National Library of Energy BETA

Sample records for faso burundi cameroon

  1. African Development Bank | Open Energy Information

    Open Energy Info (EERE)

    field and country offices across the continent." Shareholders Regional Members Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad...

  2. National Action Programmes on Desertification | Open Energy Informatio...

    Open Energy Info (EERE)

    Faso, Burundi, Cameroon, Cape Verde, Chad, Democratic Republic of Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho,...

  3. Burundi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Burundi Population 8,053,574 GDP 3,037,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code BI 3-letter ISO code BDI Numeric ISO...

  4. Burkina Faso: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    World Factbook, Appendix D Reegle Clean Energy Datasets Burkina Faso is a country in Africa. External Links Burkina Faso Renewable Energy Data from IEA Burkina Faso Contacts...

  5. Burundi-National Adaptation Plan of Action to Climate Change...

    Open Energy Info (EERE)

    National Adaptation Plan of Action to Climate Change Jump to: navigation, search Name Burundi-National Adaptation Plan of Action to Climate Change AgencyCompany Organization...

  6. Burkina Faso Energy Access Project | Open Energy Information

    Open Energy Info (EERE)

    Burkina Faso Energy Access Project Jump to: navigation, search Name of project Burkina Faso Energy Access Project Location of project Burkina Faso Year initiated 2007 Organization...

  7. Burkina Faso: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Burkina Faso Population 14,017,262 GDP 13,000,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code BF 3-letter ISO code BFA Numeric ISO...

  8. Burkina Faso-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  9. Burkina Faso-IAEA Cooperation | Open Energy Information

    Open Energy Info (EERE)

    Agency Sector Energy Topics Background analysis Website http:www-tc.iaea.orgtcwebt Program Start 2009 Country Burkina Faso Western Africa References IAEA Project...

  10. Cameroon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Cameroon Population 17,463,836 GDP 30,000,000,000 Energy Consumption 0.10 Quadrillion Btu 2-letter ISO code CM 3-letter ISO code CMR Numeric ISO...

  11. Stump the Scientist Question Form | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Please Help Us Stump the Scientist Ask Your Question *Required fields Name* Email* School/Company* Twitter Handle Country* Select Afghanistan Albania Algeria American Samoa Andorra Angola Antigua and Barbuda Argentina Armenia Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad

  12. Cameroon-Forest Sector Development in a Difficult Political Economy...

    Open Energy Info (EERE)

    Bank Sector Land Focus Area Forestry Topics Implementation, Market analysis Resource Type Lessons learnedbest practices Website http:lnweb90.worldbank.orgo Country Cameroon UN...

  13. Microsoft Word - TOC Section I Conformed thru Mod 274.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nicaragua, or Singapore); (3) A least developed country (Afghanistan, Angola, Bangladesh, Benin, Bhutan, Burkina Faso, Burundi, Cambodia, Cape Verde, Central African...

  14. WorldWide Science.org

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australia Bangladesh Benin Botswana Brazil Burkina Faso Cameroon Canada Chile China Colombia Congo Cote d'lvoire Cuba Czech Republic Denmark Egypt Eritrea Estonia Ethiopia ...

  15. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect (OSTI)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  16. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    SciTech Connect (OSTI)

    Parrot, Laurent Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-02-15

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance.

  17. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  18. 105(scaled land 215%)7-22-05

    National Nuclear Security Administration (NNSA)

    Brazil Brunei Bulgaria Burkina Faso Cambodia Cameroon Canada Cntrl African Rep. Chad Chile China Colombia Dem. Rep. Congo Costa Rica Cote d'Ivoire Croatia Cyprus Czech Rep. Denmark ...

  19. CRC handbook of agricultural energy potential of developing countries. Volume I

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    The contents of this book are: Introduction, Argentina, Bangladesh, Benin, Bolivia, Botswana, Bourkina (Upper Volta), Brazil, Burma, Burundi, Cameroon, Chad, Chile, Columbia, Costa Rica, Djibouti, Dominican Republic, Ecuador, El Salvador, Ethiopia, French Guiana, Gambia, Ghana, Guatemala, Guinea, Guyana, Haiti, Honduras, India, Indonesia, Jamaica, Appendix I. Conventional and Energetic Yields, Appendix II, Phytomass Files, and References.

  20. Burundi-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  1. Burkina Faso-National Adaptation Plan Global Support Programme...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  2. Burkina Faso-Partnership for Action on Green Economy (PAGE) ...

    Open Energy Info (EERE)

    Want, which recognizes the green economy as a vehicle for sustainable development and poverty eradication. PAGE will support 30 countries over the next seven years in building...

  3. Burkina Faso-Reducing the GHG Impacts of Sustainable Intensification...

    Open Energy Info (EERE)

    can benefit poor farmers and to understand trade-offs among different dimensions of poverty and different groups of the poor (including between men and women). Special attention...

