National Library of Energy BETA

Sample records for fans evaporative coolers

  1. Evaporative Coolers | Department of Energy

    Office of Environmental Management (EM)

    Home Cooling Systems Air Conditioning Evaporative Coolers Fans Radiant Cooling Ventilation for Cooling Whole-House Fans Home Heating Systems Heat Pump Systems Water Heating...

  2. Evaporative Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Evaporative Coolers Evaporative Coolers Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of <a href="http://www.flickr.com/people/free-stock/">Public Domain Photos</a>. Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. In low-humidity areas,

  3. Evaporative cooler including one or more rotating cooler louvers

    DOE Patents [OSTI]

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  4. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  5. Vertical counterflow evaporative cooler

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  6. Evaporative Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the cooler blows air into a central location, or the cooler connects to ductwork, ... Tax Tips for Energy Savers: Get Money Back for Greening Your Home A Home Cooling Strategy ...

  7. Indirect evaporative coolers with enhanced heat transfer

    DOE Patents [OSTI]

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  8. Control methods and systems for indirect evaporative coolers

    SciTech Connect (OSTI)

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  9. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  10. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect (OSTI)

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  11. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOE Patents [OSTI]

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  12. Sandia Cooler Blows Traditional CPU Coolers Away | Department...

    Office of Environmental Management (EM)

    To understand the technological advances in the Sandia Cooler, it helps to understand traditional CPU coolers. Comprised of a fan and a finned aluminum or copper heat sink, ...

  13. Sandia Cooler

    ScienceCinema (OSTI)

    Koplow, Jeff; Fornaciari, Neal; Gharagozloo, Patricia

    2014-06-23

    The Sandia Cooler is 30-times more efficient than conventional air-cooled heat exchangers and is available for licensing to electronics and solid state lighting cooling manufacturers.

  14. Evaporative Coolers | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  15. Static gas expansion cooler

    DOE Patents [OSTI]

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  16. EGR Cooler Deposit Analysis

    Broader source: Energy.gov [DOE]

    Analysis of fouling and performance of exhaust gas recirculation (EGR) coolers as a function of EGR flow rate, inlet gas and coolant temperatures, soot level, and hydrocarbon concentration

  17. Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction

    SciTech Connect (OSTI)

    Robichaud, R.

    2007-06-01

    This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

  18. Radial Sandia Cooler Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets.

  19. Fuel cell cooler-humidifier plate

    SciTech Connect (OSTI)

    Vitale, N.G.; Jones, D.O.

    2000-05-23

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  20. Fuel cell cooler-humidifier plate

    DOE Patents [OSTI]

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  1. Cryogenic cooler apparatus

    DOE Patents [OSTI]

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  2. Cryogenic cooler apparatus

    DOE Patents [OSTI]

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  3. Commercial Cooler: Order (2013-CE-5343)

    Broader source: Energy.gov [DOE]

    DOE ordered Commercial Cooler, Inc. to pay a $8,000 civil penalty after finding Commercial Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  4. Golden Cooler: Order (2013-CE-5345)

    Broader source: Energy.gov [DOE]

    DOE ordered Golden Cooler to pay a $8,000 civil penalty after finding Golden Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  5. Custom Coolers: Order (2013-CE-5315)

    Broader source: Energy.gov [DOE]

    DOE ordered Custom Coolers, LLC to pay a $8,000 civil penalty after finding Custom Coolers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. Southeast Cooler: Order (2013-CE-5331)

    Broader source: Energy.gov [DOE]

    DOE ordered Southeast Cooler Corp. to pay a $8,000 civil penalty after finding Southeast Cooler had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  7. List of Evaporative Coolers Incentives | Open Energy Information

    Open Energy Info (EERE)

    Eligible Technologies Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Arizona Commercial Industrial Institutional Local Government Retail...

  8. Golden Cooler: Proposed Penalty (2013-CE-5345)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Golden Cooler failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  9. Commercial Cooler: Proposed Penalty (2013-CE-5343)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Commercial Cooler, Inc. failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  10. Southeast Cooler: Proposed Penalty (2013-CE-5331)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Southeast Cooler Corp. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  11. American Cooler Technologies: Order (2013-CE-5305)

    Broader source: Energy.gov [DOE]

    DOE ordered American Cooler Technologies to pay a $8,000 civil penalty after finding American Cooler Technologies had failed to certify that certain models of walk-in coolers or freezers (WICF) components comply with the applicable energy conservation standards.

  12. Energy savings from indirect evaporative pre-cooling: Control strategies and commissioning

    SciTech Connect (OSTI)

    Felts, D.; Jump, D.A.

    1998-07-01

    Package rooftop air conditioning units (RTU) with evaporative pre-cooling systems were installed at an Agricultural History Museum and conference center in the northern Sacramento Valley in California, a hot and dry summer climate region. The evaporative pre-coolers serve to extend the economizer range of the RTU's. A commissioning team monitored the performance of the RTU evaporative pre-coolers. The purpose of the monitoring was to determine if changes were warranted to optimize the system's energy efficiency. The commissioning process revealed that the RTU evaporative pre-coolers were being controlled by the economizer control cycle. With this control cycle, the evaporative pre-cooler operates when the outdoor air temperature is falling below the space return air temperature. This means that the pre-cooler will never operate at peak load conditions. The conference center is an assembly occupancy. Building codes require significant levels of outdoor air for ventilation. The evaporative pre-cooler system provides the means to significantly offset the energy requirements for cooling down and heating up this ventilation air. A DOE2 energy simulation analysis indicated that the evaporative pre-cooler could cut energy use by over 50% if it were working correctly. Investigation concludes that in buildings with high outdoor air requirements, evaporative pre-cooling, using building exhaust air as the indirect evaporative cooling source, significantly reduce building energy consumption. This evaporative pre-cooling technology works in any climate, regardless of outdoor conditions, since the return air stream exhausted from the building provides a relatively constant temperature and humidity source for evaporative cooling. An added benefit is that the evaporative pre-cooler heat exchanger recovers heat from the exhausted air stream in cold weather.

  13. Composite fan blade

    SciTech Connect (OSTI)

    Farr, J.D.

    1993-08-31

    A composite fan blade is described for a prop fan engine comprising: a support disk having a plurality of hinge lugs formed therein, the disk being connected to an engine drive means; a bushing element; a fan blade formed from a first set of radially oriented unidirectional layers of fibers, the first set of layers of fibers being wrapped around the bushing element to form an elongated front side, an elongated back side, and a portion encompassing the bushing element; a blade platform formed from a second set of unidirectional layers of fibers having a first and a second end which are both wrapped around respective resin filler elements to form resin filled support pockets, the second set of unidirectional layers of fibers being wrapped around the portion of the fan blade encompassing the bushing element to place the resin filled support pockets against the portion of the fan blade encompassing the bushing element, wherein the fan blade and the blade platform form a fan blade assembly, the fan blade assembly having a plurality of hinge slots formed therein; and a pin element extending through the hinge formed by the plurality of hinge lugs in the support disk and the plurality of hinge slots in the fan blade assembly for attaching the fan blade assembly to the support disk.

  14. Record of Communication Concerning Ceiling Fan and Ceiling Fan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 Record of Communication Concerning Ceiling Fan and ...

  15. Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications

    SciTech Connect (OSTI)

    Coleman, RL

    2002-10-21

    The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for

  16. Fan Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan Systems Fan Systems Dramatic energy and cost savings can be achieved in motor systems by applying best energy management practices and purchasing energy-efficiency equipment. Use the software tools, training, and publications listed below to save energy in fan systems. Fan Tools Tools to Assess Your Energy System Fan System Assessment Tool (FSAT) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial system assessment tool. Locate a

  17. Development and Evaluation of a Sandia Cooler-based Refrigerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Evaluation of a Sandia Cooler-based Refrigerator Condenser Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser This report describes the first design of ...

  18. Characterization of Field-Aged Exhaust Gas Recirculation Cooler Deposits

    Broader source: Energy.gov [DOE]

    Characterized field-aged exhaust gas recirculation coolers from 7 engine manufacturers, discussed differences and commonalities, and provided understanding of cooler fouling and prevention.

  19. A Combined Water Heater, Dehumidifier, and Cooler (WHDC) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Combined Water Heater, Dehumidifier, and Cooler (WHDC) A Combined Water Heater, Dehumidifier, and Cooler (WHDC) Figure 1: The system model for the combined Water heater, ...

  20. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal This paper reports ...

  1. Factors Impacting EGR Cooler Fouling - Main Effects and Interactions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacting EGR Cooler Fouling - Main Effects and Interactions Factors Impacting EGR Cooler Fouling - Main Effects and Interactions Presentation given at the 16th Directions in ...

  2. Characterization of Field-Aged Exhaust Gas Recirculation Cooler...

    Broader source: Energy.gov (indexed) [DOE]

    Characterized field-aged exhaust gas recirculation coolers from 7 engine manufacturers, discussed differences and commonalities, and provided understanding of cooler fouling and ...

  3. Smart Fan Modules And System

    DOE Patents [OSTI]

    Cipolla, Thomas M.; Kaufman, Richard I.; Mok, Lawrence S.

    2003-07-15

    A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

  4. Direct Evaporative Precooling Model and Analysis

    SciTech Connect (OSTI)

    Shen, Bo; Ally, Moonis Raza; Rice, C Keith; Craddick, William G

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  5. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect (OSTI)

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  6. Executive Order 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations (1994)

    Office of Environmental Management (EM)

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  7. Eve Kovacs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  8. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  9. The Use of Small Coolers in a Magnetic Field

    SciTech Connect (OSTI)

    Green, Michael A.; Witte, Holger

    2007-07-25

    Small 4 K coolers are used to cool superconducting magnets.These coolers are usually used with high temperature suerconductor (HTS)leads. In most cases, magnet is shielded with iron or active shieldcoils. Thus the field at the cooler is low. There are instances when thecooler must be in a magnetic field. Gifford McMahon (GM) coolers or pulsetube coolers are commercially available to cool the magnets. This paperwill discuss how the two types of coolers are affected by the straymagnetic field. Strategies for using coolers on magnets that generatestray magnetic fields are discussed.

  10. Fan System Assessment Tool (FSAT)

    Broader source: Energy.gov [DOE]

    The Fan System Assessment Tool (FSAT) is a free online software tool that helps industrial users quantify energy use and savings opportunities in industrial fan systems. Use FSAT to understand how...

  11. Fan System Assessment Tool Introduction

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to the Fan System Assessment Tool (FSAT). With FSAT, users can calculate the amount of energy used by their fan system; determine system efficiency; and quantify the savings potential of an upgraded system.

  12. Fans for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Fans for Cooling Fans for Cooling Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's

  13. American Cooler Technologies: Proposed Penalty (2013-CE-5305)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that American Cooler Technologies failed to certify walk-in coolers and freezer (WICF) components as compliant with the energy conservation standards.

  14. Plugging of Exhaust Gas Recirculation Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plugging of Exhaust Gas Recirculation Coolers Plugging of Exhaust Gas Recirculation Coolers EGR coolers donated by industry and analyzed at ORNL contained lacquer-like deposits, which can be prevented by maintaining the cooler above the dew point of the hydrocarbons. deer12_lance.pdf (1.37 MB) More Documents & Publications Materials Issues Associated with EGR Systems Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR Systems (Agreement ID:18571) Project

  15. THE WORLD'S Biggest Fan Collection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORLD'S Biggest Fan Collection If you only know the Big Ass Fan Company as the preeminent designer and manufacturer of high volume, low speed fans for factories and cows, it's time you get to know us better. While we continue to lead the way in industrial and agricultural air movement, we've also refined these designs to bring the same innovation and benefits of our famous fans to circulate an ocean of air in sound-sensitive commercial spaces and homes. And when our customers said they wanted

  16. Hunter Fan: Order (2014-CE-32008)

    Broader source: Energy.gov [DOE]

    DOE ordered Hunter Fan Company to pay a $8,000 civil penalty after finding Hunter Fan had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  17. Fan System Assessment- End User Training

    Broader source: Energy.gov [DOE]

    Optimizing industrial fan systems can take on many forms, but any fan optimization project must meet the needs of the process. This self-paced workshop highlights the benefits of fan system...

  18. Two stage indirect evaporative cooling system

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  19. Results from the Cooler and Lead Tests

    SciTech Connect (OSTI)

    Green, Michael A

    2010-06-10

    The report presents the results of testing MICE spectrometer magnet current leads on a test apparatus that combines both the copper leads and the high temperature superconducting (HTS) leads with a single Cryomech PT415 cooler and liquid helium tank. The current is carried through the copper leads from 300 K to the top of the HTS leads. The current is then carried through the HTS leads to a feed-through from the vacuum space to the inside of a liquid helium tank. The experiment allows one to measure the performance of both cooler stages along with the performance of the leads. While the leads were powered we measured the voltage drops through the copper leads, through the HTS leads, through spliced to the feed-through, through the feed-through and through the low-temperature superconducting loop that connects one lead to the other. Measurements were made using the leads that were used in spectrometer magnet 1A and spectrometer magnet 2A. These are the same leads that were used for Superbend and Venus magnets at LBNL. The IL/A for these leads was 5.2 x 10{sup 6} m{sup -1}. The leads turned out to be too long. The same measurements were made using the leads that were installed in magnet 2B. The magnet 2B leads had an IL/A of 3.3 x 10{sup 6} A m{sup -1}. This report discusses the cooler performance and the measured electrical performance of the lead circuit that contains the copper leads and the superconducting leads. All of the HTS leads that were installed in magnet 2B were current tested using this apparatus.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    structures; garage fans; energy-efficient outdoor lighting; retractable clotheslines; and evaporative coolers. Some exceptions are made to allow for aesthetic requirements that do...

  1. Microstructural Evolution of EGR Cooler Deposits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution of EGR Cooler Deposits Microstructural Evolution of EGR Cooler Deposits Characterize the thermo-physical properties of the deposit under different operating conditions on model EGR cooler tube and determine the long-term changes in deposit properties due to thermal cycling and water/HC condensation deer09_lance.pdf (5.25 MB) More Documents & Publications Materials Issues Associated with EGR Systems Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR

  2. Training: Fan Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan Systems Training: Fan Systems April 16, 2014 - 6:33pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional fan system resources. Fan System Assessment Tool - 2-hour webcast Availability: Online webcast AMO offers a convenient, introductory, two-hour webcast on the use of the DOE's Fan System Assessment Tool (FSAT). This session introduces the tool and presents the basics-and the

  3. EGR Cooler Fouling- Visualization of Deposition and Removal Mechanis

    Broader source: Energy.gov [DOE]

    Presents experimental data on exhaust gas recirculation(EGR) cooler fouling using new test apparatus that allows for in-situ observation of deposition and removal processes

  4. EGR Cooler Fouling - Visualization of Deposition and Removal...

    Broader source: Energy.gov (indexed) [DOE]

    Presents experimental data on exhaust gas recirculation(EGR) cooler fouling using new test apparatus that allows for in-situ observation of deposition and removal processes ...

  5. Identification and Control of Factors that Affect EGR Cooler...

    Broader source: Energy.gov (indexed) [DOE]

    Key factors that cause exhaust gas recirculation cooler fouling were identified through extensive literature search and controlled experiment was devised to study the impact of a ...

  6. Enforcement Policy: Certain Ceiling Fans and Certain Ceiling Fan Light Kits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Certain Ceiling Fans and Certain Ceiling Fan Light Kits Enforcement Policy: Certain Ceiling Fans and Certain Ceiling Fan Light Kits Issued: December 15, 2015 Revised: March 15, 2016 DOE announced an enforcement policy in a Federal Register notice published on December 24, 2015. This document provides additional information about how DOE plans to implement the policy. This policy is limited to certain ceiling fans and certain ceiling fan light kits manufactured prior to

  7. Fan System Assessment Tool Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fan System Assessment Tool Fact Sheet Fact sheet describing how industrial plants can improve their fan system performance using AMO's Fan System Assessment Tool (FSAT). ...

  8. MODELING OF THERMOPHORETIC SOOT DEPOSITION ANDHYDROCARBON CONDENSATION IN EGR COOLERS

    SciTech Connect (OSTI)

    Abarham, Mehdi; Hoard, John W.; Assanis, Dennis; Styles, Dan; Curtis, Eric W.; Ramesh, Nitia; Sluder, Scott; Storey, John Morse

    2009-01-01

    EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40-90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature. Thermal properties of fouled layer are calculated based on mass fraction of deposited soot and hydrocarbons. The experiments with the same conditions ran to validate the model. Hot EGR gases flow through the inner pipe and the coolant circulates around it in the outer pipe to keep a constant wall temperature. Effectiveness, deposited soot mass, condensed hydrocarbon mass, and pressure drop across the cooler are the parameters that have been compared. The results of the model are in a reasonably good agreement with the experimental results although there are some fields that need to be studied in future to improve the model.

  9. Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling

    SciTech Connect (OSTI)

    Wang, Hsin; Sluder, Scott; Storey, John Morse

    2009-01-01

    Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430 C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ~1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK). The main determinant of the deposit thermal conductivity is density, which was measured to be just 2% that of the density of the primary soot particles (or 98% porous). The deposit layer thermal resistance was calculated and compared with estimates of the thermal resistance calculated from gas temperature data during the experiment. The deposit properties were also used to further analyze the temperature data collected during the experiment.

  10. Form Approval:

    Gasoline and Diesel Fuel Update (EIA)

    ... Evaporative Cooler (Swamp Cooler)...... 1 0 "Whole house" cooling fan (in the ... . . 0 417 418 F-15. How many black and white television sets do you use here in your home? ...

  11. Matthews Fan: Proposed Penalty (2014-CE-32012)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Matthews-Gerbar, Ltd. d/b/a Matthews Fan Company failed to certify a variety of ceiling fans as compliant with the applicable energy conservation standards.

  12. Hunter Fan: Proposed Penalty (2014-CE-32008)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Hunter Fan Company failed to certify a variety of ceiling fans as compliant with the applicable energy conservation standards.

  13. Sound maintenance practices protect fan investments

    SciTech Connect (OSTI)

    Bauer, M.

    2009-11-15

    Since underground coal miners depend on axial fans, lack of maintenance could prove costly. A number of pre-emptive actions that can help keep fans running at optimal performance can also be taken. 2 photos.

  14. A Combined Water Heater Dehumidifier and Cooler (WHDC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Water Heater Dehumidifier and Cooler (WHDC) 2016 Building Technologies Office ... Project Outcome: - Develop a low-cost gas-fired water heat pump to meet the DOE MYPP 2020 ...

  15. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...

    Broader source: Energy.gov (indexed) [DOE]

    57 percent more energy efficient than the previous roof. | U.S. Department of Energy Learning is Now Much 'Cooler' for Maryland School Students New 26 kW solar energy system to be...

  16. Identification and Control of Factors that Affect EGR Cooler Fouling

    Broader source: Energy.gov [DOE]

    Key factors that cause exhaust gas recirculation cooler fouling were identified through extensive literature search and controlled experiment was devised to study the impact of a few key factors on deposition.

  17. Characterization of Field-Aged EGR Cooler Deposits

    SciTech Connect (OSTI)

    Lance, Michael J; Lewis Sr, Samuel Arthur; Sluder, Scott; Storey, John Morse

    2010-01-01

    Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. In order to better understand fouling mechanisms, eleven field-aged EGR coolers provided by seven different engine manufacturers were characterized using a suite of techniques. Microstructures were characterized using scanning electron microscopy (SEM) and optical microscopy following mounting the samples in epoxy and polishing. Optical microscopy was able to discern the location of hydrocarbons in the polished cross-sections. Chemical compositions were measured using thermal gravimetric analysis (TGA), differential thermal analysis (DTA), gas chromatography-mass spectrometry (GC-MS), x-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Mass per unit area along the length of the coolers was also measured. Despite coming from different sources and applications, many common features were observed in the cooler deposits including mud-cracking, hydrocarbon condensation near the metal surface, and erosion of the deposit. Differences and commonalities between the coolers will be discussed in the context of better understanding cooler fouling and ways to prevent it.

  18. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  19. Tests of Four PT-415 Coolers Installed in the Drop-in Mode

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, S.T.

    2008-07-08

    The superconducting magnets and absorbers for MICE will be cooled using PT415 pulse tube coolers. The cooler 2nd stage will be connected to magnets and the absorbers through a helium or hydrogen re-condensing system. It was proposed that the coolers be connected to the magnets in such a way that the cooler can be easily installed and removed, which permits the magnets to be shipped without the coolers. The drop-in mode requires that the cooler 1st stage be well connected to the magnet shields and leads through a low temperature drop demountable connection. The results of the PT415 drop-in cooler tests are presented.

  20. Advanced low noise cooling fans

    SciTech Connect (OSTI)

    Spek, H.F. van der; Nelissen, P.J.M.

    1995-02-01

    The results from an intensive research program show that it is possible to reduce the sound power level of cooling fans by 15 dB(A) by altering blade cord width and swept leading and trailing edge lines. Combination with the reduction of the pressure drop can result in a step of 20 dB(A) and a reduction with 25 percent of the absorbed power. Testing was conducted in accordance with recognized international measuring standards and the results will be presented, including consequences for cooling tower and condenser design.

