National Library of Energy BETA

Sample records for farms cxs applied

  1. Life Cycle Assessment Applied to 95 Representative U.S. Farms 

    E-Print Network [OSTI]

    Rutland, Christopher T.

    2012-10-19

    slightly different approach was proposed by Rossing et al. (1997) to evaluate flower bulb production systems in the Netherlands. They used multi-goal linear programming to optimize ecological objectives subject to a set of environmental, economic... fission, natural gas, coal, woody biomass, herbaceous biomass, hydroelectric, and wind. The CO2 equivalent per million Btu is a weighted average of emission factors, with weights assigned according to the power mix in the area of the farm...

  2. ABSTRACT: Farms that once spread only manures are now also applying sewage biosolids (sludge) and/or other wastes such as

    E-Print Network [OSTI]

    ABSTRACT: Farms that once spread only manures are now also applying sewage biosolids (sludge) and streamwater concentrations in most cases. (KEY TERMS: nonpoint source pollution; sludge; waste/sewage such as food processing wastes and sewage biosolids (sludge). A concurrent trend in agriculture is the con

  3. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere....

  4. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply Application

  5. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  6. CX-010343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  7. Ris-R-Report Power fluctuations from large wind farms -

    E-Print Network [OSTI]

    Abstract (max. 2000 char.): Experience from power system operation with the first large offshore wind farm acquired at the two large offshore wind farms in Denmark are applied to validate the models. FinallyRisø-R-Report Power fluctuations from large wind farms - Final report Poul Sørensen, Pierre Pinson

  8. VOLUME 15 Summer 2012 SMALL FARM DIGESTSMALL FARM DIGEST

    E-Print Network [OSTI]

    Duffy, Michael D.

    VOLUME 15 Summer 2012 SMALL FARM DIGESTSMALL FARM DIGEST Farm Beginnings Introduction to Grazing a great deal of thought and planning. This edition of the Small Farm Digest lays out key issues that must

  9. 1 UBC Farm Market Vendor Guidelines 2015 UBC Farm Market

    E-Print Network [OSTI]

    Pulfrey, David L.

    campus. The Farm is a unique and beautiful urban agricultural site managed by the Centre for Sustainable1 UBC Farm Market Vendor Guidelines 2015 2015 UBC Farm Market Vendor Guide Centre for Sustainable of programs that explore local and sustainable food systems. About the UBC Farm Market We host a farm market

  10. 59136 Federal Register / Vol. 75, No. 186 / Monday, September 27, 2010 / Rules and Regulations (c) Certain farm vehicle drivers. The

    E-Print Network [OSTI]

    ) Certain farm vehicle drivers. The rules in this part except for § 391.15(e) do not apply to a farm vehicle driver except a farm vehicle driver who drives an articulated (combination) commercial motor vehicle, as defined in § 390.5. For limited exemptions for farm vehicle drivers of articulated commercial motor

  11. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  12. Cynthia Sandberg: Love Apple Farm

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    me about the name, Love Apple Farm. Where does that comegrowbetterveggies/about-love-apple-farm.html See http://Photo by Tana Butler Love Apple Farm Cynthia Sandberg is

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  14. The Farm and Ranch Corporation. 

    E-Print Network [OSTI]

    Brints, Norman; Sartin, Marvin

    1980-01-01

    ......................................................... 12 Liquidation ................................................................ 12 The Farm and Ranch Corporation Norman Brints and Marvin Sartin* As the family farm or ranch grows in size and complexity, many farm operators are examining...

  15. Roy Fuentes: Fuentes Berry Farms

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    farms. Rabkin: What about fumigation for strawberries? Howthat on an organic strawberry farm? Fuentes: Fumigation. Roythan a century ago by two strawberry farmers on California’s

  16. Farm Risk Management Between Normal Business Risk and Climatic/Market Shocks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Farm Risk Management Between Normal Business Risk and Climatic/Market Shocks by Jean Cordier by any means, provided that this copyright notice appears on all such copies #12;2 Farm Risk Management ABSTRACT Farm risk management for income stabilization is on-going issue. An applied work has been

  17. The Diversified Farm

    E-Print Network [OSTI]

    Eliot, H. M.; Killough, H. B.

    1917-01-01

    of this bulletin are based upon records of farm op- erations in Texas. Specialists of the Extension Service, working with the farmers, made careful records of all their expenditures and all receipts; therefore, the earnings exhibited in the case of each farm may.... Such comparisons show that the farmers who are earning most for their year's work are more efficient in four respects than the farm- ers who are earning smaller incomes: 1. They are putting in each year more hours of productive labor. 2. They are cultivating more...

  18. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  19. Andy Griffin: Mariquita Farm

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    Farms was a loss. So the third year after Riverside, when—fifty at the end of the third year, and we had four hundredthird week in March until right before Thanksgiving. One year

  20. Andy Griffin: Mariquita Farm

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    the organic model, the business model that had prevailed uplot to learn about that business model. We weren’t going toconstructed the business model for the farm around the idea

  1. Farm and Ranch Credit. 

    E-Print Network [OSTI]

    Trimble, Richard L.; Klinefelter, Danny A.

    1984-01-01

    is unable to see the total picture of the farm business. These farmers are too often concerned with short-term problems they cannot control; such as weather, current prices and the government. They ignore the more im portant items, such as long... The Texas A&M n:XAC: ~ ~.~.;t! '~':"' ~'.~:'. ~ : .. . . University System IL.. I .. . \\ ... Texas Agricultural Zerle L. Carpenter, Director College Station 8-1464 Extension Service LIBRARY SEP 26 1984 Texas A&fv\\ University Farm and Ranch...

  2. Kas Farms Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh Town Corporationsource History ViewKas Farms

  3. Estimating farm machinery complements based on cropmix and farm size 

    E-Print Network [OSTI]

    Barrera, Anna Marie

    1993-01-01

    Machinery complement information is used in farm simulation models such as the FLIPSIM model when studying of the impacts of agricultural policies on representative farms. Since acquiring machinery complement data for FLIPSIM simulations is a...

  4. Amigo Bob Cantisano: Organic Farming Advisor, Founder, Ecological Farming Conference

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    the Ecological Farming Conference at that point? Cantisano:the speakers at that conference? Cantisano: Miguel Altieri.it the Ecological Farming Conference. I can’t remember if it

  5. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  6. Financing a Farm Business. 

    E-Print Network [OSTI]

    Love, Harry M.

    1958-01-01

    stream_source_info Bull0903.pdf.txt stream_content_type text/plain stream_size 47906 Content-Encoding ISO-8859-1 stream_name Bull0903.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Far m-Business SOUTHERN FARM... MANAGEMENT EXTENSION PUBLICATION No. 8 I L FOREWORD i Scientific discoveries and the new technology growing out of them create a nec for constant adjustments in farming. Most of these changes call for capital investnie!i* Few farmers can save from...

  7. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  8. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 | Tags:...

  9. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Renewable Energy (Wind and Water Technologies Program) ofWind Farms in North America 1 Ben Hoen Environmental Energy Technologies

  10. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats and offshore wind energy will contribute sig- nificantly to achieving this target. The Kentish Flats alone plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30

  11. CX-008620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    F-Tank Farm Sump Pump and Discharge Piping CX(s) Applied: B1.3 Date: 06/22/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-008218: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A System Design Study for Wilmington Canyon Offshore Wind Farm CX(s) Applied: A9 Date: 04/02/2012 Location(s): Delaware Offices(s): Golden Field Office

  13. CX-008825: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nesting Bird Deterrent Study at the 241-C Tank Farm CX(s) Applied: B3.8 Date: 07/26/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

  14. CX-009585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Feasibility Study and Design of "Brightfield" Solar Farm CX(s) Applied: A9, B5.16 Date: 12/12/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  15. CX-011682: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Characterization of SCO Sludge, Supernate, and Glass for Tank Farm Return CX(s) Applied: B3.6 Date: 12/02/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  17. The Intersection of Farm Credit and Farm Policy 

    E-Print Network [OSTI]

    Knapek, George M.; Klose, Steven; Raulston, James M.

    2009-03-26

    This publication examines the way the 2008 Farm Bill and the uncertain credit market may affect each other. It discusses the connection between credit and policy....

  18. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  19. Farm & Ranch Credit School 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Pathologist W. J BACH M.' 5 ~lnh Pathologist R. F: DANA: M. s:: Plant Pathologist FARM AND RANCH ECONOMICS: I,. P. GAHHAHD M. S. Chief \\V. E. PAULSON' Ph. D. Marketing . (:. A. BONNEN. M. S.. $arm Management J. F. CRISWELI., B. S., .Assistant J. N. T... 'Special tabulations from U. 310 )100.0 I100.0 1 130 1100.0 I100.0 8. Census of 1925. Number of ranches 51 147 102 63 37 2 1 14 440 Per cen of all ranches Table %Average numker of cattle, skeep, and goat,s per section on ranchrs...

  20. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable CoalTailoreddoTalksFarms Office of

  1. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable CoalTailoreddoTalksFarms Office

  2. Farms to Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartment of5 NovemberFarms to Fuel Amy

  3. Vulnerable Strong Farm Finance Scorecard

    E-Print Network [OSTI]

    risk and borrowing capacity of the business. 9. Rate of return on farm equity - represents the interest farm income - represents return to 3 things, · Your labor, · Your management and · Your equity, that you have invested in the business. It is the reward for investing your unpaid family labor, management

  4. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  5. Larry Jacobs: Jacobs Farm/Del Cabo

    E-Print Network [OSTI]

    Reti, Irene H.

    2010-01-01

    chicken farms and some strawberry farms. There was a walnutchanged. There was one strawberry field still left in thewith conventional and organic strawberry growers, to look at

  6. Factors affecting levels of financial stress and distress among Texas farm families: the 1980s Farm Crisis 

    E-Print Network [OSTI]

    Luedke, Alvin John

    1993-01-01

    logistic regression analyses suggest that the number of years in farming, proportion of the household income from off-farm employment, proportion of farm ownership, proportion of the farm operation in crop production, and farm size are related to level...

  7. We Energies- Livestock and Dairy Farm Electrical Re-wiring Program

    Broader source: Energy.gov [DOE]

    Any We Energies dairy farm customer can apply for assistance with a re-wiring project. We Energies would pay the first $1,000 of the project and 50 percent of remaining costs up for a total grant...

  8. FARM of the FUTURE AUTOMATED REFUELING

    E-Print Network [OSTI]

    Nourbakhsh, Illah

    to minimize waste and runoff. Assists in precision pest management Farm robots can be key components manageable. Enables plant-level management Life cycle monitoring also allows farm robots to customize. This maximizes the quality (and selling price) of farm produce. In the fully-automated Farm of the Future

  9. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  10. Jeff Larkey: Route One Farms

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    my farm, no. Most of my compost is imported. I get it mostlyThere’s manure in the compost, as well as green wastereally super-good quality compost companies. That’s why I’m

  11. Zea Sonnabend: Ecological Farming Association

    E-Print Network [OSTI]

    Reti, Irene H.

    2010-01-01

    funded project is for renewable energy education for farms.topics related to renewable energy. Reti: Solar pumping.and whatever. In renewable energy, since UC doesn’t do much

  12. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off

  13. Farm Mortgage Financing in Texas. 

    E-Print Network [OSTI]

    Lee, Virgil P. (Virgil Porter)

    1925-01-01

    collection of mortgages, and still others keep the mort- gages as investments. The 177 banks and companies investigated have a total 'ef $252,448,122 in first mortgages on Texas farms and $1,727,382 in second mortgages. This probably represents one... cent by the Federal Land Bank to 8.45 per cent by commercial banks. Mortgage loans made by commercial banks run one to five years, by farm mortgage, insurance, and trust companies five and ten years, and by Federal and joint stock land banks more...

  14. Cooper Farms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P JumpFarm Tool JumpCoonFarms

  15. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 13 May 2004 Prepared: Michael Bech

  16. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  17. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 to establish an offshore wind farm with an output of 150 MW in the waters of Horns Rev, approximately 15 km off to some environmental guidelines for offshore wind farms prepared by the Dani

  18. Spatial Analysis of Kansas Farm Ponds

    E-Print Network [OSTI]

    Callihan, Ryan Andrew

    2011-11-16

    RYAN CALLIHAN, GEOGRAPHY A Spatial Analysis of Kansas Farm Ponds Regression Modeling and Outlier Detection Small Reservoirs (ponds...

  19. OFFSHORE WIND FARMS Guidance note for Environmental

    E-Print Network [OSTI]

    OFFSHORE WIND FARMS Guidance note for Environmental Impact Assessment In respect of FEPA and CPA requirements Version 2 - June 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment 2004 #12;Offshore Wind Farms: Guidance Note for Environmental Impact Assessment in Respect of FEPA

  20. CONMOW: Condition Monitoring for Offshore Wind Farms

    E-Print Network [OSTI]

    1 CONMOW: Condition Monitoring for Offshore Wind Farms Edwin Wiggelinkhuizen, Theo Verbruggen, Henk in practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November for Offshore Wind Farms) was started in November 2002. This paper briefly describes the CONMOW project approach

  1. Hazard Lewis Farms Collection Binghamton University Libraries

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Hazard Lewis Farms Collection Binghamton University Libraries Special Collections Hazard Lewis and University Archives #12;Hazard Lewis Farms Collection Biographical Note The Hazard Lewis Farm was situated Hazard Lewis, one of the early pioneer settlers of Broome County. Colonel Lewis at one time with Christor

  2. Foreign Fishery Developments World Salmon Farming

    E-Print Network [OSTI]

    economic and environmental conditions will permit such expansion of salmon farming industries. Norway besides Norway with a large and suc- cessful Atlantic salmon farming in- dustry. Production of pen-farmed salmon in other countries is not substantial, but continues to expand. Norway Norway is the world's most

  3. Environmental Effects of Industrial Farming

    E-Print Network [OSTI]

    Budker, Dmitry

    ;Animal welfare ·Less density ·Less pollution #12;Animal welfare ·Less density ·Less pollution ·Soil, airEnvironmental Effects of Industrial Farming Dmitri Gaskin #12;Agenda ·Background ·Air contamination 3.5 35 billion Chicken 8.7 billion 16 billion 2 32 billion #12;Air contamination "Smells like money

  4. The CDF Central Analysis Farm

    SciTech Connect (OSTI)

    Kim, T.H.; Neubauer, M.; Sfiligoi, I.; Weems, L.; Wurthwein, F.; /UC, San Diego

    2004-01-01

    With Run II of the Fermilab Tevatron well underway, many computing challenges inherent to analyzing large volumes of data produced in particle physics research need to be met. We present the computing model within CDF designed to address the physics needs of the collaboration. Particular emphasis is placed on current development of a large O(1000) processor PC cluster at Fermilab serving as the Central Analysis Farm for CDF. Future plans leading toward distributed computing and GRID within CDF are also discussed.