  4. Burkina Faso-Forest Investment Program (FIP) | Open Energy Information

    Open Energy Info (EERE)

    and poverty reduction opportunities. FIP investments also mainstream climate resilience considerations and contribute to multiple co-benefits such as biodiversity...

  5. Agricultural Progress in Cameroon, Mali and Ghana: Why it Happened...

    Open Energy Info (EERE)

    Development (IFAD). The purpose was to identify constraints to agricultural growth and poverty reduction that might be eased through better policy, both domestically and...

  6. Cameroon-Nationally Appropriate Mitigation Actions (NAMAs) in...

    Open Energy Info (EERE)

    Appropriate Mitigation Actions (NAMAs) in the Congo Basin AgencyCompany Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector...

  7. Property:EnergyAccessYearInitiated | Open Energy Information

    Open Energy Info (EERE)

    + Burkina Faso Energy Access Project + 2007 + E Ethiopia Energy Access Project + 2005 + G Ghana Energy Development and Access Project (GEDAP) + 2007 + M Mongolia Renewable Energy...

  8. Status of U.S. Nuclear Outages - U.S. Energy Information Administratio...

    Gasoline and Diesel Fuel Update (EIA)

    Bahamas, The Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma (Myanmar) ...

  9. International - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Bahamas, The Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma (Myanmar) ...

  10. Eia.gov BETA - U.S. Energy Information Administration (EIA) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bahamas, The Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Bulgaria Burkina Faso Burma (Myanmar) ...

  11. Mali-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  12. Namibia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  13. UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  14. Indonesia-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  15. Ghana-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  16. Senegal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  17. South Korea-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  18. Rwanda-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  19. Egypt-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  20. Morocco-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  1. Barbados-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  2. Peru-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  3. Armenia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  4. Serbia-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  5. Philippines-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  6. Kenya-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  7. Moldova-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  8. Mexico-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  9. Russian-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  10. Mongolia-UNEP Green Economy Advisory Services | Open Energy Informatio...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  11. Jordan-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  12. Nepal-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  13. Ukraine-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  14. Montenegro-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    the Middle East, including the following: Armenia, Azerbaijan, Barbados, Burkina Faso, China, Egypt, Ghana, Indonesia, Jordan, Kenya, Korea, Mali, Mexico, Moldova, Mongolia,...

  15. African Biofuel & Renewable Energy Fund (ABREF) | Open Energy...

    Open Energy Info (EERE)

    Energy Compnay (ABREC) Sector Energy Focus Area Renewable Energy, Biomass, - Biofuels Website http:www.bidc-ebid.comenfo Country Benin, Burkina Faso, Cape Verde, Ivory...

  16. WWS_LorrieC157L_0915

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cameroon Canada Chile China Colombia Congo Cote d'lvoire Cuba Czech Republic Denmark Egypt Eritrea Estonia Ethiopia Finland France Germany Ghana Greece Honduras India Indonesia...

  17. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Colombia Comoros Congo (Brazzaville) Congo (Kinshasa) Cook Islands Costa Rica Cote...

  18. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Algerian Condensate Angolan Cabinda Canadian Lloydminster Cameroon Kole Marine Ecuadorian Oriente Mexican Isthmus Mexican Mayan 1978 Average ... W 14.07 - W 13.85 13.54 -...

  19. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    Algerian Condensate Angolan Cabinda Canadian Lloydminster Cameroon Kole Marine Ecuadorian Oriente Mexican Isthmus Mexican Mayan 1978 Average ... W 13.32 - W 12.87 13.24 -...

  20. USAID West Africa Climate Program | Open Energy Information

    Open Energy Info (EERE)

    Guinea, Guinea-Bissau, Cameroon, Gabon, Equatorial Guinea, Chad, Sao Tome and Principe, Cape Verde Western Africa, Western Africa, Western Africa, Western Africa, Western...

  1. Category:Economic Community of West African States | Open Energy...

    Open Energy Info (EERE)

    15 pages are in this category, out of 15 total. B Benin Burkina Faso C Cape Verde G Gambia Ghana G cont. Guinea Guinea-Bissau I Ivory Coast L Liberia M Mali N Niger Nigeria...

  2. Platinum-group element abundance patterns in different mantle environments

    SciTech Connect (OSTI)

    Rehkaemper, M.; Halliday, A.N.; Barfod, D.; Fitton, J.G.; Dawson, J.B.

