 - Local nonprofit organizations that benefit from volunteer efforts by employees of Los Alamos National Laboratory received an additional assist: $265,000 in special one-time Community Giving grants from Los Alamos National Security, LLC (LANS), the company that manages the Laboratory. Twenty-four nonprofit organizations from Los Alamos, Española, Taos, Santa Fe, Albuquerque, and Carlsbad

  3. White House honors Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House honors Los Alamos physicist's early career work July 10, 2009 Los Alamos, New Mexico, July 10, 2009-The White House today announced that Los Alamos National Laboratory physicist Ivan Vitev has received a prestigious Presidential Early Career Award for Scientists and Engineers (PECASE). The honor is the highest bestowed by the U.S. government to outstanding scientists early in their careers. Vitev joined Los Alamos National Laboratory in 2004 as a J. Robert Oppenheimer Postdoctoral

  4. High resolution printing of charge

    DOE Patents [OSTI]

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  5. Workplace Charging Challenge Summit 2014: Agenda | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Workplace Charging Challenge Summit 2014: Agenda Final Agenda for the 2014 Workplace Charging Challenge Summit PDF icon 2014 Workplace Charging Challenge Summit Agenda More ...

  6. Car Charging Group Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group,...

  7. Workplace Charging Challenge Partner: Unum Group | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unum Group Workplace Charging Challenge Partner: Unum Group Workplace Charging Challenge Partner: Unum Group Joined the Challenge: July 2015 Headquarters: Chattanooga, TN Charging ...

  8. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Progress Update 2014: Employers Take Charge Available at energy.goveerevehiclesev-everywhere-workplace-charging-challenge Workplace Charging Challenge 5 Cumulative...

  9. Charged pion production in $$\

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  10. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K.; Kintner-Meyer, Michael C. W.; Hammerstrom, Donald J.; Pratt, Richard M.

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  11. Independent Oversight Assessment, Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Los Alamos National Laboratory - April 2012 Independent Oversight Assessment, Los Alamos National Laboratory - April 2012 April 2012 Assessment of Nuclear Safety Culture at the Los...

  12. UCNA | Ultracold Neutrons at Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UCNA The UCNA experiment is the first experiment to utilize UCN for angular correlations measurements in beta-decay. UCNA was founded in 1997-1998 as a part of the already ongoing UCN program at Los Alamos, and provided the motivation for development of the production source in Area B at LANSCE. Angular correlation measurements in neutron beta-decay contribute, together with the neutron lifetime and radiative decay experiments, to a high precision determination of the parameters of the charged

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1914, Detroit businessman Ashley Pond constructed a log cabin on the Pajarito Plateau in north-central New Mexico. The one-room structure served as the office for the Pajarito Club, a guest ranch for well-heeled city folk looking for a little Wild West adventure. Although the Pajarito Club was short-lived (it disbanded in 1916), Pond remained in the area and went on to found the Los Alamos Ranch School in 1917. The elite prep school offered classical education and rigorous outdoor activity

  14. Workplace Charging - Attracting Tenants through Charged Up Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy - Attracting Tenants through Charged Up Facilities Workplace Charging - Attracting Tenants through Charged Up Facilities Nationwide, leased facilities constitute almost half of workplaces. Competitive property managers are constantly looking for new, innovative offerings to attract tenants, including advanced building designs and services, mass transit accessibility, and energy-efficient certifications. As more plug-in electric vehicles (PEVs) hit the road across the

  15. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Broader source: Energy.gov [DOE]

    The Workplace Charging Challenge Progress Update 2014 highlights the progress of the Challenge and its partners as determined through the annual partner survey.

  16. Workplace Charging Challenge: Higher Education PEV Charging Webinar

    Broader source: Energy.gov [DOE]

    Review the slides from our webinar which highlighted workplace charging on higher education campuses across the country.

  17. Workplace Charging Challenge: Install and Manage PEV Charging...

    Energy Savers [EERE]

    Plug-in Electric Vehicles & Batteries Workplace Charging Challenge Workplace ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries ...

  18. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive ...

  19. Workplace Charging Challenge Partner: Northwest Evaluation Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation ...

  20. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...

  1. Workplace Charging Challenge Partner: Sears Holdings Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Workplace Charging Challenge Partner: Sears Holdings Corporation Joined the Challenge: ...

  2. Workplace Charging Challenge Partner: Melink Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melink Corporation Workplace Charging Challenge Partner: Melink Corporation Workplace Charging Challenge Partner: Melink Corporation Joined the Challenge: July 2014 Headquarters: ...

  3. Workplace Charging Challenge Partner: Vermont Energy Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment Corporation Workplace Charging Challenge Partner: Vermont Energy Investment ...

  4. Explosive bulk charge

    DOE Patents [OSTI]

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  5. New Version of FAST Released

    Broader source: Energy.gov [DOE]

    NREL recently released a more robust version of its FAST software under a modularization framework that represents a generational change in how computer-aided engineering (CAE) tools are developed.

  6. High dynamic range charge measurements

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  7. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W.H.

    1999-03-09

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector. 5 figs.

  8. Transient Safety Analysis of Fast

    Office of Scientific and Technical Information (OSTI)

    52 Transient Safety Analysis of Fast Spectrum tRu Burning LWRs with Internal Blankets Reactor Concepts Dr. Thomas Downar University of Michigan In collaboration with: Massachusetts Institute of Technology Argonne National Laboratory Thomas Sowinski, Federal POC Temitope Taiwo, Technical POC FINAL REPORT Project Title: Transient Safety Analysis of Fast Spectrum TRU Burning LWRs with Internal Blankets Covering Period: Final Date of Report: January 31, 2015 Recipient: University of Michigan 2355

  9. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  10. Workplace Charging Toolkit: Example Events

    Broader source: Energy.gov [DOE]

    This section provides links to previous successful workplace charging events. These link directly to the organization’s website and contain event agendas and presentation materials.

  11. Workplace Charging Program and Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and charging infrastructure * Plug-in hybrid and battery electric vehicles * ... include trucks, buses, vans, passenger cars, low- speed vehicles and off-road ...

  12. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way. Together, Los Alamos National Laboratory (LANL) and EMC, are enhancing, designing, building, testing and deploying new cutting-edge technologies in an effort to meet some of...

  13. LOS ALAMOS, New Mexico, December 20, 2010-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top 10 science & technology developments of 2010 December 20, 2010 LOS ALAMOS, New Mexico, ... Challenging conventional wisdom about solar wind-a new take on existing data Research ...

  14. LOS ALAMOS, New Mexico, December 21, 2011-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high performance computing, data storage, cyber security, cloud computing, analytics, materials science and data sharing, and mobility LOS ALAMOS, New Mexico, December 21,...

  15. Los Alamos National Security, LLC partners with Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval Communications Office (505) 665-9206 Email Los Alamos National Security,...

  16. Independent Oversight Inspection, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Inspection, Los Alamos National Laboratory - January 2007 Independent Oversight Inspection, Los Alamos National Laboratory - January 2007 January 2007 Independent Oversight...