  1. Optimization of the main parameters of miniature split Stirling cooler

    SciTech Connect (OSTI)

    Tsesarsky, J.

    1995-12-01

    Unlike other modern industrial products Stirling refrigerators development is based mainly on experimental methods. Newly developed high accuracy numerical model for Stirling refrigerators analysis provides good approximation of gas stream process assured by large number of nodes placed in regenerator (300) and large number of time steps (240 per one machine turn). Confidence in accuracy of equations solution makes possible Stirling coolers optimization. In addition to information about refrigerator temperature field the model provides information about driving force of split cooler displacer for computer aided design of displacer driver. In this paper, four parameters of split Stirling refrigerator are optimized: compressor-expander swept volume ratio; phase angle; regenerator length; and regenerator diameter. In each program run power delivered to gas was kept constant by continuous correction of compressor and expander strokes without changing their ratio. Collection of the results produce the optimum cooler structure. Driving displacer force-theta function is also available.

  2. Shipboard electronics thermoacoustic cooler. Master`s thesis

    SciTech Connect (OSTI)

    Ballister, S.C.; McKelvey, D.J.

    1995-06-01

    A thermoacoustic refrigerator that was optimized for preservation of biological samples in space, was modified for use as a cooler for the CV-2095 shipboard radar electronics rack. The thermoacoustic cooler was tested in the laboratory and demonstrated at sea aboard USS DEYO (DD-989). In the laboratory, using a calibrated heat load, the data acquisition system was able to account for the total energy balance to within 4%. At the highest operating power aboard ship, 226.6 Watts of acoustic power was used to provide 419 Walls of useful cooling power, corresponding to a coefficient of performance of 1.85. Taking into account the 53.9% electroacoustic efficiency of the loudspeakers, the Shipboard Electronics ThermoAcoustic Cooler (SETAC) provided one Watt of cooling for each Watt of electrical power input.

  3. Micro-cooler enhancements by barrier interface analysis

    SciTech Connect (OSTI)

    Stephen, A.; Dunn, G. M.; Glover, J.; Oxley, C. H.; Bajo, M. Montes; Kuball, M.; Cumming, D. R. S.; Khalid, A.

    2014-02-15

    A novel gallium arsenide (GaAs) based micro-cooler design, previously analysed both experimentally and by an analytical Heat Transfer (HT) model, has been simulated using a self-consistent Ensemble Monte Carlo (EMC) model for a more in depth analysis of the thermionic cooling in the device. The best fit to the experimental data was found and was used in conjunction with the HT model to estimate the cooler-contact resistance. The cooling results from EMC indicated that the cooling power of the device is highly dependent on the charge distribution across the leading interface. Alteration of this charge distribution via interface extensions on the nanometre scale has shown to produce significant changes in cooler performance.

  4. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    SciTech Connect (OSTI)

    Goetzler, William; Shandross, Richard; Weintraub, Daniel; Young, Jim

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  5. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  6. Mixed feed evaporator

    DOE Patents [OSTI]

    Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  7. Fan System Assessment Tool User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Manual Fan System Assessment Tool User Manual This user manual will help users understand how to use AMO's Fan System Assessment Tool. Fan System Assessment Tool User Manual ...

  8. Matthews Fan: Order (2014-CE-32012)

    Broader source: Energy.gov [DOE]

    DOE ordered Matthews-Gerbar, Ltd. d/b/a Matthews Fan Company to pay a $8,000 civil penalty after finding Matthews had failed to certify that certain models of ceiling fans comply with the applicable energy conservation standards.

  9. Fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1996-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  10. Fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1996-06-11

    Disclosed are fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figs.

  11. Cooling with a Whole House Fan | Department of Energy

    Office of Environmental Management (EM)

    circulating fans provide acceptable summer comfort for many families, even in hot weather. In addition to whole house fans, the ducts of your central heating and cooling...

  12. Shanghai Fan Qie Trading Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shanghai Fan Qie Trading Ltd Place: Shanghai Municipality, China Sector: Solar Product: Solar panel wholesaler and system integrator. References: Shanghai Fan Qie Trading Ltd1...

  13. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  14. 11-04-2015 Issuance: Energy Conservation Standards for Walk-in Coolers and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freezers; Final rule; technical amendment | Department of Energy 11-04-2015 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Final rule; technical amendment 11-04-2015 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Final rule; technical amendment This document is for Energy Conservation Standards for Walk-in Coolers and Freezers; Final rule; technical amendment. Walk-In Coolers and Freezers Final Rule Technical Amendment.pdf (115.48 KB)

  15. Energy Conservation Program: Energy Conservation Standards for Ceiling Fans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Conservation Standards for Ceiling Fans Energy Conservation Program: Energy Conservation Standards for Ceiling Fans Energy Conservation Standards for Ceiling Fans ceiling fans nopr.pdf (1.68 MB) More Documents & Publications Energy Conservation Program: Final Rule; Test Procedures

  16. Cooling with a Whole House Fan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Cooling with a Whole House Fan Cooling with a Whole House Fan This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. This whole-house fan is installed on the ceiling between the attic and living space. The louvers close when the fan is not operating. | Photo courtesy of Allison Casey. Whole house cooling using a whole house fan can

  17. Fans for Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... If that's not practical, you may want to independently ventilate each level of your home with separate fans. Depending on the layout of your home, you might want to use several ...

  18. Fan System Assessment Tool Introduction - Webcast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and other instruments as measurement tools in a fan performance test Develop a ... optimization savings When using FSAT keep in mind that: FSAT is best for the big picture. ...

  19. Synchronous and Cogged Fan Belt Performance Assessment

    SciTech Connect (OSTI)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  20. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A.; Berry, David A.

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  1. Performance Assessment of Photovoltaic Attic Ventilator Fans

    Broader source: Energy.gov [DOE]

    A case study of photovoltaic attic ventilator fans was conducted on an occupied single family home in Central Florida. Two fans were installed at mid-summer in an instrumented home where attic air temperature, meteorological conditions and space cooling electric power were measured. The home already had an attic radiant barrier, but still experienced attic air temperatures in excess of 130oF.

  2. Integral finned heater and cooler for stirling engines

    DOE Patents [OSTI]

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  3. Fuel cell cooler assembly and edge seal means therefor

    DOE Patents [OSTI]

    Breault, Richard D.; Roethlein, Richard J.; Congdon, Joseph V.

    1980-01-01

    A cooler assembly for a stack of fuel cells comprises a fibrous, porous coolant tube holder sandwiched between and bonded to at least one of a pair of gas impervious graphite plates. The tubes are disposed in channels which pass through the holder. The channels are as deep as the holder thickness, which is substantially the same as the outer diameter of the tubes. Gas seals along the edges of the holder parallel to the direction of the channels are gas impervious graphite strips.

  4. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    SciTech Connect (OSTI)

    Mehta, R. N.; Bapat, S. L.; Atrey, M. D.

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  5. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, D.W.; Bounds, J.A.

    1994-05-10

    A fan-less long range alpha detector is disclosed which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces. 2 figures.

  6. Fan-less long range alpha detector

    DOE Patents [OSTI]

    MacArthur, Duncan W.; Bounds, John A.

    1994-01-01

    A fan-less long range alpha detector which operates by using an electrical field between a signal plane and the surface or substance to be monitored for air ions created by collisions with alpha radiation. Without a fan, the detector can operate without the possibility of spreading dust and potential contamination into the atmosphere. A guard plane between the signal plane and the electrically conductive enclosure and maintained at the same voltage as the signal plane, reduces leakage currents. The detector can easily monitor soil, or other solid or liquid surfaces.

  7. Improving Fan System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2003-04-01

    This is one of a series of sourcebooks on motor-driven equipment produced by the Industrial Technologies Program. It provides a reference for industrial fan systems users, outlining opportunities to improve fan system performance.

  8. Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results Solar Decathlon 2015: Energy.gov Fan Favorite Poll Results October 22, 2015 - 10:10am Addthis West Virginia University...

  9. Fan-In Communications On A Cray Gemini Interconnect (Conference...

    Office of Scientific and Technical Information (OSTI)

    Using the Cray Gemini interconnect as our platform, we present a study of an important class of communication operations the fan-in communication pattern. By its nature, fan-in ...

  10. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the first design of a refrigerator condenser using the Sandia Cooler – an air-bearing supported rotating heat-sink impeller.

  11. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal

    Broader source: Energy.gov [DOE]

    This paper reports on studies carried out at ORNL to examine the shear force required to remove particles from a well-developed EGR cooler deposit.

  12. DOE Publishes Request for Information for Ceiling Fans

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a request for information regarding energy conservation standards for ceiling fans.

  13. Improving Fan System Performance: A Sourcebook for Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fan System Performance: A Sourcebook for Industry Improving Fan System Performance: A Sourcebook for Industry This sourcebook is designed to provide fan system users with a reference outlining opportunities to improve system performance. It is not intended to be a comprehensive technical text on improving fan systems, but rather a document that makes users aware of potential performance improvements, provides some practical guidelines, and details where the user can find more help.

  14. List of Whole House Fans Incentives | Open Energy Information

    Open Energy Info (EERE)

    upgrades Water Heaters Whole House Fans LED Exit Signs CHPCogeneration Biomass Photovoltaics Yes Georgia Environmental Finance Authority - Residential Energy Efficiency...

  15. Hexahedron Projection by Triangle Fans and Strips

    Energy Science and Technology Software Center (OSTI)

    2007-05-10

    The program divides the projection of a hexahedron with not-necessarily-planar quadrilateral faces, such as would arise in a curvilinear grid, by the projections of its edges, into polygons overlapped by a single front-facing and a single back-facing face. These polygons are further organized into triangle strips and fans, for rapid volume rendering in graphics hardware.

  16. Energy Conservation Program: Final Rule; Test Procedures for Ceiling Fans |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Final Rule; Test Procedures for Ceiling Fans Energy Conservation Program: Final Rule; Test Procedures for Ceiling Fans Ceiling Fans TP Final_Rule (601.19 KB) More Documents & Publications Energy Conservation Program: Energy Conservation Standards

  17. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    SciTech Connect (OSTI)

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  18. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  19. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  20. COLLECTIVE EFFECTS IN THE RHIC-II ELECTRON COOLER

    SciTech Connect (OSTI)

    POZDEYEV,E.; BEN-ZVI, I.; FEDOTOV, A.; KAYRAN, D.; LITVINENKO, V.; WANG, G.

    2007-06-25

    Electron cooling at RHIC-I1 upgrade imposes strict requirements on the quality of the electron beam at the cooling section. Beam current dependent effects such as the space charge, wake fields, CSR in bending magnets, trapped ions, etc., will tend to spoil the beam quality and decrease the cooling efficiency. In this paper, we estimate the defocusing effect of the space charge at the cooling section and describe our plan to compensate the defocusing space charge force by focusing solenoids. We also estimate the energy and emittance growth cased by wake fields. Finally, we discuss ion trapping in the electron cooler and consider different techniques to minimize the effect of ion trapping.

  1. Prop-fan with improved stability

    SciTech Connect (OSTI)

    Rothman, E.A.; Violette, J.A.

    1988-03-15

    A prop-fan is described comprising swept, rotatable airfoil blades pivotally mounted to a hub for pitch change movement with respect thereto, and having a solidity ratio of 1.0 or greater at the roots of the blades and less than 1.0 at the tips of the blades. The prop fan is operable at or above critical Mach numbers and at transonic or supersonic tip speeds, and is characterized by: each of the blades having a leading edge. The leading edge, from a location thereon at approximately a midportion of the span and the blade, outwardly to the tip thereof, is curved in a chordal direction to define blade sweep while exhibiting no significant offset curvature in a span-wise direction.

  2. Submitting Organization Hongyou Fan Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

     2007 R&D 100 Award Entry Form  Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM 87106, USA 505-272-7128 (phone) 505-272-7336 (fax) hfan@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. Submitter's signature_______________________________ Earl Stromberg Lockheed Martin

  3. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  4. Superhydrophobic Coating for Evaporative Purification and Minerals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potable water is becoming an increasingly scarce resource. Evaporative desalination is one ... Because of this, evaporative desalination has all but been abandoned commercially in the ...

  5. 242-A Evaporator - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    began operating in 1977 to reduce the volume of waste stored in Hanford's underground tanks. The 242-A Evaporator is the only operating nuclear processing facility at Hanford. It...

  6. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  7. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  8. Evaporative Cooling | Open Energy Information

    Open Energy Info (EERE)

    By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the footprint required for an air cooling system. Evaporative...

  9. A shortcut for designing evaporators

    SciTech Connect (OSTI)

    Durand, M.I.A.A.

    1996-01-01

    Multiple-effect evaporation is commonly used in chemical process plants to minimize energy consumption and cooling water. In this system, several evaporators are connected by piping so that vapor passes from one effect to the next in series. Thus, the heat supplied to the first evaporator is used to vaporize water in the first effect; this vapor, in turn, passes to the next effect, until, finally, the heat in the vapor supplied to the last effect passes on to the condenser. The net result of this arrangement is the multiple reuse of heat, and a marked increase in the economic of the evaporation system. In addition to savings in steam use, there is also a saving in condenser cooling water as the number of effects increases. On the other hand, an increase in the number of effects represents an increase in capital costs since more heat transfer area is required in the evaporator system. Thus, the choice of the proper--that is, optimum--number of effects is dictated by an economic balance between the savings in steam and cooling water versus that of the additional investment costs. The paper describes the basic equations and an economic analysis of evaporator systems, and illustrates the method with an example.

  10. Evaporation of multicomponent drop arrays

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.; Chandra, S. (Texas A M Univ., College Station, TX (United States))

    1993-08-01

    The present paper deals with the evaporation of multicomponent fuel droplets in an array using the recently developed point source method (PSM). First, the quasisteady (QS) evaporation of an isolated, multicomponent droplet is briefly analyzed. The resultant governing equations, along with Raoult's law and the Cox-Antoine relation, constitute the set of equations needed to arrive at the solutions for: (1) the droplet surface temperature, (2) the evaporation rate of each species, and (3) the vapor mass fraction of each species at the droplet surface. The PSM, which treats the droplet as a point mass source and heat sink, is then adopted to obtain an analytic expression for the evaporation rate of a multicomponent droplet in an array of liquid droplets. Defining the correction factor ([eta]) as a ratio of the evaporation of a drop in an array to the evaporation rate of a similar isolated multicomponent drop, an expression for the correction factor is obtained. The results of the point source method (PSM) are then compared with those obtained elsewhere for a three-drop array that uses the method of images (MOI). Excellent agreement is obtained. The treatment is then extended to a binary drop array to study the effect of interdrop spacing on vaporization. 20 refs., 11 figs., 4 tabs.

  11. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect (OSTI)

    Prost, Lionel; Shemyakin, Alexander; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  12. Variable Speed Fan Retrofits for Computer Room Air Conditioners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Variable Speed Fan Retrofits for Computer Room Air Conditioners Variable Speed Fan Retrofits for Computer Room Air Conditioners Case study describes various concepts for more cost-effective cooling solutions in data centers, while keeping in mind that the reliability of computing systems and their respective cooling systems is always a key criterion. Download the Variable Speed Fan Retrofits for Computer Room Air Conditioners case study. (352.57 KB) More Documents &

  13. DOE Publishes Final Rule for Residential Furnace Fan Test Procedure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Publishes Final Rule for Residential Furnace Fan Test Procedure DOE Publishes Final Rule for Residential Furnace Fan Test Procedure January 3, 2014 - 12:00am Addthis The Department of Energy (DOE) has published a final rule regarding test procedures for residential furnace fans. 79 FR 500 (January 3, 2014). Find more information on the rulemaking, including milestones, statutory authority, rulemaking documents, and any other related rulemakings. All notices, public

  14. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect (OSTI)

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  15. Energy Conservation Standards for Ceiling Fan Light Kits Notice...

    Broader source: Energy.gov (indexed) [DOE]

    Kits notice of proposed rulemaking More Documents & Publications ISSUANCE 2015-06-25: Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Light Kits,...

  16. QM Power Inc: Commercial Refrigeration Fan Applications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy QM Power Inc: Commercial Refrigeration Fan Applications QM Power Inc: Commercial Refrigeration Fan Applications Q-Sync High Efficiency 9-12 Watt Fan Motors Q-Sync High Efficiency 9-12 Watt Fan Motors Performer: QM Power Inc. - Lee's Summit, MO Partners: Oak Ridge National Labs - Oak Ridge, TN DOE Funding: $1,004,653 Cost Share: $1,004,653 Project Term: October 1, 2014 - March 31, 2018 Funding Opportunity: DE-FOA-0001084 - Commercial Building Technology Demonstrations PROJECT OBJECTIVE

  17. Prop-Fan technical progress leading to technology readiness

    SciTech Connect (OSTI)

    Gatzen, B.S.; Adamson, W.M.

    1981-01-01

    Technical activity on Prop-Fan propulsion has reached an impotant milestone. The analytical and scale model efforts now provide verification of design techniques necessary to initiate the large scale rotor technology demonstration required to achieve Prop-Fan technology readiness. Small scale model rotor programs have demonstrated high uninstalled Prop-Fan efficiency, reduced source noise with swept blades, and satisfactory structural dynamics. This paper presents the technical progress to date and the need to conduct a large scale program. The key element of the large scale program is a high speed flight test of the Prop-Fan rotor mounted on a swept wing. 74 refs.

  18. Variable Speed Fan Retrofits for Computer Room Air Conditioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brian Fortenbery Synapsense: Garret Smith, Patricia Nealon Vigilent: Corinne Vita ... Figure 1. Fan power as a function of speed (the "cube law"). (Credit: Smith, 2013) It ...

  19. Walk-in Cooler/Walk-in Freezer Refrigeration Systems- Enforcement Policy

    Broader source: Energy.gov [DOE]

    DOE will not seek civil penalties or injunctive relief concerning violations of certain energy conservation standards applicable to refrigeration systems of walk-in coolers/walk-in freezers.

  20. A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler...

    Office of Scientific and Technical Information (OSTI)

    repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. ...

  1. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    SciTech Connect (OSTI)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  2. 150K - 200K miniature pulse tube cooler for micro satellites

    SciTech Connect (OSTI)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  3. Choosing the right boiler air fans at Weston 4

    SciTech Connect (OSTI)

    Spring, N.

    2009-04-15

    When it came to choosing the three 'big' boiler air fans - forced draft, induced draft and primary air, the decision revolved around efficiency. The decision making process for fan selection for the Western 4 supercritical coal-fired plant is described in this article. 3 photos.

  4. Microsoft Word - Ex Parte Memo re October 28, 2014 Meeting on Fans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Date November 4, 2014 Re Ex Parte Communication On Tuesday, October 28, 2014, several representatives of fan manufacturers and energy efficiency advocates met with the Department of Energy to discuss potential standards for commercial and industrial fans. The fan manufacturers and energy efficiency advocates presented information concerning the fan market, fan energy-efficiency and the most promising means of designing federal efficiency standards for commercial and industrial fans. The

  5. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect (OSTI)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie

    2013-10-15

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  6. Method for fabricating fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, Rajeev R.; Cowan, Thomas E.

    1994-01-01

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate.

  7. Method for fabricating fan-fold shielded electrical leads

    DOE Patents [OSTI]

    Rohatgi, R.R.; Cowan, T.E.

    1994-12-27

    Fan-folded electrical leads made from copper cladded Kapton, for example, with the copper cladding on one side serving as a ground plane and the copper cladding on the other side being etched to form the leads. The Kapton is fan folded with the leads located at the bottom of the fan-folds. Electrical connections are made by partially opening the folds of the fan and soldering, for example, the connections directly to the ground plane and/or the lead. The fan folded arrangement produces a number of advantages, such as electrically shielding the leads from the environment, is totally non-magnetic, and has a very low thermal conductivity, while being easy to fabricate. 3 figures.

  8. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air

  9. Iodine retention during evaporative volume reduction

    DOE Patents [OSTI]

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  10. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    SciTech Connect (OSTI)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F.; Madi, F.J.

    1994-09-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  11. A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler Design

    SciTech Connect (OSTI)

    Zhang, Yuhong; Derbenev, Yaroslav S.; Douglas, David R.; Hutton, Andrew M.; Krafft, Geoffrey A.; Nissen, Edward W.

    2013-05-01

    An electron cooling facility which is capable to deliver a beam with energy up to 55 MeV and average current up to 1.5 A at a high bunch repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. In this paper, we present a proposal of a test facility utilizing the JLab FEL ERL for a technology demonstration of this cooler design concept. Beam studies will be performed and supporting technologies will also be developed in this test facility.

