National Library of Energy BETA

Sample records for farm developer active

  1. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  2. Independent Oversight Activity Report, Hanford Waste Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - October 28 - November 6, 2013 Independent Oversight Activity Report, Hanford Waste Tank Farms - October 28 - November 6, 2013 February 2014 Follow-up on Previously...

  3. Independent Activity Report, Hanford Tank Farms - April 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms HIAR-HANFORD-2013-04-15 The Office...

  4. Offshore Wind Farm Model Development - Upcoming Release of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Farm Model Development - Upcoming Release of the University of Minnesota's ... September 16, 2015 - 1:14pm Addthis Large-eddy simulation of wind farms with ...

  5. Independent Oversight Activity Report, Hanford Tank Farms - March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10 This...

  6. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  7. Economic Development Benefits of the Mars Hill Wind Farm, Wind Powering America Rural Economic Development, Case Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    This case study summarizes the economic development benefits of the Mars Hill Wind Farm to the community of Mars Hill, Maine. The Mars Hill Wind Farm is New England's first utility-scale wind farm.

  8. Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capabilities | Department of Energy Develops Extreme-Scale Wind Farm Simulation Capabilities Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities October 1, 2013 - 3:42pm Addthis A wake of a wind turbine modeled by the actuator line model in Nek5000 A wake of a wind turbine modeled by the actuator line model in Nek5000 This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. Researchers at the U.S. Department of Energy's

  9. Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014

    Broader source: Energy.gov [DOE]

    Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

  10. Independent Oversight Activity Report, Hanford Tank Farms- June 2013

    Broader source: Energy.gov [DOE]

    Office of River Protection Assessment of Contractor Quality Assurance, Operational Awareness at the Hanford Tank Farms [HIAR NNSS-2012-12-03

  11. Development of Occupational Exposure Limits for the Hanford Tank Farms

    SciTech Connect (OSTI)

    Still, Kenneth; Gardner, Donald; Snyder, Robert; Anderson, Thomas; Honeyman, James; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is storedin 177 underground tanks at the Hanford Site in southeastern W 18 ashington State. Recent 19 attempts to begin the retrieval and treatment of these wastes require moving the waste to 20 more modern tanks results in potential exposure of the workers to unfamiliar odors 21 emanating from headspace in the tanks. Given the unknown risks involved, workers 22 were placed on supplied air respiratory protection. CH2M HILL, the managers of the 23 Hanford Site Tank Farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an Industrial Hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPC) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1,826 chemicals were inventoried and evaluated. Over 1,500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2M HILL industrial hygiene department to evaluate these COPCs.

  12. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  13. Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework

    SciTech Connect (OSTI)

    Masden, Elizabeth A.; Fox, Anthony D.; Furness, Robert W.; Bullman, Rhys; Haydon, Daniel T.

    2010-01-15

    The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

  14. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and

  15. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    SciTech Connect (OSTI)

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  16. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  17. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    SciTech Connect (OSTI)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R. . Dept. of Agricultural Economics and Rural Sociology)

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  18. Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013

    Broader source: Energy.gov [DOE]

    Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

  19. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect (OSTI)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  20. Bull Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market...

  1. Simplicity Energy Farms Inc | Open Energy Information

    Open Energy Info (EERE)

    Simplicity Energy Farms, Inc. Place: Englewood, Colorado Zip: 80113 Sector: Solar, Wind energy Product: Colorado-headquartered developer of farm-based solar and wind energy...

  2. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  3. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  4. Moe Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Moe Wind Farm Jump to: navigation, search Name Moe Wind Farm Facility Moe Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two...

  5. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools

  6. Cooper Farms | Open Energy Information

    Open Energy Info (EERE)

    Farms Sector Wind energy Facility Type Community Wind Facility Status In Service Owner V.H. Cooper and Co Inc Developer One Energy LLC Energy Purchaser Cooper Farms Location Van...

  7. PV Research & Development Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development Activities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  8. Offshore Wind Farm Model Development – Upcoming Release of the University of Minnesota’s Virtual Wind Simulator

    Broader source: Energy.gov [DOE]

    Large-eddy simulation of wind farms with parameterization of wind turbines is emerging as a powerful tool for improving the performance and lowering the maintenance cost of existing wind farms and...

  9. Highlights of QUEST Developments and Partnership Activities....

    Office of Scientific and Technical Information (OSTI)

    Highlights of QUEST Developments and Partnership Activities. Citation Details In-Document Search Title: Highlights of QUEST Developments and Partnership Activities. Abstract not ...

  10. Superior Farms | Open Energy Information

    Open Energy Info (EERE)

    Windpower Developer Foundation Windpower Energy Purchaser Superior Farms Location Dixon CA Coordinates 38.420103, -121.817506 Show Map Loading map......

  11. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  12. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  13. Karen Avenue Wind Farm II (San Gorgonio Farms) | Open Energy...

    Open Energy Info (EERE)

    Farm II (San Gorgonio Farms) Jump to: navigation, search Name Karen Avenue Wind Farm II (San Gorgonio Farms) Facility Karen Avenue Windfarm II (San Gorgonio Farms) Sector Wind...

  14. WEC Model Development at Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Designs WEC Farm Hydrodynamic Modeling WEC Farm Environmental Modeling WEC Farm Power Modeling Wave Energy Development Roadmap: WEC Farm TRL 56, 78 & 9 Note: All specified flows ...

  15. Development of a farm-firm modelling system for evaluation of herbaceous energy crops. Final project report

    SciTech Connect (OSTI)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R.

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  16. Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...

    Office of Environmental Management (EM)

    February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site...

  17. PaTu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    PaTu Wind Farm Jump to: navigation, search Name PaTu Wind Farm Facility PaTu Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  18. Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  19. Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...

    Office of Environmental Management (EM)

    1 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  20. Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...

    Office of Environmental Management (EM)

    0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank Farm...

  1. Carbon Credited Farming Plc | Open Energy Information

    Open Energy Info (EERE)

    Credited Farming Plc Jump to: navigation, search Name: Carbon Credited Farming Plc Place: London, United Kingdom Zip: W1U 6PZ Product: London-based biofuel developer focusing on...

  2. Hanford Tank Farms Vadose Zone, Addendum to the BX Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.W.

    2000-07-01

    This addendum to the BX Tank Farm Report (GJO-98-40-TARA, GJO-HAN-19) published in August 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the BX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the BX Tank Farm at the DOE Hanford Site in the state of Washington.

  3. Hanford Tank Farms Vadose Zone Addendum to the TY Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, Robert

    2000-08-01

    This addendum to the TY Tank Farm Report (GJO-97-30-TAR, GJO-HAN-16) published in January 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TY Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TY Tank Farm at the DOE Hanford Site in the state of Washington.

  4. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect (OSTI)

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  5. Hanford Tank Farms Vadose Zone Addendum to the S Tank Farm Report

    SciTech Connect (OSTI)

    Pearson, A.

    2000-08-01

    This addendum to the S Tank Farm Report (GJO-97-31-TAR, GJO-HAN-17) published in February 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the S Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the S Tank Farm at the DOE Hanford Site in the state of Washington.

  6. Hydrogen Storage Research and Development Activities

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage research and development (R&D) activities are aimed at increasing the gravimetric and volumetric energy density and reducing the cost of hydrogen storage systems for...

  7. Tjaden Farms Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner Tjaden Farms Energy Purchaser Tjaden Farms Location Charles City IA Coordinates 43.170337, -92.58944 Show Map Loading map... "minzoom":false,"mappingse...

  8. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  9. Waste Treatment Plant and Tank Farm Program | Department of Energy

    Office of Environmental Management (EM)

    Treatment Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This ... The Low-Activity Waste Facility is in the background. Click the link below for an overview ...

  10. Technology development activities supporting tank waste remediation

    SciTech Connect (OSTI)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  11. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel ...

  12. South Trent Wind Farm LLC | Open Energy Information

    Open Energy Info (EERE)

    South Trent Wind Farm LLC Jump to: navigation, search Name: South Trent Wind Farm, LLC Place: Texas Sector: Wind energy Product: US-based wind project developer and special purpose...

  13. Taean Solar Farm Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Taean Solar Farm Co Ltd Jump to: navigation, search Name: Taean Solar Farm Co.,Ltd Place: South Chungcheong, Korea (Republic) Sector: Solar Product: Korea-based project developer,...

  14. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  15. Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...

    Office of Environmental Management (EM)

    May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  16. Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...

    Office of Environmental Management (EM)

    July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  17. Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...

    Office of Environmental Management (EM)

    October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C...

  18. Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...

    Office of Environmental Management (EM)

    10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  19. Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...

    Office of Environmental Management (EM)

    09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Hanford Site C Tank...

  20. Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...

    Office of Environmental Management (EM)

    March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment PDF icon Meeting Summary for...

  1. Retrieval Activities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farms Retrieval Activities Office of River Protection Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  2. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 SahelMap Africarough The Sahel region is a narrow swath of semi-arid land that spans the African continent, from the Atlantic Ocean in the west to the Red Sea in the east. The low annual precipitation indicates the region is strongly reliant on the monsoon season for water supply. Increased agricultural activity is a rain taker,

  3. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  4. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Of Active...