  17. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  18. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  19. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School » Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2718 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email How to Apply Students should email the following documents to LADSSApply@lanl.gov Application Form (pdf) A one-page cover letter describing your interest

  20. Los Alamos National Laboratory and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Seagate heat up data archiving for supercomputers March 21, 2016 Better alternative to "cold storage" promises to keep data accessible to improve research LOS ALAMOS, N.M., March 21, 2016-Seagate Technology (NASDAQ: STX) and Los Alamos National Laboratory (Los Alamos) are researching a new storage tier to enable massive data archiving for supercomputing. The joint effort is aimed at determining innovative new ways to keep massive amounts of stored data available for rapid access,

  1. Los Alamos National Laboratory awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards subcontracts for architectural and engineering services August 28, 2009 Northern New Mexico small businesses to provide services Los Alamos, New Mexico, August 28, 2009-Six small businesses are receiving subcontracts totaling up to $200 million for providing architectural and engineering services to Los Alamos National Laboratory.The small businesses receiving the subcontracts from Los Alamos National Security, LLC are Lopez Engineering, Inc.; Merrick & Company; Mosaic-STC, A Joint

  2. Los Alamos National Laboratory opens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opens new waste repackaging facility March 7, 2013 Box line facility is largest of its kind ever built LOS ALAMOS, N. M., March 7, 2013-Los Alamos National Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. The "375 box line facility" enables Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the

  3. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School The Seventeenth Los Alamos Dynamics Summer School School overview and focus. Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email The Los Alamos Dynamics Summer School is a very selective summer school in which top upper-level US-citizen undergraduate students from universities around the nation attend lectures and work in teams of three

  4. by Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small businesses helped by Los Alamos National Laboratory scientists December 11, 2012 New Mexico Small Business Assistance Program provides technical expertise, assistance LOS ALAMOS, NEW MEXICO, December 11, 2012-Los Alamos National Laboratory scientists Harshini Mukundan of the Physical Chemistry and Applied Spectroscopy group and Mark E. Smith of the Chemical Diagnostics and Engineering group received Principal Investigator Excellence (PIE) Awards from the New Mexico Small Business

  5. leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone reached: Waste shipment leaves Los Alamos National Laboratory June 2, 2009 Remote-handled transuranic waste will go to WIPP LOS ALAMOS, New Mexico, June 2, 2009 - Los Alamos National Laboratory officials today announced the departure of the Laboratory's first shipment of a special type of radioactive waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico. The material, known as "remote-handled transuranic waste" (RH-TRU), has been stored at the Laboratory

  6. Los Alamos ScienceFest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is participating by hosting a number of events, most of them featuring Lab scientists, engineers and technical staff. To view the full event schedule, visit the Los Alamos...

  7. Los Alamos Dynamics Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Seventeenth Los Alamos Dynamics Summer School Program Information and Application Process Contact Institute Director Charles Farrar (505) 663-5330 Email Executive...

  8. Los Alamos National Laboratory names

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico, November 5, 2009-Antoinette "Toni" Taylor, Stephen Becker, Joachim Birn, Lowell Brown, Patrick Colestock, and Samuel "Tom" Picraux have been designated 2009 Los Alamos...

  9. Lawrence Livermore and Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bechtel National, the University of California, BWX Technologies, URS and Battelle. The team also includes Texas A&M University. LANS operates Los Alamos National Laboratory, a...

  10. Los Alamos National Security supports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports community nonprofits June 1, 2009 Recognition event Tuesday at Fuller Lodge LOS ALAMOS, New Mexico, June 1, 2009 - Nonprofit organizations are receiving more than 80,300...

  11. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the ninth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  12. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the eighth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  13. Los Alamos National Laboratory opens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. The "375 box line facility" enables Los Alamos to...

  14. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  15. Enhanced ignition for I. C. engines with premixed charge

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1980-10-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition, since one can obtain thereby proper means for increasing the rate of burn in mixtures characterized notoriously by low normal burning speeds. Enhanced ignition involves a wide dispersion of its sources so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped within the following categories: (1) high energy spark plugs; (2) plasma jet igniters; (3) photochemical, laser, and microwave ignition concepts; (4) torch cells; (5) divided chamber stratified charge engines; (6) flame jet igniters; (7) combustion jet ignition concepts; (8) EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions at a significantly lower, practically negligible, fuel consumption. The concept of staging the processes of initiation and propagation of combustion is emphasized. Relative positions of various ignition systems are expressed on the plane of relative energies and relative volumes. In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  16. Fast reactors and nuclear nonproliferation

    SciTech Connect (OSTI)

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  17. Charge-pump voltage converter

    DOE Patents [OSTI]

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  18. Nissan EV Workplace Charging Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jean Gough Southeast: Cornelius Willingham 18 Level 2 chargers under solar canopy 1 DC Fast Charger, and 2 Level 2 in visitor parking 5 Level 2 chargers in parking garage 2...

  19. Workplace Charging Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Workplace Charging Presentation Educate employers about plug-in electric vehicles and workplace charging using this sample presentation. The presentation covers the basics of PEVs and workplace charging as well as the benefit of supporting these sustainable transportation technologies at your organization. File Workplace Charging Ambassador Outreach Presentation Template More Documents & Publications Workplace Charging Toolkit: Workshop Outreach Presentation Template Workplace

  20. Workplace Charging Challenge Progress Update 2014: Employers Take Charge

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Progress Update 2014: Employers Take Charge U.S. Department of Energy's EV Everywhere Workplace 2 As the Workplace Charging Challenge nears its second anniversary, I am pleased to reflect on the continued rapid advancement of plug-in electric vehicles (PEVs), the exciting progress to date of our partners and ambassadors, and the phenomenal growth in the number of organizations that have joined the Challenge since its inception. What began as a commitment by 13 founding employer partners has now

  1. LOS ALAMOS, New Mexico, June 13, 2012-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest Los Alamos facility receives LEED Gold certification June 13, 2012 LOS ALAMOS, New Mexico, June 13, 2012-Los Alamos National Laboratory's newest facility, the Radiological...

  2. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  3. Los Alamos, New Mexico, November 4, 2009-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MagViz, the SIMTECHE CO2 Capture Process, Lasonix, TeraOps Software Radio, and the Artificial Retina Project. This year's awards bring the Los Alamos total to 113 since the...

  4. Measuring momentum for charged particle tomography

    DOE Patents [OSTI]

    Morris, Christopher (Los Alamos, NM); Fraser, Andrew Mcleod (Los Alamos, NM); Schultz, Larry Joe (Los Alamos, NM); Borozdin, Konstantin N. (Los Alamos, NM); Klimenko, Alexei Vasilievich (Maynard, MA); Sossong, Michael James (Los Alamos, NM); Blanpied, Gary (Lexington, SC)

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  5. EV Charging Stations Take Off Across America

    Broader source: Energy.gov [DOE]

    Finding a charging station is getting more convenient than ever thanks to companies like ChargePoint, which recently finished installing 4,600 charging stations across the United States.

  6. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 14 15 Technology Transfer 2011-2012 Progress Report Technology Transfer 2011-2012 Progress Report In 2011, The National Institutes of Health awarded a five-year Models of Infectious Disease Agent Study (MIDAS) grant to a team of researchers from Los Alamos National Laboratory (LANL) and Tulane University. This team, lead by principal investigator Sara Del Valle, connects social media and epidemiological research in an attempt to predict people's social behavior and

  7. Women in Los Alamos History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Women in Los Alamos History Women in Los Alamos History WHEN: Mar 03, 2016 5:30 PM - 8:00 PM WHERE: Los Alamos Golf Course Clubhouse SPEAKER: Jill Tietjen CONTACT: Sarah Terrill (505) 709-0089 CATEGORY: Community INTERNAL: Calendar Login Event Description Tietjen is a well-known speaker on the topic of gender issues in the work place, and a motivational speaker for young women working toward educations and careers in science, engineering, technology and math (STEM). The community is invited to

  8. EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and

    Broader source: Energy.gov (indexed) [DOE]

    Consumer Behavior | Department of Energy Challenge: Consumer Acceptance and Charging Infrastructure Workshop on July 30, 2012 held at the LAX Marriott, Los Angeles, CA PDF icon 4_ward_caci.pdf More Documents & Publications EV Everywhere Electric Drive Workshop: Preliminary Target-Setting Framework EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

  9. Vehicle Technologies Office: Workplace Charging Challenge Reports |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Office: Workplace Charging Challenge Reports Vehicle Technologies Office: Workplace Charging Challenge Reports The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone - it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by

  10. Workplace Charging Challenge Progress Update 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Update 2014 U.S. Department of Energy Sarah Olexsak Workplace Charging Challenge 2 Ambassador employer workshops & recognition events Workplace Charging Challenge 3 ...

