National Library of Energy BETA

Sample records for farm project albany

  1. EIS-0438: Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, Wyoming

    Broader source: Energy.gov [DOE]

    After the applicant withdrew its request to interconnect the proposed Hermosa West Wind Farm Project with Western Area Power Administration’s transmission system, Western cancelled preparation of an EIS to evaluate the potential environmental impacts of the proposal.

  2. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  3. Albany 2.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-29

    New to version 2.0 of Albany is the development of equations sets for specific application areas. These are independent research and development efforts that have chosen to use Albany as their software deployment vehicle. Because of synergies between the projects, they remain in the same code repository and are all releasing together as the Albany software.

  4. Albany HTS Power Cable | Department of Energy

    Office of Environmental Management (EM)

    Albany HTS Power Cable Albany HTS Power Cable This project involves the development and demonstration of a high-temperature superconducting (HTS) cable in the power grid in Albany, ...

  5. EA-1946: Salem-Albany Transmission Line Rebuild Project; Polk, Benton, Marion, and Linn Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 24-mile Salem-Albany No. 1 and 28-mile Salem-Albany No. 2 transmission lines between Salem and Albany, Oregon.

  6. Albany v 1.0

    Energy Science and Technology Software Center (OSTI)

    2011-01-14

    The Albany code is a general purpose finite element code for solving partial differential equations (PDEs). Albany is a research code that demonstrates how a PDE code can be built by interfacing many of the open-source software libraries that are released under Sandia's Trilinos project. Part of the mission of Albany is to be a testbed for new Trilinos libraries, to refine their methods, usability, and interfaces. Albany also serves as a demonstration code onmore » how to build an application code against an installed Trilinos project. Because of this, Albany is a desirable starting point for new code development efforts that wish to make heavy use of Trilinos. The physics solved in Albany are currently only very academic problems, such as heat transfer, linear elasticity, and nonlinear elasticity. Albany includes hooks to optimization and uncertainty quantification algorithms, including those in the Dakota toolkit.« less

  7. EIS-0457: Albany-Eugene Rebuild Project, Lane and Linn Counties, OR

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal by BPA to rebuild a 32-mile section of the Albany-Eugene 115-kilovolt No. 1 Transmission Line in Lane and Linn Counties, OR.

  8. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Pilot Project Wind Farm Jump to: navigation, search Name Hydrogen Pilot Project Wind Farm Facility Hydrogen Pilot Project Sector Wind energy Facility Type Small Scale Wind Facility...

  9. INL Wind Farm Project Description Document

    SciTech Connect (OSTI)

    Gary Siefert

    2009-07-01

    The INL Wind Farm project proposes to install a 20 MW to 40 MW wind farm on government property, consisting of approximately ten to twenty full-sized (80-meter hub height) towers with 2 MW turbines, and access roads. This includes identifying the optimal turbine locations, building access roads, and pouring the tower foundations in preparation for turbine installation. The project successfully identified a location on INL lands with commercially viable wind resources (i.e., greater than 11 mph sustained winds) for a 20 to 40 MW wind farm. Additionally, the proposed Wind Farm was evaluated against other General Plant Projects, General Purpose Capital Equipment projects, and Line Item Construction Projects at the INL to show the relative importance of the proposed Wind Farm project.

  10. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  11. Farm alcohol fuel project. Final report

    SciTech Connect (OSTI)

    Demmel, D.

    1981-11-15

    The Small Energy Project is a research and demonstration effort designed to assist small farmers in the utilization of energy conservation techniques on their farms. The Farm Alcohol Project was designed to demonstrate the production of alcohol fuels on small farms in order to reduce purchased liquid fuel requirements. The Project considered the use of on-farm raw materials for process heat and the production of fuel grade, low prood ethanol in volumes up to 10,000 gallons per year. The fuel would be used entirely on the farm. The approach considered low-cost systems the farmer could build himself from local resources. Various crops were considered for ethanol production. The interest in farm alcohol production reached a peak in 1980 and then decreased substantially as farmers learned that the process of alcohol production on the farm was much more complicated than earlier anticipated. Details of Alcohol Project experiences in ethanol production, primarily from corn, are included in this report. A one-bushel distillation plant was constructed as a learning tool to demonstrate the production of ethanol. The report discusses the various options in starch conversion, fermentation and distillation that can be utilized. The advantages and disavantages of atmospheric and the more complicated process of vacuum distillation are evaluated. Larger farm plants are considered in the report, although no experience in operating such plants was gained through the Project. Various precautions and other considerations are included for farm plant designs. A larger community portable distillery is also evaluated. Such a plant was considered for servicing farms with limited plant equipment. The farms serviced would perform only fermentation tasks, with the portable device performing distillation and starch conversion.

  12. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  13. DOE - Office of Legacy Management -- Albany_FUSRAP

    Office of Legacy Management (LM)

    Oregon Albany, Oregon, Site FUSRAP Site albany Background-The Albany, Oregon, Site was remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP was established in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission operations. History-The Albany Site is owned by the U.S. Bureau of Mines. Metallurgical research was conducted at this site for the U.S. Atomic Energy Commission and the Energy

  14. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  15. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  16. MHK Projects/Paimpol Brehat tidal farm | Open Energy Information

    Open Energy Info (EERE)

    Paimpol Brehat tidal farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  17. Project Design Concept for Transfer Piping For Project W-314 Tank Farm Restoration and Safe Operations

    SciTech Connect (OSTI)

    MCGREW, D.L.