  12. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    SciTech Connect (OSTI)

    Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.; Zimmerman, Mark D.; Li, Manjie; Du, Yilin; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  13. Learning is Now Much 'Cooler' for Maryland School Students | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Learning is Now Much 'Cooler' for Maryland School Students Learning is Now Much 'Cooler' for Maryland School Students September 21, 2010 - 4:30pm Addthis Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more energy efficient than the previous roof. | U.S. Department of Energy Ring Factory Elementary School has installed a new ENERGY STAR-rated "cool" roof that is estimated to be 57 percent more

  14. Improving Fan System Performance - A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DWDI-double-width, double-inlet fans dynamic balance-the mechanical balancing of a ... express the relation between velocity, viscosity, density, and dimensions in a system of ...

  15. Property:Building/SPElectrtyUsePercCirculationFans | Open Energy...

    Open Energy Info (EERE)

    sePercCirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 18.6715328229 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  16. Property:Building/SPElectrtyUsePercFans | Open Energy Information

    Open Energy Info (EERE)

    SPElectrtyUsePercFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 7.29539104961 + Sweden Building 05K0002 + 16.7673965927 + Sweden...

  17. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Energy Savers [EERE]

    more than a year's carbon pollution from the entire U.S. electricity system. Furnace fans are used to circulate air through ductwork in residential heating and cooling equipment. ...

  18. Evaporative oxidation treatability test report

    SciTech Connect (OSTI)

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  19. Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document—Docket No. EERE-2012-BT-STD-0045

    Broader source: Energy.gov [DOE]

    This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling fans and ceiling fan light kits.

  20. Effect of Engine Operating Condition and Coolant Temperature on EGR Cooler Deposit Microstructure and Chemical Composition

    Broader source: Energy.gov [DOE]

    In this work, the performance of a stand-alone EGR cooler attached to a 6.4L turbodiesel engine is being investigated by analyzing the microstructure and chemical composition of the deposits in the fouled heat exchanger surfaces, at two engine loads: medium and low, and at two coolant temperatures: 85˚C and 40˚C.

  1. DESIGN CONSIDERATIONS FOR THE MECHANICAL TUNER OF THE RHIC ELECTRON COOLER RF CAVITY.

    SciTech Connect (OSTI)

    RANK, J.; BEN-ZVI,I.; HAHN,G.; MCINTYRE,G.; DALY,E.; PREBLE,J.

    2005-05-16

    The ECX Project, Brookhaven Lab's predecessor to the RHIC e-Cooler, includes a prototype RF tuner mechanism capable of both coarse and fast tuning. This tuner concept, adapted originally from a DESY design, has longer stroke and significantly higher loads attributable to the very stiff ECX cavity shape. Structural design, kinematics, controls, thermal and RF issues are discussed and certain improvements are proposed.

  2. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    SciTech Connect (OSTI)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  3. ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation

    SciTech Connect (OSTI)

    Sluder, Scott; Storey, John Morse; Youngquist, Adam D

    2009-01-01

    Exhaust gas recirculation (EGR) cooler fouling has emerged as an important issue in diesel engine development. Uncertainty about the level of impact that fuel chemistry may have upon this issue has resulted in a need to investigate the cooler fouling process with emerging non-traditional fuel sources to gage their impact on the process. This study reports experiments using both ultra-low sulfur diesel (ULSD) and 20% biodiesel (B20) at elevated exhaust hydrocarbon conditions to investigate the EGR cooler fouling process. The results show that there is little difference between the degradation in cooler effectiveness for ULSD and B20 at identical conditions. At lower coolant temperatures, B20 exhibits elevated organic fractions in the deposits compared with ULSD, but this does not appear to lead to incremental performance degradation under the conditions studied. Comparisons with a previous study conducted at low HC levels shows that the presence of increased volatiles in the deposit does not impact the degradation in effectiveness significantly. Moreover, the effectiveness loss divided by the deposit mass gain for both low- and high-HC conditions seems to indicate that the HC fraction in the deposit does not significantly alter the overall thermal properties of the deposit layer.

  4. Dew-Point Evaporative Comfort Cooling (Presentation)

    SciTech Connect (OSTI)

    Dean, J.

    2012-10-01

    Presentation on innovative indirect evaporative cooling technology developed by Coolerado Corporation given at the Rocky Mountain Chapter ASHRAE conference in April 2012.

  5. Apparatus and method for evaporator defrosting

    DOE Patents [OSTI]

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  6. ARM - Lesson Plans: Sunlight and Evaporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective The objective is to demonstrate that the energy from sunlight can evaporate ... Different wave lengths have different amount of energy. The bulk of the sun's energy ...

  7. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  8. Photo of the Week: Fan-tastic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan-tastic Photo of the Week: Fan-tastic August 17, 2012 - 10:30am Addthis In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will eventually make up a completed wind turbine. Under the Recovery Act, Nordex USA received a tax credit to assist in the creation of the Jonesboro manufacturing facility, which opened in October 2010. | Photo courtesy of Nordex USA. In Jonesboro, Arkansas, a Nordex USA employee stands between utility-scale components that will

  9. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  10. 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits...

    Energy Savers [EERE]

    7 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of Proposed Rulemaking 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of Proposed Rulemaking ...

  11. How Has a Ceiling Fan Affected the Way You Heat and Cool Your...

    Office of Environmental Management (EM)

    Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, ...

  12. Development of an Innovative, High-Efficiency Radon Fan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy an Innovative, High-Efficiency Radon Fan Development of an Innovative, High-Efficiency Radon Fan Mechanical Solutions Inc. will use the latest modeling techniques, in combination with decades of experience and market leader Fantech, to produce a high-efficiency radon fan design. Source: Mechanical Solutions Inc. Mechanical Solutions Inc. will use the latest modeling techniques, in combination with decades of experience and market leader Fantech, to produce a high-efficiency radon fan

  13. DOE Publishes Notice of Proposed Rulemaking for Residential Furnace Fans Energy Conservation Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy has published a notice of proposed rulemaking regarding energy conservation standards for residential furnace fans.

  14. Energy Conservation Standards for Ceiling Fan Light Kits Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Notice of proposed rulemaking (NOPR) and announcement of public meeting.

  15. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  16. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  17. Pump and Fan Technology Characterization and R&D Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides the Building Technologies Office (BTO) and the research and development (R&D) community with a technical and market analysis of pumps and fans as they pertain to commercial and residential buildings as well as key conclusions regarding the R&D opportunities that can help achieve BTO’s energy savings goals.

  18. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    SciTech Connect (OSTI)

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  19. 241-A evaporator flowsheet users manual

    SciTech Connect (OSTI)

    Larrick, A.P.

    1994-12-22

    This supporting document presents a description of the 242-A Evaporator flowsheet. Material balances are calculated for feed, slurry, and effluent streams based on input data for the feed stream.

  20. A simple model simulating a fan as a source of axial and circumferential body forces

    Energy Science and Technology Software Center (OSTI)

    2002-07-01

    This software can be used in a computational fluids dynamics (CFD) code to represent a fan as a source of axial and circumferential body forces. The combined software can be used effectively in car design analyses that involve many underhood thermal management simulations. FANMOD uses as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades, and predicts the body forces generated by the fan inmore » the axial and circumferential directions. These forces can be used as momentum forces in a CFD code to simulate the effect of the fan in an underhood thermal management simulation.« less

  1. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  2. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  3. ISSUANCE: 2014-12-03 Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools

  4. ISSUANCE 2015-04-21: Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools

  5. ISSUANCE 2015-06-25: Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Light Kits, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Ceiling Fan Light Kits, Notice of Proposed Rulemaking

  6. Saturation of the fan instability: Nonlinear merging of resonances

    SciTech Connect (OSTI)

    Krafft, C.; Volokitin, A.; Zaslavsky, A.

    2005-11-15

    A Hamiltonian self-consistent wave-particle model has been built in order to study the nonlinear interaction of a packet of waves with a nonequilibrium electron distribution in a magnetized background plasma. In particular, this model and the corresponding numerical code allow us to study in detail the excitation by the fan instability of lower hybrid waves interacting resonantly with a strongly anisotropic electron velocity distribution. This paper points out the essential role played by the process of ''dynamical merging of resonances,'' which results from an instability of the trapped particles' motion, leading, in its explosive stage, to the amplification of the waves' amplitudes. Moreover the relaxation phase of the fan instability is shown to lead to a universal distribution of the particles' velocities, which does not depend on the number of waves and on their distribution in the k space.

  7. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  8. Ball feeder for replenishing evaporator feed

    DOE Patents [OSTI]

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  9. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect (OSTI)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  10. Ball feeder for replenishing evaporator feed

    DOE Patents [OSTI]

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  11. 2014-06-23 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration

    Broader source: Energy.gov [DOE]

    This document is the agency response to the Energy Conservation Standards for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration.

  12. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  13. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  14. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  15. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  16. 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Rulemaking | Department of Energy 7 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of Proposed Rulemaking 2014-10-27 Issuance: Test Procedure for Ceiling Fan Light Kits; Notice of Proposed Rulemaking This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for ceiling fan light kits, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 27, 2014. Though it is not intended or expected, should any

  17. 2015-03-26 Issuance: Fans and Blowers ASRAC Working Group; Notice of Intent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Issuance: Fans and Blowers ASRAC Working Group; Notice of Intent 2015-03-26 Issuance: Fans and Blowers ASRAC Working Group; Notice of Intent This document is a pre-publication Federal Register Notice of Intent regarding establishment of an ASRAC Working Group for Fans and Blowers, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 26, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and

  18. Hunter Fan Company DOE Ex Parte Meeting Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fan Company DOE Ex Parte Meeting Memo Hunter Fan Company DOE Ex Parte Meeting Memo This memo provides a summary of the communications made to the DOE staff regarding proposed rules on ceiling fan test procedures. June 7 Hunter DOE Ex Parte Meeting (120.19 KB) More Documents & Publications Hunter DOE Ex Parte Communication Summary July 30 2015 ISSUANCE 2015-05-26: Energy Conservation Program: Test Procedures for Ceiling Fans, Supplemental Notice of Proposed Rule 2014-09-19 Issuance: Energy

  19. Tank 26F-2F Evaporator Study

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  20. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect (OSTI)

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3™ replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost effectiveness. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Results indicate that BPM replacement motors will be most cost effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  1. Flash evaporation of liquid monomer particle mixture

    DOE Patents [OSTI]

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  2. Flash evaporation of liquid monomer particle mixture

    DOE Patents [OSTI]

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  3. Tubeless evaporation process development: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  4. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect (OSTI)

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  5. A passive margin-type submarine fan complex, Permian Ecca Group, South Africa

    SciTech Connect (OSTI)

    Wickens, H.D. ); Bouma, A.H. )

    1991-03-01

    A submarine fan complex, comprising five arenaceous fan systems separated by basinal shale units, occurs in the southwestern part of the intracratonic Karoo basin in South Africa. Although basin development is related to a subduction zone bordering the palaeo-Pacific ocean to the south of Gondwanaland and the evolution of the Cape Fold Belt, the entire Lower Permian Ecca Group basin-fill succession reflects depositional characteristics of a passive-margin setting. The submarine fan complex, 250 m thick, originated from sediments supplied by Mississippi-type deltas dominating the Ecca coastline. The fine grain-size and low sand/shale ratio of the submarine fan and deltaic deposits reflect the maturity of the ancient river systems. Outcrops of the fan complex are well exposed and cover an area of 650 km{sup 2}. The strata are not affected by folding, and deep erosion allows three-dimensional viewing of mid-fan to outer-fan deposits. Features of interest include stacked lobe deposits displayed along 2.5 km of a 60 m high cliff section, and a transverse cliff section through channel-fill deposits 500 m wide. Paleocurrent directions reveal that each sequence had its own main source area located to the northwest and south of its present geographic location. The cyclic nature of the fan complex is attributed to relative sea-level changes; deposition took place on the basin floor in water depths that do not exceed 500 m. Shoaling of the basin to wave base depths is reflected in the pro-delta and delta front deposits overlying the uppermost fan sequence. Major factors in controlling direction of fan progradation were delta switching and basin floor topography.

  6. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    SciTech Connect (OSTI)

    Cao, Haishan E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas; Holland, Harry J.; Brake, H. J. Marcel ter

    2015-11-15

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possible sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.

  7. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    SciTech Connect (OSTI)

    Storey, John Morse; Sluder, Scott; Lance, Michael J; Styles, Dan; Simko, Steve

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, no significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.

  8. Treatment of evaporator condensates by pervaporation

    DOE Patents [OSTI]

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  9. Models of crystallization in evaporating droplets

    SciTech Connect (OSTI)

    Ford, I.J.

    1996-12-31

    The spray drying of a droplet containing a substance in solution can produce solid particles with a variety of final shapes: hollow, punctured, squashed, as well as solid spheres. The geometry affects the properties of the product. Models are presented here which describe the processes of solvent evaporation and solute crystallization as drying takes place. The formation of a crust on the surface of the droplet is addressed. It is proposed that such a crust with a thickness of two crystallite diameters can develop into dry hollow shell. Some example calculations of the spray drying of droplets of sodium chloride solution are described.

  10. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect (OSTI)

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  11. The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-08-27

    This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.

  12. Reservoir characterization of a Permian Slope Fan/basin-floor fan complex: Cherry Canyon Formation, Ward County, Texas

    SciTech Connect (OSTI)

    Spain, D.R. )

    1990-05-01

    The Cherry Canyon Formation consists of a 925-ft- (280-m) thick section of up to 25 different sandstone and siltstone units that were deposited in a deep-water environment in the Delaware basin. Lowstand sedimentation by fluid density currents with periodic turbidity currents resulted in a broad-migrating channelized slope fan/basin-floor fan complex interpreted to exhibit an intricate reservoir geometry. Thirteen lithofacies are identified. Primary reservoirs are found in massive channel sandstones, and beds of lesser reservoir quality are present in laminated overbank/interchannel sandstones. Original depositional fabric modified by diagenetic cements and authigenic clays created three petrophysical rock types. Type I reservoirs contain intergranular macroporosity relatively free of carbonate cement and authigenic clay. Types II and III reservoirs contain mesoporosity and abundant microporosity created by moderate to abundant carbonate cementation and plugging of pore throats by authigenic grain-coating chlorite and pore-bridging fibrous illite. Depositional and diagenetic factors combine with insufficient oil column height to yield low initial oil saturations that decrease with depth in a hydrocarbon-water transition zone. Mercury injection capillary pressure measurements illustrate the vertical stratification of petrophysical rock types that exist in the section; reservoirs which contain all water are interbedded with reservoirs containing mostly oil. Subsequently, a slight change in height above free water can drive production from all water to all oil. Hydrocarbon column heights greater than 60 ft are required to establish water-free oil production. Accurate reservoir water saturations can be derived using Archie's equation; when combined with a movable oil analysis and drainage relative permeability/fractional flow curves, initial water cuts can be predicted to maximize deliverability.

  13. The Effect of Magnetic Field on the Position of HTS Leads and theCooler in the Services Tower of the MICE Focusing Magnet

    SciTech Connect (OSTI)

    Green, M.A.; Yang, S.Q.; Cobb, J.; Lau, P.; Lau, W.W.; Witte,H.; Baynham, D.E.; Bradshaw, T.W.

    2007-08-27

    The MICE focusing solenoids have three 4 K coolers (two forthe superconducting magnet and one for the liquid absorber) and four HTSleads that feed the current to the focusing coils. The focusing solenoidsproduce large radial external fields when they operate with the polarityof the two coils in opposition (the gradient or flip mode). When the MICEfocusing coils operate at the same polarity (the solenoid or non-flipmode), the fields are much smaller and parallel to the axis of thesolenoid. The worst-case magnetic field affects the selection of thecooler and the HTS leads. This magnetic field can also determine theheight of the service towers that house the three coolers and the fourHTS leads. This paper shows the criteria used for Cooler selection, HTSlead selection, and the position of both the cooler and leads withrespect to the solenoid axis of rotation.

  14. Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore | Princeton Plasma Physics Lab Metered Evaporator for Tokamak Wall Conditioning --- Inventor(s): Charles H. Skinner, Dennis Mansfield, Henry Kugel, Hans Schneider and Lane Roquemore A novel lithium evaporator for the controlled introduction of lithium into tokamaks for wall conditioning is described. The concept uses a Li granule injector with a heated in-vessel yttrium crucible to evaporate a controlled amount of

  15. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  16. 2015-03-26 Issuance: Fans and Blowers ASRAC Working Group; Notice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document is being made available through the Internet solely as a means to facilitate the public's access to this document. ASRAC Fans and Blowers Working Group Notice of ...

  17. fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED...

    Office of Scientific and Technical Information (OSTI)

    draft fan blades Karr, O.F.; Brooks, J.B.; Seay, E. 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 42 ENGINEERING NOT INCLUDED IN OTHER...

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans...

    Open Energy Info (EERE)

    eKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  19. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  20. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOE Patents [OSTI]

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  1. Stabilization of the fan instability: Electron flux relaxation

    SciTech Connect (OSTI)

    Krafft, C.; Volokitin, A.

    2006-12-15

    This paper presents some relevant simulation results on the interaction between electrostatic waves and suprathermal electron fluxes at anomalous cyclotron and Landau resonances. In particular, the case of a dense and continuous wave spectrum is studied. It is shown that, after the waves excited by the fan instability at anomalous cyclotron resonances have reached a first saturation stage due to particle trapping, the process of 'dynamical resonance merging' takes place, which leads to a strong amplification of the waves' amplitudes. The Landau resonances do not play an essential role in the total energy exchange between the particles and the waves, as they mainly help to smooth the peaks rising during the evolution of the electron parallel velocity distribution and contribute to damping. Moreover, the paper shows that at the asymptotic stage of the interaction, when the waves' amplitudes are saturated and the electron flux is relaxed, some physical features clearly do not fit the predictions of the well-known quasilinear theory. The careful examination of a huge number of trajectories of particles moving in the effective field of the wave packet allows to state that most of the particles involved in the resonant interactions are trapped by several waves simultaneously. In this so-called 'multitrapping' process, the particles perform complex oscillatory motions which are far from what is expected from the quasilinear theory, where the diffusive behavior of the particles in the velocity space results from small successive random steps.

  2. Parametric System Curves: Correlations Between Fan Pressure Rise and Flow for Large Commercial Buildings

    SciTech Connect (OSTI)

    Sherman, Max; Wray, Craig

    2010-05-19

    A substantial fraction of HVAC energy use in large commercial buildings is due to fan operation. Fan energy use depends in part on the relationship between system pressure drop and flow through the fan, which is commonly called a "system curve." As a step toward enabling better selections of air-handling system components and analyses of common energy efficiency measures such as duct static pressure reset and duct leakage sealing, this paper shows that a simple four-parameter physical model can be used to define system curves. Our model depends on the square of the fan flow, as is commonly considered. It also includes terms that account for linear-like flow resistances such as filters and coils, and for supply duct leakage when damper positions are fixed or are changed independently of static pressure or fan flow. Only two parameters are needed for systems with variable-position supply dampers (e.g., VAV box dampers modulating to control flow). For these systems, reducing or eliminating supply duct leakage does not change the system curve. The parametric system curve may be most useful when applied to field data. Non-linear techniques could be used to fit the curve to fan pressure rise and flow measurements over a range of operating conditions. During design, when measurements are unavailable, one could use duct design calculation tools instead to determine the coefficients.

  3. Preliminary Aging Assessment of Nuclear Air-Treatment and Cooling System Fans

    SciTech Connect (OSTI)

    Winegardner,, W. K.

    1995-07-01

    A preliminary aging assessment of the fans used in nuclear air treatment and cooling systems was performed by the Pacific Northwest Laboratory as part of the U.S. Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. Details from guides and standards for the design, testing, and installation of fans; results of failure surveys; and information concerning stressors, related aging mechanisms, and inspection, surveillance, and monitoring methods (ISMM) were compiled. Failure surveys suggest that about half of the failures reported for fans are primarily associated with aging. Aging mechanisms associated with the various fan components and resulting from mechanical, thermal, and environmental stressors include wear, fatigue, corrosion, and erosion of metals and the deterioration of belts and lubricants. A bearing is the component most frequently linked to fan failure. The assessment also suggests that ISMM that will detect irregularities arising from improper lubrication, cooling, alignment, and balance of the various components should aid in counteracting many of the aging effects that could impair fan performance. An expanded program, to define and evaluate the adequacy of current ISMM and maintenance practices and to include a documented Phase I aging assessment, is recommended.

  4. THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b?

    SciTech Connect (OSTI)

    Line, Michael R.; Yung, Yuk L.; Vasisht, Gautam; Chen, Pin; Angerhausen, D. E-mail: gv@s383.jpl.nasa.gov

    2011-09-01

    We introduce a thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O, and N reactions (most importantly for CH{sub 4} to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows the chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler (T{sub eff} < 10{sup 3} K) extrasolar giant planets. In particular, we choose to model the nearby hot-Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent Spitzer measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the day side of GJ436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ436b is cooler than many of the heavily irradiated hot Jovians and thermally favorable for CH{sub 4}, and thus requires an efficient mechanism for destroying it. We include realistic estimates of ultraviolet flux from the parent dM star GJ436, to bound the direct photolysis and photosensitized depletion of CH{sub 4}. While our models indicate fairly rich disequilibrium conditions are likely in cooler exoplanets over a range of planetary metallicities, we are unable to generate the conditions for substantial CH{sub 4} destruction. One possibility is an anomalous source of abundant H atoms between 0.01 and 1 bars (which attack CH{sub 4}), but we cannot as yet identify an efficient means to produce these hot atoms.