  11. Workplace Charging Challenge Employer Workshop Best Practices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Employer Workshop Best Practices Webinar Workplace Charging Challenge Employer ... and how they planned, organized, and administered successful workplace charging events. ...

  12. EV Everywhere Grand Challenge - Charging Infrastructure Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Grand Challenge - Charging Infrastructure Enabling Flexible EV Design Presentation given at the EV Everywhere Grand Challenge: Consumer Acceptance and Charging ...

  13. PosiCharge | Open Energy Information

    Open Energy Info (EERE)

    Product: PosiCharge brings to market a next-generation intelligent rapid charging battery system for industrial and other electric vehicle applications. References:...

  14. American Battery Charging Inc | Open Energy Information

    Open Energy Info (EERE)

    Battery Charging Inc Jump to: navigation, search Name: American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad...

  15. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  16. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  17. ETA-UTP008 - Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conduct of charging the main propulsion batteries installed in an electric vehicle while ... The purpose of this procedure is to provide guidance on charging traction batteries during ...

  18. ETA-NTP008 Battery Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    conduct of charging the main propulsion batteries installed in an electric vehicle while ... provide guidance on charging traction batteries during the time the vehicle is being ...

  19. Workplace Charging Toolkit: Workshop Outreach Presentation Template...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Presentation Template Workplace Charging Toolkit: Workshop Outreach Presentation Template Educate workshop attendees and employers about the benefits of workplace charging ...

  20. Workplace Charging Challenge Partner: Suffolk County Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The PEV charging stations may be used by faculty, staff, students, and the general public. Multimedia Watch a video by Workplace Charging Partner Suffolk County Community College. ...

  1. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We are considering the installation of charging infrastructure to assist employees who ... install electric vehicle charging stations at your employee parking garagelot? a. Yes b. ...

  2. Vehicle Technologies Office: Workplace Charging Challenge Reports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of workplace charging as a sustainable business practice is growing across the country. ... an impact in their communities and helped identify best practices for workplace charging. ...

  3. Bringing Your Workplace Charging Story to Life

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging workshops * Other community events 10 Shannon.shea@ee.doe.gov http:energy.goveerevehiclesvehicle-technologies-office-ev-everywhere- workplace-charging-challenge 11...

  4. Workplace Charging Management Policies: Pricing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... RESOURCES Workplace Charging Management Webinar - Hear three employers discuss the ... Charging and Driving Behavior of Nissan Leaf Drivers in The EV Project with Access to ...

  5. Los Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each of the seven counties that the LANL Foundation serves: Los Alamos, Mora, Rio Arriba, San Miguel, Sandoval, Santa Fe, and Taos. Scholarships will be awarded to Northern New...

  6. Los Angeles County- Commercial PACE

    Broader source: Energy.gov [DOE]

    Businesses in Los Angeles County may be eligible for the county's Property Assessed Clean Energy (PACE) program. PACE programs allow businesses to finance energy and water efficiency projects which...

  7. Los Alamos National Laboratory begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 2 - Energy's Los Alamos Field Office. "Data from this testing will be used to recommend a final remedy which we will then submit to the state."

  8. Los Alamos National Laboratory begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy's Los Alamos Field Office. "Data from this testing will be used to recommend a final remedy which we will then submit to the state." - 2 -

  9. Manhattan Project: Los Alamos Street Scene

    Office of Scientific and Technical Information (OSTI)

    LOS ALAMOS STREET SCENE Los Alamos (The Town) Resources > Photo Gallery Los Alamos street scene. Fuller Lodge and the "Big House" are visible in the distance (see below). Above is ...

  10. Los Alamos National Laboratory board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    board renews plan for education, economic development, charitable giving September 18, 2013 $3.1 million approved for 2014 LOS ALAMOS, N.M., Sept. 18, 2013-The Los Alamos National Security, LLC Board of Governors last week approved a $3.1 million extension to the company's plan supporting education, economic development and charitable giving in Northern New Mexico. "We've tailored our programs very carefully to leverage dollars for the maximum benefit to the community," said Lab

  11. Los Alamos National Laboratory names

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new leadership for Weapons and Operations Directorates June 19, 2015 LOS ALAMOS, N.M., June 19, 2015-Los Alamos National Laboratory Director Charlie McMillan announced today that after nationwide searches, Robert (Bob) Webster has been selected to be the Laboratory's next Principal Associate Director for Weapons Programs, and Craig Leasure has been selected as the new Principal Associate Director for Operations. Webster to lead Weapons Directorate As the Weapons Program leader, Webster will be

  12. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  13. Los Alamos names Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Fellows for 2015 January 27, 2016 Honorees span sciences in materials, weapons physics and complex systems LOS ALAMOS, N.M., Jan. 27, 2016-Four Los Alamos National Laboratory scientists have been selected as 2015 Laboratory Fellows. The honorees this year are Michael Bernardin, Avadh Saxena, Carlos Tome and Piotr Zelenay. "The Laboratory Fellows Organization recognizes researchers for innovative scientific and technical advances in their respective fields," said Laboratory

  14. Los Alamos Employees' Scholarship Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Employees' Scholarship Fund Los Alamos Employees' Scholarship Fund The LAESF campaign raises funds for scholarships that support students from Northern New Mexico who are pursuing four-year undergraduate degrees in fields that will serve the region. June 13, 2012 Scholarship winner and Lab Director Scholarship winner Micaela Lucero and Lab Director Charlie McMillan Contacts Giving Campaigns & Volunteering Debbi Wersonick Community Relations & Partnerships (505) 667-7870 Email

  15. Creating Los Alamos Women's Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raeanna Sharp-Geiger-Creating a cleaner, greener environment March 28, 2014 Creating Los Alamos Women's Group Inspired by their informal dinner discussions, Raeanna Sharp-Geiger and a few of her female colleagues decided to create a new resource a few years ago, the Los Alamos Women's Group. They wanted to create a comfortable environment where women from all across the diverse Lab could network, collaborate, share ideas and gain a broader perspective of the Lab's mission. The Women's Group has

  16. Los Alamos Employee Giving Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Employee Giving Campaign Los Alamos Employee Giving Campaign Laboratory employees contribute to the annual Employee Giving Campaign to support a wide range of programs offered by eligible nonprofit organizations. Contact Giving Campaigns & Volunteering Debbi Wersonick Community Relations & Partnerships (505) 667-7870 Email I Give Because campaign logo Investing in nonprofits helps address critical needs The Employee Giving Campaign helps provide funding for area nonprofit

  17. Los Alamos honors Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos honors Laboratory Fellows Los Alamos honors Laboratory Fellows Charles Farrar, Steven Elliott and Mikhail Shashkov are being honored with appointment as Laboratory Fellows for 2012. November 19, 2012 Steven Elliott, Mikhail Shashkov and Charles Farrar Steven Elliott, Mikhail Shashkov and Charles Farrar Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Chuck, Steven, and Mikhail have made exceptional contributions in their fields and to national security Engineering,

  18. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory organizations receive Performance Excellence recognition from Quality New Mexico March 26, 2015 Laboratory is co-sponsor of QNM event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance Assurance Division received 2014 Performance Excellence Recognition awards from Quality New Mexico and will be recognized at QNM's annual learning summit and awards ceremony April 7-8

  19. Single molecule detection using charge-coupled device array technology

    SciTech Connect (OSTI)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  20. Transitioning Los Alamos technology into the marketplace

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transitioning Los Alamos technology into the marketplace Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Transitioning Los Alamos technology into the marketplace A personal message from Duncan McBranch, Chief Technology Officer, Los Alamos National Laboratory October 1, 2014 Duncan McBranch, Chief Technology Officer, Los Alamos National Laboratory Duncan McBranch, Chief Technology Officer, Los

  1. Announcing $4 Million For Wireless EV Charging | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    charging technology to provide hands-free, automated charging of parked vehicles. Static wireless charging - or wireless charging when the vehicle is parked - can ensure easy...

  2. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.

    1998-05-12

    A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.