    1999-09-28

    This Project Design Concept represents operational requirements for design of transfer piping system for Phase I of Project W-314, Tank Farm Restoration and Safe Operation Upgrades.

  18. On-farm biogas systems information dissemination project. Final report

    SciTech Connect (OSTI)

    Campbell, J.K.; Koelsch, R.K.; Guest, R.W.; Fabian, E.

    1997-03-01

    The purpose of this project was to study how farmers manage anaerobic digesters on three New York State dairy farms. Two years of data collected were from both plug-flow and tower-type mixed-flow digesters at regular intervals over a three-year period revealed that the financial return from the energy produced by a biogass system in the late 1980`s is marginal. Little difficulty was experienced in operation of the anaerobic digester; however, several farms utilizing congeneration to convert biogas into electricity and heat suffered from not applying maintenance to the congenerator in a timely fashion.

  19. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  20. Visiting NETL Albany, Morgantown or Pittsburgh | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albany GPS Coordinates: 44.623157,-123.120658 Hotel Locations Restaurant Locations Eugene Airport to NETL Albany Site Portland International Airport to NETL Albany Site Morgantown...

  1. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  2. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect (OSTI)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  3. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect (OSTI)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  4. MHK Projects/San Onofre Oweg Electricity Farm | Open Energy Informatio...

    Open Energy Info (EERE)

    Onofre Oweg Electricity Farm < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Want to Finance a Wind Farm Project in Your Community? Try Crowdfunding

    Broader source: Energy.gov [DOE]

    East River Electric Cooperative, a supplier of electric power for rural areas of South Dakota and Minnesota, used a novel approach to financing a wind farm project.

  6. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CA | Department of Energy 8: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download August 12, 2011 EIS-0458: Final Environmental Impact Statement Proposed Loan Guarantee to Support Construction and Startup of the Topaz Solar Farm, San Luis Obispo County, CA August 12, 2011 EIS-0458: DOE Notice of Availability of the Final Environmental Impact Statement Proposed Loan

  7. Caithness Shephards Flat: The Largest Wind Farm Project in the World |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Caithness Shephards Flat: The Largest Wind Farm Project in the World Caithness Shephards Flat: The Largest Wind Farm Project in the World October 12, 2010 - 5:04pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this project do? Wind farm project is projected to employ over 400 people in construction phase. It is expected to produce 845 megawatt wind-powered electrical generation, or enough wind energy to supply 235,000 homes.

  8. Workplace Charging Challenge Partner: University at Albany: State University of New York

    Broader source: Energy.gov [DOE]

    Joined the Challenge: October 2015Headquarters: Albany, NYCharging Location: Albany, NYDomestic Employees: 5,900

  9. MHK Projects/Brough Head Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    homepage Retrieved from "http:en.openei.orgwindex.php?titleMHKProjectsBroughHeadWaveFarm&oldid680140" Feedback Contact needs updating Image needs updating Reference...

  10. Albany, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Albany, New York: Energy Resources (Redirected from Albany, NY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.6525793, -73.7562317 Show Map Loading map......

  11. New York State Energy Research and Development Authority, Albany...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York State Energy Research and Development Authority, Albany, NY New York State Energy Research and Development Authority, Albany, NY This presentation on the NYSERDA Hydrogen...

  12. Albany, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Albany, New York 6 References Registered Research Institutions in Albany, New York Energy & Environmental Technology Applications Center The Energy and...

  13. EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0458: First Solar Topaz Solar Farm Project in San Luis Obispo County, CA Documents Available for Download EIS-0458: Final Environmental Impact Statement EIS-0458: DOE Notice of ...

  14. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}

  15. Metals at Albany: Past, Present, and Future

    Broader source: Energy.gov [DOE]

    Reactive metals, rare metals, specialty metals – all these terms refer to a set of elements that include titanium, hafnium, niobium, and zirconium. The processing of these metals has a very close link with the Office of Fossil Energy’s National Energy Technology Laboratory (NETL) in Albany, OR. And the work done at NETL’s Albany facility (formerly a Bureau of Mines lab) to help develop a process for using zirconium in naval submarines is featured in a new exhibit at the Albany Regional Museum.

  16. Albany, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Albany is a city in Alameda County, California. It falls under California's 9th congressional district.12...

  17. MHK Projects/Orcadian Wave Farm | Open Energy Information

    Open Energy Info (EERE)

    Deployed 4 Main Overseeing Organization Pelamis Wave Power formerly Ocean Power Delivery Project Technology *MHK TechnologiesPelamis Project Licensing Environmental...

  18. Distributed connected wind farms (Smart Grid Project) (Limerick...

    Open Energy Info (EERE)

    address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Display map Period Ma y 2009 Apr 2012 References EU Smart Grid Projects Map1 Overview This project comprises...

  19. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona...

    Office of Environmental Management (EM)

    as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project...

  20. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    SciTech Connect (OSTI)

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.

  1. EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Bureau of Land Management with DOE’s Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western’s transmission lines.

  2. EIS-0333: Maiden Wind Farm Project, Benton and Yakima Counties, Washington

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA’s proposed action to execute power purchase and interconnection agreements for the purpose of acquiring up to 50 average megawatts (aMW) (up to about 200 MW) of the project developer’s proposed Maiden Wind Farm.

  3. EIS-0448: Department of Energy Loan Guarantee to First Solar for the Proposed Desert Sunlight Solar Farm Project, California

    Broader source: Energy.gov [DOE]

    First Solar Desert Sunlight Solar Farm (DSSF) Project, proposes to develop a 550-megawatt photovoltaic solar project and proposes to facilitate the construction and operation of the Red Bluff Substation, California Desert Conservation Area (CDCA) Plan, Riverside County, California.

  4. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect (OSTI)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  5. Pantex signing ceremony kicks off wind farm project | National...

    National Nuclear Security Administration (NNSA)

    U.S. Congressman Mac Thornberry joined local dignitaries and other visitors at the Pantex Plant Thursday to make their mark on an important wind project at the Plant. The visitors ...

  6. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    SciTech Connect (OSTI)

    Ernst, Jesse; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  7. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  8. EA-1909: South Table Wind Farm Project, Kimball County, Nebraska

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed South Table Wind Project, which would generate approximately 60 megawatts from about 40 turbines, to Western’s existing Archer-Sidney 115-kV Transmission Line in Kimball County, Nebraska.

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  10. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  11. Supplement analysis for the proposed upgrades to the tank farm ventilation, instrumentation, and electrical systems under Project W-314 in support of tank farm restoration and safe operations

    SciTech Connect (OSTI)

    1997-05-01

    The mission of the TWRS program is to store, treat, and immobilize highly radioactive tank waste in an environmentally sound, safe, and cost-effective manner. Within this program, Project W-314, Tank Farm Restoration and Safe Operations, has been established to provide upgrades in the areas of instrumentation and control, tank ventilation, waste transfer, and electrical distribution for existing tank farm facilities. Requirements for tank farm infrastructure upgrades to support safe storage were being developed under Project W-314 at the same time that the TWRS EIS alternative analysis was being performed. Project W-314 provides essential tank farm infrastructure upgrades to support continued safe storage of existing tank wastes until the wastes can be retrieved and disposed of through follow-on TWRS program efforts. Section4.0 provides a description of actions associated with Project W-314. The TWRS EIS analyzes the environmental consequences form the entire TWRS program, including actions similar to those described for Project W-314 as a part of continued tank farm operations. The TWRS EIS preferred alternative was developed to a conceptual level of detail to assess bounding impact areas. For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W-314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required (Section 7.0).

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  13. Albany County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    The University of Wyoming Registered Energy Companies in Albany County, Wyoming Blue Sky Batteries Inc Blue Sky Group Inc Nanomaterials Discovery Corporation NDC Places in...

  14. DOE - Office of Legacy Management -- Albany - OR 01

    Office of Legacy Management (LM)

    Performed metallurgical research for the AEC and ERDA using enriched uranium and thorium. ... AEC Memorandum; Karl to Wunder; Subject: Thorium Scrap Stored at Bureau of Mines, Albany, ...

  15. The Albany/FELIX First Order Stokes Dycore. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The AlbanyFELIX First Order Stokes Dycore. Citation Details In-Document Search Title: The AlbanyFELIX First Order Stokes Dycore. Abstract not provided. Authors: Kalashnikova, ...

  16. FELIX: The Albany Ice Sheet Modeling Code. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    FELIX: The Albany Ice Sheet Modeling Code. Citation Details In-Document Search Title: FELIX: The Albany Ice Sheet Modeling Code. Abstract not provided. Authors: Kalashnikova, Irina ...

  17. New Albany, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. New Albany is a city in Floyd County, Indiana. It falls under Indiana's 9th congressional district.12 References...

  18. New York State Energy Research and Development Authority, Albany, NY |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy York State Energy Research and Development Authority, Albany, NY New York State Energy Research and Development Authority, Albany, NY This presentation on the NYSERDA Hydrogen Program was given on July 12, 2006. education_presentation_nyserda.pdf (2.64 MB) More Documents & Publications NYSERDA's RPS Customer Sited Tier Fuel Cell Program State of the States: Fuel Cells in America 2014 State of the States: Fuel Cells in America 2010

  19. Design review report: AN valve pit upgrades for Project W-314, tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Boes, K.A.

    1998-01-13

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314`s AN Valve Pit Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314, Tank Farm Restoration and Safe Operations, is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farms` waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project`s work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first package to be performed is the AN Valve Pit Upgrades package. The scope of the modifications includes new pit cover blocks, valve manifolds, leak detectors, transfer line connections (for future planned transfer lines), and special protective coating for the 241-AN-A and 241-AN-B valve pits.

  20. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  1. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  2. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  3. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  4. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  5. Project W-320 acceptance test report for AY-farm electrical distribution

    SciTech Connect (OSTI)

    Bevins, R.R.

    1998-04-02

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the AY-Farm Electrical Distribution System functions as required by the design criteria. This test is divided into three parts to support the planned construction schedule; Section 8 tests Mini-Power Pane AY102-PPI and the EES; Section 9 tests the SSS support systems; Section 10 tests the SSS and the Multi-Pak Group Control Panel. This test does not include the operation of end-use components (loads) supplied from the distribution system. Tests of the end-use components (loads) will be performed by other W-320 ATPs.

  6. University at Albany Students Head Back to a School Powered with Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    University at Albany's new student housing center uses a geothermal heat pump to control temperature, reduce energy use and save money.

  7. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science

    SciTech Connect (OSTI)

    Ernst, Jesse

    2015-12-15

    We report on the work done by the suny Albany faculty, postdoc and students on the ATLAS experiment at cern under doe grant DE-SC0011733.

  8. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of

  9. Systems Engineering Management Plan for Tank Farm Restoration and Safety Operations Project W-314

    SciTech Connect (OSTI)

    MCGREW, D.L.

    2000-04-19

    The Systems Engineering Management Plan for Project W-314 has been prepared within the guidelines of HNF-SD-WM-SEMP-002, TWRS Systems Engineering Management Plan. The activities within this SEMP have been tailored, in accordance with the TWRS SEMP and DOE Order 430.1, Life Cycle Asset Management, to meet the needs of the project.

  10. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  11. Microsoft PowerPoint - To NETL Albany Site from Portland, Oregon Airport (PDX) Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portland, Oregon Airport (PDX) 1. Take the AIRPORT EXIT RD. until it intersects I-205. 2. Follow I-205 SOUTH for 25 MILES to the intersection with I-5 SOUTH (Salem exit). 3. Follow I-5 SOUTH for approximately 60 miles to the 1 st Albany exit, EXIT 234B - ALBANY, PACIFIC BLVD, OREGON HIGHWAY 99. 4. Follow PACIFIC BLVD. to QUEEN AVE. 5. TURN RIGHT (WEST) on QUEEN AVE. 6 The ALBANY SITE is located on the LEFT just past WEST ALBANY HIGH SCHOOL 6. The ALBANY SITE is located on the LEFT just past WEST

  12. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect (OSTI)

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  13. Development of a farm-firm modelling system for evaluation of herbaceous energy crops. Final project report

    SciTech Connect (OSTI)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  14. Microsoft PowerPoint - To NETL Albany Site from Eugene, Oregon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eugene, Oregon Airport 1. From the EUGENE AIRPORT take HWY 99 (the airport is located off Hwy 99). 2. Follow HWY 99 NORTH from EUGENE to ALBANY. 3. Outside of EUGENE, HWY 99 splits...

  15. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect (OSTI)

    Jolly, R.C.Jr. [Washington Savannah River Company (United States); Martin, B. [Washington Savannah River Company, A Washington Group International Company (United States)

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  16. Case Study for the ARRA-funded GSHP Demonstration at University at Albany

    SciTech Connect (OSTI)

    Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu

    2015-03-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This report highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects—a distributed GSHP system at a new 500-bed apartment-style student residence hall at the University at Albany. This case study is based on the analysis of detailed design documents, measured performance data, published catalog data of heat pump equipment, and actual construction costs. Simulations with a calibrated computer model are performed for both the demonstrated GSHP system and a baseline heating, ventilation, and airconditioning (HVAC) system to determine the energy savings and other related benefits achieved by the GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, as well as the pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the demonstrated GSHP system compared with the baseline HVAC system. This case study also identifies opportunities for improving the operational efficiency of the demonstrated GSHP system.

  17. Microsoft PowerPoint - To NETL Albany Site from Eugene, Oregon Airport Directions.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eugene, Oregon Airport 1. From the EUGENE AIRPORT take HWY 99 (the airport is located off Hwy 99). 2. Follow HWY 99 NORTH from EUGENE to ALBANY. 3. Outside of EUGENE, HWY 99 splits into HWY 99 EAST and 99 WEST. 4. Take HWY 99 EAST to ALBANY (bear right at intersection). 5. You are nearing ALBANY when you pass under HWY 34. 6. Continue on 99 EAST, PACIFIC BLVD., until it intersects QUEEN AVENUE (there will be a directional sign at intersection for Albany Site). 7. Turn LEFT (WEST) on QUEEN

  18. Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report

    SciTech Connect (OSTI)

    1997-06-01

    The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

  19. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  20. New York State Energy Research and Development Authority, Albany...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Product Dev. Projects * PEM technology (8 projects, 5.2M) - Integrated Product Development - ... (2 projects, 700k) - Integrated Systems Fuel Cells: Product ...

  1. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect (OSTI)

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  3. Wolverine Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  5. Karen Avenue Wind Farm II (San Gorgonio Farms) | Open Energy...

    Open Energy Info (EERE)

    Farm II (San Gorgonio Farms) Jump to: navigation, search Name Karen Avenue Wind Farm II (San Gorgonio Farms) Facility Karen Avenue Windfarm II (San Gorgonio Farms) Sector Wind...

  6. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  7. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and

  8. EIS-0438: Draft Environmental Impact Statement | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Environmental Impact Statement EIS-0438: Draft Environmental Impact Statement Interconnection of the Proposed Hermosa West Wind Farm Project, Albany County, WY This EIS ...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion in oxy-fuel combustion environments. NETL's advanced ultra-supercritical (A-USC)...