  5. Independent Oversight Review, Hanford Tank Farms - December 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - December 2012 December 2012 Review of the Hanford Tank Farms Radiological Controls Activity-Level Implementation This report documents an independent review by the Office of...

  6. Crave Brothers Farm

    SciTech Connect (OSTI)

    2009-10-01

    This is a combined heat and power (CHP) project profile on a 633 kW biogas CHP application at Crave Brothers Farm in Waterloo, Wisconsin.

  7. Active diffraction gratings: Development and tests

    SciTech Connect (OSTI)

    Bonora, S.; Frassetto, F.; Poletto, L. [Institute of Photonics and Nanotechnologies, National Council for Research of Italy, via Trasea, 7, Padova 35131 (Italy); Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department, University of Padova, Via Marzolo 9, 35131 Padova (Italy)

    2012-12-15

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  8. United Nations geothermal activities in developing countries

    SciTech Connect (OSTI)

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  9. Topaz Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Topaz Solar Farm Sector Solar Facility Type Photovoltaic Developer OptiSolar Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  10. Belgaum Wind Farms Private Limited BWFPL | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Belgaum Wind Farms Private Limited (BWFPL) Place: Mumbai, Maharashtra, India Zip: 400705 Product: Mumbai-based project developer and subsidiary...

  11. European Wind Farms A S | Open Energy Information

    Open Energy Info (EERE)

    Sector: Wind energy Product: Focused on wind farm development in Europe. Coordinates: 56.866669, 8.31667 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...

  12. NREL Research Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name NREL Research Wind Farm II Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  13. NREL Research Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name NREL Research Wind Farm I Facility NREL Research Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  14. The CDF Central Analysis Farm

    SciTech Connect (OSTI)

    Kim, T.H.; Neubauer, M.; Sfiligoi, I.; Weems, L.; Wurthwein, F.; /UC, San Diego

    2004-01-01

    With Run II of the Fermilab Tevatron well underway, many computing challenges inherent to analyzing large volumes of data produced in particle physics research need to be met. We present the computing model within CDF designed to address the physics needs of the collaboration. Particular emphasis is placed on current development of a large O(1000) processor PC cluster at Fermilab serving as the Central Analysis Farm for CDF. Future plans leading toward distributed computing and GRID within CDF are also discussed.

  15. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  16. Copper Mountain Solar Farm

    Broader source: Energy.gov [DOE]

    This b-roll shows a large-scale solar farm in Nevada that generates renewable solar energy using parabolic troughs, a form of concentrating solar power (CSP) technology, and photovoltaic technology.

  17. Farm Opportunities Loan Program

    Broader source: Energy.gov [DOE]

    The Farm Opportunity Loan Program (formerly known as the Sustainable Agriculture Loan Program) is designed to finance the purchase of equipment to add value to crops or livestock, adopt best...

  18. Lead Research and Development Activity for High Temperature,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature, Low Relative Humidity Membrane Program Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program A presentation to the High ...

  19. Heavy-Duty HCCI Development Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty HCCI Development Activities Heavy-Duty HCCI Development Activities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_duffy.pdf (865.78 KB) More Documents & Publications Heavy-Truck Clean Diesel (HTCD) Program Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar

  20. Development of an Active Regeneration Diesel Particulate Filter System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy an Active Regeneration Diesel Particulate Filter System Development of an Active Regeneration Diesel Particulate Filter System 2004_deer_anderson.pdf (1.38 MB) More Documents & Publications A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles Donaldson Active Regeneration PM System A New CFD Model for understanding and Managing Diesel Particulate Filter Regeneration

  1. Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems

    SciTech Connect (OSTI)

    Ling, Hao; Hamilton, Mark F.; Bhalla, Rajan; Brown, Walter E.; Hay, Todd A.; Whitelonis, Nicholas J.; Yang, Shang-Te; Naqvi, Aale R.

    2013-09-30

    Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

  2. Cool Farm Tool | Open Energy Information

    Open Energy Info (EERE)

    aboutussuppliersustainablesourcingtools?WT.LHNAV Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool 1 Overview "The Cool Farm Tool...

  3. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  6. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  13. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  15. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  17. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  18. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  1. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  2. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  3. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  6. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  8. State Farm Insurance | Open Energy Information

    Open Energy Info (EERE)

    Farm Insurance Jump to: navigation, search Name: State Farm Insurance Place: Bloomington, IL Website: www.statefarminsurance.com References: State Farm Insurance1 Information...

  9. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Flat Water Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Water Wind Farm Jump to: navigation, search Name Flat Water Wind Farm Facility Flat Water Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  13. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  14. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  15. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  16. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  20. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  1. Turkey Track Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Track Wind Farm Jump to: navigation, search Name Turkey Track Wind Farm Facility Turkey Track Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Heavy Duty HCCI Development Activities - DOE High Efficiency Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion (HECC) | Department of Energy Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Heavy Duty HCCI Development Activities - DOE High Efficiency Clean Combustion (HECC) Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_duffy.pdf (33.12 MB) More Documents & Publications Development of Enabling Technologies for High

  3. SEP Success Story: Farming Out Heat and Electricity through Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Farming Out Heat and Electricity through Biopower SEP Success Story: Farming Out Heat and Electricity through Biopower December 16, 2011 - 11:46am Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of sea_turtle. Cows like these in Skagit County, Washington,

  4. Potential market of wind farm in China

    SciTech Connect (OSTI)

    Pengfei Shi

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  5. Lead Research and Development Activity for High Temperature, Low Relative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Humidity Membrane Program | Department of Energy Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program Lead Research and Development Activity for High Temperature, Low Relative Humidity Membrane Program A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. fenton.pdf (448.4 KB) More Documents & Publications Discussion Overview In Plane Conductivity Testing, BekkTech LLC Progress and Status on Through-Plane

  6. CPS and the Fermilab farms

    SciTech Connect (OSTI)

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  7. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  8. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  9. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  10. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  11. Flat panel display development activities at Sandia National Laboratories

    SciTech Connect (OSTI)

    DiBello, E.G.; Worobey, W.; Burchett, S.; Hareland, W.; Felter, T.; Mays, B.

    1994-12-31

    The flat panel display development activities underway at Sandia National Laboratories are described. Research is being conducted in the areas of glass substrates, phosphors, large area processes, and electron emissions. Projects are focused on improving process yield, developing large area processes, and using modeling techniques to predict design performance.

  12. On-Farm Small-Scale Waste Energy Demonstration

    SciTech Connect (OSTI)

    2006-08-01

    This project is composed of three tasks: development of feedstock pocessing, handling, storage cost estimates, gasifier system development, and on-farm testing of the resulting gasification and power generation system.

  13. Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  14. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  15. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble

  16. Secondary solvent cleanup using activated alumina: Laboratory development

    SciTech Connect (OSTI)

    Mailen, J.C.

    1987-01-01

    The primary cleanup of PUREX solvent removes short-chain acidic organic degradation products effectively but leaves a variety of degradation products. These materials cause problems with phase separation and retention of cations. A process using activated alumina to remove secondary degradation products received laboratory development at Oak Ridge National Laboratory using Savannah River Plant and Idaho Chemical Processing plant solvents, was further developed at Savannah River Laboratory using SRP solvent, and was tested at full scale at SRP. This paper describes the development at ORNL. 6 refs., 1 fig., 1 tab.

  17. Shelburne Farms | Open Energy Information

    Open Energy Info (EERE)

    VT 05482 Product: Shelburne Farms is a membership-supported, nonprofit environmental education center and National Historic Landmark in Shelburne, Vermont Coordinates:...

  18. Energy Department Joins Farm to Fly 2.0

    Broader source: Energy.gov [DOE]

    During Biomass 2014, Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson announced that the Energy Department is joining Farm to Fly 2.0 to support the development of sustainable biofuels that require no jet engine modifications.

  19. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    inferred from their physical and chemical properties. The developed porosity of the activated carbon was a function of the oxygen content, porosity and H/C ratio of the parent unburned carbon feedstock. It was observed that extended activation times and high activation temperatures increased the porosity of the produced activated carbon at the expense of the solid yield. The development of activated carbon from unburned carbon in fly ash has been proven to be a success by this study in terms of the higher surface areas of the resultant activated carbons, which are comparable with commercial activated carbons. However, unburned carbon samples obtained from coal-fired power plants as by-product have high ash content, which is unwanted for the production of activated carbons. Therefore, the separation of unburned carbon from the fly ash is expected to be beneficial for the utilization of unburned carbon to produce activated carbons with low ash content.

  20. International oil and gas exploration and development activities

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  1. Desert Sky Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sky Wind Farm Jump to: navigation, search Name Desert Sky Wind Farm Facility Desert Sky Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hills Wind Farm Jump to: navigation, search Name Red Hills Wind Farm Facility Red Hills Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. Broken Bow Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Broken Bow Wind Farm Jump to: navigation, search Name Broken Bow Wind Farm Facility Broken Bow Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Lost Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. JJN Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JJN Wind Farm Jump to: navigation, search Name JJN Wind Farm Facility JJN Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner JJNWind...

  7. Flat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Flat Ridge Wind Farm Jump to: navigation, search Name Flat Ridge Wind Farm Facility Flat Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Nobles Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    Farm II Jump to: navigation, search Name Nobles Wind Farm II Facility Nobles Wind Farm II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Category:Wind Farms | Open Energy Information

    Open Energy Info (EERE)

    in category "Wind Farms" The following 5 pages are in this category, out of 5 total. F Foote Creek Rim Wind Farm M Mountain Wind R Rock River LLC Wind Farm Rolling Hills Wind...

  10. We Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    We Energy Wind Farm Jump to: navigation, search Name We Energy Wind Farm Facility We Energy Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Sky River Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Sweetwater 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name Sweetwater 5 Wind Farm Facility Sweetwater 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Summary Report of Wind Farm Data

    SciTech Connect (OSTI)

    Wan, Yih-huei

    2009-05-01

    This report summarizes almost a decade of wind farm data, beginning in 2000. This data has been used in predicting wind patterns and planning for new farm placement.

  14. Mountain Home Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Mountain Home Wind Farm Jump to: navigation, search Name Mountain Home Wind Farm Facility Mountain Home Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Turtle Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turtle Mountain Wind Farm Jump to: navigation, search Name Turtle Mountain Wind Farm Facility Turtle Mountain Sector Wind energy Facility Type Small Scale Wind Facility Status In...

  16. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  18. Pebble Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    Farm Capital Jump to: navigation, search Name: Wind Farm Capital Place: Connecticut Sector: Wind energy Product: US-based company that buys wind leases from farmers and landowners,...

  20. Silver Sage Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sage Wind Farm Jump to: navigation, search Name Silver Sage Wind Farm Facility Silver Sage Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Whirlwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Whirlwind Wind Farm Jump to: navigation, search Name Whirlwind Wind Farm Facility Whirlwind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Federated Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Federated Wind Farm Jump to: navigation, search Name Federated Wind Farm Facility Federated Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Hilltop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hilltop Wind Farm Jump to: navigation, search Name Hilltop Wind Farm Facility Hilltop Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Craig Wind Farm Ltd | Open Energy Information

    Open Energy Info (EERE)

    Craig Wind Farm Ltd Jump to: navigation, search Name: Craig Wind Farm Ltd Place: United Kingdom Sector: Wind energy Product: This organisation is a special purpose vehicle (SPV)...

  5. Calverton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Calverton Wind Farm Jump to: navigation, search Name Calverton Wind Farm Facility Calverton Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Long...

  6. Bitworks Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Bitworks Wind Farm Jump to: navigation, search Name Bitworks Wind Farm Facility Bitworks Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Bitworks...

  7. Ridgewind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ridgewind Wind Farm Jump to: navigation, search Name Ridgewind Wind Farm Facility Ridgewind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Beaulieu Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Beaulieu Wind Farm Jump to: navigation, search Name Beaulieu Wind Farm Facility Beaulieu Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Private...

  9. Crofton Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crofton Hills Wind Farm Jump to: navigation, search Name Crofton Hills Wind Farm Facility Crofton Hills Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Cottonwood Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cottonwood Wind Farm Jump to: navigation, search Name Cottonwood Wind Farm Facility Cottonwood Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  11. SMUD Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    SMUD Wind Farm Jump to: navigation, search Name SMUD Wind Farm Facility SMUD Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Sacramento...

  12. Glenrock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Glenrock Wind Farm Jump to: navigation, search Name Glenrock Wind Farm Facility Glenrock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  13. Anacacho Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Anacacho Wind Farm Jump to: navigation, search Name Anacacho Wind Farm Facility Anacacho Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Savoonga Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Savoonga Wind Farm Jump to: navigation, search Name Savoonga Wind Farm Facility Savoonga Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Crookston Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Crookston Wind Farm Jump to: navigation, search Name Crookston Wind Farm Facility Crookston Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner...

  16. Summerside Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Summerside Wind Farm Jump to: navigation, search Name Summerside Wind Farm Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Summerside...

  17. Canova Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canova Wind Farm Jump to: navigation, search Name Canova Wind Farm Facility Canova Sector Wind energy Facility Type Community Wind Facility Status In Service Owner City of Howard...

  18. Agriwind Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Agriwind Wind Farm Jump to: navigation, search Name Agriwind Wind Farm Facility Agriwind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  19. Nome Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nome Wind Farm Jump to: navigation, search Name Nome Wind Farm Facility Nome Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Bering Straits...

  20. Affinity Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Affinity Wind Farm Jump to: navigation, search Name Affinity Wind Farm Facility Affinity Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction...