  3. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-09-24

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  4. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    2002-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  5. Fast quench reactor and method

    DOE Patents [OSTI]

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.

    1998-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.

  6. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory - April 2012 Independent Oversight Review, Los Alamos National Laboratory - April 2012 April 2012 Review of the Emergency Response Organization at the Los ...

  7. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2011 Independent Oversight Review, Los Alamos National Laboratory - September 2011 September 2011 Review of the Facility Centered Assessment of the Los Alamos National ...

  8. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2012 Independent Oversight Review, Los Alamos National Laboratory - April 2012 April 2012 Review of the Consequence Assessment Program at the Los Alamos National Laboratory ...

  9. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2013 Independent Oversight Review, Los Alamos National Laboratory - November 2013 November 2013 Review of the Los Alamos National Laboratory Radiological Controls ...

  10. Los Angeles County Metropolitan Transportation Authority Metro...

    Open Energy Info (EERE)

    County Metropolitan Transportation Authority Metro Jump to: navigation, search Name: Los Angeles County Metropolitan Transportation Authority (Metro) Place: Los Angeles, California...

  11. Los Angeles | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Los Angeles Los Angeles NNSA to Participate in Aerial Radiation Training Exercise Long Beach, CA Areas The National Nuclear Security Administration (NNSA) Aerial Measuring...

  12. LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS STUDY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS STUDY OCTOBER 2014 LOS ALAMOS NATIONAL LABORATORY-COMMUNITY LEADERS STUDY OCTOBER 2014 PAGE 2 TABLE OF CONTENTS I. INTRODUCTION ..................................................................................................................................................................................................... 3 METHODOLOGY

  13. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent Oversight Review, Los Alamos National Laboratory - January 2012 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility ...

  14. Los Angeles Mayors Office | Open Energy Information

    Open Energy Info (EERE)

    Mayors Office Jump to: navigation, search Name: Los Angeles Mayors Office Place: Los Angeles, California Zip: 90012-3239 Product: String representation "The Clean Tech ... LEED...

  15. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this Issue (pdf) In 2012 NSS received an NNSA Defense Programs AWARD OF EXCELLENCE National Security Science Mail Stop A142 Los Alamos National Laboratory Los Alamos, NM...

  16. Diagnostics for Fast Ignition Science

    SciTech Connect (OSTI)

    MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

    2008-05-06

    The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

  17. Voluntary Protection Program Onsite Review, Los Alamos National...

    Office of Environmental Management (EM)

    Security, Llc Los Alamos National Laboratory, Los Alamos, New Mexico - April 2014 Voluntary Protection Program Onsite Review, Los Alamos National Security, Llc Los Alamos National...

  18. Los Alamos National Security awards protective force contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective force contract awarded to SOC Los Alamos Los Alamos National Security awards protective force contract for Los Alamos National Laboratory to SOC Los Alamos The contract...

  19. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  20. Alternator control for battery charging

    DOE Patents [OSTI]

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  1. Sample Employee Survey for Workplace Charging Planning

    Broader source: Energy.gov [DOE]

    Survey to determine employee interest in the benefits of employer installed charging infrastructure for their PEVs.

  2. Workplace Charging Challenge Partner: Northwest Evaluation Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NWEA) | Department of Energy Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Workplace Charging Challenge Partner: Northwest Evaluation Association (NWEA) Joined the Challenge: July 2015 Headquarters: Portland, OR Charging Location: Portland, OR Domestic Employees: 400 Northwest Evaluation Association (NWEA) encourages and supports many forms of public and personal sustainable transportation modes. Workplace charging is

  3. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut Joined the Challenge: February 2015 Headquarters: Storrs, CT Charging Location: Storrs, CT Domestic Employees: 4,816 The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits

  4. Workplace Charging Challenge: Ambassadors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge: Ambassadors Workplace Charging Challenge: Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as ambassadors to promote and support workplace charging. Ambassadors, including Clean Cities coalitions across the country, are organizations that are knowledgeable about local incentives, best practices for workplace charging, and other aspects of plug-in electric vehicle (PEV) community readiness. Challenge partners can benefit from working with ambassadors in

  5. Cryogenic CMOS circuits for single charge digital readout.

    SciTech Connect (OSTI)

    Gurrieri, Thomas M.; Longoria, Erin Michelle; Eng, Kevin; Carroll, Malcolm S.; Hamlet, Jason R.; Young, Ralph Watson

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  6. Charge amplifier with bias compensation

    DOE Patents [OSTI]

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  7. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  8. Simulation of a cascaded longitudinal space charge amplifier for broadband radiation production using a superconducting linac

    SciTech Connect (OSTI)

    Halavanau, A.; Piot, P.

    2015-10-02

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab

  9. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. INL Efficiency and Security Testing of EVSE, DC Fast Chargers, and Wireless Charging Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Electrostatic wire stabilizing a charged particle beam

    DOE Patents [OSTI]

    Prono, D.S.; Caporaso, G.J.; Briggs, R.J.

    1983-03-21

    In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.

  13. Workplace Charging Challenge Partner: Shorepower Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Workplace Charging Challenge Partner: Shorepower Technologies Joined the Challenge: May 2014 Headquarters: Hillsboro, OR Charging Location: Hillsboro, OR Domestic Employees: 12 Shorepower Technologies began offering workplace charging in 2011 and currently has three plug-in electric vehicles (PEVs) charging on a regular basis. Offering this amenity to employees and customers fits with Shorepower

  14. Workplace Charging Challenge: Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partners Workplace Charging Challenge: Partners Use the interactive map and list below to learn more about employers who have joined the U.S. Department of Energy's Workplace Charging Challenge. These employers are providing workplace charging for their employees who drive plug-in electric vehicles. Partners receive assistance from DOE to help them establish and expand workplace charging while ambassador organizations work to promote and support partners' workplace charging efforts across the

  15. Fast-acting valve actuator

    DOE Patents [OSTI]

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  16. Leading the Charge: Jim Manion

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands.

  17. Stability of charged thin shells

    SciTech Connect (OSTI)

    Eiroa, Ernesto F.; Simeone, Claudio

    2011-05-15

    In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.

  18. Los Alamos National Laboratory marks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marks 20 years without full-scale nuclear testing September 26, 2012 LOS ALAMOS, New Mexico, Sept. 26, 2012-Two decades ago the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Laboratory at the Nevada Test Site. The test, code named "Divider," was detonated on Sept. 23, 1992 as the last of an eight-test series called "Julin." The test had an announced yield less than the equivalent of 20,000 tons of TNT. The purpose of the test, also

  19. Los Alamos National Laboratory, Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Labs, other major employers commit to STEM education in New Mexico November 20, 2014 Partnership aims to spark math, science inspiration in New Mexico students LOS ALAMOS, N.M., Nov. 20, 2014-Following up on a joint CEO proclamation on STEM education, Los Alamos National Laboratory, Sandia National Laboratories and several partners are hosting a discussion on "STEM Education in New Mexico" at 10 a.m. Saturday, Nov. 22 at Highland High School in Albuquerque. Laboratory Director

  20. Los Alamos Dynamics Summer School Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Dynamics Summer School » Los Alamos Dynamics Summer School-Overview Los Alamos Dynamics Summer School Projects Los Alamos Dynamics Summer School Projects and Resources Contact Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email Past Programs and Resources 2015 2014 STUDENT RESOURCES Precollege Undergrads Graduates Postdocs Housing Los Alamos National Laboratory Logo

  1. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  2. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  3. Los Alamos Needs Assessment | Department of Energy

    Energy Savers [EERE]

    Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials

  4. Los Alamos National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory | September 2006 Aerial View Los Alamos National Laboratory's (LANL) primary mission is to provide scientific and engineering support to national security programs. LANL performs R&D, design, maintenance, and testing in support of the nuclear weapons stockpile. LANL also performs theoretical and applied R&D in such areas as materials

  5. Los Angeles County, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, California Los Angeles County, California Los Angeles County, California In order to make opportunities for home energy upgrades clear and consistent for the 10 million people living in Los Angeles County, the Los Angeles County Office of Sustainability decided to promote a single, regional residential efficiency program. The State of California had previously developed the statewide Energy Upgrade California program, which Los Angeles and other counties agreed to support through grant

  6. AVTA: ChargePoint America Recovery Act Charging Infrastructure Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports describe results of data collected through the Chargepoint America project, which deployed 4,600 public and home charging stations throughout the U.S. This research was conducted by Idaho National Laboratory.