  10. New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

    Office of Legacy Management (LM)

    State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233 Thomas Cl Jorling Commisbioner August 13, 1993 W. Alexander Williams, Ph.D. Designation 8 Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 J Dear Alexander: f ., Thank you for sending me the enclosed February 19, 1991 letter from Mr. R. Sorum of Afrimet Indussa to Mr. Andrew Wall, III, a former employee of a

  11. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    South Trent Wind Farm LLC Jump to: navigation, search Name: South Trent Wind Farm, LLC Place: Texas Sector: Wind energy Product: US-based wind project developer and special purpose...

  12. Taean Solar Farm Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Taean Solar Farm Co Ltd Jump to: navigation, search Name: Taean Solar Farm Co.,Ltd Place: South Chungcheong, Korea (Republic) Sector: Solar Product: Korea-based project developer,...

  13. Fact Sheet: Wind Firming EnergyFarm (October 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The EnergyFarm will displace a planned 73 million natural-gas-fired power plant intended to ... EnergyFarm Project Benefits * Enables integration of renewable energy technologies, ...

  14. PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM SBIR_Phase_III.pdf (228.04 KB) More Documents & Publications SBIR_Phase_III.pdf PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM - pg 3 Albany HTS Power Cable

  15. National Uranium Resource Evaluation: Albany Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire

    SciTech Connect (OSTI)

    Field, M T; Truesdell, D B

    1982-09-01

    The Albany 1/sup 0/ x 2/sup 0/ Quadrangle, Massachusetts, New York, Connecticut, Vermont, and New Hampshire, was evaluated to a depth of 1500 m for uranium favorability using National Uranium Resource Evaluation criteria. Areas of favorable geology and aeroradioactivity anomalies were examined and sampled. Most Triassic and Jurassic sediments in the Connecticut Basin, in the central part of the quadrangle, were found to be favorable for sandstone uranium deposits. Some Precambrian units in the southern Green Mountains of Vermont were found favorable for uranium deposits in veins in metamorphic rocks.

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kelly Rose Principal Investigator Research Scientist 541-967-5883 kelly.rose@netl.doe.gov Jennifer Bauer Geospatial Researcher 541-918-4507 jennifer.bauer@netl.doe.gov Jamie Brown Associate Director 304-285-5428 jamie.brown@netl.doe.gov Grant Bromhal Acting Senior Fellow 304-285-4688 grant.bromhal@netl.doe.gov Cynthia Powell Executive Director 541-967-5803 cynthia.powell@netl.doe.gov GAIA LOCATIONS Albany, Oregon Building 1, Room 315 541-918-4507 Building 28, Room 155 541-967-5964 Morgantown,

  17. Workshop Helps Empower Tribes to Make Renewable Energy Project...

    Office of Environmental Management (EM)

    farm, which is the first industrial-scale solar photovoltaic project in Indian Country. ... farm, which is the first industrial-scale solar photovoltaic project in Indian Country. ...

  18. Tjaden Farms Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Tjaden Farms Energy Purchaser Tjaden Farms Location Charles City IA Coordinates 43.170337, -92.58944 Show Map Loading map... "minzoom":false,"mappingse...

  19. Belgaum Wind Farms Private Limited BWFPL | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Belgaum Wind Farms Private Limited (BWFPL) Place: Mumbai, Maharashtra, India Zip: 400705 Product: Mumbai-based project developer and subsidiary...

  20. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  1. Visualizing Wind Farm Wake Losses using SCADA Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Reliability Enhancement for Wind Visualizing Wind Farm Wake Losses using SCADA ... the Department of Energy's Continuous Reliability Enhancement for Wind (CREW) project. ...

  2. PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM - pg 3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM - pg 3 PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM - pg 3 sbir_phase3_pg3.pdf (227.38 KB) More Documents & Publications SBIR_Phase_III.pdf PROJECT SELECTIONS FOR DOE PHASE III XLERATOR SMALL BUSINESS PROGRAM Albany HTS Power Cable

  3. EIS-0376: White Wind Farm Brookings County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal by Western to interconnect its proposed White Wind Farm Project (Project) to Western’s transmission system at the existing White...

  4. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    SciTech Connect (OSTI)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, along with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.

  5. Albany/FELIX: A parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tezaur, I. K.; Perego, M.; Salinger, A. G.; Tuminaro, R. S.; Price, S. F.

    2015-04-27

    This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less

  6. Preliminary survey report: control technology for formaldehyde emissions at Hoosier Panel, New Albany, Indiana

    SciTech Connect (OSTI)

    Mortimer, V.D.

    1982-12-01

    An onsite visit was made to the Hoosier Panel Company, New Albany, Indiana to observe processes and controls in the veneering of wood panels. Most of the bonding of the veneer to the core was accomplished through use of a urea/formaldehyde resin and a hot press method. Some work was done using a cold-press process in which the glue was heated with radio-frequency radiation. Banding of the core with solid-wood edges prior to veneering also used an adhesive that may contain formaldehyde. At least five different recipes were used for panel glue, all of which involve the Perkins L-100 urea/formaldehyde resin. A canopy hood was installed over each press. There were six wall fans in the plate cooling rooms. Airflow across the glue room was also aided by auxiliary fans. Routine air sampling was not performed. A safety committee inspected the site monthly. The local exhaust ventilation hoods had an insufficient flow rate to capture vapors beyond the boundary of the canopy openings. The facility offered a unique approach to caul plate cooling which also provided a large quantity of the general ventilation airflow. The author recommends that the auxiliary fans might be better positioned to contribute more effectively to controlling exposures.