  5. Farm Feed Processing & Handling Systems. 

    E-Print Network [OSTI]

    Allen, W. S.; Sorenson, J. W.; McCune, W. E.

    1970-01-01

    mixers. Either will do a satisfactory mixing job for farm use, providing care is used in proportioning. Mixing time should exceed 5 minutes. Vertical mixers. These use an upright inverted cone tank with a vertical auger in the center to mix the feed... horizontal U-shaped tank. A horizontal shaft equipped with paddles or spiral ribbons provides the mixing action. Some horizontal mixers use three large augers mounted hori- zontally parallel. Because they require less head room, the larger mixers...

  6. Branchburg Solar Farm and Carport

    SciTech Connect (OSTI)

    Gregory, John

    2013-10-23

    To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.

  7. Applied Math

    E-Print Network [OSTI]

    $author.value

    Current research topics by the Applied Math Faculty members include: Numerical analysis and applications of finite difference, finite element and spectral ...

  8. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  9. OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    OFFSHORE WIND FARM LAYOUT OPTIMIZATION (OWFLO) PROJECT: AN INTRODUCTION C. N. Elkinton* , J. F focused on land-based wind farms, rather than on offshore farms. The conventional method used to lay out that distinguish offshore wind farms from their onshore counterparts, the Offshore Wind Farm Layout Optimization

  10. Modeling of wind farm controllers Poul Srensen1

    E-Print Network [OSTI]

    (typically offshore) wind farms has initiated the development of advanced, automatic wind farm controllers. As the first large offshore wind farm, the Horns Rev offshore wind farm controller is probably the most plants (CHP) provide increased supply during cold days. The main aim of the advanced offshore wind farm

  11. Farm Credit Canada Energy Loan (Canada)

    Broader source: Energy.gov [DOE]

    The Energy Loan helps Canadian producers or agri-business owners considering renewable energy purchase and install on-farm energy sources, such as:

  12. CPS and the Fermilab farms

    SciTech Connect (OSTI)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  13. Tank farms essential drawing plan

    SciTech Connect (OSTI)

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  14. Frey Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: Energy ResourcesFrey Farm Jump

  15. Carsten Farms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°, -77.1888704° ShowWindCarsten Farms

  16. Paramount Farms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:Paramount Farms Jump to: navigation,

  17. Fact Sheet: Wind Firming EnergyFarm (August 2013) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Firming EnergyFarm (August 2013) Fact Sheet: Wind Firming EnergyFarm (August 2013) Primus Power is deploying a 25 MW75 MWh EnergyFarm(TM) in California's Central Valley,...

  18. Farm-level economic impacts of the House of Representatives Farm Bill Proposal, H.R. 2646, and the Senate Farm Bill Proposal, S. 1731, for representative rice farms 

    E-Print Network [OSTI]

    Houston, Christy Michelle

    2002-01-01

    increased costs of production. The primary objective of this research is to assess the farm level economic implications of the House of Representatives and the Senate farm bill proposals on representative rice farms from six different rice-producing states...

  19. Integrated approaches to farming systems research

    E-Print Network [OSTI]

    2007 Survey of 58 arable farms in Eastern Scotland ­ data from 19 farms growing Winter Oil Seed Rape and ecological aspects · Assesses renewable, non- renewable and purchased resources · Based on a common currency SI = Utilises renewable resources readily · Spring barley is exploiting resources more efficiently

  20. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  1. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Part 7 - Food Safety on the Farm

    E-Print Network [OSTI]

    2015-01-01

    Procedure (SOP) Form Unit 7.0 | 347 Food Safety on theFarm 348 | Unit 7.0? Food Safety on the FarmFood Safety Risks Unit 7.0 | 329 Food Safety on the Farm b)

  2. EA-1979: Summit Wind Farm, Summit, South Dakota | Department...

    Office of Environmental Management (EM)

    9: Summit Wind Farm, Summit, South Dakota EA-1979: Summit Wind Farm, Summit, South Dakota Summary Western Area Power Administration (Western) is preparing an EA to analyze the...

  3. EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt...

    Office of Environmental Management (EM)

    5: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska EIS-0485: Interconnection of the Grande Prairie Wind Farm, Holt County, Nebraska SUMMARY DOE's Western...

  4. Before the Committee on Agriculture Subcommittee on General Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Before the...

  5. California Desert Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    California Desert Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name California Desert Fish Farm Aquaculture Low Temperature Geothermal...

  6. Agricultural Productivity Growth in China: Farm Level versus National Measurement

    E-Print Network [OSTI]

    Carter, Colin A.; Chen, Jing; Chu, Baojin

    1999-01-01

    bias any measurement of agricultural productivity, becauseProductivity Growth in China: Farm Level versus National MeasurementProductivity Growth in China: Farm Level versus National Measurement

  7. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  8. Part-Time Farming in Northeast Texas. 

    E-Print Network [OSTI]

    Martin, James R.; Southern, John H.

    1961-01-01

    days or more, includes 43 percent of all part-time operators. Part-time operators controlled 40 percent of the farm and land resources, marketed 28 percent of all farm products sold (in terms of value), but received only 16 percent of the net money...). The average value of farm resources was $16,024 with land $12,803, live- dock $1,846 and equipment $1,375. Part-time farmers controlled 29 percent of ie cropland and 33 percent of all idle crop- acres. However, they had relatively more ~~~~~dre, 42...

  9. Windpowered irrigation system for small farm applications

    SciTech Connect (OSTI)

    England, B.

    1982-01-01

    The overall purpose of the project was to conserve water on a small-scale truck patch vegetable gardening operation. The main thrust centered on improving water usage in the already-existing windmill/storage tank/house/farm pond setup. Most of the funds were spent on a trickle (drip) irrigation system linked into the existing wetup. Other areas improved were the farm pond itself, backup pumping for windmill and farm pond, and greywater reclamation. In spite of problems which had to be restudied and corrected, the project was an overall success both in terms of results and budget.

  10. Break-Even Investment in a Wind Energy Conversion System for an Irrigated Farm on the Texas High Plains 

    E-Print Network [OSTI]

    Hardin, D. C.; Lacewell, R. D.

    1981-01-01

    costs were included. The basic LP model was applied to develop the benchmark case (i.e., without wind power). The farm operation with wind power was analyzed by applying the LP model with the monthly expectations of wind-generated electricity added...

  11. Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms

    E-Print Network [OSTI]

    #12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars Brünner Frank Reier farms Horns Rev Offshore Wind Farm 2004 2519-03-003-rev3.doc TABLE OF CONTENTS PAGE 1. Introduction

  12. Challenges in Predicting Power Output from Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Challenges in Predicting Power Output from Offshore Wind Farms R. J. Barthelmie1 and S. C. Pryor2 Abstract: Offshore wind energy is developing rapidly in Europe and the trend is towards large wind farms an offshore wind farm, accurate assessment of the wind resource/power output from the wind farm is a necessity

  13. Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Offshore Wind Farm Layout Optimization (OWFLO) Project: Preliminary Results Christopher N. Elkinton the layout of an offshore wind farm presents a significant engineering challenge. Most of the optimization literature to date has focused on land-based wind farms, rather than on offshore farms. Typically, energy

  14. Independent Oversight Review, Hanford Tank Farms- November 2011

    Broader source: Energy.gov [DOE]

    Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

  15. Dee Harley: Harley Farms Goat Dairy

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    can see how we use our own compost that we make from goathave our own Harley Farms compost, which we have all aroundat the soil that’s all our goat compost, and we’re about to—

  16. Hanford Site C Tank Farm Meeting Summary

    Office of Environmental Management (EM)

    * Nez Perce Staff presented an alternative high-level conceptual model of the stratigraphy at WMA C. Nez Perce staff have been involved in tank farm vadose zone activities...

  17. Farm and Ranch Business Management Functions 

    E-Print Network [OSTI]

    McCorkle, Dean; Anderson, David P.

    2009-02-04

    This publication discussess several management functions, including organization, staffing and direction and control. Suggested activities help managers learn how to implement these functions in their farm and ranch businesses....

  18. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  19. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  20. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  1. Automatic contour-based road network design for optimized wind farm micrositing

    E-Print Network [OSTI]

    Gu, H; Wang, J; Lin, Q; Gong, Q

    2015-01-01

    in Zhejiang: Analysis of wind farm construction cost,” Eastroute slection on wind farm construction,” in Proc. 2010planning of the wind farm construction. A well-chosen road

  2. Automatic contour-based road network design for optimized wind farm micrositing

    E-Print Network [OSTI]

    Gu, H; Wang, J; Lin, Q; Gong, Q

    2015-01-01

    R. Guanche, “Offshore wind farm layout opti- mization usingin Zhejiang: Analysis of wind farm construction cost,” EastPayan, “Optimization of wind farm turbines layout using an

  3. Trends in the Texas Farm and Ranch Land Market. 

    E-Print Network [OSTI]

    Andrews, F. B.; Wooten, Alvin B.

    1967-01-01

    total acreage. TABLE I. AVERAGE SALES PRICE OF FARM AND RANCH LAND, BY TYPE-OF-FARMING AREAS IN TEXAS, 1947-49, 1954, 1960, 1963, 1965 Type-of-farming areas' 1947-49 1954- 1960- 1963- 1947-49 1954 1960 1963 1965 to 1965 1965 1965 1965 Dollars per.... TABLE 2. RATIO OF FARM AND RANCH LAND PRICE TO NET FARM INCOME, EXPRESSED IN NUMBER OF YEARS OF NET INCOME REQUIRED TO PAY FOR LAND 1947-49, 1960, 1963 AND 1965' I tems 1947-49 1960 1963 1965 - - - - Years - - - - Cotton farms, Blackland Prairie 4...

  4. CX-010850: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Install Well Pump into the F-Tank Farm Catch Tank FL-241901-WTS-TK-1 CX(s) Applied: B1.3 Date: 07/23/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. White Wind Farms Strategic Communications Campaign

    E-Print Network [OSTI]

    Ford, Gina; Noulles, Mary; James, Jessica

    2014-09-03

    66053 Nearby Wine Retailers 11 Finances, Operations and Overhead In 2012, White Wind Farms generated $555,000 in annual revenue. The revenue is itemized as follows: $500,000 in nursery sales, $30,000 in wine sales and $25,000 in revenue from... Village, Kan., were the only three retail outlets where respondents purchased wine. 23 Social Eight respondents follow White Wind Farms on Facebook, 27 do not and the remaining 12 respondents do not utilize Facebook. When asked what types of occasions...

  6. Type of Farming Areas in Texas. 

    E-Print Network [OSTI]

    Elliot, F. F. (Foster Floyd); Bonnen, C. A. (Clarence Alfred)

    1931-01-01

    . S., Chief AGRICULTURAL ENGINEERING: H. P. SMITH, M. S., Chief MAIN STATION FARM: G. T. McN~ss, Superintendent APICULTURE (San Antonio) : 13. B. PARKS, B. S., Chief A. H. ALEX, B. S., Queen Breeder FEED CONTROL SERVICE: I;. D. FULLER, M. S... EXPERIMkNrI' FI'AI'ION A. B. CONNER, DIRECTOR - COLLEGE, STATION, BRAZOS COUNTY, TEXAS - JLLETIN NO. 427 MAY, 1931 1IVISION OF FARM AND RANCH ECONOMICS i COOPERATION WITH THE BUREAU OF AGRICULTURAL ECO- NOMICS, UNITED STATES DEPARTMENT OF AGRICULTURE...

  7. Wege Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind FarmWege Wind Farm Jump to:

  8. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm Jump to:Wind Farm

  9. Klondike Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III I Wind Farm JumpWind Farm

  10. Nome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd congressionalNearshoreNilamGeochemistryFarmWind Farm

  11. An Economic Study of Farm Organization in the Piney Woods Farming Area of Texas. 

    E-Print Network [OSTI]

    Bonnen, C. A. (Clarence Alfred); Thibodeaux, B. H.; Criswell, J. F.

    1932-01-01

    the d Piney Woods farming area of Texas comprises twenty-three counties northeastern part of the state. The majority of the farms are !d by family labor. Topographic conditions do not permit the 1 use of large machinery; consequently these farms.... The enterprises are maluated in terms of their production requirements dion to crop yields and livestock production. The usual require- s for the production of an acre of cotton yielding 324 pounds of cotton, for example, were 76 hours of man labor, 40 hours...

  12. Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 #12;Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2003 Published: 14 May 2004

  13. Sumas and North Matsqui Watersheds -1997 Farm Practices Survey

    E-Print Network [OSTI]

    a scoring system called and Environmental Sustainability Parameter (ESP). A follow up survey was conducted was 30,500. Eighty two percent of farms reported shipping some or all of their manure off the farm. Fifty

  14. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  15. Plant, Soil, and Insect Sciences Sustainable Food and Farming

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    · Turfgrass Science and Management 2013 - 20142013 - 2014 HandbookHandbook stockbridge.cns.umass.edu/ #12· Plant, Soil, and Insect Sciences · Sustainable Food and Farming · Sustainable Horticulture ....................................................................... 7 Sustainable Food and Farming

  16. Mechanical harvesting of leafy greens on small farms

    E-Print Network [OSTI]

    Kraines, Kathleen (Kathleen Agnes)

    2013-01-01

    Over the last century and a half, farming practices have been revolutionized by the advent of mechanical harvesters, but there is a disparity between available agricultural technology and the technology used in the farm ...

  17. Industrial engineering study of tank farm access qualifications and validations

    SciTech Connect (OSTI)

    Sterling, S.G., Westinghouse Hanford

    1996-07-01

    Engineering study of alternatives to reduce costs of validation worker`s qualification prior to Tank Farm area access.