  1. Tholen & Petersen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tholen & Petersen Wind Farm Jump to: navigation, search Name Tholen & Petersen Wind Farm Facility Tholen & Petersen Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Green Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Murray Various Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Various Wind Farm Jump to: navigation, search Name Murray Various Wind Farm Facility Murray Various Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Nobles Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Nobles Wind Farm Facility Nobles Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nobles Cooperative...

  7. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  8. Happy Jack Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Happy Jack Wind Farm Jump to: navigation, search Name Happy Jack Wind Farm Facility Happy Jack Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  10. Great Plains Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  11. Hull Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Hull Wind Farm Facility Hull Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull Municipal Light...

  12. Noble Bellmont Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Noble Bellmont Wind Farm Jump to: navigation, search Name Noble Bellmont Wind Farm Facility Noble Bellmont Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  13. Ashtabula II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Ashtabula II Wind Farm Facility Ashtabula II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  14. Marengo II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Marengo II Wind Farm Facility Marengo II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Klondike II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Klondike II Wind Farm Jump to: navigation, search Name Klondike II Wind Farm Facility Klondike II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Harvest Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Harvest Wind Farm II Facility Harvest Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  17. Stateline Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stateline Expansion Wind Farm Jump to: navigation, search Name Stateline Expansion Wind Farm Facility Stateline Expansion Sector Wind energy Facility Type Commercial Scale Wind...

  18. Campbell Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hill Wind Farm Jump to: navigation, search Name Campbell Hill Wind Farm Facility Campbell Hill Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  19. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  20. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  1. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Silver Star Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Star Wind Farm Jump to: navigation, search Name Silver Star Wind Farm Facility Silver Star Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Forbes Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Forbes Park Wind Farm Jump to: navigation, search Name Forbes Park Wind Farm Facility Forbes Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  4. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  5. The development of enabling technologies for producing active interrogation beams

    SciTech Connect (OSTI)

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F.; Vodolaga, B.; Terekhin, V.; Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L.; Parkhomchuk, V.; Reva, V.; Vostrikov, V.; Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A.

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  6. Tank farm health and safety plan. Revision 2

    SciTech Connect (OSTI)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  7. Independent Activity Report, Office of River Protection Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February...

  8. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  9. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  10. Development of active porous medium filters based on plasma textiles

    SciTech Connect (OSTI)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  11. Toxic chemical considerations for tank farm releases

    SciTech Connect (OSTI)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  12. EA-1207: Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities

    Broader source: Energy.gov [DOE]

    Pit Disassembly and Conversion Demonstration Environmental Assessment and Research and Development Activities

  13. Alcohol fuel from Ohio farms

    SciTech Connect (OSTI)

    Jones, J.D.

    1984-01-01

    This booklet provides an introduction to technical, marketing, and regulatory issues involved in on-farm alcohol fuel production. Discussed are ethanol production provcesses, investment, potential returns, regulations and permits, and sources of financial and technical assistance. 2 figures. (DMC)

  14. BNL Activities in Advanced Neutron Source Development: Past and Present

    SciTech Connect (OSTI)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. Alcohol fuel from Ohio farms

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Brief descriptions of on-farm ethanol production methods including feedstock preparation, cooking, fermentation, and distillation are presented. Safety conditions are described. Investment in on-farm ethanol production facilities and their potential returns are addressed. The market for ethanol and ethanol blends as well as for by-products is encouraging. Legal aspects for permitting and environmental regulations both for Ohio and federal agencies are discussed. (DMC)

  16. Wind Farm Monitoring at Storm Lake I Wind Power Project -- Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-369

    SciTech Connect (OSTI)

    Gevorgian, Vahan

    2015-07-09

    Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability of wind power. These data are used for many research and analysis activities consistent with the Wind Program mission.

  17. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect (OSTI)

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect (OSTI)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  19. Fact Sheet: Wind Firming EnergyFarm (August 2013) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Firming EnergyFarm (August 2013) Fact Sheet: Wind Firming EnergyFarm (August 2013) Primus Power is deploying a 25 MW/75 MWh EnergyFarm(TM) in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power electronics housed inside a standard shipping container. For more information about how OE performs research and development on a wide variety of storage technologies, including batteries, flywheels, electrochemical

  20. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  1. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste

  2. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.

    2009-04-01

    with limited management filtering to encourage the creativity of individual researchers. The competition is open to all BNL staff in programmatic, scientific, engineering, and technical support areas. Researchers submit their project proposals to the Assistant Laboratory Director for Policy and Strategic Planning. A portion of the LDRD budget is held for the Strategic LDRD (S-LDRD) category. Projects in this category focus on innovative R&D activities that support the strategic agenda of the Laboratory. The Laboratory Director entertains requests or articulates the need for S-LDRD funds at any time. Strategic LDRD Proposals also undergo rigorous peer review; the approach to review is tailored to the size and scope of the proposal. These Projects are driven by special opportunities, including: (1) Research project(s) in support of Laboratory strategic initiatives as defined and articulated by the Director; (2) Research project(s) in support of a Laboratory strategic hire; (3) Evolution of Program Development activities into research and development activities; and (4) ALD proposal(s) to the Director to support unique research opportunities. The goals and objectives of BNL's LDRD Program can be inferred fronl the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. To be one of the premier DOE National Laboratories, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program

  3. Test and evaluation plan for Project W-314 tank farm restoration and safe operations

    SciTech Connect (OSTI)

    Hays, W.H.

    1998-06-25

    The ``Tank Farm Restoration and Safe Operations`` (TFRSO), Project W-314 will restore and/or upgrade existing Hanford Tank Farm facilities and systems to ensure that the Tank Farm infrastructure will be able to support near term TWRS Privatization`s waste feed delivery and disposal system and continue safe management of tank waste. The capital improvements provided by this project will increase the margin of safety for Tank Farms operations, and will aid in aligning affected Tank Farm systems with compliance requirements from applicable state, Federal, and local regulations. Secondary benefits will be realized subsequent to project completion in the form of reduced equipment down-time, reduced health and safety risks to workers, reduced operating and maintenance costs, and minimization of radioactive and/or hazardous material releases to the environment. The original regulatory (e.g., Executive Orders, WACS, CFRS, permit requirements, required engineering standards, etc.) and institutional (e.g., DOE Orders, Hanford procedures, etc.) requirements for Project W-314 were extracted from the TWRS S/RIDs during the development of the Functions and Requirements (F and Rs). The entire family of requirements were then validated for TWRS and Project W-314. This information was contained in the RDD-100 database and used to establish the original CDR. The Project Hanford Management Contract (PHMC) team recognizes that safety, quality, and cost effectiveness in the Test and Evaluation (T and E) program is achieved through a planned systematic approach to T and E activities. It is to this end that the Test and Evaluation Plan (TEP) is created. The TEP for the TFRSO Project, was developed based on the guidance in HNF-IP-0842, and the Good Practice Guide GPG-FM-005, ``Test and Evaluation,`` which is derived from DOE Order 430.1, ``Life Cycle Asset Management.`` It describes the Test and Evaluation program for the TFRSO project starting with the definitive design phase and ending

  4. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  5. Luverne Wind Farm (North Field) | Open Energy Information

    Open Energy Info (EERE)

    Luverne Wind Farm (North Field) Jump to: navigation, search Name Luverne Wind Farm (North Field) Facility Luverne Wind Farm (North Field) Sector Wind energy Facility Type...

  6. Mustang Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  7. Carrizo Energy Solar Farm Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Carrizo Energy Solar Farm Solar Power Plant Jump to: navigation, search Name Carrizo Energy Solar Farm Solar Power Plant Facility Carrizo Energy Solar Farm Sector Solar Facility...

  8. Rhode Island Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rhode Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore...

  9. High Sheldon Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sheldon Energy Wind Farm Jump to: navigation, search Name High Sheldon Energy Wind Farm Facility High Sheldon Energy Wind Farm Sector Wind energy Facility Type Commercial Scale...

  10. Development of an Active Regeneration Diesel Particulate Filter...

    Broader source: Energy.gov (indexed) [DOE]

    A New Active DPF System for "Stop and Go" Duty-Cycle Vehicles Donaldson Active Regeneration PM System A New CFD Model for understanding and Managing Diesel Particulate Filter ...

  11. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect (OSTI)

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  12. Baillie Wind Farm Ltd | Open Energy Information

    Open Energy Info (EERE)

    Baillie Wind Farm Ltd Jump to: navigation, search Name: Baillie Wind Farm Ltd Place: Edinburgh, Scotland, United Kingdom Zip: EH2 4DF Sector: Wind energy Product: Special Purpose...

  13. Spittal Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spittal Hill Wind Farm Jump to: navigation, search Name: Spittal Hill Wind Farm Place: United Kingdom Sector: Wind energy Product: Set up to manage wind projects in the Scotland....

  14. Shiloh II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shiloh II Wind Farm Jump to: navigation, search Name Shiloh II Wind Farm Facility Shiloh II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Oliver II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Oliver II Wind Farm Facility Oliver II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  16. CWES II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name CWES II Wind Farm Facility CWES II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest...