  7. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Chen; Damien, West; Meunier, Vincent; Zhang, Prof. Shengbai

    2016-01-01

    The success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent chargemore » oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  8. Workplace Charging: Safety and Management Policy For AC Level 1 Charging Receptacles

    Broader source: Energy.gov [DOE]

    Organizations offering plug-in electric vehicle (PEV) charging at AC Level 1 charging receptacles, or wall outlets, can ensure a safe and successful workplace charging experience by considering the...

  9. AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Siemens-VersiCharge Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon Siemens-VersiCharge AC Level 2 - November

  10. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Mixed-Phase Cloud Microphysics for Global Climate Models First Quarter 2007 ARM Metric Report January 2007 Xiaohong Liu and Steven J. Ghan Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research X. Liu and S.J. Ghan, DOE/SC-ARM-0701 iii Summary Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The partitioning of condensed water into liquid

  11. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characters Characters Meet the characters of the game! Meet the characters of the game! Dr Raoul Fernandez's profile Helena Edison's profile Jerome Zabel's profile Nancy Sanders' profile Roc Bridges' profile

    ARM-0501 Marine Stratus Radiation, Aerosol, and Drizzle (MASRAD) Science Plan June 2005 M.A. Miller Brookhaven National Laboratory Earth System Science Division Upton, New York A. Bucholtz Naval Research Laboratory Monterey, California B. Albrecht and P. Kollias Rosenstiel School of

  12. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 DOE Review of the Atmospheric Radiation Measurement (ARM) Climate Research Facility February 3-4, 2005 American Geophysical Union, Washington, D.C. June 2005 W.R. Ferrell Climate Change Research Division Pacific Northwest National Laboratory Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DOE/SC-ARM-0502 CONTENTS 1. INTRODUCTION

  13. Charge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    001 The Atmospheric Radiation Measurement Program Infrastructure Review Report (AIR): ... DOESC-ARM-0001 The Atmospheric Radiation Measurement Program Infrastructure ...

  14. AVTA: ChargePoint AC Level 2 Charging System Testing Results | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy ChargePoint AC Level 2 charging system for plug-in electric vehicles. This research was conducted by Idaho National Laboratory. PDF icon ChargePoint AC Level 2 - February 2012 More Documents & Publications AVTA: EVSE Charging Protocol for On and Off-Peak Demand AVTA: 2012 Chevrolet Volt PHEV Downloadable Dynamometer Database Reports AVTA: ChargePoint America Recovery Act project map of charging units

  15. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, Jr., Leonard C.

    1996-01-01

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved.

  16. Free form hemispherical shaped charge

    DOE Patents [OSTI]

    Haselman, L.C. Jr.

    1996-06-04

    A hemispherical shaped charge has been modified such that one side of the hemisphere is spherical and the other is aspherical allowing a wall thickness variation in the liner. A further modification is to use an elongated hemispherical shape. The liner has a thick wall at its pole and a thin wall at the equator with a continually decreasing wall thickness from the pole to the equator. The ratio of the wall thickness from the pole to the equator varies depending on liner material and HE shape. Hemispherical shaped charges have previously been limited to spherical shapes with no variations in wall thicknesses. By redesign of the basic liner thicknesses, the jet properties of coherence, stability, and mass distribution have been significantly improved. 8 figs.

  17. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  18. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  19. Fast breeder reactor protection system

    DOE Patents [OSTI]

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  20. On fast reactor kinetics studies

    SciTech Connect (OSTI)

    Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.

    2012-07-01

    The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

  1. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  2. Change LOS ALAMOS, N.M., May 19, 2015-Researchers at Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tree mortality accelerating in forests May 19, 2015 Los Alamos' paper published in Nature Climate Change LOS ALAMOS, N.M., May 19, 2015-Researchers at Los Alamos National...

  3. Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LopezPersonalProfile.pdf LopezPersonalProfile.pdf PDF icon LopezPersonalProfile.pdf More Documents & Publications Wattman_bio.pdf FAQS Reference Guide - Aviation Manager FAQS Reference Guide - Aviation Safety Officer Connect

    Lorenz: Using the Web to Make HPC Easier Citation Details In-Document Search Title: Lorenz: Using the Web to Make HPC Easier Authors: Long, J W Publication Date: 2013-07-18 OSTI Identifier: 1090027 Report Number(s): LLNL-TR-642019 DOE Contract Number:

  4. LOS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Denver Basin Outline The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by Section 604 of the Energy Policy and Conservation Act Amendments of 2000 (P.L. 106-469). The boundaries are not informed by subsurface

  5. Frontiers in Advanced Storage Technologies (FAST) project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the product for use in HPC environments. The FAST project involves establishing long-term development collaboration agreements to develop the following opportunities: File...

  6. Method for controlled hydrogen charging of metals

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Adamson, Ronald B. (Fremont, CA)

    1984-05-29

    A method for controlling hydrogen charging of hydride forming metals through a window of a superimposed layer of a non-hydriding metal overlying the portion of the hydride forming metals to be charged.

  7. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  8. Los Alamos National Security LLC Selected to Manage Los Alamos National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Security LLC Selected to Manage Los Alamos National Laboratory Los Alamos National Security LLC Selected to Manage Los Alamos National Laboratory December 21, 2005 - 4:51pm Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that Los Alamos National Security LLC has been selected to be the management and operations contractor for Los Alamos National Laboratory in New Mexico. Los Alamos National Security LLC is a limited liability

  9. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOE Patents [OSTI]

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  10. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOE Patents [OSTI]

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  11. Workplace Charging Challenge Partner: Louisiana State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Joined the Challenge: October 2015 Headquarters: Baton Rouge, LA Charging Location: Baton Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy

  12. Workplace Charging Challenge Partner: Southern California Edison |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy California Edison Workplace Charging Challenge Partner: Southern California Edison Workplace Charging Challenge Partner: Southern California Edison Joined the Challenge: February 2013 Headquarters: Rosemead, CA Charging Location: Rosemead, CA Domestic Employees: 13,000 Southern California Edison (SCE) installed 49 Level 2 Electric Vehicle Service Equipment (EVSEs) at various locations between 2010-2012 for both employee and fleet charging. In early 2013, SCE began a

  13. Workplace Charging Challenge Partner: WESCO International, Inc. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Workplace Charging Challenge Partner: WESCO International, Inc. Joined the Challenge: April 2013 Headquarters: Pittsburgh, PA Charging Locations: Pittsburgh, PA; Phoenix, AZ Domestic Employees: 7,000 As a leading distributor of electrical products, WESCO provides plug-in electric vehicle (PEV) charging stations to its customers and employees. WESCO is committed to supporting

  14. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  15. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  16. LOS ALAMOS, New Mexico, March 5, 2012-Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    imaging technology, world's fastest camera March 5, 2012 LOS ALAMOS, New Mexico, March 5, 2012-Los Alamos National Laboratory research and development engineer Scott Watson talks...

  17. Los Alamos, New Mexico, January 8, 2010-Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos achievements from supercomputing to biofuels Los Alamos, New Mexico, January 8, ... look out to the far edges of the solar wind bubble that separates our solar ...

  18. LOS ALAMOS, New Mexico, July 11, 2011- Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    erosion control work July 11, 2011 Waste removed from canyon bottom LOS ALAMOS, New Mexico, July 11, 2011- Los Alamos National Laboratory work crews over the weekend installed...