  18. José Montenegro: Farm Operations Director, Rural Development Center

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    from farming communities, rural communities throughoutinstitutions and rural communities. It seemed that there wasstakeholders—rural communities and government institutions—

  19. Review report 2004 The Danish Offshore Wind Farm

    E-Print Network [OSTI]

    - 1 - Review report 2004 The Danish Offshore Wind Farm Demonstration Project: Horns Rev and Nysted Offshore Wind Farms Environmental impact assessment and monitoring Prepared for The Environmental Group By Elsam Engineering and ENERGI E2 October 2005 #12;- 2 - Review Report 2004 The Danish Offshore Wind Farm

  20. Switching transients in wind farm grids Poul Srensen1)

    E-Print Network [OSTI]

    power collection grid of Nysted offshore wind farm. A number of switching events have been performed of large offshore wind farms have been developed, and there are significant plans for further offshore wind larger wind power installations such as offshore wind farms has increased the focus from TSO's on how

  1. Power optimization of wind farms by curtailment of upwind turbines

    E-Print Network [OSTI]

    Power optimization of wind farms by curtailment of upwind turbines Simon Kirkeby Wessel Kongens is shown to increase the total power production of wind farms of dierent size and shape. Several methods by curtailing upwind turbines. It is shown that the annual power production for a square wind farm consisting

  2. Wind Farm Power Prediction: A Data-Mining Approach

    E-Print Network [OSTI]

    Kusiak, Andrew

    Wind Farm Power Prediction: A Data-Mining Approach Andrew Kusiak*, Haiyang Zheng and Zhe Song, IA 52242­1527, USA In this paper, models for short- and long-term prediction of wind farm power length of the long-term prediction model is 84 h. The wind farm power prediction models are built

  3. Post-doc: Uncertainty Quantification of Offshore Wind Farms

    E-Print Network [OSTI]

    Jansen, Erik

    Post-doc: Uncertainty Quantification of Offshore Wind Farms Faculty/department Aerospace systems, from small wind turbines to large offshore wind farms, are the focus of research in the Wind research activities there is a focus on large, multimegawatt offshore wind turbines and offshore wind farms

  4. Distributed Compression for Condition Monitoring of Wind Farms

    E-Print Network [OSTI]

    Cheng, Samuel

    1 Distributed Compression for Condition Monitoring of Wind Farms Vladimir Stankovi´c, Lina Stankovi´c, Shuang Wang, and Samuel Cheng Abstract--A good understanding of individual and collective wind farm operation is necessary for improving the overall performance of the wind farm `grid', as well as estimating

  5. Effects of Topography on Assessing Wind Farm Impacts Using

    E-Print Network [OSTI]

    Zhou, Liming

    Effects of Topography on Assessing Wind Farm Impacts Using MODIS Data Liming Zhou* Department) there is a pattern of LST change associated with the de- velopment of wind farms and (ii) the warming effect over wind farms reported previously is an artifact of varied surface topography. Spatial pattern and time

  6. Operational Support in Fish Farming through Case-based Reasoning

    E-Print Network [OSTI]

    Aamodt, Agnar

    Operational Support in Fish Farming through Case-based Reasoning Axel Tidemann1 , Finn Olav.tidemann@gmail.com, finnolav.bjornson@sintef.no, agnar@idi.ntnu.no Abstract. Farmed fish is the third biggest export in Norway (around NOK 30 billion/e3.82 billion/US$ 5.44 billion in 2010), and large fish farms have biomass worth

  7. South Carolina Farm Auditing Program Good Agricultural Practices and Good

    E-Print Network [OSTI]

    Stuart, Steven J.

    : Field Harvesting & Field Packing · Part 3: House Packing · Part 4: Storage and Transportation · Part 5 plan (for packing house) · Farm maps (where products are located) · Required procedures and samples of farm/facility · Traceability #12;Part 1 ­ Farm Review · Water · Manure · Animal/Wildlife · Land Use #12

  8. Long Island Solar Farm Project Overview

    E-Print Network [OSTI]

    Ohta, Shigemi

    . Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100 percent of the LISF project output Destination to the annual usage of ~ 4,500 homes LISF Power Purchase Agreement (PPA) Term with LIPA: 20 years Estimated

  9. Hanford Communities Issue Briefing on Tank Farms

    Broader source: Energy.gov [DOE]

    Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

  10. ...........BOOKS "Fish and 'hellflsh Farming In 'oastal

    E-Print Network [OSTI]

    . Chapters cover d ~ Ign and tanks--and th lraquatlc references, and appendices on wind, wave forces, tidal cur- rents, mesh net design criteria, and pile de- sign calculations. It can be a valuable aid to anyone interested in sea farming for profit. FISHING

  11. Abstract--Since the renewable energy is popularly applied in power industry, especially the smart grid is fast developing all

    E-Print Network [OSTI]

    Chen, Zhe

    , the wind farm electrical systems present some unique challenges for protection, monitoring and control energy management, smart metering and distribution automation [1]. This paper reviews the significance1 Abstract-- Since the renewable energy is popularly applied in power industry, especially

  12. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect (OSTI)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  13. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Part 7 - Food Safety on the Farm

    E-Print Network [OSTI]

    2015-01-01

    contamination of crop, water source, harvesting equipment,water, manure and municipal solids, and farming activities such as harvesting,

  14. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Unit 1- Small Farm Economic Viability.

    E-Print Network [OSTI]

    2015-01-01

    conversion and demographic trends (for a history of agriculture in the US, and how it impacts small farms, please Unit

  15. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Unit 6 - Building Resilience: Small Farm Planning and Operations

    E-Print Network [OSTI]

    2015-01-01

    into Your Small Farm Marketing Plan 4. Downward pressure onGuide for Direct Farm Marketing. Second Edition (onlineguide-for-direct-farm-marketing/ The author is a successful

  16. Applied Ocean Research (2013) Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sweetman, Bert

    2013-01-01

    as a viable contender for future offshore wind farm developments. The primary benefit of floating structuresApplied Ocean Research (2013) Contents lists available at ScienceDirect Applied Ocean Research journal homepage: www.elsevier.com/locate/apor Multibody dynamics of floating wind turbines with large

  17. Farms to Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartmentExerciseCarbon4 LDRD ReportDepartmentNuclear CooperationFarms

  18. Applied Mathematics Department of Applied Mathematics

    E-Print Network [OSTI]

    Applied Mathematics Department of Applied Mathematics 208 Engineering 1 Building 10 W. 32nd St, Graduate Studies: Xiaofan Li The Department of Applied Mathematics puts mathe- matics to work solving, such as how to construct methods for multi-criteria decision making (requiring discrete mathematics

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. Up from the Ground: Blogging the Farm and Farming the Blog

    E-Print Network [OSTI]

    Humphrey, Jen L.

    2010-04-22

    , pastures and surrounding neighbors. It is the place where we are building our small sustainable vegetable and goat farm business, so it is also bears the weight and the airy light of future plans. John. John is as much a character in his absence as he... was in life. Though the farm had been in his wife‘s family, he was the one to create a labyrinth of hand-welded gates, fences and chutes for the goats. He knew how to take apart machines and rebuild them bolt by belt. He was also particular, sometimes...

  1. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  2. Horns Rev Offshore Wind Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Farm Environmental Impact Assessment of Sea Bottom and Marine Biology #12 Design ApS 01.03.2000 #12;Bio/consult A/S Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1........................................................................................................................................................... 36 #12;Bio/consult A/S ELSAM Horns Rev. Offshore Wind Farm Doc. No. 1680-1-02-03-003 rev. 1 Page 4

  3. Review of the Hanford Tank Farms Radiological Controls Activity...

    Energy Savers [EERE]

    Independent Oversight Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation May 2011 December 2012 Office of Safety and Emergency Management...

  4. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    Patterson Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study...

  5. PERFORMANCE OBJECTIVES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENTS

    SciTech Connect (OSTI)

    MANN, F.M.; CRUMPLER, J.D.

    2005-09-30

    This report documents the performance objectives (metrics, times of analyses, and times of compliance) to be used in performance assessments of Hanford Site tank farm closure.

  6. California Rural Communities, Farm worker Settlement and Citizenship Practices

    E-Print Network [OSTI]

    2008-01-01

    2006 ¬ California Rural Communities, Farmworker SettlementGomez California Rural Communities, Farm worker Settlementfor participation in rural community’s political and civil

  7. Independent Oversight Review, Hanford Site Tank Farms 222-S Laboratory...

    Energy Savers [EERE]

    2014 Review of the Hanford Tank Farms Safety Management Program Implementation Electrical Safety in the 222-S Laboratory The U.S. Department of Energy (DOE) Office of...

  8. NNSA Awards Contract for Largest Federal Wind Farm to Siemens...

    National Nuclear Security Administration (NNSA)

    Contract for Largest Federal Wind Farm to Siemens Government Technologies, Inc. | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  9. Offshore Wind Farm Model Development - Upcoming Release of the...

    Broader source: Energy.gov (indexed) [DOE]

    Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of...

  10. Grouting at the Idaho National Laboratory Tank Farm Facility...

    Office of Environmental Management (EM)

    fuel basin water treatment discharges - Off-gas scrubber solutions - Sump water and condensate from tank farm transfer equipment - Other low activity miscellaneous plant wastes *...

  11. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  12. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect (OSTI)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  13. US Farms Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPA Regionfor AfricaCouncilHoldingsFarms

  14. Short-Term Farm Credit in Texas. 

    E-Print Network [OSTI]

    Lee, Virgil P.

    1927-01-01

    contains analysis of information on short-term farm credit received from 455 farmers, 52 bankers, and 279 merchants. The study indicates that about 69 per cent of the farmers in Texas received short-term credit in 1925. Banks are the most important... source. Approximately 83 per cent of those receiving credit obtained all or a part of it from banks, 52 per cent received credit from merchants, and 17 per cent received credit from individuals. Approximately 53 per cent of the bank loans were secured...

  15. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLan SolarKorea JumpSunselex Jump to:Farms

  16. US Wind Farming Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power CoInformationWind Farming

  17. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtd JumpFarm

  18. Ralls Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind Farm Jump to: navigation, search

  19. Rattlesnake Road Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎Wind Farm JumpCity,

  20. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎WindRecycleBank Jump to:Hills Wind Farm

  1. Refurbished Projects Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b <Refurbished Projects Wind Farm Jump to:

  2. Roscoe Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas andRofinRoscoe Wind Farm Jump to:

  3. Rugby Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|GasRugby Wind Farm Jump to:

  4. Ruthton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|GasRugbyRuthton Wind Farm Jump to:

  5. SMUD Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind Farm Jump to: navigation, search

  6. Sherbino I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation, searchIndiaI Wind Farm Jump

  7. Smoky Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat andCreek GeothermalRhodeWind Farm

  8. St. Mary's Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpionSquawAnsgar,Wind Farm Jump

  9. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,Energy Center Wind FarmPoint

  10. State Farm Insurance | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,EnergyFarm Insurance Jump to:

  11. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,EnergyFarmStateline Expansion

  12. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBefore theStereoscopy Jump to:Farm Jump to:

  13. Stony Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump to: navigation,

  14. Story County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump

  15. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies JumpTiSol JumpOffshore Wind Farm Jump

  16. Titan I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies JumpTiSol JumpOffshoreOpenI Wind Farm

  17. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack Wind Farm Jump to:

  18. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack Wind FarmGEFCommunity

  19. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP)BioGen LLCAND HYDROLOGIC5605Uilk Wind Farm

  20. Vansycle Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:ValleyWind Farm Jump to:

  1. We Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind Farm Jump to: navigation,

  2. Westwind Trust Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWeVirginiaElectricWestwind Trust Wind Farm

  3. Whirlwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small Community WindWhere is DBWind Farm Jump

  4. Winnebago I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, searchDevelopment Jump to:I Wind Farm Jump

  5. Wolf Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, searchDevelopmentWisconsin:Ridge Wind Farm

  6. Category:Wind Farms | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformation UtilityWind Farms Jump to:

  7. Elm Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko, Nevada: EnergyWind Farm Jump to:

  8. Endeavor II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko, Nevada:Geothermal7) Wind Farm

  9. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWind Farm Jump to:

  10. Forest Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures Jump to: navigation,PortalCreek Wind Farm

  11. Forward Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWind Farm Jump to:

  12. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware) JumpGadirGalacticGaltFarm

  13. Glenrock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver PeakGinerHillsCalifornia:Wind Farm

  14. Grand Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lendsCouleeII Wind FarmWind

  15. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagmaIncentivesEnergy | OpenWind Farm Jump to:

  16. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy Resources Jump to:Wind Farm Jump to: navigation,

  17. Horseshoe Bend Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm

  18. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind FarmHorstHotHot

  19. JJN Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation,8 Wind Farm

  20. Judith Gap Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California)JointJosephine, Texas:Gap Wind Farm Jump

  1. Karen Avenue Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh Town Corporationsource History View NewFarm

  2. Klondike IIIA Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III I Wind Farm Jump

  3. Lakota Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to: navigation, searchLakota Ridge Wind Farm

  4. Langford Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to: navigation,Landsvirkjun JumpLangdonFarm

  5. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge Wind Farm Jump to:

  6. Lempster Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanau County,Lempster Wind Farm

  7. Marengo II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformation ReducingInformationMarbleII Wind Farm

  8. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta,7) Wind Farm Jump to:Stevens

  9. Marshalltown Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta,7) Wind Farm Jump

  10. Mendota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area Total Egy Plt IncshallowHills Wind Farm

  11. Moe Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoe Wind Farm Jump to: navigation,

  12. Mogul Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoe Wind Farm Jump to:

  13. Mount Wachusetts Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:Wind Farm Jump to:

  14. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:Wind FarmHome Wind

  15. Airforce Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy ResourcesAir Quality Jump to:Airforce Wind Farm Jump to:

  16. Arnold Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and Gasin DevelopingWind Farm

  17. Backyard Farms Energy, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State Office JumpUtahPlcBackyard Farms

  18. Baldwin Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColorado State OfficeBailey County ElecBaldWind Farm

  19. Bent Tree Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYorkColoradoBelcher Homes JumpCreek Jump to:Tree Wind Farm

  20. Bitworks Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpII Jump to:Bitworks Wind Farm Jump

  1. Blackfeet Nation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpII JumpBlackfeet Nation Wind Farm

  2. Adair Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomitaOklahoma:Oklahoma:Wind Farm I

  3. Adair Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomitaOklahoma:Oklahoma:Wind Farm

  4. Cool Farm Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal L P JumpFarm Tool Jump to:

  5. Corn Plus Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobalTechnology VenturesPlus Wind Farm

  6. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepi has not created any blogFarm

  7. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind Farm Jump

  8. Dillon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind Farm Jump to: navigation,

  9. Dispersed Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind FarmAreaDiscussion Page

  10. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment ToolkitBull Creek Wind Farm Jump

  11. Burco Farm and Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment ToolkitBullBurco Farm and Feed

  12. CWES II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED: A New Model ofCVCII Wind Farm Jump

  13. Calverton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California:InformationInformationCalvert City,Wind Farm Jump

  14. Carroll Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°, -77.1888704° ShowWind Farm Jump to:

  15. Chandler Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,Thermal Gradient HolesCentral,Chandler Hills Wind Farm Jump

  16. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd congressionalNearshoreNilam has not createdFarm Jump

  17. Nobles Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd congressionalNearshoreNilamGeochemistryFarm II Jump

  18. Nobles Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd congressionalNearshoreNilamGeochemistryFarm II

  19. Oliver II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformation 6thOhmsettOklahoma: EnergyII Wind Farm

  20. Peetz Table Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergy GroupPeetz TableFarm Jump

  1. Pine Tree Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind Farm Jump to:

  2. Pinnacle Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue Mountain GeothermalPilgerPimaWind Farm JumpWind

  3. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Unit 1- Small Farm Economic Viability.

    E-Print Network [OSTI]

    2015-01-01

    The USDA Agricultural Marketing Service’s National Organicwith an overview of marketing and income diver- sificationthe small farm sector • Marketing and income diversification

  4. Impacts of Farm Policies and Technology on the Economic Viability of Texas Southern High Plains Cotton Farms

    E-Print Network [OSTI]

    Richardson, James W.; Smith, Edward G.

    1985-01-01

    owned, leased, and controlled at the end of the planning horizon for each iteration indicate the impacts 'of alternative scenarios on the rate of growth for representative farms. These three statistics provide an indication of how the farm grew either... number of acres they controlled. The 1,088-acre farm grew 470 acres (43%) over the 10 year planning horizon, while the 3,383- and 5,570-acre farms grew by 26.7% and 7.70/0, respectively. Acreage Reduction Program Imposing a 20% acreage reduction...

  5. Paternalism and Law: The micropolitics of farm workers’ evictions and rural activism in the Western Cape of South Africa 

    E-Print Network [OSTI]

    Nolan, Pauline J

    2008-01-01

    This thesis deals with the micro-politics of farm workers’ evictions. It documents farm workers’ narratives of the processes of eviction and displacement from farms in the Western Cape of South Africa. It analyses farm ...

  6. Cornell Farm Services Compost Facility Mary Schwarz and Jean Bonhotal

    E-Print Network [OSTI]

    Wang, Z. Jane

    Cornell Farm Services Compost Facility Mary Schwarz and Jean Bonhotal Cornell Waste Management Institute Overview/History The compost program at Cornell University was started to manage manure from objectionable odors when spread. In 1992, Cornell Farm Services started composting the manure and bedding from

  7. BOOK REVIEW Donald A. Dewsbury: Monkey Farm. A History

    E-Print Network [OSTI]

    Maestripieri, Dario

    BOOK REVIEW Donald A. Dewsbury: Monkey Farm. A History of the Yerkes Laboratories of Primate of Primate Biology (YLPB). Monkey Farm is a history of the first 35 years of the institution, from its to Georgia in 1965. There are several possible ways to write the history of an institution. One is to write

  8. Coupled dynamic analysis of floating offshore wind farms 

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  9. EPOK Centre for Organic Food & Farming ORGANIC FOOD

    E-Print Network [OSTI]

    EPOK ­ Centre for Organic Food & Farming ORGANIC FOOD ­ food quality and potential health effects.slu.se/epok/english #12;ORGANIC FOOD ­ food quality and potential health effects Publishing year: 2015, Uppsala Publisher: SLU, EPOK ­ Centre for Organic Food & Farming Lay-out: Pelle Fredriksson, SLU, EPOK Photo, cover: i

  10. ENS-1363/99-0017 Wind farm production prediction

    E-Print Network [OSTI]

    .1 The wind farm models 22 9 Utility experience 27 9.1 Power markets 27 9.2 Daily dispatch 27 9.3 Balance Wind power models 15 6.1 The wind farm model ( ¡ ¡¢ £¤ ¥¦ ) 17 6.2 The upscaling model. 4 ENS-1363/99-0017 #12;2 Introduction The amount of wind power install

  11. LHCb: The LHCb off-Site HLT Farm Demonstration

    E-Print Network [OSTI]

    Liu, Guoming

    2012-01-01

    The LHCb High Level Trigger (HLT) farm consists of about 1300 nodes, which are housed in the underground server room of the experiment point. Due to the constraints of the power supply and cooling system, it is difficult to install more servers in this room for the future. Off-site computing farm is a solution to enlarge the computing capacity. In this paper, we will demonstrate the LHCb off-site HLT farm which locate in the CERN computing center. Since we use private IP addresses for the HLT farm, we would need virtual private network (VPN) to bridge both sites. There are two kinds of traffic in the event builder: control traffic for the control and monitoring of the farm and the Data Acquisition (DAQ) traffic. We adopt IP tunnel for the control traffic and Network Address Translate (NAT) for the DAQ traffic. The performance of the off-site farm have been tested and compared with the on-site farm. The effect of the network latency has been studied. To employ a large off-site farm, one of the potential bottle...

  12. South Carolina Farm Auditing Good Agricultural Practices and Good Handling

    E-Print Network [OSTI]

    Stuart, Steven J.

    : Field Harvesting & Field Packing Part 3: House Packing Part 4: Storage and Transportation Part 5 plan (for packing house) · Farm maps (where products are located) · Required procedures and samples/facility Traceability #12;Part 1 ­ Farm Review Water Manure Animal/Wildlife Land Use #12;Part 2 ­ Field Harvest

  13. Environment Monitoring and Control of a Polyhouse Farm through Internet

    E-Print Network [OSTI]

    Khandekar, Sameer

    1 Environment Monitoring and Control of a Polyhouse Farm through Internet Yogesh R. Sonawane is the objective of the work presented in this paper. The objective is achieved through the use of internet based. Keywords: Monitoring and Control through internet, Polyhouse farm environment management. I. INTRODUCTION

  14. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 1 - Skills and Practices

    E-Print Network [OSTI]

    2015-01-01

    weed seeds in the garden and farm. • Wind: Manage vegetationwind-driven erosion. Cover cropping also provides other climate- related benefits, including: an on-farm

  15. Technology and Space - Sustainable Architecture and the Blueprint Farm [EDRA / Places Awards, 2001-2002 -- Research

    E-Print Network [OSTI]

    Moore, Steven A

    2002-01-01

    and Place: Sustainable Architecture and the Blueprint Farmand Place: Sustainable Architecture and the Blueprint Farm,and Place: Sustainable Architecture and the Blueprint Farm,

  16. Agriculture, Farm Labor, and Rural Communities in California in the 21st Century

    E-Print Network [OSTI]

    Palerm, Juan Vicente

    2010-01-01

    Agriculture, Farm Labor, and Rural Communities in CaliforniaAgriculture, Farm Labor, and Rural Communities in CaliforniaCalifornia's rural/agricultural communities located within

  17. A system-level cost-of-energy wind farm layout optimization with landowner modeling

    SciTech Connect (OSTI)

    Chen, Le [Ames Laboratory; MacDonald, Erin [Ames Laboratory

    2013-10-01

    This work applies an enhanced levelized wind farm cost model, including landowner remittance fees, to determine optimal turbine placements under three landowner participation scenarios and two land-plot shapes. Instead of assuming a continuous piece of land is available for the wind farm construction, as in most layout optimizations, the problem formulation represents landowner participation scenarios as a binary string variable, along with the number of turbines. The cost parameters and model are a combination of models from the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory, and Windustiy. The system-level cost-of-energy (COE) optimization model is also tested under two land-plot shapes: equally-sized square land plots and unequal rectangle land plots. The optimal COEs results are compared to actual COE data and found to be realistic. The results show that landowner remittances account for approximately 10% of farm operating costs across all cases. Irregular land-plot shapes are easily handled by the model. We find that larger land plots do not necessarily receive higher remittance fees. The model can help site developers identify the most crucial land plots for project success and the optimal positions of turbines, with realistic estimates of costs and profitability. (C) 2013 Elsevier Ltd. All rights reserved.

  18. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    MD: National Agricultural Library. An introductory overviewNational Soil Survey Hand- book, Title 430-VI. Available in libraries

  19. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    resources, including surveys, publications, and educationalResource Conservation District offices that can provide the same information. EDUCATION LINKS soilsassociation.org/Links.htm Educational

  20. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    minerals, such as iron, lime (calcium carbonate), and4. Acid soils and liming Lime (calcium carbonate) is addedhigh in calcium (such as lime, gypsum, or dolomite) or by

  1. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    and maintaining humus, on-site composting, green manures andeasy-to-read primer on soils, composting and basic gardeningto read primer on soils, composting, and basic gardening

  2. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Includes numerous diagrams. WEB-BASED RESOURCES SOIL SURVEYSintroductory soils classes. WEB-BASED RESOURCES LIMING (PH)5IFTFBSF bacterial-dominated food webs with rapid cycling of

  3. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Properties RIBBON DEMONSTRATION t Figure 2.6 Lecture 2 Reference: A 1 a) iii PURPOSE To show that clay is plastic (Properties of clays (see several demonstrations in Supplemental Demonstrations and Examples): Sticky (adhesion—sticks to other things) (Target Demonstration) Plastic (

  4. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    too small to see with the naked eye b. They are not all thattoo small to see with the naked eye b. They are not all thatyou can see with the naked eye, such as plant roots,

  5. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    enhancing air and water quality Soil filters and chemicallyfilter feeding on bacteria, yeast, and algae in the soil waterfilter paper disks can be dipped in a bucket of water with

  6. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Soil filters and chemically alters water The definition offilter feeding on bacteria, yeast, and algae in the soil waterfilter paper disks can be dipped in a bucket of water with

  7. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Texture 9. The rate at which water moves through the soil isinfluence the available water-holding capacity of the soil?True False 3. Clay holds more water than sand. True False 4.

  8. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    S ratio since edaphic (S) microbes are also stimulated byrapid increase of microbes and thus nutrient immobilizationenvironment for plants and microbes to grow. Sometimes this

  9. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Provides essential information on soil ecosystem managementexports to a soil ecosystem? What information would you needInformation-rich resource on soil organisms offers a comprehensive guide to soil biology, soil ecosystem

  10. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    R. J. and Southard. 2011. Soil Genesis and Classification,College textbook used to teach soil classification. Dixon,Weed, eds. 1989. Minerals in Soil Environments, 2nd Edition.

  11. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    related to soils and compost; many are available as PDFs.to the soil via manure or compost, other nutrients leave thegarden is “recycled,” from compost and manures. Compost and

  12. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    by plants a) From water and air Carbon (C), Hydrogen (H),b) Soil organic matter c) Water and air i. 1/2 soil volume =A soil through which water, air, or roots penetrate slowly

  13. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    and as molecules for energy storage and transfer (ATP). Pin the production of the energy storage molecule ATP) ii.

  14. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Insects t .BOZJOTFDUTMJWFJOPSPOUIFTPJMBTMBSWBFPSBEVMUTBOEUIVTöMMNBOZGVODUJPOBM roles in the soil food

  15. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 2 - Applied Soil Science

    E-Print Network [OSTI]

    2015-01-01

    Agricul- ture, Climate Change, and Carbon Sequestration.agriculture, climate change and carbon sequestration.a key role in global climate change, as increased levels of

  16. Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms

    E-Print Network [OSTI]

    Houlsby, Guy T.

    Oxford University Civil Engineering Novel Foundations for Offshore Wind FarmsNovel Foundations for Offshore Wind Farms Prof. Guy Houlsby, Dr Byron Byrne, Dr Chris Martin Oxford University #12;Oxford each turbine does not generate all the time, say 3000) #12;Oxford University Civil Engineering Wind

  17. igger's Mirth is a collective farm located in Burlington, VT. The 5 owners farm 18 acres of

    E-Print Network [OSTI]

    New Hampshire, University of

    the Winooski River. Digger's Mirth has farmed on this land since it began in 1992. S'ra DeSantis is one of the 5 owners and managers, and has farmed with Digger's Mirth since 2000. Production Digger's Mirth means that all 5 owners make production and marketing decisions together, and divide all income evenly

  18. Aalborg Universitet Wind Turbine Control Impact on Stability of Wind Farms Based on Real-Life Systems

    E-Print Network [OSTI]

    Bak, Claus Leth

    farms. Keywords: offshore wind farms, stability analysis, stability margins, wind farm aggregation, wind used in large offshore wind farms. This affects the significant increase of complexity in wind farmAalborg Universitet Wind Turbine Control Impact on Stability of Wind Farms Based on Real

  19. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  20. AX Tank farm process impacts study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-03-18

    This study provides facility and process concepts and costs for partial decontamination of the most heavily contaminated debris from the demolition of the four AX tanks and ancillary equipment items. This debris would likely be classified as high-level and/or remote handle TRU waste based on source and radiological inventory. A process flow sheet was developed to treat contaminated metal wastes such as pipes and tank liners as well as contaminated concrete and the residual waste and grout left in the tanks after final waste retrieval. The treated solid waste is prepared for delivery to either the ERDF or the Low-Level waste burial grounds. Liquid waste products are delivered to the private vitrification contractor for further treatment and storage. This is one of several reports prepared for use by the Hanford Tanks Initiative Project to develop retrieval performance criteria for tank farms.

  1. Water UseWater Use ater is an essential part of life and an essential part of any farm. It is necessary for growing produce and often

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Water UseWater Use W ater is an essential part of life and an essential part of any farm. It is necessary for growing produce and often for cleaning produce before it is sold. Water may also be used to protect crops from frost or to apply fertilizers or pesticides. Ensuring that you have clean water

  2. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  3. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  4. MATHMATICS & APPLIED STATISTICS

    E-Print Network [OSTI]

    Frey, Jesse C.

    MATHMATICS & APPLIED STATISTICS Graduate Studies in Build Your Future with Graduate Study in Mathematics or Applied Statistics Our graduate programs can help you advance your career in education will deepen your knowledge and prepare you for further study. The Master of Science in Applied Statistics

  5. Suggestions for Controlling Insects in Farm-Stored Grain. 

    E-Print Network [OSTI]

    Hamman, Philip J.

    1982-01-01

    Suggestions B-1410 for Controlling Insects ? In Farm-Stored Grain The Texas A&M University System ? Texas Agricultural Extension Service JUN 2 0 2002 Zerle L. Carpenter . Director College Station Figure 1. The map shows, by regions, the degree... to which farm-stored grain in the United States is subject to insect attack: Region 1, little if any damage occurs to grain on the farm during the first season's storage. Region 2, insects may be troublesome during the first season. Region 3, insects...

  6. APPLIED ISSUES Impacts of cattle on amphibian larvae and the aquatic

    E-Print Network [OSTI]

    Gray, Matthew

    APPLIED ISSUES Impacts of cattle on amphibian larvae and the aquatic environment A. CHANDLER 1. Agricultural practices such as cattle farming may have direct or indirect negative effects and algal and detrital biomass once per month at seven wetlands (three cattle-access and four non

  7. Collection Policy: AGRICULTURAL AND APPLIED ECONOMICS Subject Scope | Priority Tables | Other policies . . .

    E-Print Network [OSTI]

    Angenent, Lars T.

    and specialists. #12;1.6 Noteworthy facilities (e.g. unique classrooms, laboratories, farms, etc.) 2.0 SUBJECT in the state of New York, nationally and internationally. According to the departmental Web page DESCRIPTION AND GUIDELINES 2.1 Subject definition Studies within the department of Applied Economics

  8. Aalborg Universitet Wind Farm Structures' Impact on Harmonic Emission and Grid Interaction

    E-Print Network [OSTI]

    Bak, Claus Leth

    characteristic is investigated in this paper. The largest wind farms in the world, Horns Rev 2 Offshore Wind Farm turbines (WTs) with full-scale converters used in large offshore wind farms (OWFs) is increasing into consideration, the largest in the world Horns Rev 2 Offshore Wind Farm and located in Poland Karnice Onshore

  9. A Framework to Determine the Probability Density Function for the Output Power of Wind Farms

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

  10. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power, is therefore directed towards optimising the integration of large wind farms within the electrical power grid

  11. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-11

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  12. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-11-19

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) leak causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105, and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  13. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-09-04

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  14. Impacts of Farm Policies and Technology on the Economic Viability of Texas Southern High Plains Wheat Farms

    E-Print Network [OSTI]

    Richardson, James W.; Smith, Edward G.

    1985-01-01

    the relative magnitude of real financial growth. ? Acres owned, leased, and controlled at the end of the planning horizon for each iteration indicate the impacts of alternative scenarios on the rate of growth for representative farms. These three statistics...~ :) ,'---( _..----' I ... - Impacts of Farm Policies and Technology on the Economic Viability of Southern High Plains Wheat Farms tiD'" A".,V SEP 04 1985 8-1506 August 1985 THE TEXAS AGRICULTURAL EXPERIMENT STATION/Neville P. Clarke, DirectorlThe Texas A...

  15. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  16. Rhode Island to Build First Offshore Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  17. Russel and Karen Wolter: Down to Earth Farm

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    Wolter: It’s called sheet composting. We did that up until,Because we started composting horse manure from Pebbleon Organic Farming and Composting was sponsored by Rodale

  18. Forest Clearing Among Farm Households in the Maya Biosphere Reserve*

    E-Print Network [OSTI]

    Lopez-Carr, David

    Forest Clearing Among Farm Households in the Maya Biosphere Reserve* David L. Carr University, Pete´n, to agri- cultural settlement (Bilsborrow and Carr 2001). Since the southern half

  19. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  20. Argonne National Laboratory Develops Extreme-Scale Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of...

  1. Coordinated control and network integration of wave power farms 

    E-Print Network [OSTI]

    Nambiar, Anup Jayaprakash

    2012-11-29

    Significant progress has been made in the development of wave energy converters (WECs) during recent years, with prototypes and farms of WECs being installed in different parts of the world. With increasing sizes of ...

  2. EIS-0376: White Wind Farm Brookings County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal by Western to interconnect its proposed White Wind Farm Project (Project) to Western’s transmission system at the existing White...

  3. Economic and financial implications of shrimp farming in West Texas 

    E-Print Network [OSTI]

    Britt, David Westbrook

    1995-01-01

    of losing 100'-. of the shrimp in all of the ponds during the production of a single crop. With catastrophic events, the shrimp farm was projected to have negative net returns 80% of the time....

  4. Epidemiology of Airborne Virulent Rhodococcus equi at Horse Breeding Farms 

    E-Print Network [OSTI]

    Kuskie, Kyle Ryan

    2012-02-14

    Rhodococcus equi causes severe pneumonia, resulting in disease and sometimes death of foals. Infection is thought to occur by inhalation of dust contaminated with virulent R equi. A recent study of 3 horse breeding farms in Ireland found airborne...

  5. Economic implications of anaerobic digesters on dairy farms in Texas 

    E-Print Network [OSTI]

    Jackson, Randy Scott, Jr.

    2007-09-17

    are forcing dairies and policymakers to balance environmental concerns with farm profitability. Dairies are entering a realm filled with technologies to combat waste concerns. Anaerobic digester technology may play a role in helping dairies balance profit...

  6. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Institute (EPRI). The EnergyFarm will displace a planned 73 million natural-gas-fired power plant intended to smooth (or firm) the output of intermittent wind and...

  7. María Luz Reyes and Florentino Collazo: La Milpa Organic Farm

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    farm.org/. Beginnings María Luz Reyes and Florentino CollazoFlorentino Collazo and María Luz Reyes. Hello, how are you?1963. Reyes: My name is María Luz and I was born on a ranch

  8. Stephen Kaffka: Pioneering UCSC Farm and Garden Manager, Agronomist

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    still there. They have a big compost project there. The kidsand collect lumber and compost for the new Farm with thedescribing how to make compost, dig beds and [other things])

  9. Nancy Gammons: Four Sisters Farm and Watsonville Farmers' Market Manager

    E-Print Network [OSTI]

    Rabkin, Sarah

    2010-01-01

    Irrigation Rabkin: Do you use compost or any other inputsfrom outside the farm? Gammons: We no longer use compost.The reason we don’t use compost is because it requires

  10. Energy Department Joins Farm to Fly 2.0

    Broader source: Energy.gov [DOE]

    During Biomass 2014, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson announced that the Energy Department is joining Farm to Fly 2.0 to support the development of sustainable biofuels that require no jet engine modifications.

  11. Russel and Karen Wolter: Down to Earth Farm

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01

    saw in there, Down to Earth, he actually had his daughter,our organic brand, Down to Earth. It doesn’t mean we weren’tand Karen Wolter Down to Earth Farm Born in Pacific Grove,

  12. An assessment of the equitability of farm program payments 

    E-Print Network [OSTI]

    Higgins, Lindsey Marie

    2006-08-16

    the board will likely affect each commodity group uniquely, thus creating a need to evaluate the current distribution of funding and the relative benefits associated with this distribution. The equitable distribution of farm program payments has been...

  13. Wind Farm Growth Through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the 2012 Wind Technologies Market Report, we are excited to break down some recent EIA data not included in the report that shows significant wind farm growth across the nation....

  14. On-Farm Small-Scale Waste Energy Demonstration

    SciTech Connect (OSTI)

    2006-08-01

    This project is composed of three tasks: development of feedstock pocessing, handling, storage cost estimates, gasifier system development, and on-farm testing of the resulting gasification and power generation system.

  15. Characteristics and Changes in the Texas Farm Population. 

    E-Print Network [OSTI]

    Skrabanek, R. L.

    1955-01-01

    in the same direction as in the nation and the West South Central division, comprising Arkansas, Louisiana, Oklahoma and Texas. Before 1937, the State's farm population did not decline as rapidly as in the nation or West South Central division. Since 1945... is more important numerically than the city population. In 30 counties, more than 50 percent of the people were classified as rural farm residents in 1950. In 85 counties, more than 40 percent of the people were similarly classified. Nonwhites comprised...

  16. Design and analysis of financial statements for the farm sector 

    E-Print Network [OSTI]

    Alexander, Catheryn Ricketts

    1986-01-01

    to equity financing and ability to cover fixed charges, (4) profitability ratios which measure the overall performance of the sector and its efficiency in the manage- ment of assets, liabilities, and equity, and (5) efficiency ratios, which measure... did not include unrealized capital gains. Second, the calculation of the return on farm business assets required the deduction of an imputed return to labor and management. Finally, many farm operators were willing to accept a lower return to main...

  17. Comparison of radiological dose pathways for tank farm accidents

    SciTech Connect (OSTI)

    Van Keuren, J.C.

    1996-10-30

    This calculation note documents an evaluation of the doses from submersion and ground shine due to a release of tank farm radioactive materials, and a comparison of these doses to the doses from inhalation of the materials. The submersion and ground shine doses are insignificant compared to the inhalation doses. The doses from resuspension are also shown to be negligible for the tank farm analysis conditions.

  18. Comparative physical limnology of farm ponds in Southcentral Texas 

    E-Print Network [OSTI]

    Meyers, Dewey Gregory

    1973-01-01

    COMPARATIVE PHYSICAL LIMNOLOGY OF FARM PONDS IN SOUTHCENTRAL TEXAS A Thesis by DEWEY GREGORY MEYERS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1973 Ma)or Subject: Biology COMPARATIVE PHYSICAL LIMNOLOGY OF FARM PONDS IN SOUTHCENTRAL TEXAS A Thesis by DEWEY GREGORY MEYERS Approved as to style and content by: (Chairma of Committee) / i/y'/ /', . nf (Head 'of Depart'ment) (Member...

  19. Taking stock of renewables: NREL teaches farm and ranch appliations

    SciTech Connect (OSTI)

    Marsh, M.G. [NREL, Golden, CO (United States)

    1996-09-01

    NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

  20. Karen Avenue Wind Farm II (San Gorgonio Farms) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh Town Corporationsource History View NewFarm II

  1. Economic Implications of Applying Effluent for Irrigation in the Texas High Plains. 

    E-Print Network [OSTI]

    Victurine, Raymond F.; Goodwin, H.L.; Lacewell, Ronald D.

    1985-01-01

    and groundwater irrigated farms, the respective increases in returns are 170% and 65%. Keywords: Wastewater/rural communities/sewage treatment/waste disposal ECONOMIC IMPLICATIONS OF APPLYING EFFLUENT FOR IRRIGATION IN THE TEXAS HIGH PLAINS Raymond F... .......... . . . .................... . .................. 14 ACKNOWLEDGMENTS ....................................... 17 ii ECONOMIC IMPLICATIONS OF APPLYING EFFLUENT FOR IRRIGATION IN THE TEXAS HIGH PLAINS INTRODUCTION Wastewater treatment through land application has been practiced for decades...

  2. Teaching Direct Marketing and Small Farm Viability: Resources for Instructors, 2nd Edition. Part 7 - Food Safety on the Farm

    E-Print Network [OSTI]

    2015-01-01

    on the Farm b) Manure/compost is often readily available tomanure or manure-based compost can be of major concern withmanure (raw or composted*), compost, and other amendments

  3. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical...

  4. Applied Math Publications

    E-Print Network [OSTI]

    The following sample of the publications has been made available to you by members of the Applied faculty through their personal homepages. Prof. Zhiqiang

  5. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world...

  6. INTRODUCTION APPLIED GEOPHYSICS

    E-Print Network [OSTI]

    Merriam, James

    GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am

  7. Applied Music Curriculum Guide

    E-Print Network [OSTI]

    Kearfott, R. Baker

    1 Applied Music Curriculum Guide The University of Louisiana at Lafayette School of Music #12;2 Revised Spring 2009 UNIVERSITY OF LOUISIANA, Lafayette SCHOOL OF MUSIC APPLIED MUSIC CURRICULUM GUIDE Dr. Garth Alper, Director DEGREES OFFERED Bachelor of Music with emphases in Performance, Theory

  8. ICPP tank farm closure study. Volume 1

    SciTech Connect (OSTI)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  9. PUBLISHED ONLINE: 29 APRIL 2012 | DOI: 10.1038/NCLIMATE1505 Impacts of wind farms on land surface temperature

    E-Print Network [OSTI]

    Zhou, Liming

    LETTERS PUBLISHED ONLINE: 29 APRIL 2012 | DOI: 10.1038/NCLIMATE1505 Impacts of wind farms on land a region in west-central Texas, where four of the world's largest wind farms are located7 . Our results farms relative to nearby non-wind-farm regions. We attribute this warming primarily to wind farms as its

  10. Analytical Chemistry Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture ManagementAnalytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology

  11. Annual report 2007 + Rice farming\\Thailand.

    E-Print Network [OSTI]

    : natural hazards and climate, ecosystems, access to water, food security, health and globalisation. In 2007 not only to reduce greenhouse gas emissions but also to apply strategies enabling populations to adapt and lagoons, deserts etc.) and population health. \\Prevention and management of natural and environmental

  12. Sandia Energy - Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied & Computational Math Home Energy Research Advanced Scientific Computing Research (ASCR) Applied & Computational Math Applied & Computational Mathcwdd2015-03-26T13:34:5...

  13. KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics

    E-Print Network [OSTI]

    Columbia University

    MEMBERSHIP OF PROFESSIONAL SOCIETIES IEEE, Materials Research Society (MRS); American Physical Society (APS1 KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics Seeley W. Mudd. of Applied Physics and Applied Mathematics, Columbia University 2011-present Philips Electronics Professor

  14. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  15. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    E-Print Network [OSTI]

    Aberdeen, University of

    Framework for assessing impacts of pile-driving noise from offshore wind farm construction Keywords: EU habitats directive Appropriate assessment Population consequences Disturbance Offshore wind farm Marine mammal Offshore wind farm developments may impact protected marine mammal populations

  16. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  17. Production and Use of Alcohol on the Farm

    E-Print Network [OSTI]

    O'Neal, Henry; Rothe, Joe M.

    1981-01-01

    : '_ ? ? .r :' ' : , Production and Use of Alcohol on the Farm Henry O'Neal and Joe M. Rothe* To become energy independent, many ag ricultural producers have considered on-farm fuel production. The most popular home-made fuel is ethyl alcohol (ethanol... duction is as easy as making corn liquor. Howev er, moonshiners produce a product of only 80 to 100 proof. Modern alcohol fuel plants produce a product up to 200 proof in large quantities. Such production is not a simple operation and takes careful...

  18. On-Farm Storage and Disposal of Sorghum Grain. 

    E-Print Network [OSTI]

    Brown, Charles W.; Moore, Clarence A.

    1963-01-01

    handspray to fumigate. Slightly less than half in the Coastal Bend used their aeration systems and one-third used handsprays. Insects are a major problem of farm storage, and farmers were not successful entirely in control prac- tices. -,- Insects... constituted 18 percent of the reasons for loss in the High Plains, 40 percent in the North Central area and 60 percent in the Coastal Bend. Adequacy of Practices to Maintain Quality The adequacy of quality control practices for farm-stored sorghum grain...

  19. Home and Farm Security Machinery and Equipment Identification. 

    E-Print Network [OSTI]

    Nelson, Gary S.

    1982-01-01

    and so forth. mers can discourage and minimize y theft from their farms is by providing a law enforcement officers to easily identify Mark all machinery and tools with a tification number (ID). Use stamp- tools or welding to mark farm machinery... drills auger wagon) Place ID number on right side on top of tongue, 12 inches behind hitch pin. right front of front axle. Figun 40, double handles. Place your ID marking on the underside of the right handle, halfway between the top and bottom...

  20. Rate Sheet Essential in Long and Short Time Farm Loans. 

    E-Print Network [OSTI]

    Bennett, R. L.; Paris, M. S.

    1916-01-01

    and a rate sheet designed by the writer, published by the Extension Service of the Texas A. and M. College may be had on application. Detailed incomes of safe and unsafe farming are exhibited. The Texas Bankers Association under its former president, Joe... Hirsch, began actively urging the use of the crop credit statement shown in this bulletin in making loans to farmers. Credit based on this state- ment attached to farmers' notes, showing safe farming, whether offered by merchants or by banks, should...

  1. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science...

  2. Implications of the full flexibility provision of the 1996 Farm Bill on regional planting 

    E-Print Network [OSTI]

    Mabray, Katherine

    2000-01-01

    Bill introduced the concept of flexibility. Framers were allowed to change their planting choice by utilizing the new Farm Bill provisions. However, previous to the 1996 Farm Bill, farmers had limited options for switching cropping patterns except...

  3. The Soviet Farm Complex : industrial agriculture in a Socialist context, 1945-1965

    E-Print Network [OSTI]

    Smith, Jenny Leigh

    2006-01-01

    "The Soviet Farm Complex" is a history of food, farming and the environment in the postwar Soviet Union. It tells the story of how different technical and institutional authorities created an industrial Soviet countryside ...

  4. Preserving a form : a reinterpretation of the New England farm for multi-family living

    E-Print Network [OSTI]

    Richter, Gwendolyn A

    1989-01-01

    The intention of this thesis is to present residential development based on a farm model as an alternative to subdivision in a rural context. The farm is not to be replicated exactly but the overall form is to be recognizable ...

  5. How do I display the Map of Wind Farms csv coordinates in ArcMap...

    Open Energy Info (EERE)

    I display the Map of Wind Farms csv coordinates in ArcMap software? Home > Groups > Geospatial I downloaded the Map of Wind Farms data as a .csv from http:en.openei.orgwiki...

  6. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Environmental Management (EM)

    8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download...

  7. Automatic contour-based road network design for optimized wind farm micrositing

    E-Print Network [OSTI]

    Gu, H; Wang, J; Lin, Q; Gong, Q

    2015-01-01

    and R. Guanche, “Offshore wind farm layout opti- mization1] S. Zhao and R. Li, “Study on wind power generation costin Zhejiang: Analysis of wind farm construction cost,” East

  8. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply ApplicationApply

  9. Framework for assessing impacts of pile-driving noise from offshore wind farm construction on a harbour seal population

    SciTech Connect (OSTI)

    Thompson, Paul M.; Hastie, Gordon D.; Nedwell, Jeremy; Barham, Richard; Brookes, Kate L.; Cordes, Line S.; Bailey, Helen; McLean, Nancy

    2013-11-15

    Offshore wind farm developments may impact protected marine mammal populations, requiring appropriate assessment under the EU Habitats Directive. We describe a framework developed to assess population level impacts of disturbance from piling noise on a protected harbour seal population in the vicinity of proposed wind farm developments in NE Scotland. Spatial patterns of seal distribution and received noise levels are integrated with available data on the potential impacts of noise to predict how many individuals are displaced or experience auditory injury. Expert judgement is used to link these impacts to changes in vital rates and applied to population models that compare population changes under baseline and construction scenarios over a 25 year period. We use published data and hypothetical piling scenarios to illustrate how the assessment framework has been used to support environmental assessments, explore the sensitivity of the framework to key assumptions, and discuss its potential application to other populations of marine mammals. -- Highlights: • We develop a framework to support Appropriate Assessment for harbour seal populations. • We assessed potential impacts of wind farm construction noise. • Data on distribution of seals and noise were used to predict effects on individuals. • Expert judgement linked these impacts to vital rates to model population change. • We explore the sensitivity of the framework to key assumptions and uncertainties.

  10. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  11. Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-11-15

    5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

  12. Teaching Organic Farming and Gardening: Resources for Instructors, 3rd Edition. Part 1 - Skills and Practices

    E-Print Network [OSTI]

    2015-01-01

    this ingredient has a carbon footprint needing furtherthus reducing the overall carbon footprint of the farm while

  13. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  14. Final Report DE-EE0005380 - Assessment of Offshore Wind Farm...

    Broader source: Energy.gov (indexed) [DOE]

    interference to various kinds of equipment operating in the marine environment where offshore wind farms could be installed. assessmentoffshorewindeffectsonelectronicsys...

  15. Alternative Uses for Resources in Part-time Farming in Northeast Texas. 

    E-Print Network [OSTI]

    Martin, James R.; Southern, John H.

    1963-01-01

    Employment c Available Farm Labor ... Resources Required To Use Yresent Off-farm Labor in Farming ......... idered ...... Returns to capital and labor represented by these situation$ are low. This is emphasized by comparing returns from rentinr out... the land (reserving the dwelling and other buildings and' acres) with returns from other farm plans. In the situations analyzed, renting out would require only $41 operating capital anc 80 hours of labor, yet it would return incomes of $255 to $408 per...

  16. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect (OSTI)

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  17. Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-05-15

    This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  18. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  19. Hanford Single-Shell Tank Leak Causes and Locations - 241-U Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-12-02

    This document identifies 241-U Tank Farm (U Farm) leak causes and locations for the 100 series leaking tanks (241-U-104, 241-U-110, and 241-U-112) identified in RPP-RPT-50097, Rev. 0, Hanford 241-U Farm Leak Inventory Assessment Report. This document satisfies the U-Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  20. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  1. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  2. Journal of applied mechanics

    E-Print Network [OSTI]

    Nov 11, 2009 ... Location: Engineering (Periodicals) ... wave propagation in such systems is examined in reference (4). Gassman (5, 6) has ... Now Research Scientist at Missile. Systems ... Presented at the Applied Mechanics Division Summer Conference,. Berkeley ..... This will be true in some cases for a water- saturated ...

  3. SUSTAINABILITY WHO CAN APPLY

    E-Print Network [OSTI]

    FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting

  4. APPLYING RESEARCH ON METACOGNITION

    E-Print Network [OSTI]

    School of Medicine01/09/14 #12;Define metacognition and explain its importance in teaching and learning, understand key genetic terms.) Next, apply knowledge to determine inheritance patterns and to formulate students presume that a best response strategy is to relate everything they know about a subject figuring

  5. CH2M Hill Heat Stress Mitigation Efforts During Tank Farm Work Activities

    SciTech Connect (OSTI)

    Smoot, W.L. [CH2M HILL Hanford Group, Inc., Richland, WA (United States)

    2007-07-01

    In the past, while working under the hot summer sun at the Hanford Tank Farms, workers were assigned a protective work-rest regimen and heat stress mitigation efforts were applied to prevent heat-related illnesses and minimize impacts to project schedules. In February 2006, CH2M HILL kicked off a heat stress improvement initiative led by an experienced person emphasizing the importance of worker involvement, employee education, and the application of the ALARA, or As Low As Reasonably Achievable, concepts of engineered controls, administrative controls, personal protective equipment, and physiological and work site monitoring. As a result of this initiative built upon previous years' efforts, CH2M HILL experienced increased 'wrench time' during the summer of 2006 with fewer heat-related illnesses than in previous years. (authors)

  6. 1 INTRODUCTION Suitable sites for wind farms on land are scarce in

    E-Print Network [OSTI]

    Heinemann, Detlev

    viability of offshore wind farms depends on the compensation of the additional installation cost by a higher. In the current planing phase offshore wind measure- ments are being made at three prospective wind farm sites offshore wind farm which is lo- cated about 2 km from the coast. Thus the measure- ments cover

  7. Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation

    E-Print Network [OSTI]

    the effects of array layout on the performance of offshore wind farms. Array layout is characterized on peri- odic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm ApplicationsQuantifying the sensitivity of wind farm performance to array layout options using large

  8. A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation

    E-Print Network [OSTI]

    Ding, Yu

    . Many wind farms are located in remote areas or offshore and are therefore, less accessible. FurtherA Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation Eduardo P´erez, Lewis 3131 TAMU, College Station, TX 77843, USA. eduardopr@tamu.edu and ntaimo@tamu.edu Keywords: Wind farm

  9. Hurricane wind fields needed to assess risk to offshore wind farms

    E-Print Network [OSTI]

    Jaramillo, Paulina

    LETTER Hurricane wind fields needed to assess risk to offshore wind farms In their paper in PNAS losses attributable to hurricane activity at four hypothetical offshore wind farm sites. We found one a 20-y typical wind farm lifetime. They combined a county annual landfall frequency probability density

  10. Wind resources and wind farm wake effects offshore observed from satellite

    E-Print Network [OSTI]

    Wind resources and wind farm wake effects offshore observed from satellite Charlotte Bay Hasager to quantify the wake effect at two large offshore wind farms in Denmark. It is found that the wake velocity further. There is fast progress on planning and installation of offshore wind farms in the European waters

  11. TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    TRANSMISSION OPTIONS FOR OFFSHORE WIND FARMS IN THE UNITED STATES Sally D. Wright, PE Anthony L@ecs.umass.edu, rerl@ecs.umass.edu Abstract While offshore wind farms have been installed in Europe for over a decade an introduction to transmission issues for offshore wind farms in North America, aimed towards non

  12. Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach

    E-Print Network [OSTI]

    Boyer, Edmond

    Environmental impact for offshore wind farms: Geolocalized Life Cycle Assessment (LCA) approach and floating offshore wind farms. This work was undertaken within the EU- sponsored EnerGEO project, aiming, and its use for the evaluation of environmental impacts of wind energy. The effects of offshore wind farms

  13. Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms Sten Frandsen*, Rebecca areas.As is often the need for offshore wind farms, the model handles a regular array geometry for offshore wind farms, the model handles a priori a regular array geometry with straight rows of wind

  14. Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen, Merete Bruun Christiansen

    E-Print Network [OSTI]

    Mesoscale modelling for an offshore wind farm Jake Badger*, Rebecca Barthelmie, Sten Frandsen for an offshore wind farm in a coastal location. Spatial gradients and vertical profiles between 25 m and 70 m offshore wind farms tend to be placed within the coastal zone, the region within around 50km from

  15. Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1)

    E-Print Network [OSTI]

    that the active power supplied from the first large 160 MW offshore wind farm in this system, Horns Rev today). Figure 1. Power generation of Horns Rev offshore wind farm and onshore turbines, January 18 2005Models for Assessing Power Fluctuations from Large Wind Farms N. A. Cutululis1) , P. Sørensen1) , A

  16. Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J to the large dimensions of offshore wind farms, their electricity production must be known well in advance networks) models were calibrated on power data from two offshore wind farms: Tunoe and Middelgrunden

  17. Models for monitoring wind farm power Andrew Kusiak*, Haiyang Zheng, Zhe Song

    E-Print Network [OSTI]

    Kusiak, Andrew

    Models for monitoring wind farm power Andrew Kusiak*, Haiyang Zheng, Zhe Song Department online 9 July 2008 Keywords: Wind farm Data mining Power prediction Monitoring Evolutionary computation Control chart a b s t r a c t Different models for monitoring wind farm power output are considered. Data

  18. Modelling of offshore wind turbine wakes with the wind farm program FLaP

    E-Print Network [OSTI]

    Heinemann, Detlev

    Modelling of offshore wind turbine wakes with the wind farm program FLaP Bernhard Lange(1) , Hans from the Danish offshore wind farm Vindeby. Vertical wake profiles and mean turbulence intensities are not modelled satisfactorily. Keywords: Offshore, wind farm, wake model, Vindeby, turbulence intensity

  19. Aalborg Universitet Transient Studies in Large Offshore Wind Farms, Employing Detailed Circuit Breaker

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Transient Studies in Large Offshore Wind Farms, Employing Detailed Circuit Studies in Large Offshore Wind Farms, Employing Detailed Circuit Breaker Representation. Electrical Power 1996-1073 www.mdpi.com/journal/energies Article Transient Studies in Large Offshore Wind Farms

  20. Aalborg Universitet Optimal Selection of AC Cables for Large Scale Offshore Wind Farms

    E-Print Network [OSTI]

    Hu, Weihao

    Aalborg Universitet Optimal Selection of AC Cables for Large Scale Offshore Wind Farms Hou, Peng Cables for Large Scale Offshore Wind Farms. In Proceedings of the 40th Annual Conference of IEEE of AC Cables for Large Scale Offshore Wind Farms Peng Hou, Weihao Hu, Zhe Chen Department of Energy

  1. Aalborg Universitet Harmonic Analysis of Offshore Wind Farms with Full Converter Wind Turbines

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Harmonic Analysis of Offshore Wind Farms with Full Converter Wind Turbines Analysis of Offshore Wind Farms with Full Converter Wind Turbines. In Proceeding of the 8th International.aau.dk on: juli 06, 2015 #12; Abstract--This paper presents the harmonic analysis of offshore wind farm (OWF

  2. Aalborg Universitet Models for HLI analysis of power system with offshore wind farms and distributed

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    Aalborg Universitet Models for HLI analysis of power system with offshore wind farms for Offshore Wind farms Publication date: 2008 Document Version Publisher final version (usually the publisher with offshore wind farms and distributed generation. In Proc. of 7th International Workshop on Large- Scale

  3. Optimizing a Model for Siting Offshore Wind Farms using a Genetic Algorithm

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Optimizing a Model for Siting Offshore Wind Farms using a Genetic Algorithm *Michael Ameckson Science Foundation. Generating electricity using offshore wind farms can assist coastal regions to meet growing electricity demands supported by a renewable source [4]. However modeling wind farm siting must

  4. Aalborg Universitet Transient studies in large offshore wind farms, taking into account network/circuit

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Transient studies in large offshore wind farms, taking into account network as well as Transmission Networks for Offshore Wind Farms Publication date: 2011 Document Version Author in large offshore wind farms, taking into account network/circuit breaker interaction. In Proceedings

  5. Letter to the Editor The precautionary principle and wind-farm planning: Data

    E-Print Network [OSTI]

    Donázar, José A.