    1997-11-28

    Mantle-derived xenoliths from the Cameroon Line and northern Tanzania display differences in their platinum-group element (PGE) abundance patterns. The Cameroon Line lherzolites have uniform PGE patterns indicating a homogeneous upper mantle over several hundreds of kilometers, with approximately chondritic PGE ratios. The PGE patterns of the Tanzanian peridotites are similar to the PGE systematics of ultramafic rocks from ophiolites. The differences can be explained if the northern Tanzanian lithosphere developed in a fluid-rich suprasubduction zone environment, whereas the Cameroon Line lithosphere only experienced melt extraction from anhydrous periodotites. 32 refs., 2 figs., 1 tab.

  3. Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

  4. Turmoil doesn`t dampen enthusiasm

    SciTech Connect (OSTI)

    1997-08-01

    The paper discusses the outlook for the African gas and oil industries. Though Africa remains politically and economically volatile, its vast energy potential is becoming increasingly attractive to foreign oil and gas companies. Separate evaluations are given for Algeria, Egypt, Nigeria, Angola, Libya, Congo, Gabon, Tunisia, Cameroon, Cote D`Ivoire, and briefly for South Africa, Sudan, Equatorial Guinea, Ghana, Zaire, Benin, Mozambique, Chad, Namibia, Tanzania, Eritrea, Guinea-Bissau, Senegal, Morocco, Sao Tome and Principe, Ethiopia, Niger, Madagascar, Rwanda, Mauritania, Seychelles, Uganda, and Liberia.

  5. Enhancing the effectiveness of governmental and non-governmental partnership in natural resources management

    SciTech Connect (OSTI)

    McKay, K.L.; Gow, D.; Brown, C.; Christophersen, K.; Gaylord, E.

    1990-08-01

    The African sub-continent (Sub-Saharan Africa) is a vast continent of mangroves and deserts, rainforests, mountains and, miles upon thousands of miles of flat wooded plains. It is a continent whose people rely directly on its basic natural resources--land, water, soils, animals and vegetation--for their day-to-day subsistence and development. The effects of environmental degradation have taught bilateral and multilateral agencies, non-governmental organizations (NGOs), and national governments harsh lessons about the critical importance of natural resources management to food security and development. The report examines the role of NGO's as resource stewards and explores the relationship between NGO's and donors in the environmental field, with particular reference to experiences from the Natural Resources Management Support Project for Africa and from the literature. Practical guidelines for enhancing the effectiveness of donor- collaboration are suggested. Annexes present case studies of Cameroon, Madagascar, and Mali.

  6. Marginal cost of natural gas in developing countries: concepts and applications

    SciTech Connect (OSTI)

    Mashayekhi, A.

    1983-01-01

    Many developing nations are facing complex questions regarding the best strategy for developing their domestic gas reserves. The World Bank has addressed these questions in studies on the cost and prices of gas and its optimal allocation among different markets. Based on the average incremental method, an estimate of the marginal cost of natural gas in 10 developing countries proved to be $0.61-1.79/1000 CF or $3.59-10.54/bbl of oil equivalent, far below the border prices of competing fuels in these nations. Moreover, the cost of gas is not expected to rise in these countries within the next 20 years while the reserves/production ratios remain high. The sample involves a variety of gas compositions and production conditions among the countries of Bangladesh, Cameroon, Egypt, India, Morocco, Nigeria, Pakistan, Tanzania, Thailand, and Tunisia.

  7. Central and southern Africa

    SciTech Connect (OSTI)

    McGrew, H.J.

    1981-10-01

    Exploration in central and southern Africa continued to expand during 1980. The greatest concentration of activity was in Nigeria. However, there was considerable increase in the level of exploratory work in Cameroon and Congo. Significant new finds have been made in Ivory Coast. Geological and geophysical activity was carried out in 18 of the countries, with those in the western part having the largest share. Seismic work involved 225 party months of operation. Most of this time was spent on land, but marine operations accounted for 73,389 km of new control. Gravity and magnetic data were recorded during the marine surveys, and several large aeromagnetic projects were undertaken to obtain a total of 164,498 line km of data. Exploratory and development drilling accounted for a total of 304 wells and 2,605,044 ft (794,212 m) of hole. The 92 exploratory wells that were drilled resulted in 47 oil and gas discoveries. In development drilling 89% of the 212 wells were successful. At the end of the year, 27 exploratory wells were underway, and 34 development wells were being drilled for a total of 61. Oil production from the countries that this review covers was 918,747,009 bbl in 1980, a drop of about 9% from the previous year. Countries showing a decline in production were Nigeria, Gabon, Cabinda, and Zaire. Increases were recorded in Cameroon, Congo, and Ghana. A new country was added to the list of producers when production from the Belier field in Ivory Coast came on stream. 33 figures, 15 tables.

  8. Oil and gas developments in central and southern Africa in 1987

    SciTech Connect (OSTI)

    Hartman, J.B.; Walker, T.L.