  7. Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile

    SciTech Connect (OSTI)

    Bennett, James P.

    2004-09-01

    The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: Providing information on the performance characteristics of materials being specified for the current generation of power systems; Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

  8. PROJECT PROFILE: Interstate Renewable Energy Council | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interstate Renewable Energy Council PROJECT PROFILE: Interstate Renewable Energy Council Project Name: Integration of Solar Training into Allied Industry Professional Development Platforms Funding Opportunity: Solar Training and Education for Professionals (STEP) SunShot Subprogram: Soft Costs Location: Albany, NY SunShot Award Amount: $2,200,000 Awardee Cost Share: $0 This project creates an engagement strategy to facilitate the integration of state-of-the art solar training into existing

  9. Simulation Toolkit Promises Better Wind Predictions, Increased Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Simulation Toolkit Promises Better Wind Predictions, Increased Farm Production Simulation Toolkit Promises Better Wind Predictions, Increased Farm Production May 11, 2016 - 6:16pm Addthis Wind farm production frequently falls short of expectations. Poor forecasts of low-altitude winds, suboptimal wind plant design and operation, and higher-than-expected downtimes and maintenance costs all undermine project profitability. Each of these issues results from

  10. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  11. Digital Book Showcases Washington Wind Project

    Broader source: Energy.gov [DOE]

    "The New American Farm" chronicles the stages of the Windy Flats/Windy Point project, from prospecting to harvest.

  12. New Albany shale flash pyrolysis under hot-recycled-solid conditions: Chemistry and kinetics, II

    SciTech Connect (OSTI)

    Coburn, T.T.; Morris, C.J.

    1990-11-01

    The authors are continuing a study of recycle retorting of eastern and western oil shales using burnt shale as the solid heat carrier. Stripping of adsorbed oil from solid surfaces rather than the primary pyrolysis of kerogen apparently controls the release rate of the last 10--20% of hydrocarbons. Thus, the desorption rate defines the time necessary for oil recovery from a retort and sets the minimum hold-time in the pyrolyzer. A fluidized-bed oil shale retort resembles a fluidized-bed cat cracker in this respect. Recycled burnt shale cokes oil and reduces yield. The kerogen H/C ratio sets an upper limit on yield improvements unless external hydrogen donors are introduced. Steam can react with iron compounds to add to the H-donor pool. Increased oil yield when New Albany Shale pyrolyzes under hot-recycled-solid, steam-fluidization conditions has been confirmed and compared with steam retorting of acid-leached Colorado oil shale. In addition, with retorted, but unburnt, Devonian shale present at a recycle ratio of 3, the authors obtain 50% more oil-plus-gas than with burnt shale present. Procedures to make burnt shale more like unburnt shale can realize some increase in oil yield at high recycle ratios. Reduction with H{sub 2} and carbon deposition are possibilities that the authors have tested in the laboratory and can test in the pilot retort. Also, eastern spent shale burned at a high temperature (775 C, for example) cokes less oil than does spent shale burned at a low temperature (475 C). Changes in surface area with burn temperature contribute to this effect. 15 refs., 8 figs., 4 tabs.

  13. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  14. On-Farm Small-Scale Waste Energy Demonstration

    SciTech Connect (OSTI)

    2006-08-01

    This project is composed of three tasks: development of feedstock pocessing, handling, storage cost estimates, gasifier system development, and on-farm testing of the resulting gasification and power generation system.

  15. Rhode Island to Build First Offshore Wind Farm

    Broader source: Energy.gov [DOE]

    Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island’s first offshore wind farm.

  16. Solar energy assisted alcohol fuel system for farm

    SciTech Connect (OSTI)

    Eyrich, F.H.

    1984-02-01

    A project is briefly described which would produce ethanol on a farm using LP gas as a heat source and heat recovered from the fermenter to preheat water. (DMC)

  17. Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The project is expected to complete construction and start generating electricity in summer 2014. Siemens will construct the wind farm under a performance-based contract that uses ...

  18. Surface Environmental Surveillance Project: Locations Manual Volume 1 – Air and Water Volume 2 – Farm Products, Soil & Vegetation, and Wildlife

    SciTech Connect (OSTI)

    Fritz, Brad G.; Patton, Gregory W.; Stegen, Amanda; Poston, Ted M.

    2009-01-01

    This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon.

  19. Potential market of wind farm in China

    SciTech Connect (OSTI)

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  20. Copper Mountain Solar Farm

    Broader source: Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  1. Farm Opportunities Loan Program

    Broader source: Energy.gov [DOE]

    The Farm Opportunity Loan Program (formerly known as the Sustainable Agriculture Loan Program) is designed to finance the purchase of equipment to add value to crops or livestock, adopt best...

  2. ORP Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 222-S Laboratory 242-A Evaporator Newsroom Contracts &...

  3. Cool Farm Tool | Open Energy Information

    Open Energy Info (EERE)

    aboutussuppliersustainablesourcingtools?WT.LHNAV Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool 1 Overview "The Cool Farm Tool...

  4. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  3. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  4. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  7. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  8. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  9. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  10. State Farm Insurance | Open Energy Information

    Open Energy Info (EERE)

    Farm Insurance Jump to: navigation, search Name: State Farm Insurance Place: Bloomington, IL Website: www.statefarminsurance.com References: State Farm Insurance1 Information...

  11. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  15. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  16. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  18. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  20. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  1. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  2. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  3. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Cooper Farms | Open Energy Information

    Open Energy Info (EERE)

    Farms Sector Wind energy Facility Type Community Wind Facility Status In Service Owner V.H. Cooper and Co Inc Developer One Energy LLC Energy Purchaser Cooper Farms Location Van...

  5. We Energies- Livestock and Dairy Farm Electrical Re-wiring Program

    Broader source: Energy.gov [DOE]

    Any We Energies dairy farm customer can apply for assistance with a re-wiring project. We Energies would pay the first $1,000 of the project and 50 percent of remaining costs up for a total grant...

  6. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  7. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  8. Dispersed Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Developer Northern Alternative Energy Energy Purchaser Xcel Energy Location Lincoln County MN Coordinates...

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification, and accounting (MVA) tools to ensure the safety and viability of long-term geologic storage of CO2. The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) and Oak Ridge National Laboratory (ORNL) will expand the lessons learned at the Frio Brine Pilot (as part of the GEO-SEQ project) to

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Center CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Hilary Olson Project Director/Principal Investigator University of Texas at Austin 1 University Station, C0300 Austin, TX

  11. Superfund record of decision (EPA Region 4): Marine Corps Logistics Base, operable unit 5 (PSC 8), Albany, GA, June 23, 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Record of Decision (ROD) document presents the selected Interim Remedial Action (IRA) for Potential Source of Contamination (PSC) 8 of the Marine Corps Logistics Base (MCLB) Albany. PSC 8 addresses a former grit disposal area and PSC 14 is the former domestic wastewater treatment facility. The selected IRA for PSC 8 includes excavation of contaminated soil, transportation offsite to a federally-permitted landfil for disposal and restoration of the excavation area.

  12. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROGRAM FACTS Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O G R A M FAC T S Strategic Center for Natural Gas & Oil CONTACTS Roy Long Offshore Technology Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883 kelly.rose@netl.doe.gov William Fincham Project Manager Natural Gas & Oil Project Management Division 304-285-4268 william.fincham@netl.doe.govv Jared Ciferno Director Strategic Center for Natural Gas & Oil

  15. Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  16. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  17. Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

    SciTech Connect (OSTI)

    Jablonski, Paul D.; Turner, Paul C.

    2005-09-01

    In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the development of highly integrated power generation technologies that are clean and use far less fuel to produce the same power as technologies used today. This highly efficient technology would extend our natural resources and reduce the dependence of the United States on foreign sources of oil and other energy

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Dr. Brenda Bowen Principal Investigator Associate Director, Global Change and Sustainability Center Associate Research Professor, Geology and Geophysics

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Ruben Juanes Principal Investigator Massachusetts Institute of Technology 77 Massachusetts Avenue Room 48-319 Cambridge, MA 02139

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Southwest Regional Partnership Farnsworth Unit EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gov William Aljoe Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6569 william.aljoe@netl.doe.gov Lee Spangler Principal Investigator Montana State University P.O. Box 173905 Bozeman, MT 59717-3905 406-994-4399 spangler@montana.edu PARTNERS Altamont Oil & Gas Inc. Barnard College Columbia University Idaho National Laboratory Lawrence Berkeley National Laboratory Los Alamos National Laboratory Schlumberger Carbon

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities,

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO 2 ) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and

  6. Wind Project Development | Open Energy Information

    Open Energy Info (EERE)

    hosting a wind farm on their property. It briefly addresses key factors in this decision. Springer, R. (2013). A Framework for Project Development in the Renewable Energy Sector....

  7. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  8. Superior Farms | Open Energy Information

    Open Energy Info (EERE)

    Windpower Developer Foundation Windpower Energy Purchaser Superior Farms Location Dixon CA Coordinates 38.420103, -121.817506 Show Map Loading map......

  9. Shelburne Farms | Open Energy Information

    Open Energy Info (EERE)

    VT 05482 Product: Shelburne Farms is a membership-supported, nonprofit environmental education center and National Historic Landmark in Shelburne, Vermont Coordinates:...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Constantin Cranganu Principal Investigator Brooklyn College 2900 Bedford Avenue 4415 Ingersoll Hall Brooklyn, NY 11210 718-951-5000

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P. O. Box 880 Morgantown, WV 26507-0880 304-285-0906 joshua.hull@netl.doe.gov William Lawson Principal Investigator Petroleum Technology Transfer Council P.O. Box 8531 Tulsa, OK 74101-8531 918-629-1056 wlawson@appg.org

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax:

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Robert J. Finley Principal Investigator Illinois State Geological Survey 615 E. Peabody Drive Champaign, IL 61820 217-244-8389 finley@illinois.edu PARTNERS Ameren American Air