  17. Burco Farm and Feed | Open Energy Information

    Open Energy Info (EERE)

    Owner Burco Farm and Feed Energy Purchaser Burco Farm and Feed Location Independence IA Coordinates 42.5638438, -91.88753486 Show Map Loading map... "minzoom":false,"mappi...

  18. Corn Plus Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  19. Difwind V Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    V Wind Farm Jump to: navigation, search Name Difwind V Wind Farm Facility Difwind V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  20. Wind Farms through the Years | Department of Energy

    Energy Savers [EERE]

    Wind Farms through the Years Wind Farms through the Years 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 833 Wind Farms Online. Enough to Power 15 M Homes...

  1. Hualapai Tribe - Hualapai Renewable Energy Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hualapai Renewable Energy Development DOE-Tribal Energy Program Peer Review Meeting 2012 The Hualapai Reservation Hualapai Project Description l Wind Farm Development - 200MW Grand Canyon West l Solar Power Plant Development - 50MW - Clay Springs - 30-40MW - Nelson l Community Solar - 1MW - GCW Hualapai Status l Completing the Final Feasibility Report - For Tribal Council - For Wind Developers - For Solar Developers l Wrap Up Activities - Critical Issues Analysis - Avian Studies -

  2. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  3. Energy data collection as a necessary activity for developing countries

    SciTech Connect (OSTI)

    Loebl, A.S.; Cagle, J.D.

    1980-01-01

    This paper examines the reasons for energy data collection by developing countries and includes an examination of the special requirements of Costa Rica for energy data collection. A primary reason for national data collection is to support the planning function, and this is particularly significant where energy planning and economic development are concerned. Energy data are necessary to support all phases of planning: short-term; mid-term; and long-range and/or strategic planning. These different planning requirements are discussed. Energy data are also necessary to support national management, as well as the economic-development functions. These latter requirements are also discussed briefly.

  4. Ecuador steps up pace of oil development activity

    SciTech Connect (OSTI)

    Not Available

    1992-03-23

    This paper reports that oil companies operating in Ecuador plan to quicken the pace of oil development this year. After delays in 1991, companies plan a series of projects to develop reserves discovered the past 3 years estimated at more than 600 million bbl. Oil and Gas Journal estimated Ecuador's proved crude reserves at 1.55 billion bbl as of Jan. 1, 1992. The development push is part of a larger effort needed to ensure Ecuador's status as an oil exporter into the next century. Ecuador is the smallest crude oil producer and exporter in the Organization of Petroleum Exporting Countries.

  5. Update on CMM/CBM development activity in Ukraine

    SciTech Connect (OSTI)

    2007-01-15

    Current coal mine methane (CMM) and coalbed methane (CBM) development efforts in Ukraine are reviewed. These include the Donetsk CMM/CBM project and the Ukraine Methane Group CMM project (15 MW power production). 4 figs.

  6. Branchburg Solar Farm and Carport

    SciTech Connect (OSTI)

    Gregory, John

    2013-10-23

    To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.

  7. ES&H development activities for the W89 warhead

    SciTech Connect (OSTI)

    Pretzel, C.W.

    1995-08-01

    Environmental, Safety and Health (ES&H) issues became an important design consideration during the development of the W89 warhead for the SRAM 11 (Short-Range Attack Missile) missile. An action plan was developed to handle these issues at all the production agencies and at both the system and the component level. The main thrust was in the area of solvent substitution, in particular for solder flux removal. The cleaner d-limonene followed by an isopropyl alcohol rinse was selected for applications were the traditional cleaners were 1,1,1 trichloroethane or trichloroethylene. Compatibility testing rather than efficacy testing dominated the development effort. In addition to other solvent substitution applications, organic materials that were free of toluene diisocynate (TDI), and methylene dianiline (MDA) were explored for use in the W89.

  8. Renewable energy and rural development activities experience in Bangladesh

    SciTech Connect (OSTI)

    Barua, D.C.

    1997-12-01

    The per capita per year fuel consumption in Bangladesh is only 56 kg oil equivalent. The supply of electricity by Bangladesh power development board (BPDB) and Dhaka electricity supply authority (DESA) is mainly confined to cities and towns. Rural Electrification Board (REB) distributes electricity to the rural people through cooperatives. The rural cooperatives cover only 10% of the total population. Only about 15% of the total population is directly connected to the electricity. In order to meet the increasing energy demand for development of agriculture and industry and for the generation of better employment opportunities, it will be necessary to harness all the available alternative sources of energy immediately.

  9. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  10. Tank farms hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.