    1988-10-01

    Significant rightholding changes took place in central and southern Africa during 1987. Angola, Benin, Congo, Gabon, Ghana, Guinea, Guinea Bissau, Mauritania, Seychelles, Somali Republic, Tanzania, Zaire, and Zambia announced awards or acreage open for bidding. Decreases in exploratory rightholdings occurred in Cameroon, Congo, Cote d'Ivoire, Equatorial Guinea, Gabon, Kenya, Namibia, South Africa, and Tanzania. More wells and greater footage were drilled in 1987 than in 1986. Total wells increased by 18% as 254 wells were completed compared to 217 in 1986. Footage drilled during the year increased by 46% as about 1.9 million ft were drilled compared to about 1.3 million ft in 1986. The success rate for exploration wells in 1987 improved slightly to 36% compared to 34% in 1986. Significant discoveries were made in Nigeria, Angola, Congo, and Gabon. Seismic acquisition in 1987 was the major geophysical activity during the year. Total oil production in 1987 was 773 million bbl (about 2.1 million b/d), a decrease of 7%. The decrease is mostly due to a 14% drop in Nigerian production, which comprises 60% of total regional production. The production share of OPEC countries (Nigeria and Gabon) versus non-OPEC countries of 67% remained unchanged from 1986. 24 figs., 5 tabs.

  9. Oil and gas developments in central and southern Africa in 1983

    SciTech Connect (OSTI)

    McGrew, H.J.

    1984-10-01

    All exploratory activity in central and southern Africa decreased in 1983, reflecting world economic conditions and excess productive capacity. Seismic activity has declined sharply from its peak year of 1981. Land operations suffered the greatest drop in 1983, whereas party-months of marine work increased slightly. 3-D recording continued to be used but at a reduced rate compared with 1982. Large aeromagnetic surveys were made in several countries; however, the coverage was less than in 1982. Gravity continues to be used to supplement other geophysical work, but other exploratory techniques are being used infrequently. Total wells drilled dropped from 464 in 1982 to 387 in 1983. Most of the decline was in exploratory drilling, which dropped from 132 to 86 wells. This was reflected in the number of discoveries, which decreased from 48 to 27 while the success rate continued about the same. Development drilling continued at a high level in Cameroon and Congo, whereas in Nigeria the emphasis shifted to the drilling of appraisal wells. In all, 2,937,708 ft (895,643 m) of hole was drilled, a decrease of about 20% from 1982. Oil production of 673,075,667 bbl in 1983 was an increase of 1.7% over 1982's production, bringing cumulative production to over 12 billion bbl. Marked increases in production were recorded in Cabinda, Ivory Coast, and Congo. Production from Nigerian fields continued to dominate this part of the world as they contributed about 67% of the annual production and 75% of the cumulative production. 44 figures, 15 tables.

  10. Oil and gas developments in central and southern Africa in 1981

    SciTech Connect (OSTI)

    McGrew, H.J.

    1982-11-01

    Exploratory activity in central and southern Africa continued to grow during 1981. Geophysical operations reached nearly record levels and the number of wells increased markedly. Oil production suffered from the adverse conditions that existed throughout the world and dropped by a significant amount. New Concession acquisitions occurred in several of the countries in northeast Africa. Elsewhere, the operating companies negotiated new concessions and renewed those that were expiring. In several countries where production has been proven, the operators were assigned exploitation concessions. Seismic crews and marine geophysical vessels were active throughout the countries in this area. A total of 365 party-months of work was done to yield 98,035 km of new lines. A moderate amount of 3-D recording was carried out in connection with field development. Some aeromagnetic work was done, principally in northeast Africa and in Mozambique. Forty-four new fields or pools were discovered by drilling 115 new-field wildcat and exploratory wells. These wells accounted for 1,060,254 ft (323,248 m) of hole. Appraisal and development drilling resulted in 321 wells with a total of 2,533,305 ft (772,349 m) of hole drilled. At year end, 25 exploratory wells were under way or resting, and 49 rigs were active in development drilling. Oil production for the year was 691,995,939 bbl, a decrease of nearly 25% from 1980. Nigeria suffered the greatest drop in production; however, increases were achieved in Cameroon, Congo, and Zaire. The cumulative production from this part of Africa passed the 10 billion bbl mark.

  11. Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water

    SciTech Connect (OSTI)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-06-17

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO{sub 2} and CH{sub 4} at three different seepage rates reveals that ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO{sub 2} solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO{sub 2} is stable between the deep regions where supercritical CO{sub 2} is stable and the shallow regions where gaseous CO{sub 2} is stable. The transition from liquid to gaseous CO{sub 2} is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO{sub 2} is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO{sub 2} migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO{sub 2} potentially preventing ebullition, depending on the CO{sub 2} leakage flux. However, as CO{sub 2} continues to move upward through shallower depths, CO{sub 2} solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO{sub 2} and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO{sub 2} leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO{sub 2} migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models.