  19. LOS ALAMOS, New Mexico, March 16, 2011-Employees of Los Alamos...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by March 31 for nontraditional student scholarship March 16, 2011 LOS ALAMOS, New Mexico, March 16, 2011-Employees of Los Alamos National Laboratory or students working at the...

  20. LOS ALAMOS, New Mexico, November 1, 2011-Two Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineers help New Mexico small businesses November 1, 2011 Program provides technical expertise LOS ALAMOS, New Mexico, November 1, 2011-Two Los Alamos National Laboratory...

  1. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Joined the Challenge: June 2014 Headquarters: Argonne, IL Charging Location: Argonne, IL Domestic Employees: 3,400 Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and

  2. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Institutes The National Security Education Center has formed several institutes, each with a partner university or consortia of universities. The formation of these institutes serves the need for LANL to recruit new staff and provide educational opportunities that will enhance retention at the Laboratory. This is accomplished by:  Developing long-term collaborative relationships with universities whose research interests are important to the Laboratory. 

  3. Los Alamos Critical Assemblies Facility

    SciTech Connect (OSTI)

    Malenfant, R.E.

    1981-06-01

    The Critical Assemblies Facility of the Los Alamos National Laboratory has been in existence for thirty-five years. In that period, many thousands of measurements have been made on assemblies of /sup 235/U, /sup 233/U, and /sup 239/Pu in various configurations, including the nitrate, sulfate, fluoride, carbide, and oxide chemical compositions and the solid, liquid, and gaseous states. The present complex of eleven operating machines is described, and typical applications are presented.

  4. LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY SEPTEMBER 2013 LOS ALAMOS NATIONAL LABORATORY-COMMUNITY LEADERS STUDY SEPTEMBER 2013 PAGE 2 RESEARCH & POLLING, INC. TABLE OF CONTENTS I. INTRODUCTION ....................................................................................................................................................................................................................................................... 3 METHODOLOGY

  5. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more.. Charlie McMillan, Director of Los Alamos National Laboratory 1:08 Charlie McMillan, Director of Los Alamos National Laboratory, describes how the Lab provides...

  6. Categorical Exclusion Determinations: Los Alamos Site Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B6.1 Date: 02182015 Location(s): New Mexico Offices(s): Los Alamos Site Office ... B1.19 Date: 02092015 Location(s): New Mexico Offices(s): Los Alamos Site Office ...

  7. High-Performance Computing at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Billion inserts-per-second data milestone reached for supercomputing tool LOS ALAMOS, N.M., May 29, 2014-At Los Alamos, a supercomputer epicenter where "big data set" really means ...

  8. Algal Biology Program at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biology Program at Los Alamos gets a star October 11, 2011 LOS ALAMOS, New Mexico, October 11, 2011-Richard Sayre, one of the nation's top specialists in algae and...

  9. Supercomputing Challenge top winners: Los Alamos schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge top winners: Los Alamos schools Supercomputing Challenge top winners: Los Alamos schools Cole Kendrick won the top prize for his research project, "Computer Simulation of Dark Matter Effects on Galaxy Rotation". April 26, 2011 Cole Kendrick Cole Kendrick Contact Steve Sandoval Communications Office (505) 665-9206 Email LOS ALAMOS, New Mexico, April 26, 2011-Los Alamos Middle School student Cole Kendrick won the top prize in the 21st New Mexico Supercomputing

  10. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  11. NNMCAB Board Minutes: March 2003 Los Alamos

    Broader source: Energy.gov [DOE]

    Minutes of the March 19, 2003 Board meeting at Los Alamos Site Operations Review of the NNMCAB Recommendation Process

  12. Researcher, Los Alamos National Laboratory - Applied Physics...

    National Nuclear Security Administration (NNSA)

    Applied Physics Division | National Nuclear Security Administration Facebook Twitter ... Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker ...

  13. High-Performance Computing at Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Computing at Los Alamos announces milestone for key/ value middleware May 26, 2014 Billion inserts-per-second data milestone reached for supercomputing tool LOS ALAMOS, N.M., May 29, 2014-At Los Alamos, a supercomputer epicenter where "big data set" really means something, a data middleware project has achieved a milestone for specialized information organization and storage. The Multi-dimensional Hashed Indexed Middleware (MDHIM) project at Los Alamos National Laboratory

  14. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  15. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  16. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

  17. Advanced Safeguards Approaches for New Fast Reactors

    SciTech Connect (OSTI)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  18. EV Everywhere Workplace Charging Challenge: Benefits of Joining

    Broader source: Energy.gov [DOE]

    Workplace charging plays a critical role in America's plug-in electric vehicle (PEV) charging infrastructure. Installing workplace charging is a sign of corporate leadership, showing a willingness...

  19. Leading the Charge: Christine Klein

    Broader source: Energy.gov [DOE]

    Change doesn’t happen on its own. It’s led by dedicated and passionate people who are committed to empowering Indian Country to energize future generations. Leading the Charge is a regular Office of Indian Energy newsletter feature spotlighting the movers and shakers in energy development on tribal lands. In this issue, we talk to Christine Klein, an adopted Haida who is leading efforts to help Alaska Native villages address their energy challenges in her role as Vice President and Chief Operating Officer of the Calista Corporation.

  20. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  1. Los Angeles Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Los Angeles Data Dashboard The data dashboard for Los Angeles, a partner in the Better Buildings Neighborhood Program. Office spreadsheet icon Los Angeles Data Dashboard More Documents & Publications Austin Energy Data Dashboard Massachusetts -- SEP Data Dashboard Phoenix, Arizona Data Dashboard

  2. AVTA: ARRA EV Project Charging Infrastructure Data Summary Reports

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from the 14,000 Level 2 PEV chargers and 300 DC fast chargers deployed by the EV Project. It also deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts. Background data on how this data was collected is in the EV Project: About the Reports. This research was conducted by Idaho National Laboratory.

  3. Surface-Plasmon Assisted Exciton and Charge Carrier Transport in One

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dimensional Nanostructures | MIT-Harvard Center for Excitonics Surface-Plasmon Assisted Exciton and Charge Carrier Transport in One Dimensional Nanostructures February 21, 2013 at 3pm/36-428 Andrei Piryatinski Physics of Condensed Matter and Complex Systems Group, Los Alamos National Laboratory Piryatinski-photo_000 Abstract: The ability to precisely control optical and transport properties of nanostructured materials opens up possibility of their use as functional materials in a broad range

  4. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Operations Acquisition and Project Management M & O Support Department Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory ...

  5. SPIDER: A Predictive Theory For Fission White, Morgan C. [Los...

    Office of Scientific and Technical Information (OSTI)

    John P. Los Alamos National Laboratory; Moller, Peter Los Alamos National Laboratory Nuclear Physics & Radiation Physics(73) Abstract Not Provided Los Alamos National...

  6. Los Angeles, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in Los Angeles, California Los Angeles Department of Water and Power Smart Grid Demonstration Project Registered Research Institutions in Los...

  7. Voluntary Protection Program Onsite Review, Los Alamos Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Los Alamos Operations - November 2011 Voluntary Protection Program Onsite Review, Los Alamos Operations - November 2011 November 2011 Evaluation to determine whether Los Alamos ...

  8. The Big Thaw: 1663 Science and Technology Magazine | Los National Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory THE BIG THAW Frozen soil is thawing all over the arctic, with consequences that are potentially destructive and difficult to predict. But predictability is key to any plan of action, and Los Alamos is taking up that charge. There are few places left on Earth where human footprints are not evident. Whether such footprints take the form of clustering skyscrapers, power lines across the desert, or congested highways, few places remain untouched by modern civilization. The Arctic is

  9. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    moves fast Cloud computing * Many stakeholdersplayers that must come together * Millenials don't give a &@ about vehicles * Government incentives regulations laws *...

  10. Fast Physics Testbed for the FASTER Project

    SciTech Connect (OSTI)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  11. Workplace Charging Challenge Partner: Washington Area New Automobile...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: Washington Area New Automobile Dealers Association Workplace Charging Challenge Partner: ...