  5. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect (OSTI)

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu; Nakagome, Michiru; Kuze, Toshisuke; Imuta, Akira

    1997-12-31

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  6. 2014-05-08 Issuance: Energy Conservation Standards for Walk-in Coolers and Freezers; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding energy conservation standards for walk-in coolers and walk-in freezers, as issued by the Assistant Secretary for Energy Efficiency and Renewable Energy on May 8, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  7. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; et al

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  8. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    SciTech Connect (OSTI)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei; Devaraj, Arun; Colby, Robert J.; Thevuthasan, Suntharampillai; Geiser, B. P.; Larson, David J.

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results of the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.

  9. Characteristics of some submarine fan channels, Permian Ecca Group, South Africa

    SciTech Connect (OSTI)

    Bouma, A.H. ); Dev Wickens, H. )

    1991-03-01

    The vary well exposed submarine fan complex in the southwestern part of the Karoo basin permits close examination of channel-fills and in places their associated overbank deposits. The complex comprises five arenaceous fan systems some of which attain 60 m in thickness. The fans are vertically stacked and separated by basinal shale deposits; each system with its own direction of growth. The association of channelized sandstone bodies and thin-bedded sandstone and shale packages in an updip position from predominantly stacked lobe deposits suggest preservation of middle fan settings. A 500 m wide, 20 m thick channel-fill consisting massive amalgamated sandstone beds occupying the channel thalweg occurs in a setting dominated by thin-bedded, ripple-laminated sandstone and shale. Gradual thinning of the channel-fill beds toward the channel edges, lack of internal lateral accretion, and a high width to depth ratio suggests a low sinuous to straight channel. The channel-fill is capped by an abandonment facies characterized by ripple-laminated sandstone and shale. Stacked, laterally offset channel-fill deposits with highly erosional contacts and typical well-bedded overbank deposits form channel-overbank complexes and characterize the mid-fan region of the uppermost fan system. Palaeocurrent directions and gradual diminishing of bed-thickness away from the generally massively bedded, amalgamated channel-fill sandstones confirm a simultaneous channel/overbank origin for these deposits. Levee morphology has not been recognized. Both examples of channel-fills cited reveal part of the complexity of the channelized portions of submarine fans and hence the implications thereof in exploring for hydrocarbon reservoirs.

  10. Facies architecture of Spraberry submarine fan reservoirs (Permian), Midland basin, Texas

    SciTech Connect (OSTI)

    Guevara, E.H.; Tyler, N.

    1989-03-01

    Facies of mud-rich submarine fans of the Spraberry formation (Permian, Leonardian) form oil reservoirs in the central part of the Midland basin, west Texas. The principal reservoirs are submarine-channel and associated facies in the upper parts of generally upward-coarsening and upward-thickening sequences of the Jo Mill (lower Spraberry) and Driver and overlying Floyd (upper Spraberry) fans. They are naturally fractured, massive and laminated, very fine-grained, calcareous sandstones and siltstones usually occurring in beds 2 to approximately 12 ft thick. Two main subdivisions, inner and middle to outer fan, are recognized using isoliths, log motifs, and cores of predominantly terrigenous clastic, mostly basin-wide genetic intervals. The boundary between the subdivisions approximately coincides with the location of the subjacent Horseshoe atoll (Pennsylvanian). The narrow range in grain size of the fans results in limited basinward variations in texture and sedimentary structures and paucity of Bouma sequences. Facies architecture strongly influences hydrocarbon distribution and recovery. Wells having the best cumulative productions generally occur in sandstone depositional axes. Most accumulations in inner fan facies are scattered structural traps having relatively high recovery efficiencies (24%, Jo Mill field). The largest accumulations in mid to outer fan facies are stratigraphic traps in meandering to anastomosing channel sandstone belts 1-3 mi wide occurring in a widespread area. Recovery efficiencies range from 5% (Spraberry trend, stratigraphic trap) to 15% (Benedum field, combined stratigraphic-structural trap). Additional reserves can be recovered from partly drained and untapped reservoir compartments, especially in layered and compartmentalized middle to outer fan facies.

  11. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  12. Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma Forbidden regions, double layers, and supersolitons

    SciTech Connect (OSTI)

    Ghosh, S. S.; Sekar Iyengar, A. N.

    2014-08-15

    It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leads to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.

  13. Report on Analyses of WAC Samples of Evaporator Overheads - 2004

    SciTech Connect (OSTI)

    Oji, L

    2005-03-18

    In November and December of 2004, the Tank Farm submitted annual samples from 2F, 2H and 3H Evaporator Overhead streams for characterization to verify compliance with the new Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC) and to look for organic species. With the exception of slightly high ammonia in the 2F evaporator overheads and high radiation control guide number for the 3H and 2F evaporator overhead samples, all the overheads samples were found to be in compliance with the Effluent Treatment Facility WAC. The ammonium concentration in the 2F-evaporator overhead, at 33 mg/L, was above the ETF waste water collection tank (WWCT) limits of 28 mg/L. The RCG Number for the 3H and 2F evaporator samples at, respectively, 1.38E-02 and 8.24E-03 were higher than the WWCT limit of 7.69E-03. The analytical detection limits for americium-241 and radium-226 in the evaporator samples were not consistently met because of low WWCT detection limits and insufficient evaporator samples.

  14. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Miura, Hitoshi [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan)] [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan); Nagasawa, Makiko; Nakamoto, Taishi [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)] [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owing to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.

  15. Water Managment: The Dynamic Challenges of Evaporative Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As water flows over the tower, heat picked up by the process is released by evaporation. The cooling water then returns to the heat exchangers to pick up more heat. Cooling Tower ...

  16. 242-A Evaporator quality assurance plan. Revision 2

    SciTech Connect (OSTI)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.

  17. Asymmetrical-fan tranmission CT on SPECT to derive {mu}-maps for attenuation correction

    SciTech Connect (OSTI)

    Loncaric, S.; Huang, G.; Ni, B. [Rush-Presbyterian-St. Luke`s Medical Center, Chicago, IL (United States)] [and others

    1994-05-01

    For proper attenuation correction of SPECT images, an appropriate {mu}-map properly registered with each imaging slices is needed. Among the many techniques for {mu}-map derivation, simultaneous or sequential fan-beam transmission CT (TCT), on the same SPECT system with the same acquisition settings, have advantages of being practical while ensuring registration. However, the problems are: (1) limited FOV for thoracic imaging, projection would be truncated with a typical size detector, (2) lack of room for placing the transmission source in many SPECT systems. We have developed a new sampling scheme to solve the problems mentioned above. This scheme uses an asymmetrical-fan geometry (AFG), which samples only half of the field, the other half would be sampled after an 180{degrees} detector rotation. This technique completes the minimum sampling requirement in a 360{degrees} detector rotation and yields a relatively large FOV defined by the outside edge of the sampling fan. We have confirmed the feasibility of the AFG sampling on a 3-head SPECT system to provide a large FOV for TCT of most patient. The TCT sampling scheme is achieved with an asymmetrical-fan collimator. We have developed the required new reconstruction algorithms and derived excellent reconstructed images of phantoms and human subjects. We propose to have this technique implemented in a short and fast transmission scan in a multi-head SPECT system, after emission imaging, because the detectors have to be pulled out to make room for the transmission source. The imaging field can even exceed the full field size of the detector. MS would be possible when an obtuse sampling fan is formed by shifting the source outward further, provided the central FOV is properly covered with a supplementary sampling scheme, e.g., using another TCT with a fan-beam collimator on another one of the detectors.

  18. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOE Patents [OSTI]

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  19. "Increasing Solar Panel Efficiency And Reliability By Evaporative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks | Princeton Plasma Physics Lab Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks The efficiency and reliability of photovoltaic solar panels decreases with increasing operating temperatures. In hot, dry climates, evaporative cooling with a

  20. DOE - Office of Legacy Management -- Swenson Evaporator Co - IL 23

    Office of Legacy Management (LM)

    Swenson Evaporator Co - IL 23 FUSRAP Considered Sites Site: SWENSON EVAPORATOR CO. (IL.23 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Harvey , Illinois IL.23-1 Evaluation Year: 1987 IL.23-1 Site Operations: Scheduled a raffinate spray drying test that was later cancelled. IL.23-1 Site Disposition: Eliminated - No indication that radioactive materials were handled at this site IL.23-1 Radioactive Materials Handled: None

  1. Ex Parte discussion of commercial fan and blower rulemaking | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy discussion of commercial fan and blower rulemaking Ex Parte discussion of commercial fan and blower rulemaking On November 3rd, Jordan Doria, Manager of Stakeholder Engagement, Ingersoll Rand, convened a teleconference with John Cymbalsky and Daniel Cohen of DOE. IR_ex_parte_discussion_3NOV2014 (101.77 KB) More Documents & Publications Meeting Summary Memo Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 ASE/CAGI Meeting about Compressors and Compressed

  2. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, Desikan

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  3. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  4. ISSUANCE 2015-08-21: Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Commercial and Industrial Equipment: Notice of Open Meetings for the Fans and Blowers Working Group

  5. Upward-facing Lithium Flash Evaporator for NSTX-U

    SciTech Connect (OSTI)

    Roquemore, A. L.

    2013-07-09

    NSTX plasma performance has been significantly enhanced by lithium conditioning [1]. To date, the lower divertor and passive plates have been conditioned by downward facing lithium evaporators (LITER) as appropriate for lower null plasmas. The higher power operation expected from NSTX-U requires double null plasma operation in order to distribute the heat flux between the upper and lower divertors making it desirable to coat the upper divertor region with Li as well. An upward aiming LITER (U-LITER) is presently under development and will be inserted into NSTX-U using a horizontal probe drive located in a 6" upper midplane port. In the retracted position the evaporator will be loaded with up to 300 mg of Li granules utilizing one of the calibrated NSTX Li powder droppers[2]. The evaporator will then be inserted into the vessel in a location within the shadow of the RF limiters and will remain in the vessel during the discharge. About 10 seconds before a discharge, it will be rapidly heated and the lithium completely evaporated onto the upper divertor, thus avoiding the complication of a shutter that prevents evaporation during the shot when the diagnostic shutters are open. The minimal time interval between the evaporation and the start of the discharge will avoid the passivation of the lithium by residual gases and enable the study of the conditioning effects of un-passivated Li surfaces [3]. Two methods are being investigated to accomplish the rapid (few second) heating of the lithium. A resistive method relies on passing a large current through a Li filled crucible. A second method requires using a 3 kW e-beam gun to heat the Li. In this paper the evaporator systems will be described and the pros and cons of each heating method will be discussed.

  6. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-02-27

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  7. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  8. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect (OSTI)

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100?MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  9. Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces Fans; Correction

    Office of Energy Efficiency and Renewable Energy (EERE)

    On January 3, 2014 the U.S. Department of Energy (DOE) published a final rule in the Federal Register that established the test procedure for residential furnace fans. Due to drafting errors, that document inadvertently removed necessary incorporation by reference material in the Code of Federal Regulations (CFR). This final rule rectifies this error by once again adding the removed material.

  10. Turning on the Fan and Turning off the A/C

    Broader source: Energy.gov [DOE]

    As part of some recent money- and energy-savings improvements I've been making to my home, a couple of weeks ago I installed a ceiling fan in my main living room. Part of my research led me to...

  11. Income Tax Deduction for Solar-Powered Roof Vents or Fans

    Broader source: Energy.gov [DOE]

    The taxpayer must provide proof of the taxpayer’s costs for installation of a solar powered roof vent or fan and a list of the persons or corporations that supplied labor or materials for the solar...

  12. 2014-02-07 Issuance: Alternative Efficiency Determination Methods and Test Procedures for Walk-In Coolers and Walk-In Freezers; Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding alternative efficiency determination methods and test procedures for walk-in coolers and walk-in freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  13. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  14. Development of a Direct Evaporator for the Organic Rankine Cycle

    SciTech Connect (OSTI)

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  15. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

    SciTech Connect (OSTI)

    Stotler, D. P.; Skinner, C. H.; Blanchard, W. R.; Krstic, P. S.; Kugel, H. W.; Schneider, H.; Zakharov, L. E.

    2010-12-09

    A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

  16. Evaporation of water with single and multiple impinging air jets

    SciTech Connect (OSTI)

    Trabold, T.A.; Obot, N.T. )

    1991-08-01

    An experimental investigation of impingement water evaporation under a single jet and arrays of circular jets was made. The parametric study included the effects of jet Reynolds number and standoff spacing for both single and multiple jets, as well as surface-to-nozzle diameter ratio and fractional nozzle open area for single and multiple jets, respectively. The nozzle exit temperature of the air jet, about the same as that of the laboratory, was 3-6C higher than that of the evaporating water. Predictive equations are provided for mass transfer coefficient in terms of the flow and geometric conditions.

  17. Improved efficiency and power density for thermoacoustic coolers. Technical report, 1 June 1995-31 May 1996

    SciTech Connect (OSTI)

    Hofler, T.J.

    1996-06-01

    Work continues on building a thermoacoustic heat driven cooler having no moving parts, with cooling power in the 0.5 to 1.0 kW range. Previous work dealt with numerical modeling of a new engine topology used in the above engine and various work on improved heat exchangers. Recently, morn modeling suggests that cooling powers in the range of 35 kW (10 ton) may be possible with an engine having a longest dimension of 4 ft. and that efficiency improves significantly with size. Also, the authors have solved some fabrication problems with their high temperature nickel heat exchangers. The major work this year has been on the high temperature thermoacoustic stack structure. A common Stirling engine regenerator structure consisting of stacked disks cut from stainless steel wire mesh was tested in an apparatus previously used for high amplitude heat exchanger measurements. Stacks are very easy to construct in this fashion and longitudinal thermal conduction is greatly reduced. Results show that amplitude performance is very good and within 10% of the usual spiral roll structures. More impressively, the efficiency of the mesh stack is as much as 30% higher than for spiral rolls stacks. The authors are also conducting measurements on pure carbon random structures that could be used at extremely high temperatures.

  18. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    SciTech Connect (OSTI)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  19. Calculation of Reactive-evaporation Rates of Chromia

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01

    A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.

  20. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect (OSTI)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  1. Evaporation of iodine-containing off-gas scrubber solution

    DOE Patents [OSTI]

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  2. Analysis of design tradeoffs for diplay case evaporators

    SciTech Connect (OSTI)

    Bullard, CLARK

    2004-08-11

    A model for simulating a display case evaporator under frosting conditions has been developed, using a quasi-steady and finite-volume approach and a Newton-Raphson based solution algorithm. It is capable of simulating evaporators with multiple modules having different geometries, e.g. tube and fin thicknesses and pitch. The model was validated against data taken at two-minute intervals from a well-instrumented medium-temperature vertical display case, for two evaporators having very different configurations. The data from these experiments provided both the input data for the model and also the data to compare the modeling results. The validated model has been used to generate some general guidelines for coil design. Effects of various geometrical parameters were quantified, and compressor performance data were used to express the results in terms of total power consumption. Using these general guidelines, a new prototype evaporator was designed for the subject display case, keeping in mind the current packaging restrictions, tube and fin availabilities. It is an optimum coil for the given external load conditions. Subsequently, the validated model was used in a more extensive analysis to design prototype coils with some of the current tube and fin spacing restrictions removed. A new microchannel based suction line heat exchanger was installed in the display case system. The performance of this suction line heat exchanger is reported.

  3. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Mike L. Laue

    1997-05-30

    The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

  4. HEPA Filter Differential Pressure Fan Interlock System Functional Requirements and Technical Design Criteria

    SciTech Connect (OSTI)

    TUCK, J.A.

    2000-05-11

    Double-shell tanks (DSTs) and Double Contained Receiver Tanks (DCRTs) are actively ventilated, along with certain single-shell tanks (SSTs) and other RPP facilities. The exhaust air stream on a typical primary ventilation system is drawn through two stages of high-efficiency particulate air (HEPA) filtration to ensure confinement of airborne radioactive materials. Active ventilation exhaust stacks require a stack CAM interlock to detect releases from postulated accidents, and to shut down the exhaust fan when high radiation levels are detected in the stack airstream. The stack CAM interlock is credited as a mitigating control to stop continued unfiltered radiological and toxicological discharges from the stack, which may result from an accident involving failure of a HEPA filter. This document defines the initial technical design baseline for a HEPA filter AP fan interlock system.

  5. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    SciTech Connect (OSTI)

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  6. Design, testing and two-dimensional flow modeling of a multiple-disk fan

    SciTech Connect (OSTI)

    Engin, Tahsin; Oezdemir, Mustafa; Cesmeci, Sevki

    2009-11-15

    A multiple-disk Tesla type fan has been designed, tested and analyzed two-dimensionally using the conservation of angular momentum principle. Experimental results showed that such multiple-disk fans exhibited exceptionally low performance characteristics, which could be attributed to the low viscosity, tangential nature of the flow, and large mechanical energy losses at both suction and discharge sections that are comparable to the total input power. By means of theoretical analysis, local and overall shearing stresses on the disk surfaces have been determined based on tangential and radial velocity distributions of the air flow of different volume flow rates at prescribed disk spaces and rotational speeds. Then the total power transmitted by rotating disks to air flow, and the power acquired by the air flow in the gap due to transfer of angular momentum have been obtained by numerically integrating shearing stresses over the disk surfaces. Using the measured shaft and hydraulic powers, these quantities were utilized to evaluate mechanical energy losses associated with the suction and discharge sections of the fan. (author)

  7. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect (OSTI)

    Herman, D.L.

    1991-04-01

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  8. Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-11-21

    The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic

  9. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  10. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  11. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-08-01

    An ultrafast kicker system is being developed for the energy recovery linac (ERL) based electron circulator cooler ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC). In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10–1/30 (150mA–50 mA) of the cooling beam current (up to 1.5 A). Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetitionmore » rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR) based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. In conclusion, off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.« less

  12. Bench-Scale Evaporation of a Large Hanford Envelope C Sample (Tank 241-AN-102)

    SciTech Connect (OSTI)

    Crowder, M.L.

    2001-07-13

    This report contains the results of the Bench Scale evaporation of a large sample of pretreated Envelope C (AN102).

  13. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOE Patents [OSTI]

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  14. Solar evaporation of fertilizers/ag-chemical aqueous mixtures

    SciTech Connect (OSTI)

    Ash, D.H.; Salladay, D.G.; Norwood, V.M. ); Guinn, G.R. )

    1991-01-01

    Even when best management practices are employed, dealers can have 2000 to 7000 gallons of fertilizer/pesticide rinsewaters each year that cannot be used on nonlabel crops or indiscriminately applied or disposed of without violating Environmental Protection Agency (EPA) pesticide label application regulations. A novel, easily implemented solution for reduction of these rinsewaters has been developed at the University of Alabama at Huntsville (UAH) working with researchers from the Tennessee Valley Authority's (TVA) National Fertilizer and Environmental Research Center (NFERC), Muscle Shoals, Alabama. Researchers have developed a passive flat-plate solar evaporator. It is a stainless steel/glass unit approximately 8inches [times] 7inches [times] 5inches, and can be produced on an assembly line basis for less than $4000 each. NFERC technologists will use these units for environmental research and demonstration projects at other universities and dealers this year. Each unit can evaporate 900--1200 gallons of water per year.

  15. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  16. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  17. Tank 241-A-105 evaporation estimate, 1970 through 1978

    SciTech Connect (OSTI)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs.

  18. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  19. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  20. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  1. Determination of the Evaporation Coefficient of D2O

    SciTech Connect (OSTI)

    Drisdell, Walter S.; Cappa, Christopher D.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2008-03-26

    The evaporation rate of D{sub 2}O has been determined by Raman thermometry of a droplet train (12-15 {micro}m diameter) injected into vacuum ({approx}10{sup -5} torr). The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient ({gamma}{sub e}) of 0.57 {+-} 0.06. This is nearly identical to that found for H{sub 2}O (0.62 {+-} 0.09) using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition state theory (TST) model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  2. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    SciTech Connect (OSTI)

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  3. Science on Saturday attracts science fans of all ages | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Science on Saturday attracts science fans of all ages By Jeanne Jackson DeVoe January 28, 2013 Tweet Widget Google Plus One Share on Facebook Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL physicist and former director Robert Goldston, discusses "Outer Space!" (Photo by Elle Starkman/PPPL Office of Communications) Joshua E. G. Peek, a Hubble Fellow at Columbia University's Department of Astronomy and son of PPPL

  4. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  5. Sandia Corporate Ombuds Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Cooler Blows Traditional CPU Coolers Away Sandia Cooler Blows Traditional CPU Coolers Away November 21, 2012 - 10:02am Addthis The Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. | Photo courtesy of Sandia National Laboratories. The Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently

  6. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  7. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    SciTech Connect (OSTI)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

    2012-03-16

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  8. 2014-09-23 Issuance: Energy Conservation Standard for Walk-in Coolers and Freezers; Air-Conditioning, Heating, & Refrigeration Institute Petition for Reconsideration Notice of Public Meeting

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting regarding energy conservation standards for walk-in coolers and freezers; Air-Conditioning, Heating, & Refrigeration Institute petition for reconsideration, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 23, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. 2014-05-05 Issuance: Alternative Efficiency Determination Methods and Test Procedures for Walk-In Coolers and Walk-In Freezers; Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods and test procedures for walk-in coolers and walk-in freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  10. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype Eric Kozubal, Jason Woods, and Ron Judkoff Technical Report NREL/TP-5500-54755 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308

  11. Observations of supra-arcade fans: instabilities at the head of reconnection jets

    SciTech Connect (OSTI)

    Innes, D. E.; Guo, L.-J.; Schmit, D.; Bhattacharjee, A.; Huang, Y.-M.