    Letter to the Editor The precautionary principle and wind-farm planning: Data scarcity does the value of our work as the first large-scale assessment of wind farms on the population viability of an endan- gered species. However, these authors argue that (1) wind-farms in Andalusia (SE Spain) have been

  6. Modelling Tools for Wind Farm Upgrading Hans Georg Beyer*, Bernhard Lange, Hans-Peter Waldl

    E-Print Network [OSTI]

    Heinemann, Detlev

    Modelling Tools for Wind Farm Upgrading Hans Georg Beyer*, Bernhard Lange, Hans-Peter Waldl Section-Antipolis, France ABSTRACT: Planning of modifications of existing wind farms by adding or replacing turbines makes new demands on wind farm modelling. Emphasis shifts from the calculation of the mean efficiency

  7. Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms

    E-Print Network [OSTI]

    Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid farms are interconnected in an array, wind speed correlation among sites decreases and so does

  8. The Effect of Wind Farms on Residential Property Values in Lee County, Illinois

    E-Print Network [OSTI]

    Branoff, Theodore J.

    The Effect of Wind Farms on Residential Property Values in Lee County. The county is home to the first commercial wind farm constructed in Illinois, which began operation in November of 2003. Additional wind farms began operating in April of 2007 and December of 2009. Although

  9. Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms

    E-Print Network [OSTI]

    Gao, Grace Xingxin

    Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms Derek Chen, and inexpensively is critical for both optimizing the installation of wind turbines on a wind farm, and predicting. Finally, the system is tested on a local wind farm. It has been shown that GPS provides a viable method

  10. GIS-based wind farm site selection: Evaluating the case for New York State

    E-Print Network [OSTI]

    Bergman, Keren

    GIS-based wind farm site selection: Evaluating the case for New York State E-mail: rv2216@columbia Conference, Saratoga Springs, NY, November 15, 2011 #12;Where to build a 50 MW wind farm? 1. What sites.clca.columbia.edu GIS-based wind farm site selection: evaluating the case for New York State ­ NEARC GIS conference 2011

  11. WIND FARM PROXIMITY AND PROPERTY VALUES: APOOLED HEDONIC REGRESSION ANALYSIS OF

    E-Print Network [OSTI]

    Branoff, Theodore J.

    WIND FARM PROXIMITY AND PROPERTY VALUES: APOOLED HEDONIC REGRESSION ANALYSIS OF PROPERTY VALUES IN CENTRAL ILLINOIS Jennifer L. Hinman #12;Hinman, J.L. (2010) Wind Farm Proximity and Property Values Page 2 of 143 WIND FARM PROXIMITY AND PROPERTY VALUES: APOOLED HEDONIC REGRESSION ANALYSIS OF PROPERTY VALUES

  12. Energy Policy 36 (2008) 2333 Change in public attitudes towards a Cornish wind farm

    E-Print Network [OSTI]

    2008-01-01

    Energy Policy 36 (2008) 23­33 Viewpoint Change in public attitudes towards a Cornish wind farm to particular wind farm developments from the local population which can result in planning permission being to a wind farm change after an extended period following commissioning. Residents of St. Newlyn East

  13. Aalborg Universitet Switching studies for the Horns Rev 2 wind farm main cable

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Switching studies for the Horns Rev 2 wind farm main cable Jensen, Christian studies for the Horns Rev 2 wind farm main cable. In Proceedings of the International Conference on Power from vbn.aau.dk on: juli 04, 2015 #12;Switching studies for the Horns Rev 2 wind farm main cable C

  14. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  15. Entry, Exit, and Farm Size: Assessing an Experiment in Dairy Price Policy

    E-Print Network [OSTI]

    Foltz, Jeremy D.

    Entry, Exit, and Farm Size: Assessing an Experiment in Dairy Price Policy Jeremy D. Foltz* Dept and an autocorrelated generalized least squares panel data model of farm size. The Dairy Compact's price strategy of the author. #12;1 Much U.S. farm policy employs price subsidies and market interventions to benefit key

  16. Farm and Ranch Financial Management: Cash vs. Accrual Accounting 

    E-Print Network [OSTI]

    Klinefelter, Danny A.

    1996-11-01

    of commodities raised on the farm, accounts receivable, prepaid expenses, cash invested in growing crops, accounts payable, accrued expenses and deferred taxes. Many com- puterized accounting systems, and tax preparers who work with only cash based records... receivable revenues + Ending accounts receivable ? Beginning accounts payable + Ending accounts payable ? Beginning accrued expenses + Ending accrued expenses + Beginning prepaid expenses Cash ? Ending prepaid expenses Operating disbursements + Beginning...

  17. In this issue: "Special Sites" for Tree Farm Certification

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    , or endangered species of plants, trees, or wildlife would also qualify as special sites. Other special sites I effort to locate and protect special sites on his/her Tree Farm as part of the management plan. "Special do you locate special sites? Many landowners are hands-on managers and are the most knowledgeable

  18. Toward Controlled Wind Farm Output: Adjustable Power Filtering

    E-Print Network [OSTI]

    Maggiore, Manfredi

    1 Toward Controlled Wind Farm Output: Adjustable Power Filtering Barry G. Rawn, Student Member research into the limits on controllable power output from wind energy conversion systems. The viewpoint methodology that specifies the delivered power as a filtered version of available wind power. Simulation

  19. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  20. Wind Farm Diversification and Its Impact on Power System Reliability 

    E-Print Network [OSTI]

    Degeilh, Yannick

    2010-10-12

    enhancement of wind power output predictability is in itself desirable, as it would permit the accurate design of thermal conventional units dedicated only to the compensation of wind power erratic behavior. The turbines used in the studies are 3 MW Vestas...M the covariance matrix of the statistical single wind turbine power outputs ?? (i designating the farm number): 19...

  1. Dynamic Transfer Capability Analysis with Wind Farms and Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . An investigation on the effect of dynamics loads, wind farms and flexible AC transmission system (FACTS) devices capability unnecessarily limits the power transfers and is a costly and inefficient use of a network with increasing loads, the need to transfer power over long transmission lines increases. Deregulation

  2. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  3. Grain Sorghum By-Product Feeds for Farm Animals. 

    E-Print Network [OSTI]

    1951-01-01

    . GRAIN SORGHUM BY-PRODUCT FEEDS FOR FARM ANIMALS 15 SORGHUJI GLUTEN FEED Sorghum gluten feed was used in three different combi- nations in experimental rations for fattening steers. In the first ration, it was fed as the only concentrate received... .................................................................................................. 18 Sorghum gluten meal .................................................................................. 18 experimental ration ............................................................................. 18...

  4. Bureau of Indian Education Many Farms Training Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Bureau of Indian Education Many Farms Training Program for Renewable Energy at Argonne National Laboratory. Principal Contacts; Harold Myron (ANL), Anthony Dvorak (ANL), Freddie Cardenas (BIA). Supported by; United States Department of the Interior, Bureau of Indian Education, and Argonne National Laboratory

  5. Large-Scale Eucalyptus Energy Farms and Power Cogeneration1

    E-Print Network [OSTI]

    Large-Scale Eucalyptus Energy Farms and Power Cogeneration1 Robert C. Noronla2 The initiation of a large-scale cogeneration project, especially one that combines construction of the power generation supplemental fuel source must be sought if the cogeneration facility will consume more fuel than

  6. JAVA GIS, Exploratory Spatial Data Analysis and Precision Farming

    E-Print Network [OSTI]

    Cook, Di

    JAVA GIS, Exploratory Spatial Data Analysis and Precision Farming Nicholas Lewin Dept of Statistics XGobi to JAVA, as a new implementation JGobi, as a companion to this package we would like to develop our own map applica­ tion, also in JAVA that would over come platform dependencies, as well

  7. Farm to School Hands on Chef Training and

    E-Print Network [OSTI]

    Florida, University of

    Farm to School Hands on Chef Training and Smarter Lunchrooms Finding it a challenge to meet the new? We have just the thing for you! 4-6 hours* of hands-on training for District Food Service Managers and staff · Training provided by Chef David Bearl, Certified Culinary Educator and Certified Chef de Cuisine

  8. Tank farm stack NESHAP designation determinations. Revision 2

    SciTech Connect (OSTI)

    Crummel, G.M.

    1996-01-18

    This document provides a determination of the status of Tank Farm Exhausters as regulated by the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) specified in the 40 Series Code of Federal Regulations (CFRs), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities.``

  9. Operational test procedure for SY tank farm replacement exhauster unit

    SciTech Connect (OSTI)

    McClees, J.

    1995-09-26

    This operational test procedure will verify that the remaining functions not tested per WHC-SD-WM-ATP-080, or components disturbed during final installation, as well as interfaces with other tank farm equipment and remote monitoring stations are operating correctly.

  10. Information Basic to Farm Adjustments in the Rolling Plains Area of Texas. 

    E-Print Network [OSTI]

    Bonnen, C. A. (Clarence Alfred); Czarowitz, P. H. (Philmore Hempel)

    1942-01-01

    , affeptiny but few farms. Because of the local nature of hail storms they may have no widespread effect upon farm incomes, but may cause partial or complete crop failures on a few farms. Damage to young crors from wind results through the rapid movement... Station, Texas \\ i 'i RULLETIS SO. 61'1 SEPTEJPEER 1942 I -4. INFORMATION BASIC TO FARM ADJUST- BTENTS IN THE ROLLING PLAIXS AREA4 OF TEXAS Di~sion of Farm nncl Xwnch Economics 3ULTURAL AND MECH,%NICAL COLLEGE OF TEXAS T. 0. QrA2LTOY, President...

  11. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  12. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support...

  13. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  14. A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1

    E-Print Network [OSTI]

    Pryor, Sara C.

    A review of the economics of offshore wind farms Rebecca J. Barthelmie1 and Sara Pryor2,1 1 prototype offshore wind farms, developed and installed during the 1990's, to the commercial wind farms offshore wind farms compete with moderate onshore locations. We summarise the transition to increasing

  15. Short-term Wind Power Prediction for Offshore Wind Farms -Evaluation of Fuzzy-Neural Network Based Models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Short-term Wind Power Prediction for Offshore Wind Farms - Evaluation of Fuzzy-Neural Network Based of offshore farms and their secure integration to the grid. Modeling the behavior of large wind farms presents the new considerations that have to be made when dealing with large offshore wind farms

  16. Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor

    E-Print Network [OSTI]

    Carrete, Martina

    Large scale risk-assessment of wind-farms on population viability of a globally endangered long percnopterus Wind-farm Long-lived species Population viability analysis a b s t r a c t Wind-farms receive, they can have adverse effects on wildlife, particularly through collision with turbines. Research on wind-farm

  17. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone byApplied Science/Techniques

  18. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect (OSTI)

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  19. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  20. Costs, Savings and Financing Bulk Tanks on Texas Dairy Farms

    E-Print Network [OSTI]

    Moore, Donald S.; Stelly, Randall; Parker, Cecil A.

    1958-01-01

    ,s - / cwdh\\@ Costs, Savi~gs;.itd Financing Bulk Tanks on Texas Dairy Farms . ?. I I 1 i I I ! ,:ravings in hauling - 10 cents I \\ \\ 1 \\ savings in hauling - 15 cents -----------____--- 'savings in hauling - 20 cents Annual production..., 1,000 pounds Estimated number of years required for savings from a bulk tank to equal additional costs at different levels of production and savings in hauling costs. TEXAS AGRICULTURAL EXPERIMEN'T STATION R. D. LEWIS. DIRECTOR. COLLEGE STATION...

  1. Financial Management: The Key to Farm-Firm Business Management 

    E-Print Network [OSTI]

    Pena, Jose G.; Klinefelter, Danny A.

    2008-10-17

    want to succeed need to de- velop a farm/ranch business plan that outlines, in detail, how they plan to generate a profit and manage business risks. They should start by outlining specific business/personal goals and objectives and preparing... should be kept from the time the plan is implemented. Financial statements and cash flow projections with ?what if? analysis should be prepared and adjusted as often as necessary to analyze risks and keep the plan on track. Successful business...

  2. Economics of Mechanical Cotton Stripping on Blackland Farms

    E-Print Network [OSTI]

    Rogers, Ralph H.; Bonnen, C. A.

    1960-01-01

    than hir- ing labor crews to pull or snap by hand. An eco- nomical evaluation of machine versus hand harvest- ing covering both "good and "bad years, and years with and without acreage controls. indicates ' that stripping increases the returns... in which machine stripping atively new. 4n unfavorable growing season in 1952 resulted w yieltls on cooperating farms and in the area meral. Record high yielcls were obtained the ~ing year. There were no cotton acreage re- ions in 1952...

  3. Evaluating airborne radionuclide concentrations in the tank farms

    SciTech Connect (OSTI)

    Gleckler, B.P.

    1993-05-06

    The objective of this study is to determine, through the collection of grab sampling data, that an in-depth resuspension study should or should not be performed. Currently there is not enough data available to determine if a potential health hazard exists due to resuspended contamination in the tank farms. A detailed resuspension study is currently not justified, because the limited quantity of air sample data collected does not indicate the existence of a potential health hazard.

  4. Human Resources Staffing Plan for the Tank Farm Contractor

    SciTech Connect (OSTI)

    BOSLEY, J.W.

    2000-04-22

    The Human Resources Staffing Plan quantified the equivalent staffing needs required for the Tank Farm Contractor (TFC) and its subcontractors to execute the readiness to proceed baseline between FY 2000-2008. The TFC staffing needs were assessed along with the staffings needs of Fluor Hanford and the privatization contractor. The plan then addressed the staffing needs and recruitment strategies required to execute the baseline.

  5. Rosslyn Farms, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohmRoshni Powertech LtdRosslyn Farms,

  6. Pleasant Run Farm, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehemPlainsboroPlasticCalifornia:Plains,Run Farm,

  7. H-Tank Farm Waste Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs | DepartmentINDUSTRIALH-Tank Farm Waste

  8. Tank Farms at the Savannah River Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | DepartmentXIII--SMART GRID SEC.QuadrennialTank Farms at the Savannah

  9. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    SCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan Summary | 1 SCHOOL OF APPLIED TECHNOLOGY STRATEGIC PLAN SUMMARY MISSION STATEMENT The mission Technology and Management program to achieve national visibility. #12;School of Applied Technology Strategic

  10. Stochastic modeling and performance monitoring of wind farm power production

    E-Print Network [OSTI]

    Milan, Patrick; Peinke, Joachim

    2015-01-01

    We present a new stochastic approach to describe and remodel the conversion process of a wind farm at a sampling frequency of 1Hz. When conditioning on various wind direction sectors, the dynamics of the conversion process appear as a fluctuating trajectory around an average IEC-like power curve, see section II. Our approach is to consider the wind farm as a dynamical system that can be described as a stochastic drift/diffusion model, where a drift coefficient describes the attraction towards the power curve and a diffusion coefficient quantifies additional turbulent fluctuations. These stochastic coefficients are inserted into a Langevin equation that, once properly adapted to our particular system, models a synthetic signal of power output for any given wind speed/direction signals, see section III. When combined with a pre-model for turbulent wind fluctuations, the stochastic approach models the power output of the wind farm at a sampling frequency of 1Hz using only ten-minute average values of wind speed ...

  11. Assessment Of The Wind Farm Impact On The Radar

    E-Print Network [OSTI]

    Norman, Evgeny D

    2010-01-01

    This study shows the means to evaluate the wind farm impact on the radar. It proposes the set of tools, which can be used to realise this objective. The big part of report covers the study of complex pattern propagation factor as the critical issue of the Advanced Propagation Model (APM). Finally, the reader can find here the implementation of this algorithm - the real scenario in Inverness airport (the United Kingdom), where the ATC radar STAR 2000, developed by Thales Air Systems, operates in the presence of several wind farms. Basically, the project is based on terms of the department "Strategy Technology & Innovation", where it has been done. Also you can find here how the radar industry can act with the problem engendered by wind farms. The current strategies in this area are presented, such as a wind turbine production, improvements of air traffic handling procedures and the collaboration between developers of radars and wind turbines. The possible strategy for Thales as a main pioneer was given as ...

  12. Energy Economics of Farm Biogas in Cold Climates

    SciTech Connect (OSTI)

    Pillay, Pragasen; Grimberg, Stefan; Powers, Susan E

    2012-10-24

    Anaerobic digestion of farm and dairy waste has been shown to be capital intensive. One way to improve digester economics is to co-digest high-energy substrates together with the dairy manure. Cheese whey for example represents a high-energy substrate that is generated during cheese manufacture. There are currently no quantitative tools available that predict performance of co-digestion farm systems. The goal of this project was to develop a mathematical tool that would (1) predict the impact of co-digestion and (2) determine the best use of the generated biogas for a cheese manufacturing plant. Two models were developed that separately could be used to meet both goals of the project. Given current pricing structures of the most economical use of the generated biogas at the cheese manufacturing plant was as a replacement of fuel oil to generate heat. The developed digester model accurately predicted the performance of 26 farm digesters operating in the North Eastern U.S.

  13. Applied Bohmian Mechanics

    E-Print Network [OSTI]

    A. Benseny; G. Albareda; A. S. Sanz; J. Mompart; X. Oriols

    2014-10-20

    Bohmian mechanics provides an explanation of quantum phenomena in terms of point particles guided by wave functions. This review focuses on the formalism of non-relativistic Bohmian mechanics, rather than its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (non-unitary and nonlinear) quantum problems where the influence of the environment or the global wave function are unknown. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in these type of problems that present non-unitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.

  14. An Analysis of Full-Time Commercial Farms in Northeast Texas. 

    E-Print Network [OSTI]

    Edmondson, Vance W.

    1962-01-01

    with other inputs, to bring about a more productive basis for livestock production. Management is probably the most significant obstacle to increased incomes on many of the full- time commercial farms, although factors beyond the operators' control... large amounts of labor. Since the settler\\ were inclined toward family-type farm operations ant1 ownership control of land, many small-acreage farm, were established in East Texas as both a way of life and as a way of livelihood. When oil...

  15. Technology and Space - Sustainable Architecture and the Blueprint Farm [EDRA / Places Awards, 2001-2002 -- Research

    E-Print Network [OSTI]

    Moore, Steven A

    2002-01-01

    and Place: Sustainable Architecture and the Blueprint Farmand Place: Sustainable Architecture and the Blueprint Farm,no common vision of sustainable architecture, agriculture or

  16. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect (OSTI)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  17. Teaching Direct Marketign and Small Farm Viability, 2nd Edition. Unit 2 - Overview of Produce Marketing

    E-Print Network [OSTI]

    2015-01-01

    on farm products in specific markets and marketing areas.Unit 2.0 | 41 Overview of Produce Marketing 42 | Unit 2.0?Overview of Produce Marketing

  18. Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm

    SciTech Connect (OSTI)

    Girardot, Crystal L.; Harlow, Donald G.

    2014-01-08

    This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  19. An Economic Study of Farm Organization and Operation in the High Plains Cotton Area of Texas. 

    E-Print Network [OSTI]

    Bonnen, C.A.; Thibodeaux, B. H.; Magee, A.C.

    1939-01-01

    , the first of a series, contains a description of the agriculture and agricultural resources of the area and an analysis of variations in farm earnings during the period of the study. Later pl~blications will pertain to farm credit and to agricultural... adjustments in the area. The number of farms studied each year ranged from 127 to 141, or an average of 137. The average operator's earnings per farm amounted to $223 in 1931, $124 in 1932, $1,808 in 1933, $254 in 1934, and $980 in 1935. These year...

  20. Basis for Section 3116 Determination for Closure of F-Tank Farm...

    Office of Environmental Management (EM)

    slugs (known as targets) that were irradiated in the site's nuclear production reactors. Before transfer of the waste from the F Canyon to the tank farms, sodium hydroxide...

  1. Research news sidebar: Farm Smart offers hands-on experience, insight into where food comes from

    E-Print Network [OSTI]

    Meadows, Robin

    2012-01-01

    Alan Robertson, Caywood offers more than 150 daylongJanuary and February, Caywood offers a similar outreachNancy Caywood Farm Smart offers hands-on experience, insight

  2. Applying Mathematics.... ... to catch criminals

    E-Print Network [OSTI]

    O'Leary, Michael

    Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42

  3. Journal of Applied Ecology 2004

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2004 41, 922­933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922­933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41

  4. Journal of Applied Ecology 2002

    E-Print Network [OSTI]

    Holl, Karen

    Journal of Applied Ecology 2002 39, 960­970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960­970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology

  5. Journal of Applied Ecology 2007

    E-Print Network [OSTI]

    Journal of Applied Ecology 2007 44, 748­759 © 2007 The Authors. Journal compilation © 2007 British, distribution, edge, marbled murrelets, model transferability, old-growth Journal of Applied Ecology (2007) 44-nesting Alcid © 2007 The Authors. Journal compilation © 2007 British Ecological Society, Journal of Applied

  6. SY Tank Farm ventilation isolation option risk assessment report

    SciTech Connect (OSTI)

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  7. Tax Delinquency on Farm Real Estate in Texas. 

    E-Print Network [OSTI]

    Gabbard, L. P. (Letcher P.)

    1935-01-01

    Range Animal Husbandry: J. M. Jones, A. M. Chief B. L. Warwick, Ph. D., Breeding Investiga. S. P. Davis, Wool and Mohair J. H. Jones, B. S., Animal Husbandman Entomology: F. L. Thonkts, Ph. D., Chief; State Entomologist H. J. Reinhard, B. S... Engineering: J. C. Gaines. Jr.. M. S., Entomologist H. P. Smith, M. S., Chief S. E. Jones, M. S., Entomologist Main Station Farm: F. F. Bibby. B. S.. Entomologist G .T. McNess, Superintendent **R. W. Moreland. B. S.. Asst. Entomologist Apiculture (San...

  8. The Farm Credit Crisis: Policy Options and Consequences. 

    E-Print Network [OSTI]

    Duncan, Marvin; Harrington, David H.; Brake, John; Boehlje, Michael; Lee, Warren; Barry, Peter J.; Penson, John B.; Hughes, Dean W.; Knutson, Ronald D.: Richardson, James W.; Jolly, Robert W.; Lins, David A.; Klinefelter, Danny A.; Guither, Harold D.; Marshall, J. Paxton; Barkley, Paul W.

    1986-01-01

    financial stress in agriculture is short term in nature; i.e. , if we can just help financially stressed farmers hold on for a year or two, the situ ation will return to "normal". Hence, short-term policies might be effective if farm incomes improved..., the lender situ ation is a concern because failure of lenders directly affects financiall y stressed farmers , other farmers and many rural communities. Forbearance Forbearance is a conciliatory or compromlsmg approach rather than a hard-nosed approach...

  9. Distributed Generation Study/Matlink Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)Displacement TransferBennettMatlink Farm <

  10. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment CoSolar poolWind Farm LLC Jump

  11. Map of Wind Farms | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name:PowerInformationMantechMap of Wind Farms

  12. Wind Farms through the Years | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWind Energy WindFarms

  13. Saint Paul Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind Farm JumpSMUDSaint Helena:SaintPaul

  14. San Clemente Island Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind FarmSmart GridSalty

  15. Southern Minnesota Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo EnergySouthSouthInformationHills Wind Farm

  16. Stanton Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,Energy Center Wind Farm Jump

  17. Storm Lake I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump to:Storm Lake I

  18. Storm Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump to:Storm Lake III

  19. Story County Hospital Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind Farm Jump to:StormHospital

  20. Streator Cayuga Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek Wind FarmStratton Middle

  1. Top of Iowa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar TechnologiesCFR 1201EnergyInformationWind Farm

  2. Tres Vaqueros I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown ofTransportToolkitTrenton, Michigan:I Wind Farm

  3. Turtle Mountain Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack Wind FarmGEFCommunity College

  4. Twin Groves I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrackI Wind Farm Jump to:

  5. Twin Groves II (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrackI Wind Farm Jump to:7) Wind

  6. Twin Groves II (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrackI Wind Farm Jump to:7) Wind8)

  7. University of Minnesota -- Morris Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnited States: Energy ResourcesPark-- Morris Wind Farm Jump

  8. Venture Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation JumpVaronManagement IncI Wind Farm

  9. Whispering Willow I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small Community WindWhere is DBWind Farm

  10. Endeavor (3Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko, Nevada:Geothermal7) Wind Farm Jump

  11. Endeavor (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko, Nevada:Geothermal7) Wind Farm Jump8)

  12. Fowler Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWind Farm

  13. Fowler Ridge Wind Farm Phase I (Clipper) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWind FarmClipper) Jump

  14. Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWind FarmClipper)

  15. Grand Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lendsCouleeII Wind Farm Jump

  16. Grand Ridge III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lendsCouleeII Wind Farm

  17. Green Ridge Power Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagmaIncentivesEnergy | OpenWind Farm Jump to:I

  18. Green Ridge Power Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagmaIncentivesEnergy | OpenWind Farm Jump

  19. Hopkins Ridge II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm Jump to:

  20. Horse Hollow Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorse

  1. Horse Hollow II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorseII Wind

  2. Horse Hollow III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorseII WindIII

  3. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergy Services (Texas)II Wind Farm

  4. Iowa Lakes Lakota Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy) (Webinar)Lakota Wind Farm Jump to:

  5. Iowa Lakes Superior Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanianStudy) (Webinar)Lakota Wind Farm Jump

  6. JD Wind 8 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation,8 Wind Farm Jump to:

  7. JD Wind 9 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation,8 Wind Farm Jump

  8. Kenetech/Wintech Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanosh TownKenetech/Wintech Wind Farm Jump to:

  9. Klondike III I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III I Wind Farm Jump to:

  10. Klondike III II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III I Wind Farm Jump to:II

  11. Klondike III III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItronKanoshKetchikanKlondike III I Wind Farm Jump to:IIIII

  12. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf|MyetteNavitasOrcadian Wave Farm

  13. Mars Hill (2007) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta,7) Wind Farm Jump to: navigation,

  14. McAdoo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville Mt GeothermalMauna LoaMcAdoo Wind Farm Jump to:

  15. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWind LLC Wind Farm Jump to:

  16. Minn-Dakota Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search Name Minn-Dakota Wind Farm II Facility Minn-Dakota

  17. Minnesota Wind Share Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search Name Minn-Dakota Wind Farm IIMinnesota Valley

  18. Mojave 90 (3 & 5) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoe Wind Farm Jump3 & 5) Wind

  19. Mojave 90 (4) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoe Wind Farm Jump3 & 5)

  20. Mojave/Morowind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History ViewMoe Wind Farm Jump3 &