  12. Workplace Charging Challenge Partner: Capital One Financial Corporatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation Workplace Charging Challenge Partner: Capital One Financial Corporation ...

  13. AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports AVTA: EVSE Testing - NYSERDA Electric Vehicle Charging Infrastructure Reports The Vehicle Technologies Office's ...

  14. Vehicle Technologies Office: Workplace Charging Challenge Progress Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 - Employers Take Charge | Department of Energy Workplace Charging Challenge Progress Update 2014 - Employers Take Charge Vehicle Technologies Office: Workplace Charging Challenge Progress Update 2014 - Employers Take Charge In the 2014 Workplace Charging Challenge annual survey, partners shared for the first time how their efforts were making an impact in their communities and helped identify best practices for workplace charging. The Workplace Charging Challenge Progress Update

  15. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  16. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  17. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  18. Circular, confined distribution for charged particle beams

    DOE Patents [OSTI]

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  19. Non-intrusive refrigerant charge indicator

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  20. SNL Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration SNL Los Alamos National Laboratory

  1. Los Alamos Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Los Alamos Field Office FY15 Year End Report

  2. FAST v8 Offers New Modeling and Analysis Features

    Broader source: Energy.gov [DOE]

    Researchers at NREL recently released version 8.15 of FAST (FAST v8), an open-source, multiphysics engineering software tool used to design and analyze wind turbines. FAST v8 is also an open-source...

  3. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of

  4. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Mapping Particle Charges in Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how

  5. Particle accelerator employing transient space charge potentials

    DOE Patents [OSTI]

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  6. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Joined the Challenge: July 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 6,985 Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's

  7. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University Joined the Challenge: August 2015 Headquarters: Cheney, WA Charging Locations: N/A Domestic Employees: 1,989 In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing

  8. Workplace Charging Challenge Partner: Heartland Community College |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Workplace Charging Challenge Partner: Heartland Community College Joined the Challenge: June 2014 Headquarters: Normal, IL Charging Location: Normal, IL Domestic Employees: 872 Heartland Community College values ethical decision-making and responsible use of environmental, financial, and community resources to promote a sustainable future. The college installed two Level 2

  9. Workplace Charging Challenge Partner: Portland General Electric |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Workplace Charging Challenge Partner: Portland General Electric Joined the Challenge: October 2013 Headquarters: Portland, OR Charging Locations: Portland, OR; Gresham, OR; Beaverton, OR; Salem, OR; Tualatin, OR; Wilsonville, OR; Woodburn, OR; Oregon City, OR; Clackamas, OR Domestic Employees: 2,596 Since the late 1990s, Portland General Electric (PGE) has offered plug-in electric

  10. DOE Research and Development Accomplishments Transcript - Fast...

    Office of Scientific and Technical Information (OSTI)

    Fast Facts what has the DOE accomplished? decoded 3 of the chromosomes in your DNA developed battery that powered many spacecraft, including the lunar lander built a pre-Pong video ...

  11. FastBit: Interactively Searching Massive Data

    SciTech Connect (OSTI)

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  12. Consumer Acceptance and Public Policy Charging Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    to enable widespread residentialMDU and workplace charging infrastructure * Include use case data collected to date and collect data not available * Work with DOT and planning...

  13. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear ...

  14. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  15. 10Charge Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Dallas, Texas Zip: 75001 Product: Developer of patented technology for faster battery charging time which also extends battery lifetime. Coordinates: 32.778155,...

  16. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive ... Strategies for developing spintronic semiconductors have been based on surface doping or ...

  17. Workplace Charging Toolkit: Workshop Speaker Instruction Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging Toolkit: Workshop Speaker Instruction Letter Template Inform speakers participating in the employer experience panel about their role in the event. File General ...

  18. Workplace Charging Toolkit: Workshop Speaker Outreach Letter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Invite employers in your community that already have charging to speak on an employer experience panel. File General Speaker Outreach Letter Template File Clean Cities Branded ...

  19. Workplace Charging Challenge Partner: American Lung Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Denver Clean Cities Website American Lung Association's Initiatives Workplace Charging News Announcement on Facebook from Oct 28: Last night, our Executive Director, Curt Huber, ...

  20. First charge breeding results at CARIBU EBIS

    SciTech Connect (OSTI)

    Kondrashev, S. Barcikowski, A. Dickerson, C. Ostroumov, P. N. Sharamentov, S. Vondrasek, R.; Pikin, A.

    2015-01-09

    The Electron Beam Ion Source (EBIS) developed to breed CARIBU radioactive beams at ATLAS is currently in the off-line commissioning stage. The beam commissioning is being performed using a low emittance surface ionization source producing singly-charged cesium ions. The primary goal of the off-line commissioning is the demonstration of high-efficiency charge breeding in the pulsed injection mode. An overview of the final design of the CARIBU EBIS charge breeder, the off-line commissioning installation and the first results on charge breeding of stable cesium ions are presented and discussed.

  1. An optimization framework for workplace charging strategies ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addressing different eligible levels of charging technology and employees' demographic distributions. The optimization model is to minimize the lifetime cost of...

  2. Workplace Charging Management Policies Webinar | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn about effective workplace charging policies and procedures in the areas of administration, registration and liability, pricing and sharing. Read the text version. PDF icon ...

  3. Interested in joining the Workplace Charging Challenge?

    Broader source: Energy.gov [DOE]

    Thinking of joining the Workplace Charging Challenge? Tell us a little more about your organization, industry, and sustainability goals. After receiving your inquiry, one of our account managers...

  4. Workplace Charging Management Policies: Registration & Liability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizations offering plug-in electric vehicle (PEV) charging at work can benefit from setting clear guidelines in the areas of administration, registration and liability, ...

  5. Workplace Charging Management Policies: Administration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at work can benefit from setting clear guidelines in the areas of administration, ... Sample Workplace Charging Policy - Review the policy guidelines used by one Workplace ...

  6. ADA Requirements for Workplace Charging Installation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    individuals with disabilities. This Guidance provides best practices, special design guidelines and requirements for installing plug-in electric vehicle charging stations in ...

  7. Workplace Charging Toolkit: Workshop Best Practices

    Broader source: Energy.gov [DOE]

    These best practices for planning, organizing, and executing a successful and educational workplace charging event have been developed based on lessons learned from more than 20 employer workplace...

  8. Workplace Charging: Comparison of Sustainable Commuting Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI ...

  9. Smart Charge Adaptor | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart EV-charging infrastructure with applications world-wide across residential, workplace, and public locations. The SCA is EV and EVSE agnostic, so customers are not limited...

  10. Workplace Charging Toolkit: Workshop Agenda Template

    Broader source: Energy.gov [DOE]

    Develop a streamlined workshop with this half-day agenda focused on introductory-level PEV education and firsthand employer workplace charging experience.

  11. EV Everywhere ? Consumer Acceptance and Charging Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Consumer Acceptance and Charging Infrastructure Workshop David Sandalow Under Secretary of Energy (Acting) Assistant Secretary for Policy and International Affairs U.S....

  12. Permit for Charging Equipment Installation: Electric Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Where electric vehicle nonvented storage batteries are used or where the electric vehicle supply equipment is listed or labeled as suitable for charging electric vehicles indoors ...

  13. Workplace Charging Toolkit: Workshop Outreach Presentation Template

    Broader source: Energy.gov [DOE]

    Educate workshop attendees and employers about the benefits of workplace charging and the Challenge by selecting slides from this sample presentation.

  14. Workplace Charging Management Policies: Sharing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... if users are experiencing issues with equipment or co-workers' behavior. RESOURCES Workplace Charging Management Webinar - Hear three employers discuss the policies that they ...

  15. Enforcement Letter, Los Alamos National Laboratory- October 9, 2001

    Broader source: Energy.gov [DOE]

    Issued to Los Alamos National Laboratory related to Quality Assurance Provisions at the Los Alamos Critical Experiments Facility

  16. Universal Fast Breeder Reactor Subassembly Counter manual

    SciTech Connect (OSTI)

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  17. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu.