    2014-11-20

    Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection sites which are extremely difficult to observe directly because of their low densities. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low-density jet plasma. The head of a low-density jet directed toward higher-density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low- and high-density fingers along the interface. Using Solar Dynamics Observatory/Atmospheric Imaging Assembly 131 images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with three-dimensional magnetohydrodynamic simulations suggests that SADs are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.

  12. Technical support for authorization of 242-A evaporator campaign 97-2, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Daling, P.M.; Lavender, J.C.

    1997-07-01

    An analysis was performed to determine the acceptability of processing 242-A Evaporator/Crystallizer Campaign 97-2 feed. Inhalation unit liter doses (ULDs) were calculated using the methods and data described in the Tank Waste Remediation System Basis for Interim Operation (TWRS BIO) and 242-A Evaporator/Crystallizer Safety Analysis Report. The ULD calculated for the Campaign 97-2 slurry was found to be less than the TWRS BIO evaporator slurry ULD and so would be within the analyzed safety envelope defined in the TWRS BIO. The Evaporator slurry ULD established in the TWRS BIO and supporting documents was calculated using the bounding source strength defined in the 242-A Evaporator SAR. Consequently, the risks and consequences associated with the Campaign 97-2 slurry would be lower than those already accepted by DOE and documented in the TWRS BIO and 242-A Evaporator SAR. The direct radiation exposures from formation of a liquid pool of Campaign 97-2 slurry were demonstrated to be less than the exposures from a pool formed by bounding source strength evaporator slurry as defined in the 242-A Evaporator SAR. This was demonstrated via a comparison of the Campaign 97-2 slurry composition and the 242-A Evaporator SAR bounding source strength. It was concluded that the direct radiation exposures from Campaign 97-2 slurry would be within the analyzed safety envelope in the 242-A Evaporator SAR.

  13. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; MacGibbon, J. H.; Marinelli, S. S.; Yapici, T.; Tollefson, K.

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  14. On the interface instability during rapid evaporation in microgravity

    SciTech Connect (OSTI)

    Juric, D.

    1997-05-01

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  15. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect (OSTI)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  16. Evaporative heat transfer in beds of sensible heat pellets

    SciTech Connect (OSTI)

    Arimilli, R.V.; Moy, C.A.

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  17. Evaporation-powered Motor and Light | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Evaporation-powered Motor and Light Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences ...

  18. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon Pollution, Help Americans Save on Energy Bills

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON – As part of President Obama’s Climate Action Plan, the Energy Department today announced a new energy efficiency standard for furnace fans, the latest of eight finalized standards and nine proposed standards issued since the Climate Action Plan was announced last year.

  19. Laboratory evaluation of fan/filter units' aerodynamic and energy performance

    SciTech Connect (OSTI)

    Xu, Tengfang; Jeng, Ming-Shan

    2004-07-27

    The paper discusses the benefits of having a consistent testing method to characterize aerodynamic and energy performance of FFUs. It presents evaluation methods of laboratory-measured performance of ten relatively new, 1220 mm x 610 mm (or 4 ft x 2 ft) fan-filter units (FFUs), and includes results of a set of relevant metrics such as energy performance indices (EPI) based upon the sample FFUs tested. This paper concludes that there are variations in FFUs' performance, and that using a consistent testing and evaluation method can generate compatible and comparable FFU performance information. The paper also suggests that benefits and opportunities exist for our method of testing FFU energy performance to be integrated in future recommended practices.

  20. Transparent electrical conducting films by activated reactive evaporation

    DOE Patents [OSTI]

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  1. Multi-scale evaporator architectures for geothermal binary power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Nejad, Ali; Klett, James William; Bejan, Adrian

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a were used to obtain performance indicators.

  2. Fixture for forming evaporative pattern (EPC) process patterns

    DOE Patents [OSTI]

    Turner, Paul C.; Jordan, Ronald R.; Hansen, Jeffrey S.

    1993-01-01

    A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

  3. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    SciTech Connect (OSTI)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrial Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.

  4. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2009-07-01

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  5. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  6. What do we do, if some of the MICE magnets can't be kept cold using the two-stage coolers?

    SciTech Connect (OSTI)

    Green, Michael A.

    2011-01-26

    Tests of the spectrometer solenoids have not been encouraging in terms of keeping the magnets cold using three 1.5 W (at 4.2 K) coolers. The spectrometer solenoids are being rebuilt with additional cooling capacity at 4.2 K. It is hoped that there will be sufficient 4.2 K cooling to keep the magnets cold. The spectrometer solenoids can be kept cold using liquid helium (up to a boil-off of 20 liters per day). This option does not apply for the other magnets in the MICE cooling channel, because there is not enough liquid helium storage within the magnet cold mass. It is important that the MICE collaboration ask the question, “How do we keep the MICE cooling channel magnets cold, if there isn’t sufficient cooling from the 4.2 K coolers?” This report discusses the cooling requirements at both 40 K and 4.2 K for all three types of MICE cooling channel magnets. This report discusses the steps that must be taken in the magnet fabrication to permit the magnets to be cooled using a small (20 to 40 W) external 4.2 K Claude cycle refrigerator. One must also ask the question as to whether there is enough excess capacity in the decay solenoid refrigerator to cool some of the MICE magnets. A plan for cooling the magnets using a Linde 1400 series refrigerator is presented. A plan for increasing the 4.4 K refrigeration from the existing decay solenoid refrigerator is also presented.

  7. Entropy localization and extensivity in the semiclassical black hole evaporation

    SciTech Connect (OSTI)

    Casini, H.

    2009-01-15

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  8. A prototype fan-beam optical CT scanner for 3D dosimetry

    SciTech Connect (OSTI)

    Campbell, Warren G.; Rudko, D. A.; Braam, Nicolas A.; Jirasek, Andrew [University of Victoria, Victoria, British Columbia V8P 5C2 (Canada); Wells, Derek M. [British Columbia Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-06-15

    Purpose: The objective of this work is to introduce a prototype fan-beam optical computed tomography scanner for three-dimensional (3D) radiation dosimetry. Methods: Two techniques of fan-beam creation were evaluated: a helium-neon laser (HeNe, {lambda} = 543 nm) with line-generating lens, and a laser diode module (LDM, {lambda} = 635 nm) with line-creating head module. Two physical collimator designs were assessed: a single-slot collimator and a multihole collimator. Optimal collimator depth was determined by observing the signal of a single photodiode with varying collimator depths. A method of extending the dynamic range of the system is presented. Two sample types were used for evaluations: nondosimetric absorbent solutions and irradiated polymer gel dosimeters, each housed in 1 liter cylindrical plastic flasks. Imaging protocol investigations were performed to address ring artefacts and image noise. Two image artefact removal techniques were performed in sinogram space. Collimator efficacy was evaluated by imaging highly opaque samples of scatter-based and absorption-based solutions. A noise-based flask registration technique was developed. Two protocols for gel manufacture were examined. Results: The LDM proved advantageous over the HeNe laser due to its reduced noise. Also, the LDM uses a wavelength more suitable for the PRESAGE{sup TM} dosimeter. Collimator depth of 1.5 cm was found to be an optimal balance between scatter rejection, signal strength, and manufacture ease. The multihole collimator is capable of maintaining accurate scatter-rejection to high levels of opacity with scatter-based solutions (T < 0.015%). Imaging protocol investigations support the need for preirradiation and postirradiation scanning to reduce reflection-based ring artefacts and to accommodate flask imperfections and gel inhomogeneities. Artefact removal techniques in sinogram space eliminate streaking artefacts and reduce ring artefacts of up to {approx}40% in magnitude. The

  9. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOE Patents [OSTI]

    Ecker, Amir L.

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  10. 2014-09-16 Issuance: Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Public Meeting and Availability of the Preliminary Technical Support Document

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Public Meeting and Availability of the Preliminary Technical Support Document.

  11. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West.

    SciTech Connect (OSTI)

    Christensen, B. D.

    1999-02-15

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization.

  12. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect (OSTI)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  13. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    SciTech Connect (OSTI)

    Harpeneau, Evan M.

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  14. Toward green systems for cleanrooms: Energy efficient fan-filter units

    SciTech Connect (OSTI)

    Jeng, Ming-Shan; Xu, Tengfang; Lan, Chao-Ho

    2004-07-12

    The paper presents results of laboratory-measured performance of fan-filter units (FFUs) used for cleanrooms. A total of twenty FFUs collected from the market were tested, including thirteen 1220 mm x 610 mm (or 4 ft x 2 ft) units and seven 1220 mm x 1220 mm (or 4 ft x 4 ft) units. The paper concludes that there are wide variations in FFUs energy performance, and that there are opportunities in improving energy efficiency and lowering operating costs of FFUs. Furthermore, the paper suggests the benefits of having a uniform method for testing and reporting FFU performance. Such a testing method and recommended practice guideline is under development, with heavy input from FFU suppliers, users, and independent institutions that include Lawrence Berkeley National Laboratory (LBNL), Industrial Technology Research Institute (ITRI), and Institute of Environmental Sciences and Technology (IEST). An integrated approach with the participation from designers, suppliers, users, and utility companies can help to identify energy-efficient FFUs that are required for many cleanroom applications.

  15. Clay mineralogy of Lower Cretaceous deep-sea fan sediments, western North Atlantic basin

    SciTech Connect (OSTI)

    Holmes, M.A.

    1986-05-01

    The Lower Cretaceous of the eastern North American continent was a time of extensive deltaic progradation. The effects of deltaic deposition on sedimentation in the western North Atlantic were unknown until May 1982, when, at Deep Sea Drilling Project Site 603 off Cape Hatteras, over 260 m of micaceous, muddy turbidites were recovered that correlate with deltaic progradation on eastern North America. The results of clay mineral studies from onshore and offshore equivalents indicate that during the Cretaceous, some sorting of clay minerals by transport processes occurred. Kaolinite tends to accumulate in continental environments, illite in transitional to marine environments, and smectite in deep sea sediments as pelagic clay. In the sediments from the western North Atlantic, illite tended to be more abundant in thick bedded sandy muds, whereas kaolinite tended to be more abundant in thin bedded muddy sands. Although the occurrence of illite and kaolinite in pelagic sediments indicates a general increased terrigenous influence, the results of this study indicate that these two clays behave independently in these sediments. The presence of large amounts of kaolinite at certain levels in these sediments corresponds to phases of maximum deep-sea fan development, and so indicates a more direct input of continental material, with less sorting of sediments by continental and shelf processes (pericontinental fractionation) prior to redeposition.

  16. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    SciTech Connect (OSTI)

    Wu Shenghe; Xiong Qihua; Liu Yuhong

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  17. Fan-beam multiplexed Compton scatter tomography for single-sided noninvasive inspection

    SciTech Connect (OSTI)

    Evans, B.L.

    1999-04-01

    Multiplexed Compton Scatter Tomography (MCST) is explored as a method of nondestructively generating cross-sectional images of a sample's electron density. MCST is viable when access is available to only one side of the sample because it registers scattered gamma radiation. Multiplexing in scattered photon energy and in detector position allows simultaneous interrogation of many voxels with comparatively wide collimation. Primary components include a radioisotope source, fan beam collimators, and energy-discriminating detectors. The application of MCST to inspecting aluminum airframes for corrosion is considered. This application requires source gammas near 100 keV where the scattered gamma energy is severely broadened by the momentum of electrons in the target. A deterministic system model is developed to map the sample's voxel densities to the instrument's measurements. The model incorporates advanced features to avoid using a detector response function. Two image reconstruction methods are developed and investigated: filtered backprojection and iterative reconstruction. A demonstration MCST system is assembled from components available commercially. It is used to image several aluminum phantoms and to validate the system model and iterative image reconstruction algorithm. A next-generation MCST system is modeled. Issues are considered such as efficiency, counting time, and contrast recovery in various samples.

  18. Evaporation and NARS Nitric Acid Mass Balance Summary: 2000--2005

    SciTech Connect (OSTI)

    B.D. Kreutzberg; R.L. Ames; K.M. Hansel

    2005-11-01

    A compilation of the historical nitric acid processing data for the evaporation and nitric acid recycle system (NARS) in TA-55 has provided general acid mass balance trends, as well as the location of missing information in both the evaporation system and NARS data logs. The data were accumulated during the calendar years 2000 to 2005. After making a number of processing assumptions, the empirical system information was used to create an interactive spreadsheet that predicts, with moderate accuracy, some of the various stream variables for the combined evaporation and acid recycle processes. Empirical data and interactive calculations were compared to an Aspen Plus{trademark} simulation of the process.

  19. Field Performance of a Slimline Turbomist Evaporator under Southeastern U. S. Climate Conditions

    SciTech Connect (OSTI)

    Sappington, F.C.

    2003-12-15

    A recent study of evaporation technologies for treating F- and H-area groundwater contaminated with radionuclides and metals (Flach 2002) suggested that spray evaporation might be a viable alternative or supplemental technique for managing tritiated groundwater at the Mixed Waste Management Facility. The particular technology of interest in this study is the Slimline Manufacturing Ltd. Turbo-Mist Evaporator, which uses a powerful blower and high-pressure spray nozzles to propel a fine mist into the air at high air and water flowrates.

  20. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  1. The thermophysics of electron beam evaporative sources: Annual report, 21 April 1986-20 April 1987

    SciTech Connect (OSTI)

    Self, S.A.

    1987-06-01

    This report presents work accomplished in preparing equipment for study of evaporative electron beam sources. Faraday cups and x-ray imaging equipment were developed. Due to other commitments, the future of this work is uncertain. (JDH)

  2. Evaporator Campaigns Create 300,000 Gallons of Double-Shell Tank...

    Office of Environmental Management (EM)

    ... The maintenance team also replaced two half-ton crane hoists in the evaporator canyon and worked more than 50 preventive-maintenance tasks to prepare for the operating campaign. ...

  3. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  4. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

    SciTech Connect (OSTI)

    Lee, Victoria E.; DePaolo, Donald J.; Christensen, John N.

    2010-04-30

    Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word"comminution" means"to reduce to powder," reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of ~;;50 mu m.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to ~;;800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that (234U/238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9percent relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor fa and weathering effects. We discuss several independent methods for obtaining fa on individual samples

  5. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; Kruska, Karen

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.

  6. Issuance 2014-11-21:Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans: Availability of the Preliminary Technical Support Document, Notice of Comment Period Extension

  7. ISSUANCE 2015-08-19: Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools and Notice of Data Availability, Close of Comment Period

    Broader source: Energy.gov [DOE]

    Energy Conservation Standards for Commercial and Industrial Fans and Blowers: Availability of Provisional Analysis Tools and Notice of Data Availability, Close of Comment Period

  8. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st

  9. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect (OSTI)

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  10. Preliminary experimental studies with seawater on OTEC spout evaporator thermal effectiveness and phase transition in upcomer

    SciTech Connect (OSTI)

    Sonwalkar, N.; Larsen-Basse, J.

    1987-01-01

    An experimental open-cycle ocean thermal energy conversion (OC-OTEC) test facility has been erected to perform spout evaporator experiments with seawater. The facility, located at Ke-ahole Point, Kona, Hawaii, consists of a spout evaporator, a spray condenser and an on-line deaerator. Warm seawater at 25-27/sup 0/C from 8 m depth and cold deep seawater at 7-10/sup 0/C from 580 m depth is available throughout the year to the facility. The results of thermal effectiveness tests are reported. The error due to instrumental uncertainties in thermal effectiveness measurements has been estimated to be of the order +-5.5 percent. The effect of design parameters; spout height, spout diameter and liquid loading on thermal effectiveness have been observed and compared with the existing theoretical predictions. A modified thermodynamic approach is proposed to evaluate average heat transfer characteristics of spout evaporators using a three component heat transfer coefficient approach. It adequately describes heat transfer characteristics of the spout evaporator under study. Results essentially agree with data obtained by others for fresh water, but clearly indicate the need for improvement of the existing model to take into account a number of identified factors associated with the real life OC-OTEC conditions, such as the transience in evaporator performance associated with the ocean-generated flow and pressure fluctuations and effects of noncondensable gases.

  11. Spallation process with simultaneous multi-particle emission in nuclear evaporation

    SciTech Connect (OSTI)

    Santos, B. M.

    2013-05-06

    High energy probes have been used currently to explore nuclear reaction mechanism and nuclear structure. The spallation process governs the reaction process around 1 GeV energy regime. A new aspect introduced here to describe the nuclear reaction is the in-medium nucleonnucleon collision framework. The nucleon-nucleon scattering is kinematically treated by using an effective mass to represent the nuclear binding. In respect to the evaporation phase of the reaction, we introduce the simultaneous particles emission decay. This process becomes important due to the rise of new channels at high excitation energy regime of the compound nucleus. As results, the particles yields in the rapid and evaporation phases are obtained and compared to experimental data. The effect and relevance of these simultaneous emission processes in the evaporation chain is also discussed.

  12. Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stanley, F. E.; Byerly, Benjamin L.; Thomas, Mariam R.; Spencer, Khalil J.

    2016-03-31

    Actinide isotope measurements are a critical signature capability in the modern nuclear forensics “toolbox”, especially when interrogating anthropogenic constituents in real-world scenarios. Unfortunately, established methodologies, such as traditional total evaporation via thermal ionization mass spectrometry, struggle to confidently measure low abundance isotope ratios (<10-6) within already limited quantities of sample. Herein, we investigate the application of static, mixed array total evaporation techniques as a straightforward means of improving plutonium minor isotope measurements, which have been resistant to enhancement in recent years because of elevated radiologic concerns. Furthermore, results are presented for small sample (~20 ng) applications involving a well-known plutoniummore » isotope reference material, CRM-126a, and compared with traditional total evaporation methods.« less

  13. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J.; Halpern, Bret L.

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  14. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  15. Off gas film cooler cleaner

    DOE Patents [OSTI]

    Dhingra, Hardip S.; Koch, William C.; Burns, David C.

    1997-01-01

    An apparatus for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter.

  16. Off gas film cooler cleaner

    DOE Patents [OSTI]

    Dhingra, H.S.; Koch, W.C.; Burns, D.C.

    1997-08-26

    An apparatus is described for cleaning depositions of particulate matter from the inside of tubular piping while the piping is in use. The apparatus is remote controlled in order to operate in hazardous environments. A housing containing brush and shaft assemblies is mounted on top of the tubular piping. Pneumatic cylinders provide linear motion. A roller nut bearing provides rotary motion. The combined motion causes the brush assembly to rotate as it travels along the tube dislodging particulate matter. 5 figs.

  17. Comparison of Cf-252 Thin-Film Sources Prepared by Evaporation or Self-Transfer

    SciTech Connect (OSTI)

    Algutifan, Noor J; Sherman, Steven R; Alexander, Charles W

    2015-01-01

    Californium-252 (Z = 98) is valued as a potent neutron source due to its spontaneous fission decay path. Thin film sources containing Cf-252 were prepared by two techniques: evaporation and self-transfer. The sources were analyzed by alpha and gamma spectroscopy. Results indicate that self-transfer sources exhibit less alpha energy straggling and energy loss than evaporative sources. Fission fragments may also self-transfer, and sources made by self-transfer may need some decay time to reach radioactive equilibrium.

  18. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts

    Office of Environmental Management (EM)

    Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts 5/8/2012 LANL-Carlsbad Office Difficult Waste Team P2010-3306 Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10- 13: Application to LANL Evaporator Nitrate Salts 2 Purpose: The following document was developed in support of the Los Alamos National Laboratory Transuranic Program (LTP) by the LANL-Carlsbad Office, Difficult

  19. Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines

    SciTech Connect (OSTI)

    Smith, M.K.; Newell, T.A. )

    1991-01-01

    An hourly simulation program has been developed for detailed modelin of an evaporation surface (ES) and an evaporation pond (EP) for reconcentration of a solar pond's (SP's) surface brine. The results are relavant to other systems in which it is desirable to concentrate a brine. The simulation results are used in three ways: first, for general comparison of brine reconcentration performance for a variety of locations; second, development of an ES design method based on long term monthly averaged weather data; and third, an economic comparison between ESs and EPs. The results show that regions with moderate to high precipitation favor ESs over EPs. Dry climates will generally favor EPs for brine reconcentration.

  20. Heat transfer and flow resistance of a shell and plate-type evaporator

    SciTech Connect (OSTI)

    Uehara, H.; Stuhltraeger, E.; Miyara, A.; Murakami, H.; Miyazaki, K.

    1997-05-01

    The performance test of a shell-and-plate-type evaporator designed for OTEC plants, geothermal power plants, and heat pump systems is reported. This evaporator contains 30 plates with a unit area of 0.813 m{sup 2}, coated with aluminum powder on the working fluid side. Freon 22 is used as working fluid. Results show an overall heat transfer coefficient of about 5,000 W/(m{sup 2}K) when the heating water velocity is 1M/s. The mean boiling heat transfer coefficient is compared with a precious correlation proposed by Nakaoka and Uehara (1988). The water-side pressure loss is also reported.

  1. Demolition of the waste evaporator facility at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mandry, G.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Becker, C.L. [Allied Technology Group, Inc., Oak Ridge, TN (United States)

    1997-08-01

    Lockheed Martin Energy Systems, in conjunction with Allied Technology Group, Inc., successfully executed the decommissioning of a former waste evaporator facility at ONRL. This project was conducted as a non-time critical removal action under CERCLA. The decommissioning alternative selected for the Waste Evaporator Facility was partial dismantlement. This alternative provided for the demolition of all above-grade structures; concrete which did not exceed pre-established radiological levels were eligible for placement in the below-grade portion of the facility. This project demonstrated a coordinated team approach that allowed the successful completion of one of the first full-scale decommissioning projects at ORNL.

  2. Comparison of Cf-252 thin-film sources prepared by evaporation or self-transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Algutifan, Noor J.; Sherman, Steven R.; Alexander, Charles W.

    2014-11-29

    Californium-252 (Z = 98) is valued as a potent neutron source due to its spontaneous fission decay path. Thin film sources containing Cf-252 were prepared by two techniques: evaporation and self-transfer. The sources were analyzed by alpha and gamma spectroscopy. Results indicate that self-transfer sources exhibit less alpha energy straggling and energy loss than evaporative sources. Fission fragments may also self-transfer, and sources made by self-transfer may need some decay time to reach radioactive equilibrium.

  3. Energy Department Awards $2.6 Million to Boost Combustion Efficiency...

    Energy Savers [EERE]

    New concepts, including a flash evaporation cooler and staged transport membrane ... to fast (that is, "flash") evaporation of water to cool the transport membrane condenser. ...

  4. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter

  5. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  6. AN-107 (C) Simulant Bench-Scale LAW Evaporation with Organic Regulatory Analysis

    SciTech Connect (OSTI)

    Saito, H.H.

    2001-05-15

    The overall objective of this work is to develop preliminary operating data including expected concentration endpoints using a C waste envelope simulant. The data is to be used for the preliminary Hanford RPP flow sheet development and LAW Melter Feed Evaporator design.

  7. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    SciTech Connect (OSTI)

    Bolgar, A.S.; Verkhoglyadova, T.S.; Samsonov, G.V.

    1985-02-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  8. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    SciTech Connect (OSTI)

    Valderrama, B.; Henderson, H.B.; Gan, J.; Manuel, M.V.

    2015-04-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporation regimes are present in UO2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.

  9. Event Calendar - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Home Cooling Systems » Evaporative Coolers Evaporative Coolers Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of <a href="http://www.flickr.com/people/free-stock/">Public Domain Photos</a>. Evaporative Coolers, sometimes called swamp coolers, is another way to cool air in warm climates with low humidity. | Photo courtesy of Public Domain Photos. In low-humidity areas,

  10. NANO- AND MICROSTRUCTURES FOR THIN-FILM EVAPORATION-A REVIEW

    SciTech Connect (OSTI)

    Plawsky, JL; Fedorov, AG; Garimella, SV; Ma, HB; Maroo, SC; Chen, L; Nam, Y

    2014-07-23

    Evaporation from thin films is a key feature of many processes, including energy conversion, microelectronics cooling, boiling, perspiration, and self-assembly operations. The phase change occurring in these systems is governed by transport processes at the contact line where liquid, vapor, and solid meet. Evidence suggests that altering the surface chemistry and surface topography on the micro-and the nanoscales can be used to dramatically enhance vaporization. The 2013 International Workshop on Micro- and Nanostructures for Phase-Change Heat Transfer brought together a group of experts to review the current state-of-the-art and discuss future research needs. This article is focused on the thin-film evaporation panel discussion and outlines some of the key principles and conclusions reached by that panel and the workshop attendees.

  11. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    SciTech Connect (OSTI)

    Mihut, Dorina M. Lozano, Karen; Foltz, Heinrich

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited on Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.

  12. Co-Evaporated Cu2ZnSnSe4 Films and Devices

    SciTech Connect (OSTI)

    Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W. C.; Goodrich, A.; Noufi, R.

    2012-06-01

    The use of vacuum co-evaporation to produce Cu2ZnSnSe4 photovoltaic devices with 9.15% total-area efficiency is described. These new results suggest that the early success of the atmospheric techniques for kesterite photovoltaics may be related to the ease with which one can control film composition and volatile phases, rather than a fundamental benefit of atmospheric conditions for film properties. The co-evaporation growth recipe is documented, as is the motivation for various features of the recipe. Characteristics of the resulting kesterite films and devices are shown in scanning electron micrographs, including photoluminescence, current-voltage, and quantum efficiency. Current-voltage curves demonstrate low series resistance without the light-dark cross-over seen in many devices in the literature. Band gap indicated by quantum efficiency and photoluminescence is roughly consistent with that expected from first principles calculation.

  13. Spin-pump-induced spin transport in a thermally evaporated pentacene film

    SciTech Connect (OSTI)

    Tani, Yasuo; Shikoh, Eiji; Teki, Yoshio

    2015-12-14

    We report the spin-pump-induced spin transport properties of a pentacene film prepared by thermal evaporation. In a palladium(Pd)/pentacene/Ni{sub 80}Fe{sub 20} tri-layer sample, a pure spin-current is generated in the pentacene layer by the spin-pumping of Ni{sub 80}Fe{sub 20}, which is independent of the conductance mismatch problem in spin injection. The spin current is absorbed into the Pd layer, converted into a charge current with the inverse spin-Hall effect in Pd, and detected as an electromotive force. This is clear evidence for the pure spin current at room temperature in pentacene films prepared by thermal evaporation.

  14. Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A. L. II

    2013-12-04

    This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  15. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  16. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    SciTech Connect (OSTI)

    Longcope, D. W.

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ? 0.38(F/?{sub co,} {sub 0}){sup 1/3}, where ?{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.

  17. Tests of the fission-evaporation competition in the deexcitation of heavy nuclei

    SciTech Connect (OSTI)

    Siwek-Wilczynska, K.; Skwira, I.; Wilczynski, J.

    2005-09-01

    In order to verify methods of calculating the fission-evaporation competition in reactions used to synthesize new super-heavy nuclei in 'cold' (1n) and 'hot' (3n,4n) fusion reactions, we present an analysis of existing experimental data on the evaporation-residue cross sections in two selected reactions, {sup 208}Pb({sup 16}O, xn) and {sup 236}U({sup 12}C, xn), for which complementary experimental information necessary to unambiguously calculate the survival probabilities is available: precisely measured fusion excitation functions and saddle-point energies of the fissioning nuclei, deduced from experiments. Standard statistical model calculations, with shell effects accounted for by the Ignatyuk formula, were carried out assuming the ground state shell corrections of Moeller et al., and zero shell correction at the saddle configuration (resulting from the presented systematics). Good agreement of the calculated evaporation-residue cross sections with experimental data for different xn reaction channels at low excitation energies leaves no room for modifications of the conventional way of calculating the {gamma}{sub n}/{gamma}{sub f} ratio, particularly for including into this ratio an additional preexponential factor (such as the Kramers fission hindrance factor or an effective collective factor) significantly different from 1.

  18. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996

    SciTech Connect (OSTI)

    Niemeyer, B.L.

    1997-09-01

    The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.

  19. Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Ofman, Leon; Davila, Joseph M.; Viall, Nicholeen M.

    2013-11-20

    A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional 'surfing' signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency-velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  20. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  1. Home Cooling Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fans In many climates, you can use a whole-house fan to meet all or most of your home cooling needs. Evaporative Cooling For homes in dry climates, evaporative cooling or...

  2. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  3. Non Evaporable Getter (NEG) Pumps: a Route to UHV-XHV

    SciTech Connect (OSTI)

    Manini, Paolo

    2009-08-04

    Non Evaporable Getter (NEG) technology has been developed in the 1970's and since then adopted by industry, R and D labs, research centres and in large physics projects like accelerators, synchrotrons and fusion reactors. NEG pumps are very compact and vibration-free devices able to deliver very high pumping with minimal power requirement and electromagnetic interference. In the present paper, main features and performances of getter pumps are reviewed and discussed with a special focus to photocathode gun application, where UHV or XHV conditions are mandatory to ensure adequate gun life. NEG coating and future challenges for NEG technology are also discussed.

  4. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  5. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-12-31

    A computer code ICRKFLO was used to simulate the multi-phase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  6. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect (OSTI)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei E-mail: yunfeichen@seu.edu.cn

    2014-01-15

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  7. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect (OSTI)

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  8. Nuclear Reactions X-Sections By Evaporation Model, Gamma-Cascades

    Energy Science and Technology Software Center (OSTI)

    2000-06-27

    Calculation of energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and gamma ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement to the 1976 STAPRE program (NEA 0461) relates to level density approach, implemwnted in subroutine ZSTDE. Generalized superfluid model is incorporated, Boltzman-gas modelling of intrinsic state density and semi-empirical modelling ofmore » a few quasiparticle effects in total level density in equilibrium and saddle deformations of actinide nuclei.« less

  9. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    SciTech Connect (OSTI)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that, when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is

  10. Characterization Results for the 2014 HTF 3H & 2H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A.

    2015-05-11

    This report tabulates the radiochemical analysis of the 3H and 2H evaporator overhead samples for 137Cs, 90Sr, and 129I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  11. ISSUANCE 2015-07-31: Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish a Working Group for Certain Equipment Classes of Refrigeration Systems of Walk-in Coolers and Freezers to Negotiate a Notice of Proposed Rule

    Broader source: Energy.gov [DOE]

    Appliance Standards and Rulemaking Federal Advisory Committee: Notice of Intent to Establish a Working Group for Certain Equipment Classes of Refrigeration Systems of Walk-in Coolers and Freezers to Negotiate a Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards

  12. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    SciTech Connect (OSTI)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.

  13. Thermal evaporation and condensation synthesis of metallic Zn layered polyhedral microparticles

    SciTech Connect (OSTI)

    Khan, Waheed S.; Cao, Chuanbao; Usman, Zahid; Hussain, Sajad; Nabi, Ghulam; Butt, Faheem K.; Ali, Zulfiqar; Mahmood, Tariq; Niaz, Niaz Ahmad

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Zn polyhedral microparticles prepared by thermal evaporation and condensation route. Black-Right-Pointing-Pointer Vapour-solid process based growth model governs the formation of Zn microparticles. Black-Right-Pointing-Pointer A strong PL emission band is observed at 369 nm in UV region. Black-Right-Pointing-Pointer Radiative recombination of electrons in the s, p conduction band and the holes in the d bands causes this emission. -- Abstract: Metallic zinc layered polyhedral microparticles have been fabricated by thermal evaporation and condensation technique using zinc as precursor at 750 Degree-Sign C for 120 min and NH{sub 3} as a carrier gas. The zinc polyhedral microparticles with oblate spherical shape are observed to be 2-9 {mu}m in diameter along major axes and 1-7 {mu}m in thickness along minor axes. The structural, compositional and morphological characterizations were performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). A vapour-solid (VS) mechanism based growth model has been proposed for the formation of Zn microparticles. Room temperature photoluminescence (PL) emission spectrum of the product exhibited a strong emission band at 369 nm attributed to the radiative recombination of electrons in the s, p conduction band near Fermi surface and the holes in the d bands generated by the optical excitation.

  14. Crystallization Temperature of Aqueous Lithium Bromide Solutions at Low Evaporation Temperature

    SciTech Connect (OSTI)

    Kisari, Padmaja; Wang, Kai; Abdelaziz, Omar; Vineyard, Edward Allan

    2010-01-01

    Water- aqueous Lithium Bromide (LiBr) solutions have shown superior performance as working fluid pairs for absorption refrigeration cycles. Most of the available literature (e.g. ASHRAE Handbook of Fundamentals, etc.) provide crystallization behavior down to only 10 C. The typical evaporating temperature for an absorption chiller system is usually lower than 10 C. Hence, it is essential to have an accurate prediction of the crystallization temperature in this range in order to avoid crystallization during the design phase. We have therefore conducted a systematic study to explore the crystallization temperatures of LiBr/Water solutions that fall below an evaporating temperature of 10 C. Our preliminary studies revealed that the rate of cooling of the sample solution influences the crystallization temperature; therefore we have performed a quasi steady test where the sample was cooled gradually by reducing the sample temperature in small steps. Results from this study are reported in this paper and can be used to extend the data available in open literature.

  15. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore » quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  16. STARSPOTS-TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b

    SciTech Connect (OSTI)

    Kawahara, Hajime; Kurosaki, Kenji; Ito, Yuichi; Ikoma, Masahiro; Hirano, Teruyuki

    2013-10-10

    Violent variation of transit depths and an ingress-egress asymmetry of the transit light curve discovered in KIC 12557548 have been interpreted as evidence of a catastrophic evaporation of atmosphere with dust ( M-dot {sub p}?>1 M{sub ?} Gyr{sup 1}) from a close-in small planet. To explore what drives the anomalous atmospheric escape, we perform time-series analysis of the transit depth variation of Kepler archival data for ?3.5 yr. We find a ?30% periodic variation of the transit depth with P {sub 1} = 22.83 0.21 days, which is within the error of the rotation period of the host star estimated using the light curve modulation, P {sub rot} = 22.91 0.24 days. We interpret the results as evidence that the atmospheric escape of KIC 12557548b correlates with stellar activity. We consider possible scenarios that account for both the mass loss rate and the correlation with stellar activity. X-ray and ultraviolet (XUV)-driven evaporation is possible if one accepts a relatively high XUV flux and a high efficiency for converting the input energy to the kinetic energy of the atmosphere. Star-planet magnetic interaction is another possible scenario, though huge uncertainty remains for the mass loss rate.

  17. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    SciTech Connect (OSTI)

    Haring, D.S.

    1995-02-02

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling.

  18. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    SciTech Connect (OSTI)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; Barber, A. S.; Baughman, B. M.; Bautista-Elivar, N.; Gonzalez, J. Becerra; Belmont, E.; BenZvi, S. Y.; Berley, D.; Bonilla Rosales, M.; Braun, J.; Caballero-Lopez, R. A.; Caballero-Mora, K. S.; Carraminana, A.; Castillo, M.; Christopher, G. E.; Cotti, U.; Cotzomi, J.; de la Fuente, E.; De León, C.; DeYoung, T.; Diaz Hernandez, R.; Diaz-Cruz, L.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; Galindo, A.; Garfias, F.; González, M. M.; Goodman, J. A.; Grabski, V.; Gussert, M.; Hampel-Arias, Z.; Harding, J. P.; Hays, E.; Hoffman, C. M.; Hui, C. M.; Hüntemeyer, P.; Imran, A.; Iriarte, A.; Karn, P.; Kieda, D.; Kolterman, B. E.; Kunde, G. J.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linares, E. C.; Linnemann, J. T.; Longo, M.; Luna-GarcIa, R.; MacGibbon, J. H.; Marinelli, A.; Marinelli, S. S.; Martinez, H.; Martinez, O.; Martínez-Castro, J.; J. A.J. Matthews; McEnery, J.; Mendoza Torres, E.; Mincer, A. I.; Miranda-Romagnoli, P.; Moreno, E.; Morgan, T.; Mostafa, M.; Nellen, L.; Nemethy, P.; Newbold, M.; Noriega-Papaqui, R.; Oceguera-Becerra, T.; Patricelli, B.; Pelayo, R.; Perez-Perez, E. G.; Pretz, J.; Riviere, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H.; Salesa, F.; Sandoval, A.; Saz Parkinson, P. M.; Schneider, M.; Silich, S.; Sinnis, G.; Smith, A. J.; Stump, D.; Sparks Woodle, K.; Springer, R. W.; Taboada, I.; Toale, P. A.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vasileiou, V.; Villasenor, L.; Weisgarber, T.; Westerhoff, S.; Williams, D. A.; Wisher, I. G.; Wood, J.; Yodh, G. B.; Younk, P. W.; Zaborov, D.; Zepeda, A.; Zhou, H.

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.

  19. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; H. A. Ayala Solares; et al

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹⁴ g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore » 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  20. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperature fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na

  1. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different

  2. 2014-09-16 Issuance: Energy Conservation Standards for Ceiling Fans; Notice of Public Meeting and Availability of Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting and availability of preliminary technical support document regarding energy conservation standards for ceiling fans, as issued by the Deputy Assistant Secretary on September 16, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  3. 2014-10-27 Issuance: Energy Conservation Standards for Ceiling Fan Light Kits; Notice of Public Meeting and Availability of the Preliminary Technical Support Document

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of public meeting and availability of the preliminary technical support document regarding energy conservation standards for ceiling fan light kits, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 27, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  4. 2014-12-31 Issuance: Energy Conservation Standards for Commercial and Industrial Fans and Blowers; Extension of Comment Period for Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of comment period for notice of data availability regarding energy conservation standards for commercial and industrial fans and blowers, as issued by the Deputy Assistant Secretary for Energy Efficiency on December 31, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  5. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  6. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  7. Nuclear level densities of 64,66 Zn from neutron evaporation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ramirez, A. P. D.; Voinov, A. V.; Grimes, S. M.; Schiller, A.; Brune, C. R.; Massey, T. N.; Salas-Bacci, A.

    2013-12-26

    Double differential cross sections of neutrons from d+63,65Cu reactions have been measured at deuteron energies of 6 and 7.5 MeV. The cross sections measured at backward angles have been compared to theoretical calculations in the framework of the statistical Hauser-Feshbach model. Three different level density models were tested: the Fermi-gas model, the Gilbert-Cameron model, and the microscopic approach through the Hartree-Fock-Bogoliubov method (HFBM). The calculations using the Gilbert-Cameron model are in best agreement with our experimental data. Level densities of the residual nuclei 64Zn and 66Zn have been obtained from statistical neutron evaporation spectra. In conclusion, the angle-integrated cross sectionsmore » have been analyzed with the exciton model of nuclear reaction.« less

  8. Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.

    Energy Science and Technology Software Center (OSTI)

    2000-11-27

    Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less

  9. RESULTS OF THE 2H EVAPORATOR ACID CLEANING AND IN-POT NEUTRALIZATION

    SciTech Connect (OSTI)

    Wilmarth, B; Phillip Norris, P; Terry Allen, T

    2007-05-29

    The estimated 200 gallons of sodium aluminosilicate scale (NAS) present in the 242-16H Evaporator pot prior to chemical cleaning was subjected to four batches of 1.5 M (9 wt%) nitric acid. Each batch was neutralized with 19 M (50 wt %) sodium hydroxide (caustic) before transfer to Tank 38. The chemical cleaning process began on November 20, 2006, and was terminated on December 10, 2006. An inspection of the pot's interior was performed and based on data gathered during that inspection; the current volume of scale in the pot is conservatively estimated to be 36.3 gallons, which is well below the 200 gallon limit specified in the Technical Safety Requirements. In addition, the performance during all aspects of cleaning agreed well with the flowsheet developed at the bench and pilot scale. There were some lessons learned during the cleaning outage and are detailed in appendices of this report.

  10. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator

    SciTech Connect (OSTI)

    Xu, Guoying; Deng, Shiming; Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong

    2009-11-15

    A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

  11. Preparation and characterization of indium zinc oxide thin films by electron beam evaporation technique

    SciTech Connect (OSTI)

    Keshavarzi, Reza [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of) [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Nanotechnology Engineering, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Fallah, Hamid Reza; Dastjerdi, Mohammad Javad Vahid; Modayemzadeh, Hamed Reza [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-04-15

    In this work, the preparation of In{sub 2}O{sub 3}-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In{sub 2}O{sub 3}-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 {sup o}C.

  12. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    SciTech Connect (OSTI)

    Birmingham, J.T. |

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  13. Impact of California Phase 2 reformulated gasoline on atmospheric reactivity of exhaust and evaporative emissions

    SciTech Connect (OSTI)

    Kirchstetter, T.W.; Singer, B.C.; Harley, R.A.; Kendall, G.R.; Traverse, M.

    1997-12-31

    Phase 2 of California`s reformulated gasoline (RFG) program took effect statewide in the first half of 1996. Changes to gasoline composition required by Phase 2 specifications included: lower vapor pressure; lower olefin, aromatic, benzene, and sulfur content; lower T50 and T90; and a minimum oxygen content. In this paper, impacts of Phase 2 RFG on the atmospheric reactivity of motor vehicle exhaust and evaporative emissions are described. Volatile organic compounds in motor vehicle exhaust were measured at the Caldecott tunnel in summer 1995 and 1996. Aggregate emissions of greater than 8000 vehicles were measured each day. Regular and premium grade gasoline samples were collected from service stations in Berkeley concurrently with tunnel measurements both summers. Liquid gasoline samples and their headspace vapors were analyzed to determine detailed chemical composition. Normalized reactivity was calculated for exhaust and evaporative emissions by applying maximum incremental reactivity values to the detailed speciation profiles. Results indicate that the composition of gasoline in 1996 differed markedly from that of 1995. Changes in liquid gasoline composition led to corresponding changes in the speciation of vehicle exhaust and of gasoline headspace vapors. Benzene concentration in liquid gasoline decreased from 2.0 to 0.6 wt%, which contributed to a 70 and 37% reduction in benzene weight fraction in headspace vapors and vehicle exhaust, respectively. Addition of MTBE and reduction of olefins and aromatics in gasoline led to significant reductions in the atmospheric reactivity of unburned gasoline and gasoline headspace vapors. The normalized reactivity of liquid gasoline and headspace vapors decreased by 23 and 19%, respectively, between 1995 and 1996. The normalized reactivity of non-methane organic compounds in vehicle exhaust decreased by about 8%, but the uncertainty in this change was large.

  14. Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores

    SciTech Connect (OSTI)

    Taquet, Vianney; Charnley, Steven B.; Sipil, Olli

    2014-08-10

    Extremely large deuteration of several molecules has been observed toward prestellar cores and low-mass protostars for a decade. New observations performed toward low-mass protostars suggest that water presents a lower deuteration in the warm inner gas than in the cold external envelope. We coupled a gas-grain astrochemical model with a one-dimensional model of a collapsing core to properly follow the formation and the deuteration of interstellar ices as well as their subsequent evaporation in the low-mass protostellar envelopes with the aim of interpreting the spatial and temporal evolutions of their deuteration. The astrochemical model follows the formation and the evaporation of ices with a multilayer approach and also includes a state-of-the-art deuterated chemical network by taking the spin states of H{sub 2} and light ions into account. Because of their slow formation, interstellar ices are chemically heterogeneous and show an increase of their deuterium fractionation toward the surface. The differentiation of the deuteration in ices induces an evolution of the deuteration within protostellar envelopes. The warm inner region is poorly deuterated because it includes the whole molecular content of ices, while the deuteration predicted in the cold external envelope scales with the highly deuterated surface of ices. We are able to reproduce the observed evolution of water deuteration within protostellar envelopes, but we are still unable to predict the super-high deuteration observed for formaldehyde and methanol. Finally, the extension of this study to the deuteration of complex organics, important for the prebiotic chemistry, shows good agreement with the observations, suggesting that we can use the deuteration to retrace their mechanisms and their moments of formation.

  15. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  16. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  17. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  18. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  19. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  20. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  1. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  2. Fluid-evaporation records preserved in salt assemblages in Meridiani rocks

    SciTech Connect (OSTI)

    Rao, M.N.; Nyquist, L.E.; Sutton, S.R.; Dreibus, G.; Garrison, D.H.; Herrin, J.

    2009-09-25

    We studied the inter-relationships between the major anions (SO{sub 3}, Cl, and Br) and cations (FeO, CaO and MgO) using elemental abundances determined by APXS in salt assemblages of RATted (abraded) rocks at Meridiani to characterize the behavior of fluids that infiltrated into this region on Mars. A plot of SO{sub 3} versus Cl for the abraded rocks yielded an unusual pattern, whereas the SO{sub 3}/Cl ratios versus Cl for the same rocks showed a monotonically decreasing trend represented by a hyperbola. The systematic behavior of the SO{sub 3} and Cl data in the documented rocks at Meridiani suggests that these anions behaved conservatively during fluid-rock interactions. These results further indicate that two kinds of fluids, referred to as SOL-I and SOL-II, infiltrated into Endurance/Eagle/Fram craters, where they underwent progressive evaporative concentration. SOL-I is a low pH fluid consisting of high SO{sub 3} and low Cl and high Br, (this fluid infiltrated all the way to the crater-top region), whereas SOL-II fluid of high pH with low SO{sub 3} and high Cl and low Br reached only an intermediary level known as the Whatanga contact at Endurance. Based on the FeO/MgO as well as CaO/MgO versus SO{sub 3}/Cl diagram for rocks above the Whatanga contact, the cation and anion relationships in this system suggest that the Fe{sup 2+}/SO{sub 4} and Ca{sup 2+}/SO{sub 4} ratios in SOL-I fluids at Meridiani were > 1 before the onset of evaporation based on the 'chemical divide' considerations. Below the Whatanga contact, relatively dilute SOL-II fluids seem to have infiltrated and dissolved/flushed away the easily soluble Mg-sulfate/chloride phases (along with Br) without significantly altering the SO{sub 3}/Cl ratios in the residual salt assemblages. Further, Cl/Br versus Br in rocks above the Whatanga contact show a hyperbolic trend suggesting that Cl and Br behaved conservatively similar to SO{sub 3} and Cl in the SOL-1 fluids at Meridiani. Our results are

  3. Evaporation — a key mechanism for the thaumasite form of sulfate attack

    SciTech Connect (OSTI)

    Mittermayr, Florian; Baldermann, Andre; Kurta, Christoph; Klammer, Dietmar; Leis, Albrecht; Dietzel, Martin

    2013-07-15

    Understanding the mechanisms leading to chemical attack on concrete is crucial in order to prevent damage of concrete structures. To date, most studies on sulfate attack and thaumasite formation are based on empirical approaches, as the identification of associated reaction mechanisms and paths is known to be highly complex. In this study, sulfate damaged concrete from Austrian tunnels was investigated by mineralogical, chemical and isotope methods to identify the reactions which caused intense concrete alteration. Major, minor and trace elemental contents as well as isotope ratios of local ground water (GW), drainage water (DW) and interstitial solutions (IS), extracted from damaged concrete material, were analyzed. Locally occurring GW contained 3 to 545 mg L{sup −1} of SO{sub 4} and is thus regarded as slightly aggressive to concrete in accordance to standard specifications (e.g. DIN EN 206-1). The concrete linings and drainage systems of the studied tunnels, however, have partly suffered from intensive sulfate attack. Heavily damaged concrete consisted mainly of thaumasite, secondary calcite, gypsum, and relicts of aggregates. Surprisingly, the concentrations of dissolved ions were extremely enriched in the IS with up to 30,000 and 12,000 mg L{sup −1} of SO{sub 4} and Cl, respectively. Analyses of aqueous ions with a highly conservative behavior, e.g. K, Rb and Li, as well as {sup 2}H/H and {sup 18}O/{sup 16}O isotope ratios of H{sub 2}O of the IS showed an intensive accumulation of ions and discrimination of the light isotopes vs. the GW. These isotope signals of the IS clearly revealed evaporation at distinct relative humidities. From ion accumulation and isotope fractionation individual total and current evaporation degrees were estimated. Our combined elemental and isotopic approach verified wetting–drying cycles within a highly dynamic concrete-solution-atmosphere system. Based on these boundary conditions, key factors controlling thaumasite

  4. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  5. Non Evaporable Getter (NEG) Coatings for Vacuum Systems in Synchrotron Radiation Facilities

    SciTech Connect (OSTI)

    Manini, Paolo; Conte, Andrea; Raimondi, Stefano; Bonucci, Antonio

    2007-01-19

    Non evaporable Getter (NEG) films, sputter deposited onto the internal surfaces of vacuum chambers, have been proposed by CERN to substantially reduce the gas pressure in UHV-XHV systems. The NEG film acts as a conductance-free distributed pump inside a chamber. Being a barrier for gases it also reduces thermal out-gassing, thus allowing the achievement of very demanding pressure conditions. These features are ideal for very narrow, conductance limited chambers, like Insertion Devices, which cannot be always efficiently pumped by ordinary means. Recent investigations have also shown that NEG coatings do present additional interesting features, like low secondary electron yield and low gas de-sorption rates under ions, electrons and photons bombardment, compared to traditional technical surfaces. Experimental tests, carried out in several high energy machines and synchrotron radiations facilities have so far confirmed the benefits of NEG films in term of better vacuum, longer beam life time and stability, simplified machine design, reduced conditioning time and overall improved machine performances. For these reasons, NEG coating technology is now gaining increasing attention and it is seriously considered for upgrades in a number of machines and for future projects. In the present paper, we report SAES getters experience on NEG coating of chambers of different geometries, materials and sizes for a variety of projects related to synchrotron radiation facilities. Examples of applications in various machines, as well as typical issues related to chambers preparation, film deposition, quality control and characterization, are given.

  6. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect (OSTI)

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  7. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect (OSTI)

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20 l s{sup −1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8⋅10{sup −8} Pa was achieved using only a sputter ion pump after a 6 day bake-out. With the addition of a NEG pump, a pressure of 2⋅10{sup −9} Pa was achieved after a 2 day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  8. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    SciTech Connect (OSTI)

    Jeong, K.; Choo, Y. S.; Hong, H. J.; Yoon, Y. S.; Song, M. H.

    2015-03-15

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  9. Annealing effect for SnS thin films prepared by high-vacuum evaporation

    SciTech Connect (OSTI)

    Revathi, Naidu Bereznev, Sergei; Loorits, Mihkel; Raudoja, Jaan; Lehner, Julia; Gurevits, Jelena; Traksmaa, Rainer; Mikli, Valdek; Mellikov, Enn; Volobujeva, Olga

    2014-11-01

    Thin films of SnS are deposited onto molybdenum-coated soda lime glass substrates using the high-vacuum evaporation technique at a substrate temperature of 300 °C. The as-deposited SnS layers are then annealed in three different media: (1) H{sub 2}S, (2) argon, and (3) vacuum, for different periods and temperatures to study the changes in the microstructural properties of the layers and to prepare single-phase SnS photoabsorber films. It is found that annealing the layers in H{sub 2}S at 400 °C changes the stoichiometry of the as-deposited SnS films and leads to the formation of a dominant SnS{sub 2} phase. Annealing in an argon atmosphere for 1 h, however, causes no deviations in the composition of the SnS films, though the surface morphology of the annealed SnS layers changes significantly as a result of a 2 h annealing process. The crystalline structure, surface morphology, and photosensitivity of the as-deposited SnS films improves significantly as the result of annealing in vacuum, and the vacuum-annealed films are found to exhibit promising properties for fabricating complete solar cells based on these single-phase SnS photoabsorber layers.

  10. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  11. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  12. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    SciTech Connect (OSTI)

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A.; Li, Gang; Guo, Fan; Liu, Wei

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  13. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  14. Effects of vaporizer and evaporative condenser pinch points on geofluid effectiveness and cost of electricity for geothermal binary power plants

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-01-01

    A brief study was conducted in support of the DOE/DGHT Heat Cycle Research Program to investigate the influences of minimum approach temperature differences occurring in supercritical-heater/vaporizer and evaporative-condenser heat rejection systems on geothermal-electric binary power plant performance and cost of electricity. For the systems investigated optimum pinch points for minimizing cost of electricity were estimated to range from 5 to 7/sup 0/F (3 to 4/sup 0/C) for the heater vaporizer. The minimum approach of condensing temperature to wet-bulb temperature for evaporative condensers was estimated to be about 15/sup 0/F (8/sup 0/C) in order to achieve the highest plant net geofluid effectiveness, and approximately 30/sup 0/F (17/sup 0/C) to attain the minimum cost of electricity.

  15. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    SciTech Connect (OSTI)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  16. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  17. Audit of the Replacement High Level Waste Evaporator at Savannah River, ER-B-95-04

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE OF INSPECTOR GENERAL REPORT ON THE AUDIT OF THE REPLACEMENT HIGH LEVEL WASTE EVAPORATOR AT THE SAVANNAH RIVER SITE The Office of Audit Services wants to make the distribution of its audit reports as customer friendly and cost effective as possible. Therefore, this report will be available electroni- cally through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doc.gov Department of Energy

  18. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    SciTech Connect (OSTI)

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  19. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  20. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    SciTech Connect (OSTI)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  1. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    SciTech Connect (OSTI)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  2. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  3. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; et al

    2014-11-28

    A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under differentmore » conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. Ultimately, the results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.« less

  4. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  5. Variably insulating portable heater/cooler

    DOE Patents [OSTI]

    Potter, Thomas F.

    1998-01-01

    A compact vacuum insulation panel comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning "on" and "off" the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls.

  6. Gas cooler sets the perfect balance

    SciTech Connect (OSTI)

    Bilder, M.; Aubry, L.; Schwartz, G.; Anderson, R.; Burkhardt, C. ); Wilson, J.; Vallort, J.; Ransick, M.F. )

    1993-05-20

    In July 1991, a 65-ton electric chiller was in need of major repair at NutraSweet's R and D facility outside of Chicago. Instead of automatically repairing or replacing that chiller, NutraSweet engineers Larry Aubry and Gerald Schwartz began to look at other alternatives. What they discovered was that a natural gas absorption chiller was a cost-effective, environmentally safe alternative effective, environmentally safe alternative perfectly suited for their application. The benefits for NutraSweet are straightforward: energy bills have been cut by more than [dollar sign]70,000 annually, existing boiler capacity is better utilized, existing electrical cooling system life is extended, maintenance costs are reduced, and no-ozone-depleting CFCs are utilized by the natural gas chiller. Simple payback on the unit, originally expected to be almost four years, has been reduced to closer to three.

  7. EGR Catalyst for Cooler Fouling Reduction

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. The Sandia Cooler - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KB)

    Timeline of CPU clock speeds
    Pentium and Core are trademarks of Intel Corp.

    Timeline of CPU clock speeds Pentium and Core are trademarks of Intel Corp. ...

  9. Hybrid and Advanced Air Cooling Geothermal Lab Call Project ...

    Open Energy Info (EERE)

    various strategies for boosting the performance of air coolers in hot weather. Computer modeling and experimental measurements have been done on the use of evaporative media...

  10. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  11. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  12. Experimental investigation of the effects of relative physical orientation between evaporator and condenser for a loop heat pipe. Master`s thesis

    SciTech Connect (OSTI)

    Thompson, B.R.

    1994-12-01

    This research examined the effects on performance of varying angular orientation and height differences between evaporator and condenser for a loop heat pipe. Performance was defined as the difference in temperature between evaporator and condenser (DELTA T). The pipe was evaluated at varying input power (Qin) for: varying evaporator and condenser angles, different coolant temperatures, and varying relative height differences. All analysis included only steady state operation. The performance was influenced by condenser angles, with an optimal condenser angle for best performance being +45 degrees from horizontal. Additionally, the evaporator angles were found to influence performance only at low Qin and low coolant temperatures. For high Qin` performance was independent of evaporator angle. For small Qin the DELTA T increased (poorer performance) with decreasing coolant temperature. However, for high Qin the DELTA T was independent of coolant temperature. For small Qin the DELTA T increased with increasing heights of evaporator over condenser. However, for high Qin the DELTA T was independent of the height difference. Additionally, pipe operation was sensitive to the rate of decrease of Qin. Finally, an unexplained anomaly shows the pipe to operate at two different DELTA T values for a given heat input.

  13. ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES

    SciTech Connect (OSTI)

    Oji, L.

    2013-06-21

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that

  14. Heat transfer of R-134a in single-tube spray evaporation including lubricant effects and enhanced surface results

    SciTech Connect (OSTI)

    Moeykens, S.A.; Huebsch, W.W.; Pate, M.B.

    1995-08-01

    Single-tube spray evaporation experimental tests were conducted in order to evaluate the average wall heat transfer coefficients for seven different commercially available tubes. Liquid film supply rates were held constant in order to evaluate the effects of the enhancement on shell-side heat transfer under similar conditions. Because the spray evaporation phenomenon is so different from pool boiling, both condensation-type and evaporation-type enhanced surfaces were evaluated. A comparison of the results for all of the tubes showed that the enhanced condensation surfaces performed better than the enhanced boiling surfaces. In addition, the 26-fpi surface tested marginally better than the 40-fpi surface. Small concentrations of a polyol-ester lubricant cause a foaming effect that increases the heat transfer performance. This tendency was seen with both 32-cs and 68-cs polyol-ester oils. The 68-cs lubricant was tested at concentrations of 0.0, 0.5, 1.0, 3.0, and 5.0 with the W-40 fpi and Tu-Cii surfaces. Results with this lubricant show the performance continues to increase through the 3% concentration for most of the heat flux range tested At the upper end of the range tested, the 1.0% mass fraction yielded the best performance. The 32-cs lubricant generated trends similar to those of the 68-cs lubricant. Lubricant concentrations of 1.0%, 2.0%, and 3.0% were evaluated with plain, W-40 fpi, and Tu-Cii surfaces. The 2.0% concentration, not the 1.0 %, generated the best performance at the highest heat flux tested. This difference must be attributed to the difference in the lubricant viscosity.

  15. THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY

    SciTech Connect (OSTI)

    Lopez, Eric D.; Fortney, Jonathan J.

    2013-10-10

    We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ?} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.

  16. Low-cost thin-film absorber/evaporator for an absorption chiller. Final report, May 1992-April 1993

    SciTech Connect (OSTI)

    Lowenstein, A.; Sibilia, M.

    1993-04-01

    The feasibility of making the absorber and evaporator of a small lithium-bromide absorption chiller from thin plastic films was studied. Tests were performed to measure (1) pressure limitations for a plastic thin-film heat exchanger, (2) flow pressure-drop characteristics, (3) air permeation rates across the plastic films, and (4) creep characteristics of the plastic films. Initial tests were performed on heat exchangers made of either low-density polyethylene (LDPE), high-density polyethylene (HDPE), or a LDPE/HDPE blend. While initial designs for the heat exchanger failed at internal pressures of only 5 to 6 psi, the final design could withstand pressures of 34 psi.

  17. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  18. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  19. Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1

    SciTech Connect (OSTI)

    Miller, G.L.

    1997-01-20

    Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation.

  20. Investigation on thermal evaporated CH{sub 3}NH{sub 3}PbI{sub 3} thin films

    SciTech Connect (OSTI)

    Li, Youzhen; Xu, Xuemei; Yang, Junliang; Wang, Chenggong; Wang, Congcong; Gao, Yongli; Xie, Fangyan

    2015-09-15

    CH{sub 3}NH{sub 3}I, PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films were fabricated by evaporation and characterized with X-ray Photoelectron Spectroscopy (XPS) and X-ray diffraction (XRD). The XPS results indicate that the PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films are more uniform and stable than the CH{sub 3}NH{sub 3}I film. The atomic ratio of the CH{sub 3}NH{sub 3}I, PbI{sub 2} and CH{sub 3}NH{sub 3}PbI{sub 3} films are C:N:I=1.00:1.01:0.70, Pb:I= 1.00:1.91 and C: N: Pb: I = 1.29:1.07:1.00:2.94, respectively. The atomic ratio of CH{sub 3}NH{sub 3}PbI{sub 3} is very close to that of the ideal perovskite. Small angle x-ray diffraction results demonstrate that the as evaporated CH{sub 3}NH{sub 3}PbI{sub 3} film is crystalline. The valence band maximum (VBM) and work function (WF) of the CH{sub 3}NH{sub 3}PbI{sub 3} film are about 0.85eV and 4.86eV, respectively.

  1. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCabe, M. F.; Ershadi, A.; Jimenez, C.; Miralles, D. G.; Michel, D.; Wood, E. F.

    2016-01-26

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m–2; 0.65), followed closely by GLEAM

  2. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  3. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  4. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect (OSTI)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  5. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect (OSTI)

    Betts, S.E.

    1993-10-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  6. DOE Tour of Zero: Anna Model by Charles Thomas Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-VOC paints and finishes help limit contaminants in the home while high-efficiency ceiling fans can help make occupants feel cooler. 7 of 11 EPA WaterSense-rated fixtures ...

  7. Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, Apr 1--June 30, 1997

    SciTech Connect (OSTI)

    Laue, M.L.

    1997-08-31

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near-horizontal well has been drilled and completion operations are in progress. Upon initial review of log data, two hydraulic fracture treatments were planned. However, the probability of the lower frac growing into thick sands previously swept by waterflood has called for additional information to be obtained prior to proceeding with hydraulic fracture treatments. Should permeabilities prove to be as favorable as some data indicate, produced water volumes could be excessively high. Prior to pumping the first frac, the well will be perforated and produced from lower pay intervals. These perfs will not impact future frac work. Rate data and pressure transient analysis will dictate the need for the lower frac.

  8. Sequence stratigraphy and depositional systems of the paleocene submarine fans in the central North Sea: The evolution of a shelf-to-basin system

    SciTech Connect (OSTI)

    Reinsborough, B.C.; Galloway, W.E. )

    1993-09-01

    Slope/basin depositional systems consist of combinations of facies, including slump lobes; chute, flute, and channel fills; mounded turbidite lobes; sheet turbidites; low-density turbidite sheets and fills; hemipelagic drapes; and contourite mounds. Specific facies associations are determined by the nature (point source or linear source) and caliber (volume, grain size, sand:mud) of sediment supply to the slope. The extensive well-log, seismic, and core database was used to dissect the stratal and facies architecture of the Andrew depositional system and characterize a logical evolution of the sand-rich shelf-to-basin depositional systems tract. The andrew consists of upper and lower depositional units bounded by downlap terminations and high-gamma marker beds. The lower Andrew displays three distinct sand-rich lobes, delineated by isopach, sand percent, log motif, and seismic facies maps Proximal, mounded, sand-rich units disperse into unchannelized sheet turbidites in the basin. No extensive incised submarine valleys feed this unit, which is characterized by coarsening and thickening-upward log responses and hummocky to discontinuous reflectors. The upper Andrew downlaps the lower unit and a single, linear sediments source was centered in the Witch ground graben. The dispersal pattern and internal character suggest the upper unit is a proximal slope apron, downlapping and filling interlobe bathymetric lows of the underlying unit. Sharp-based, blocky/digitate log signatures, discontinuous chaotic reflectors, and coarse-grained sediment characterize this unit. The lower Andrew represents a structurally focused, sand-rich lobe complex, without associated incised canyons. The Andrew system evolved as the delta platform expanded onto the proximal fan, resulting in a linear sediment source spilling over the slope as a fringing slope apron.

  9. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  10. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect (OSTI)

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  11. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    SciTech Connect (OSTI)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.

  12. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect (OSTI)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R.; Harju, J.A.

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  13. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Dryers, Evaporators, Fans, Heat Exchangers, HVAC Systems, Pumps Author: Bela G. Liptak ... Modeling of Gas-Fired Furnaces and Boilers and Other Industrial Heating ...

  14. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect (OSTI)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  15. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOE Patents [OSTI]

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  16. VARIATION IN EROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    SciTech Connect (OSTI)

    C. Harrington; R. Kelly; K.T. Ebert

    2005-08-26

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  17. Ceiling Fan | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  18. Current Mode Logic Fan Out

    Energy Science and Technology Software Center (OSTI)

    2011-05-07

    Current mode logic is used in high speed timing systems for particle accelerators due to the fast rise time of the electrical signal. This software provides the necessary documentation to produce multiple copies of a single input for distribution to multiple devices. This software supports the DOE mission by providing a method for producing high speed signals in accelerator timing systems.

  19. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles

    SciTech Connect (OSTI)

    Moeykens, S.A.; Pate, M.B.

    1996-11-01

    This study evaluates the effects of lubricant on spray evaporation heat transfer performance. Tests were conducted with refrigerant R-134a and triangular-pitch tube bundles made from enhanced-condensation, enhanced-boiling, low-finned, and plain-surface tubes. A 340-SUS polyol-ester (POE) oil was used for the R-134a testing because this lubricant is being integrated into industry for use with this refrigerant. Refrigerant was sprayed onto the tube bundles with low-pressure-drop, wide-angle nozzles located directly above the bundle. Collector testing was conducted with both R-134a and R-22 to determine the percentage of refrigerant contacting the tue bundle. It was found that small concentrations of the polyol-ester lubricant yielded significant improvement in the heat transfer performance of R-134a. The shell-side heat transfer coefficient was more dependent on lubricant concentration than on film-feed supply rate within the range of the respective parameters evaluated in this study. As expected, pure R-22 results show higher heat transfer coefficients than those obtained with pure R-134a at the same saturation temperature of 2.0 C (35.6 F).

  20. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  1. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  2. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    SciTech Connect (OSTI)

    Kurokawa, H.; Nakamoto, T.

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain their envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (? 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.

  3. Dependence of Recycling and Edge Profiles on Lithium Evaporation in High Triangularity, High Performance NSTX H-mode Discharges

    SciTech Connect (OSTI)

    Maingi, R; Osborne, T H; Bell, M G; Bell, R E; Boyle, D P; Canik, J M; Dialla, A; Kaita, R; Kaye, S M; Kugel, H W; LeBlanc, B P; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A

    2014-04-01

    In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D[sub]α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ[sub]E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  4. Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process

    SciTech Connect (OSTI)

    Lauber, T.; Kueber, J.; Wille, O.; Birkl, G.

    2011-10-15

    We present an optimized strategy for the production of tightly confined Bose-Einstein condensates (BEC) of {sup 87}Rb in a crossed dipole trap with direct loading from a magneto-optical trap. The dipole trap is created with light of a multifrequency fiber laser with a center wavelength of 1070 nm. Evaporative cooling is performed by ramping down the laser power only. A comparison of the resulting atom number in an almost pure BEC to the initial atom number and the value for the gain in phase space density per atom lost confirm that this straightforward strategy is very efficient. We observe that the temporal characteristics of evaporation sequence are strongly influenced by power-dependent two-body losses resulting from enhanced optical pumping to the higher-energy hyperfine state. We characterize these losses and compare them to results obtained with a single-frequency laser at 1030 nm.

  5. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  6. Radiological dose assessment for the decontaminated concrete removed from 183-H solar evaporation basins at the Hanford site, Richland, Washington

    SciTech Connect (OSTI)

    Kamboj, S.; Faillace, E.; Yu, C.

    1997-01-01

    Potential maximum radiation dose rates over a 1,000-year time horizon were calculated for exposure to the decontaminated concrete removed from the 183-H Solar Evaporation Basins at the Hanford Site, Richland, Washington. The RESRAD computer code, Version 5.62, which implements the methodology described in the US Department of Energy`s manual for developing residual radioactive material guidelines, was used in this evaluation. Currently, the concrete is not being used. Four potential exposure scenarios were developed for the land area where the decontaminated concrete will be stored. In Scenario A industrial use of the land is assumed; in Scenario B recreational use of the land is assumed; in Scenario C residential use of the land is assumed; and in Scenario D (a plausible but unlikely land-use scenario), the presence of a subsistence farmer in the immediate vicinity of the land is assumed. For Scenarios A and B, water used for drinking is assumed to be surface water from the Columbia River; for Scenarios C and D, groundwater drawn from a well located at the downgradient edge of the storage area is the only source of water for drinking, irrigation, and raising livestock. Conservative parameters values were used to estimate the radiation doses. The results of the evaluation indicate that the US Department of Energy`s dose limit of 100 mrem/yr would not be exceeded for any of the scenarios analyzed. The potential maximum dose rates for Scenarios A, B, C, and D are 0.75, 0.022, 29, 29 mrem/yr, respectively. An uncertainty analysis was performed to determine which parameters have the greatest impact on the estimated doses. The doses in Scenarios C and D were found to be very sensitive to the magnitude of the irrigation rate.

  7. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  8. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    SciTech Connect (OSTI)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary

  9. Nano-Structured Mesoporous Silica Wires with Intra-Wire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

    SciTech Connect (OSTI)

    Hu, Michael Z.; Shi, Donglu; Blom, Douglas Allen

    2014-04-06

    Evaporation-induced self-assembly (EISA) of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano channels. Nano-structured mesoporous silica wires, with various intra-wire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC) were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200-nm EPC and 200-nm AAO) for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, and water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetra-ethyl othosilicate (TEOS), and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123). It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1) pre-assemble TEOS aging time, (2) the evaporation rate during the vacuum impregnation, and (3) the air-dry temperature. The obtained intra-wire structures, including 2D-hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM). A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO-vs-EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.

  10. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    SciTech Connect (OSTI)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Zainal, Zulkarnain; Hilal, Hikmat S.; Fujii, Masatoshi

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  11. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    SciTech Connect (OSTI)

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was

  12. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller. Final report

    SciTech Connect (OSTI)

    Lof, G.O.G.; Westhoff, M.A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House III at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller provided by Arkla Industries is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 300-l (80-gal) hot water tank. For solar heat supply to the cooling system, plastic thin film collectors developed by Brookhaven National Laboratory were installed on the roof of Solar House III. Failure to withstand stagnation temperatures forced replacement of solar energy with an electric heat source. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several US climates by use of the model.

  13. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOE Patents [OSTI]

    Rasor, Ned S.; Riley, David R.; Murray, Christopher S.; Geller, Clint B.

    2000-01-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  14. The Impact of PM and HC on EGR Cooler Fouling

    Broader source: Energy.gov [DOE]

    Data were used to correlate an EGR cooling fouling model developed to test the impact of PM and HC on fouling

  15. Microsoft Word - Ex Parte Memo re Walk-in Coolers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The following individuals were present or on the telephone: John Cymbalsky, DOE Dan Cohen, DOE Ashley Armstrong, DOE Michael Kido, DOE Benjamin Longstreth, NRDC Joanna Mauer, ASAP ...

  16. EECBG Success Story: Learning is Now Much 'Cooler' for Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Articles Ajani Stewart was close to losing his job as environmental coordinator for the city of Miami before a change to the city's EECBG allowed Stewart to retain his ...

  17. Cool Roofs Lead to Cooler Cities | Department of Energy

    Office of Environmental Management (EM)

    ... Roofs at DOE and Across the Federal Government Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy 101: Cool Roofs

  18. Puerto Rico Farmers Market Cooler, Saving Money | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What are the key facts? Market saving 16,000 annually from cooling upgrades 37 million in Recovery Act funding projected to save millions on island Recovery Act funded 11 programs 22 ...

  19. Cooler and particulate separator for an off-gas stack

    DOE Patents [OSTI]

    Wright, G.T.

    1991-04-08

    This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  20. Cooler and particulate separator for an off-gas stack

    DOE Patents [OSTI]

    Wright, George T.

    1992-01-01

    An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.

  1. Factors Impacting EGR Cooler Fouling- Main Effects and Interactions

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  2. Integrated hydraulic cooler and return rail in camless cylinder head

    DOE Patents [OSTI]

    Marriott, Craig D.; Neal, Timothy L.; Swain, Jeff L.; Raimao, Miguel A.

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  3. NRELs Energy-Saving Technology for Air Conditioning Cuts Peak...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How DEVAP Works Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming ...

  4. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    SciTech Connect (OSTI)

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F. E-mail: xfhan@aphy.iphy.ac.cn; Li, D. L.; Feng, J. F. E-mail: xfhan@aphy.iphy.ac.cn; Kurt, H.; Chen, J. Y.; Coey, J. M. D.

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  5. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect (OSTI)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  6. I. Excluded Volume Effects in Ising Cluster Distributions and Nuclear Multifragmentation II. Multiple-Chance Effects in Alpha-Particle Evaporation

    SciTech Connect (OSTI)

    Breus, Dimitry E.

    2005-05-16

    In Part 1, geometric clusters of the Ising model are studied as possible model clusters for nuclear multifragmentation. These clusters may not be considered as non-interacting (ideal gas) due to excluded volume effect which predominantly is the artifact of the cluster's finite size. Interaction significantly complicates the use of clusters in the analysis of thermodynamic systems. Stillinger's theory is used as a basis for the analysis, which within the RFL (Reiss, Frisch, Lebowitz) fluid-of-spheres approximation produces a prediction for cluster concentrations well obeyed by geometric clusters of the Ising model. If thermodynamic condition of phase coexistence is met, these concentrations can be incorporated into a differential equation procedure of moderate complexity to elucidate the liquid-vapor phase diagram of the system with cluster interaction included. The drawback of increased complexity is outweighted by the reward of greater accuracy of the phase diagram, as it is demonstrated by the Ising model. A novel nuclear-cluster analysis procedure is developed by modifying Fisher's model to contain cluster interaction and employing the differential equation procedure to obtain thermodynamic variables. With this procedure applied to geometric clusters, the guidelines are developed to look for excluded volume effect in nuclear multifragmentation. In part 2, an explanation is offered for the recently observed oscillations in the energy spectra of {alpha}-particles emitted from hot compound nuclei. Contrary to what was previously expected, the oscillations are assumed to be caused by the multiple-chance nature of {alpha}-evaporation. In a semi-empirical fashion this assumption is successfully confirmed by a technique of two-spectra decomposition which treats experimental {alpha}-spectra has having contributions from at least two independent emitters. Building upon the success of the multiple-chance explanation of the oscillations, Moretto's single-chance evaporation

  7. Isothermal evaporation process simulation using the Pitzer model for the Quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Lingzong; Gruszkiewicz, Miroslaw S.; Deng, Tianlong; Guo, Yafei; Li, Dan

    2015-08-05

    In this study, the Pitzer thermodynamic model for solid-liquid equilibria in the quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K was constructed by selecting the proper parameters for the subsystems in the literature. The solubility data of the systems NaCl–SrCl2–H2O, KCl–SrCl2–H2O, LiCl–SrCl2–H2O, and NaCl–KCl–SrCl2–H2O were used to evaluate the model. Good agreement between the experimental and calculated solubilities shows that the model is reliable. The Pitzer model for the quinary system at 298.15 K was then used to calculate the component solubilities and conduct computer simulation of isothermal evaporation of the mother liquor for the oilfield brine from Nanyishan district in themore » Qaidam Basin. The evaporation-crystallization path and sequence of salt precipitation, change in concentration and precipitation of lithium, sodium, potassium, and strontium, and water activities during the evaporation process were demonstrated. The salts precipitated from the brine in the order : KCl, NaCl, SrCl2∙6H2O, SrCl2∙2H2O, and LiCl∙H2O. The entire evaporation process may be divided into six stages. In each stage the variation trends for the relationships between ion concentrations or water activities and the evaporation ratio are different. This result of the simulation of brines can be used as a theoretical reference for comprehensive exploitation and utilization of this type of brine resources.« less

  8. WERF MACT Feasibility Study Report

    SciTech Connect (OSTI)

    B. Bonnema; D. Moser; J. Riedesel; K. Kooda; K. Liekhus; K. Rebish; S. Poling

    1998-11-01

    This study was undertaken to determine the technical feasibility of upgrading the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering and Environmental Laboratory to meet the offgas emission limits proposed in the Maximum Achievable Control Technologies (MACT)rule. Four practicable offgas treatment processes were identified, which, if installed, would enable the WERF to meet the anticipated MACT emission limits for dioxins and furans (D/F), hydrochloric acid (HCI), and mercury (Hg). Due to the three-year time restraint for MACT compliance, any technology chosen for the upgrade must be performed within the general plant project funding limit of $5 M. The option selected consists of a partial-quench evaporative cooler with dry sorbent injection for HCI removal followed by a sulfur-impregnated activated carbon bed for Hg control. The planning cost estimate for implementing the option is $4.17 M (with 24% contingency). The total estimated cost includes capital costs, design and construction costs, and project management costs. Capital costs include the purchase of a new offgas evaporative cooler, a dry sorbent injection system with reagent storage, a new fabric filter baghouse, a fixed carbon bed absorber, and two offgas induced draft exhaust fans. It is estimated that 21 months will be required to complete the recommended modification to the WERF. The partial-quench cooler is designed to rapidly cool the offgas exiting the secondary combustion chamber to minimize D/F formation. Dry sorbent injection of an alkali reagent into the offgas is recommended. The alkali reacts with the HCI to form a salt, which is captured with the fly ash in the baghouse. A design HCI removal efficiency of 97.2% allows for the feeding 20 lbs/hr of chlorine to the WERF incinerator. The sorbent feed rate can be adjusted to achieve the desired HCI removal efficiency. A fixed bed of sulfur-impregnated carbon was conservatively sized for a total Hg removal capacity when

  9. Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hui; Hood, Zachary D.; Xia, Younan; Liang, Chengdu

    2016-04-25

    All-solid-state lithium batteries are attractive candidates for next-generation energy storage devices because of their anticipated high energy density and intrinsic safety. Owing to their excellent ionic conductivity and stability with metallic lithium anodes, nanostructured lithium thiophosphate solid electrolytes such as β-Li3PS4 have found use in the fabrication of all-solid lithium batteries for large-scale energy storage systems. However, current methods for preparing air-sensitive solid electrolyte membranes of lithium thiophosphates can only generate thick membranes that compromise the battery's gravimetric/volumetric energy density and thus its rate performance. To overcome this limitation, the solid electrolyte's thickness needs to be effectively decreased to achievemore » ideal energy density and enhanced rate performance. In this paper, we show that the evaporation-induced self-assembly (EISA) technique produces ultrathin membranes of a lithium thiophosphate solid electrolyte with controllable thicknesses between 8 and 50 μm while maintaining the high ionic conductivity of β-Li3PS4 and stability with metallic lithium anodes up to 5 V. Finally, it is clearly demonstrated that this facile EISA approach allows for the preparation of ultrathin lithium thiophosphate solid electrolyte membranes for all-solid-state batteries.« less

  10. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect (OSTI)

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  11. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    SciTech Connect (OSTI)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  12. A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves

    SciTech Connect (OSTI)

    Pelanti, Marica; Shyue, Keh-Ming

    2014-02-15

    We model liquidgas flows with cavitation by a variant of the six-equation single-velocity two-phase model with stiff mechanical relaxation of SaurelPetitpasBerry (Saurel et al., 2009) [9]. In our approach we employ phasic total energy equations instead of the phasic internal energy equations of the classical six-equation system. This alternative formulation allows us to easily design a simple numerical method that ensures consistency with mixture total energy conservation at the discrete level and agreement of the relaxed pressure at equilibrium with the correct mixture equation of state. Temperature and Gibbs free energy exchange terms are included in the equations as relaxation terms to model heat and mass transfer and hence liquidvapor transition. The algorithm uses a high-resolution wave propagation method for the numerical approximation of the homogeneous hyperbolic portion of the model. In two dimensions a fully-discretized scheme based on a hybrid HLLC/Roe Riemann solver is employed. Thermo-chemical terms are handled numerically via a stiff relaxation solver that forces thermodynamic equilibrium at liquidvapor interfaces under metastable conditions. We present numerical results of sample tests in one and two space dimensions that show the ability of the proposed model to describe cavitation mechanisms and evaporation wave dynamics.

  13. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 2, February 1-April 30, 1981

    SciTech Connect (OSTI)

    Bube, R H

    1981-01-01

    The design, construction and testing of the hot-wall vacuum evaporation system is proceeding on schedule. The vacuum system, a Varian 3118 diffusion pump system, has been installed and tested. A calculation of the optimum possible efficiency for an n-p CdTe homojunction indicates a value of 14%. A complete background is given on the growth of over fifty CdTe single crystals at Stanford, the last four of which were grown as part of this program. Use of crystal regrowth and vibration during growth both increase crystal quality. Higher electrical activity of phosphorus acceptors in CdTe is achieved when 0.1% excess Te is used in place of 0.5% excess Te. Careful characterization of boules grown for this program are underway, using Hall effect or capacitance-voltage data on selected samples. Initial investigation of the properties of grain boundaries in p-type CdTe : P crystals indicates a grain boundary height of 0.44 eV unaffected by illumination. These results suggest that grain boundaries are more strongly pinned in p-type than in n-type CdTe.

  14. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect (OSTI)

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  15. Structural and optical properties of Sn{sub 1−x}Fe{sub x}O{sub 2} thin films prepared by flash evaporation technique

    SciTech Connect (OSTI)

    Kuppan, M. Kaleemulla, S. Rao, N. Madhusudhana Krishna, N. Sai Begam, M. Rigana

    2014-04-24

    Sn{sub 1−x}Fe{sub X}O{sub 2} (x = 0, 0.05) thin films were prepared on glass substrate using the flash evaporation technique. The samples were annealed at 773 K for 2 hrs in air atmosphere. A systematic study was carried out on the structural and optical properties of the as deposited and annealed thin films. From the X-ray diffraction analysis it was found that the Sn{sub 1−x}Fe{sub X}O{sub 2} films deposited at 623 K were amorphous in nature and the Sn{sub 1−x}Fe{sub X}O{sub 2} films annealed at 773 K exhibited the tetragonal structure of the SnO{sub 2}. The optical band gap of the SnO{sub 2} thin films was found to be as 3.17 eV whereas the optical band gap of the Sn{sub 1−x}Fe{sub X}O{sub 2} films was found to be as 3.01 eV after air annealing.

  16. Fan System Assessment Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minimum screen resolution of 1024 x 768 and 10 megabytes of hard drive space are required. Additional Information Fact Sheet, Aug. 2010 User Manual, Sept. 2004 Download Software ...

  17. Submitting Organization Hongyou Fan Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for instance, fabrication of the gold nanoparticlesilica nanocomposite (see ... involving hopping of electrons from one gold nanocrystal to another within the coating, ...

  18. Whole House Fans | Open Energy Information

    Open Energy Info (EERE)

    Contact needs updating Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Category: Articles with outstanding TODO tasks...

  19. Cooling Effects of Fans | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aa? upload cheyyaledu VA:F 1.9.221171please wait... You Might Also Like IMG0475 Innovation 247: We're Always Open MunichinteriorV 10 Years ON: From the Lab to the...

  20. Evaporative Cooling | Open Energy Information

    Open Energy Info (EERE)

    heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the footprint required for an air...