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Control CONTACTS OFFICE OF RESEARCH AND DEVELOPMENT Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Benjamin Chorpening Research Mechanical Engineer 304-285-4673 benjamin.chorpening@netl.doe.gov Michael Buric Research Scientist/Engineer 304-285-2052 michael.buric@netl.doe.gov George Richards Focus Area Lead 304-285-4458 george.richards@netl.doe.gov Raman Gas Analyzer for Natural Gas and Syngas Applications Goal The goal of this project is to develop

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Bruce Brown Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7313 bruce.brown@netl.doe.gov Kathryn Baskin Principal Investigator Managing Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 baskin@sseb.org PARTNERS

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road PO Box 10940 Pittsburgh, PA 15236-0940 412-386-7594 andrea.dunn@netl.doe.gov Charles D. Gorecki Technical Contact Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal

  19. Desert Sky Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hills Wind Farm Jump to: navigation, search Name Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Broken Bow Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Broken Bow Wind Farm Jump to: navigation, search Name Broken Bow Wind Farm Facility Broken Bow Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Moe Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Moe Wind Farm Jump to: navigation, search Name Moe Wind Farm Facility Moe Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two...

  4. Lost Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. JJN Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JJN Wind Farm Jump to: navigation, search Name JJN Wind Farm Facility JJN Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner JJNWind...

  6. Flat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Flat Ridge Wind Farm Jump to: navigation, search Name Flat Ridge Wind Farm Facility Flat Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Nobles Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Farm II Jump to: navigation, search Name Nobles Wind Farm II Facility Nobles Wind Farm II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Category:Wind Farms | Open Energy Information

    Open Energy Info (EERE)

    in category "Wind Farms" The following 5 pages are in this category, out of 5 total. F Foote Creek Rim Wind Farm M Mountain Wind R Rock River LLC Wind Farm Rolling Hills Wind...

  9. We Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    We Energy Wind Farm Jump to: navigation, search Name We Energy Wind Farm Facility We Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market...

  11. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Sweetwater 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Summary Report of Wind Farm Data

    SciTech Connect (OSTI)

    Wan, Yih-huei

    2009-05-01

    This report summarizes almost a decade of wind farm data, beginning in 2000. This data has been used in predicting wind patterns and planning for new farm placement.

  14. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  16. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  18. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    Farm Capital Jump to: navigation, search Name: Wind Farm Capital Place: Connecticut Sector: Wind energy Product: US-based company that buys wind leases from farmers and landowners,...

  20. Silver Sage Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Whirlwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Whirlwind Wind Farm Jump to: navigation, search Name Whirlwind Wind Farm Facility Whirlwind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Hilltop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hilltop Wind Farm Jump to: navigation, search Name Hilltop Wind Farm Facility Hilltop Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Craig Wind Farm Ltd | Open Energy Information

    Open Energy Info (EERE)

    Craig Wind Farm Ltd Jump to: navigation, search Name: Craig Wind Farm Ltd Place: United Kingdom Sector: Wind energy Product: This organisation is a special purpose vehicle (SPV)...

  5. Calverton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Calverton Wind Farm Jump to: navigation, search Name Calverton Wind Farm Facility Calverton Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Long...

  6. Bitworks Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Bitworks Wind Farm Jump to: navigation, search Name Bitworks Wind Farm Facility Bitworks Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bitworks...

  7. Ridgewind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ridgewind Wind Farm Jump to: navigation, search Name Ridgewind Wind Farm Facility Ridgewind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Beaulieu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beaulieu Wind Farm Jump to: navigation, search Name Beaulieu Wind Farm Facility Beaulieu Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Private...

  9. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crofton Hills Wind Farm Jump to: navigation, search Name Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Cottonwood Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cottonwood Wind Farm Jump to: navigation, search Name Cottonwood Wind Farm Facility Cottonwood Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. SMUD Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    SMUD Wind Farm Jump to: navigation, search Name SMUD Wind Farm Facility SMUD Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  12. Glenrock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Glenrock Wind Farm Jump to: navigation, search Name Glenrock Wind Farm Facility Glenrock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Anacacho Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Anacacho Wind Farm Jump to: navigation, search Name Anacacho Wind Farm Facility Anacacho Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Savoonga Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Savoonga Wind Farm Jump to: navigation, search Name Savoonga Wind Farm Facility Savoonga Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Crookston Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crookston Wind Farm Jump to: navigation, search Name Crookston Wind Farm Facility Crookston Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner...

  16. Summerside Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Summerside Wind Farm Jump to: navigation, search Name Summerside Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Summerside...

  17. Canova Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canova Wind Farm Jump to: navigation, search Name Canova Wind Farm Facility Canova Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard...

  18. Agriwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Agriwind Wind Farm Jump to: navigation, search Name Agriwind Wind Farm Facility Agriwind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Nome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nome Wind Farm Jump to: navigation, search Name Nome Wind Farm Facility Nome Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bering Straits...

  20. Affinity Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Affinity Wind Farm Jump to: navigation, search Name Affinity Wind Farm Facility Affinity Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction...

  1. Tholen & Petersen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Murray Various Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Simplicity Energy Farms Inc | Open Energy Information

    Open Energy Info (EERE)

    Simplicity Energy Farms, Inc. Place: Englewood, Colorado Zip: 80113 Sector: Solar, Wind energy Product: Colorado-headquartered developer of farm-based solar and wind energy...

  7. Nobles Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Nobles Wind Farm Facility Nobles Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nobles Cooperative...

  8. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  9. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  10. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...