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  18. Fast flow phenomena in a toroidal plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amino acid sequence (Patent) | DOEPatents Fast computational methods for predicting protein structure from primary amino acid sequence Title: Fast computational methods for predicting protein structure from primary amino acid sequence The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible

  19. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, ...

  20. Continuous Evaluation of Fast Processes in Climate Models Using...

    Office of Scientific and Technical Information (OSTI)

    of Fast Processes in Climate Models Using Arm Measurements Citation Details In-Document Search Title: Continuous Evaluation of Fast Processes in Climate Models Using Arm ...

  1. The differential algebra based multiple level fast multipole...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The differential algebra based multiple level fast multipole algorithm ... Title: The differential algebra based multiple level fast multipole algorithm for 3D space ...

  2. Energy Management Strategies for Fast Battery Temperature Rise...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature Rise and ...

  3. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) You are ...

  4. Higher energy fast range nuclear data evaluation advances (u...

    Office of Scientific and Technical Information (OSTI)

    Higher energy fast range nuclear data evaluation advances (u) Citation Details In-Document Search Title: Higher energy fast range nuclear data evaluation advances (u) Authors: ...

  5. Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Chain Sustainability Analysis of Fast Pyrolysis and Hydrotreating Bio-Oil to Produce Hydrocarbon Fuels Title Supply Chain Sustainability Analysis of Fast Pyrolysis and...

  6. Forest fire near Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory Forest fire near Los Alamos National Laboratory The Las Conchas fire burning in the Jemez Mountains approximately 12 miles southwest of the boundary of LANL has not entered Lab property at this time. June 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  7. A different Big Bang theory: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    different Big Bang theory: Los Alamos unveils explosives detection expertise February 11, 2015 Collaboration project defeats explosives threats through enhanced detection technologies LOS ALAMOS, N.M., Feb. 11, 2015-Having long kept details of its explosives capabilities under wraps, a team of Los Alamos National Laboratory scientists is now rolling out a collaborative project to defeat explosives threats through enhanced detection technologies. "We're aiming to create a collaboration of

  8. Reliability Technology earns prestigious Los Alamos Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Technology earns prestigious Los Alamos Award Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Reliability Technology earns prestigious Los Alamos Award Technology transferred to Procter & Gamble basis for first-ever Feynman Prize September 1, 2013 Feynman Prize winners Michael Hamada, center, and Harry Martz, second from left, hold their Feynman Prizes during a recent awards

  9. Los Alamos plants willows for flood recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants willows Los Alamos plants willows for flood recovery The Laboratory's Corrective Actions Program (CAP) planted nearly 10,000 willows to help preserve the Pueblo Canyon wetland after damage from September 2013 floods. June 18, 2014 In a flood recovery effort designed to stop further erosion in Pueblo Canyon, in April, Los Alamos planted nearly 10,000 willows along the stream banks surrounding the wetland. In a flood recovery effort designed to stop further erosion in Pueblo Canyon, Los

  10. Los Alamos scientists monitor Santa's magical journey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists monitor Santa's magical journey Los Alamos scientists monitor Santa's magical journey Los Alamos trackers will use state-of-the-art technology to mark the course taken by St. Nick and his eight tiny and highly efficient reindeer. December 21, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  11. Seven Los Alamos scientists earn AAAS honors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seven Los Alamos scientists earn AAAS honors Seven Los Alamos scientists earn AAAS honors The Fellows are Richard Sayre, John Gordon, Jeanne Robinson, Jaqueline Kiplinger, Bryon Goldstein, Alexander Balatsky and Quanxi Jia. December 15, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  12. Los Alamos imager aboard IBEX space mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imager aboard IBEX space mission Los Alamos imager aboard IBEX space mission This is the first in a new series of talks that will focus on the emerging scientific field of quantitative biology. October 17, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  13. SUMMARY Los Alamos National Laboratory Collaboration for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE/NNSA // LA-UR-14-29443 // Pg. 1 SUMMARY Los Alamos National Laboratory Collaboration for Explosives Detection (LACED) is a virtual gateway to world-class expertise and capabilities that counter all aspects of explosive threats, predominantly through enhanced detection capabilities. Los Alamos National Laboratory (Los Alamos) has been a driving force in explosives science since its inception in 1943. The efforts to build the first nuclear weapons created exquisite requirements for high

  14. The Explosives Center at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LACED » Expertise & Facilities » The Explosives Center at Los Alamos The Explosives Center at Los Alamos The Center's goals are to integrate and advance the Laboratory's explosives capabilities for the modern nuclear weapons mission and a range of national security challenges. Since its inception during the Manhattan project, Los Alamos National Laboratory has continuously been building expertise in explosives development, characterization, and testing. Laboratory scientists today harness

  15. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Los Alamos National Security, LLC Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Los Alamos Field Office Performance Period: October 2013 - September 2014 November 14, 2014 NA-LA November 14, 2014 Executive Summary This Performance Evaluation Report (PER) provides the assessment of Los Alamos National Security, LLC performance for the period of October 1, 2013 through September 30, 2014, as evaluated against the objectives defined in the Fiscal

  16. Charge state evolution in the solar wind. III. Model comparison with observations

    SciTech Connect (OSTI)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B.

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  17. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    SciTech Connect (OSTI)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trend can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.

  18. The Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Yadong; Qiao, Rui; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry; Huang, Jingsong; Sumpter, Bobby G.

    2015-12-07

    There is an emerging concern that using room-temperature ionic liquids (RTILs) together with microporous electrodes may compromise supercapacitors power density in spite of their benefit for enhancing energy density due to possibly slow transport of ions inside narrow pores. Based on molecular simulations of the diffusion of EMIM+ and TFSI ions in slit-shaped micropores (width < 2 nm,) under conditions similar to those during pore charging, we show that, in pores that accommodate only a single layer of ions, the ions diffuse increasingly faster as the pore becomes charged, even faster than Na^+ ions in bulk water. However, this trendmore » can be reversed when the pore becomes highly charged. In pores wide enough to fit more than one layer of ions, the ion diffusion is typically slower than in the bulk, and only changes modestly as the pore becomes charged. Analysis of these results revealed that the fast (or slow) diffusion of ions inside a micropore is correlated most strongly with the dense (or loose) ion packing inside the pore during charging. The molecular details of ions and the precise width of pores modify these trends relatively weakly, except when the pore size is so narrow that the conformation of ions is strongly constrained by the pore walls. Insight from these results should be useful for establishing guidelines for the design of RTILs and porous electrode materials for supercapacitors.« less

  19. Condition for production of circulating proton beam with intensity greater than space charge limit.

    SciTech Connect (OSTI)

    Vadim Dudnikov

    2002-11-19

    Transverse e-p instability in proton rings could be damped by increasing the beam density and the rate of secondary particles production above the threshold level, with the corresponding decrease of unstable wavelength {lambda} below the transverse beam size h (increase of beam density n{sub b} and ion density n{sub i} above the threshold level: n{sub b} + n{sub i} > {beta}{sup 2}/(r{sub e} h{sup 2}), where r{sub e} = e{sup 2}/mc{sup 2}). Such island of stability can be reached by a fast charge-exchange injection without painting and enhanced generation of secondary plasma, which was demonstrated in a small scale Proton Storage Ring (PSR) at the Institute of Nuclear Physics, Novosibirsk, Russia. With successful damping of e-p instability, the intensity of circulating proton beam, with a space charge neutralization was increased up to 6 times above a space charge limit. Corresponding tune shift without space charge neutralization should be up to {Delta}v=0.85 x 6 (in the ring with v = 0.85). In this paper, they review experimental observations of transverse instability of proton beams in various rings. they also discuss methods which can be used to damp the instability. Such experimental data could be useful for verification of computer simulation tools developed for the studies of the space charge and instabilities in realistic conditions.

  20. Los Alamos identifies internal material control issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive...