Powered by Deep Web Technologies
Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Water's Hydrogen Bond Strength  

E-Print Network [OSTI]

Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

Martin Chaplin

2007-06-10T23:59:59.000Z

2

Hydrogen Cars and Water Vapor  

E-Print Network [OSTI]

. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solutionHydrogen Cars and Water Vapor D.W.KEITHANDA.E.FARRELL'S POLICY FORUM "Rethinking hydrogen cars" (18 misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have

Colorado at Boulder, University of

3

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

so, coat with water, and add sunshine. What do you get? In theory, energy-rich hydrogen produced by photolysis-a process by which water molecules placed on a catalytic surface...

4

Turing Water into Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turning Water into Turning Water into Hydrogen Fuel Turning Water into Hydrogen Fuel New method creates highly reactive catalytic surface, packed with hydroxyl species May 15, 2012 | Tags: Franklin, Materials Science NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 PNNL Contacts: Loel Kathmann, Loel.Kathmann@pnnl.gov, +1 509 371 6068 Artwork from this catalysis research graced the cover of Physical Chemistry Chemical Physics. Image reproduced by permission of Dr Igor Lyubinetsky and the PCCP Owner Societies from Phys. Chem. Chem. Phys. 2012. Build a surface of titanium and oxygen atoms arranged just so, coat with water, and add sunshine. What do you get? In theory, energy-rich hydrogen produced by photolysis-a process by which water molecules placed on a catalytic surface and exposed to sunlight (electromagnetic radiation) are

5

Green Lands Blue Water 2014 Fall Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Green Lands Blue Water 2014 Fall Conference Green Lands Blue Water 2014 Fall Conference November 18, 2014 10:00AM CST to November 20, 2014 4:00PM CST Richland Community College...

6

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

7

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

8

Water Electrolysis and Solar Hydrogen Demonstration Projects  

Science Journals Connector (OSTI)

In this chapter, nearly all conventional and newly developed processes for water electrolysis will be considered, and an overview of ... After a brief historical description of hydrogen, water electrolysis, and s...

Gerd Sandstede; Reinhold Wurster

1995-01-01T23:59:59.000Z

9

Nanomaterials for Extracting Hydrogen from Water  

E-Print Network [OSTI]

to catalyze water oxidation. K E Y A C C O M P L I S H M E N T S Produced highly active iron oxide (hematiteNanomaterials for Extracting Hydrogen from Water P R O J E C T L E A D E R : Veronika Szalai (NIST water. R E F E R E N C E Effect of tin doping on -Fe2 O3 photoanodes for water splitting, C. D. Bohn, A

10

6 - Hydrogen production by water electrolysis  

Science Journals Connector (OSTI)

Abstract: An electrolyzer combines an oxidation and a reduction reaction, driven by electricity, to produce separate streams of hydrogen gas and oxygen gas by a process called electrolysis. The hydrogen contains a portion of the electrical energy, and it can be used to generate electricity in a fuel cell by a process that is the reverse of electrolysis. If water electrolysis is driven by renewable electricity, it can be used in fuel-cell electric vehicles to displace petroleum, increase vehicle efficiency, and reduce the environmental impact of vehicles. The fundamental aspects of electrolytic hydrogen and its use as energy carrier are discussed.

N.A. Kelly

2014-01-01T23:59:59.000Z

11

Fuel from Water: The Photochemical Generation of Hydrogen from Water  

Science Journals Connector (OSTI)

Fuel from Water: The Photochemical Generation of Hydrogen from Water ... Hydrogen can be generated from fossil fuels using well established industrial scale chem.; while this is clearly not green, it can provide the transitional capacity as infrastructure is developed and alternate ways of generating hydrogen using solar, nuclear, hydro, wind, or wave energy come to the fore. ... Our renewed interest in alternative energy has fuelled research in understanding this simplest, in terms of active site organization, of the known hydrogenases over the last two decades. ...

Zhiji Han; Richard Eisenberg

2014-06-26T23:59:59.000Z

12

NETL: Releases & Briefs - Producing hydrogen from water, without  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Producing Hydrogen from Water, without Electrolysis Producing Hydrogen from Water, without Electrolysis Electrochemical potential difference drives the reaction Electrochemical potential difference drives the reaction Researchers at DOE's National Energy Technology Laboratory and Argonne National Laboratory have patented a "Method of Generating Hydrogen by Catalytic Decomposition of Water." The invention potentially leapfrogs current capital and energy intensive processes that produce hydrogen from fossil fuels or through the electrolysis of water. According to co-inventor Arun Bose, "Hydrogen can be produced by electrolysis, but the high voltage requirements are a commercial barrier. The invention provides a new route for producing hydrogen from water by using mixed proton-electron conducting membranes." Water is

13

Hydrogen production by the decomposition of water  

DOE Patents [OSTI]

How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

Hollabaugh, Charles M. (Los Alamos, NM); Bowman, Melvin G. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

14

ARM - Field Campaign - Fall 1997 Water Vapor IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor IOP Water Vapor IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Water Vapor IOP 1997.09.15 - 1997.10.05 Lead Scientist : Henry Revercomb For data sets, see below. Summary The Water Vapor IOP was conducted as a follow-up to a predecessor IOP on water vapor held in September 1996. This IOP relied heavily on both ground-based guest and CART instrumentation and in-situ aircraft and tethered sonde/kite measurements. Primary operational hours were from 6 p.m. Central until at least midnight, with aircraft support normally from about 9 p.m. until midnight when available. However, many daytime measurements were made to support this IOP. The first Water Vapor IOP primarily concentrated on the atmosphere's lowest

15

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

Electrochemical hydrogen production methods are quiteonly causative hydrogen production method. Although the massa method for the production of molecular hydrogen from

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

16

Electrokinetic Hydrogen Generation from Liquid Water Microjets  

E-Print Network [OSTI]

currents and hydrogen production rates are shown to followmolecules. The hydrogen production efficiency is currentlycurrently available hydrogen production routes that can be

Duffin, Andrew M.; Saykally, Richard J.

2007-01-01T23:59:59.000Z

17

Oconto Falls Water & Light Comm | Open Energy Information  

Open Energy Info (EERE)

Oconto Falls Water & Light Comm Oconto Falls Water & Light Comm Place Wisconsin Utility Id 13965 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering Discount Industrial Cp-1 Small Power Service with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Optional Time-of-Day Service Primary Metering Discount

18

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments  

E-Print Network [OSTI]

Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments Chao Zhang contributions of each of the two hydrogen atoms to the vibrational modes 1 and 3 of water molecules the early works on the molecular structure of water, it has been accepted that a water molecule

Guidoni, Leonardo

19

Author's personal copy Photoelectrochemical hydrogen production from water/  

E-Print Network [OSTI]

coal and gasoline [3]. Moreover, hydrogen can be used in fuel cells to generate electricity, or directly as a transportation fuel [4]. Hydrogen can be generated from hydrocarbons and water resourcesAuthor's personal copy Photoelectrochemical hydrogen production from water/ methanol decomposition

Wood, Thomas K.

20

Materials for Hydrogen Generation via Water Electrolysis  

SciTech Connect (OSTI)

A review is presented of materials that could be utilized as electrolytes (and their associated electrodes and interconnect materials) in solid-state electrolysis cells to convert water (or steam) into hydrogen and oxygen. Electrolytes that function as oxygen ion conductors or proton conductors are considered for various operating temperatures from approximately 80 C to 1000 C. The fundamental electrochemical reactions are reviewed with some discussion of special sources of steam and DC electricity (advanced nuclear) to drive the reactions at the higher temperatures.

Paul A. Lessing

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

22

Turning Sun and Water Into Hydrogen Fuel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel Turning Sun and Water Into Hydrogen Fuel May 5, 2011 - 1:27pm Addthis Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D. Damsgaard, Thomas Pedersen and Ole Hansen, Technical University of Denmark Tiny silicon pillars, used to absorb light. When dotted with a catalyst of molybdenum sulfide and exposed to sunlight, these pillars generate hydrogen gas from the hydrogen ions liberated by splitting water. Each pillar is approximately two micrometers in diameter. | Photo courtesy of Christian D.

23

Process for the production of hydrogen from water  

DOE Patents [OSTI]

A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

Miller, William E. (Naperville, IL); Maroni, Victor A. (Naperville, IL); Willit, James L. (Batavia, IL)

2010-05-25T23:59:59.000Z

24

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

25

Sonoelectrochemical production of hydrogen via alkaline water electrolysis.  

E-Print Network [OSTI]

??Alkaline water electrolysis is a promising technology to produce clean and pure hydrogen. This technology coupled with the ultrasound results in an enhanced rate of (more)

Hassan Zadeh, Salman

2014-01-01T23:59:59.000Z

26

Hydrogen and Water: An Engineering, Economic and Environmental Analysis  

SciTech Connect (OSTI)

The multi-year program plan for the Department of Energy's Hydrogen and Fuel Cells Technology Program (USDOE, 2007a) calls for the development of system models to determine economic, environmental and cross-cutting impacts of the transition to a hydrogen economy. One component of the hydrogen production and delivery chain is water; water's use and disposal can incur costs and environmental consequences for almost any industrial product. It has become increasingly clear that due to factors such as competing water demands and climate change, the potential for a water-constrained world is real. Thus, any future hydrogen economy will need to be constructed so that any associated water impacts are minimized. This, in turn, requires the analysis and comparison of specific hydrogen production schemes in terms of their water use. Broadly speaking, two types of water are used in hydrogen production: process water and cooling water. In the production plant, process water is used as a direct input for the conversion processes (e.g. steam for Steam Methane Reforming {l_brace}SMR{r_brace}, water for electrolysis). Cooling water, by distinction, is used indirectly to cool related fluids or equipment, and is an important factor in making plant processes efficient and reliable. Hydrogen production further relies on water used indirectly to generate other feedstocks required by a hydrogen plant. This second order indirect water is referred to here as 'embedded' water. For example, electricity production uses significant quantities of water; this 'thermoelectric cooling' contributes significantly to the total water footprint of the hydrogen production chain. A comprehensive systems analysis of the hydrogen economy includes the aggregate of the water intensities from every step in the production chain including direct, indirect, and embedded water. Process and cooling waters have distinct technical quality requirements. Process water, which is typically high purity (limited dissolved solids) is used inside boilers, reactors or electrolyzers because as it changes phase or is consumed, it leaves very little residue behind. Pre-treatment of 'raw' source water to remove impurities not only enables efficient hydrogen production, but also reduces maintenance costs associated with component degradation due to those impurities. Cooling water has lower overall quality specifications, though it is required in larger volumes. Cooling water has distinct quality requirements aimed at preserving the cooling equipment by reducing scaling and fouling from untreated water. At least as important as the quantity, quality and cost of water inputs to a process are the quantity, quality and cost of water discharge. In many parts of the world, contamination from wastewater streams is a far greater threat to water supply than scarcity or drought (Brooks, 2002). Wastewater can be produced during the pre-treatment processes for process and cooling water, and is also sometimes generated during the hydrogen production and cooling operations themselves. Wastewater is, by definition, lower quality than supply water. Municipal wastewater treatment facilities can handle some industrial wastewaters; others must be treated on-site or recycled. Any of these options can incur additional cost and/or complexity. DOE's 'H2A' studies have developed cost and energy intensity estimates for a variety of hydrogen production pathways. These assessments, however, have not focused on the details of water use, treatment and disposal. As a result, relatively coarse consumption numbers have been used to estimate water intensities. The water intensity for hydrogen production ranges between 1.5-40 gallons per kilogram of hydrogen, including the embedded water due to electricity consumption and considering the wide variety of hydrogen production, water treatment, and cooling options. Understanding the consequences of water management choices enables stakeholders to make informed decisions regarding water use. Water is a fundamentally regional commodity. Water resources vary in quality and qu

Simon, A J; Daily, W; White, R G

2010-01-06T23:59:59.000Z

27

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

28

Parametric study of solar hydrogen production from saline water electrolysis  

Science Journals Connector (OSTI)

The purpose of this work is to study the electrolysis of water for the production of hydrogen. A number of parameters, including salinity, voltage, current density and quantity of electricity, were investigated, and their effect on hydrogen production using a modified simple Hoffman electrolysis cell is reported.

S.M. El-Haggar; M. Khalil

1997-01-01T23:59:59.000Z

29

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 1.0 - 2008 Page 1 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

30

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 #12 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

31

Water inertial reorientation: Hydrogen bond strength and the angular potential  

E-Print Network [OSTI]

Water inertial reorientation: Hydrogen bond strength and the angular potential David E. Moilanen) The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy with recent molecular dynamics simulations employing the simple point charge-extended water model at room

Fayer, Michael D.

32

Ultrafast structural fluctuations and rearrangements of water's hydrogen bonded network  

E-Print Network [OSTI]

Aqueous chemistry is strongly influenced by water's ability to form an extended network of hydrogen bonds. It is the fluctuations and rearrangements of this network that stabilize reaction products and drive the transport ...

Loparo, Joseph J. (Joseph John)

2007-01-01T23:59:59.000Z

33

Production of hydrogen from water using biophotolytic methods  

Science Journals Connector (OSTI)

Hydrogen gas has been produced on a continuous basis using two immobilized microorganisms. One organism, the cyanobacteria it(Anacystis nidulans), oxidizes water, producing molecular oxygen, and reduces exogen...

Howard H. Weetall; Lester O. Krampitz

1980-06-01T23:59:59.000Z

34

Hydrogen peroxide production by water electrolysis: Application to disinfection  

Science Journals Connector (OSTI)

Hydrogen peroxide was produced by direct current electrolysis using only two electrodes, a carbon felt...2...coated titanium anode. The required oxygen was supplied by oxidation of water and by transfer from the ...

P. Drogui; S. Elmaleh; M. Rumeau; C. Bernard

2001-08-01T23:59:59.000Z

35

Hydrogen production from water: Recent advances in photosynthesis research  

SciTech Connect (OSTI)

The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-12-31T23:59:59.000Z

36

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

37

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

38

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly directional hydrogen bonding (H-bonding) network structure and its associated dynamics. However, despite intense experimental and theoretical scrutiny, a complete description of this structure has been elusive. Recently, with the help of their novel liquid microjet apparatus, a University of California, Berkeley, group derived a new energy criterion for H-bonds based on experimental data. With this new criterion based on analysis of the temperature dependence of the x-ray absorption spectra of normal and supercooled liquid water, they concluded that the traditional structural model of water is valid.

39

Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice  

E-Print Network [OSTI]

Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.

Weijun Zheng; David Jewitt; Ralf I. Kaiser

2005-11-18T23:59:59.000Z

40

Hydrogen Generation through Static Feed Water Electrolysis  

Science Journals Connector (OSTI)

Life Systems Static Feed Water Electrolysis System (SFWES) concept, developed under NASA...2...) production. The SFWES concept uses (1) an alkaline electrolyte to minimize power requirements and materials compat...

F. C. Jensen; F. H. Schubert

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HYDROGEN ISOTOPE RECOVERY USING PROTON EXCHANGE MEMBRANE ELECTROLYSIS OF WATER  

SciTech Connect (OSTI)

A critical component of tritium glovebox operations is the recovery of high value tritium from the water vapor in the glove box atmosphere. One proposed method to improve existing tritium recovery systems is to replace the disposable hot magnesium beds used to separate the hydrogen and oxygen in water with continuous use Proton Exchange Membrane Electrolyzers (PEMEs). This study examines radiation exposure to the membrane of a PEME and examines the sizing difference that would be needed if the electrolyzer were operated with a cathode water vapor feed instead of an anode liquid water feed.

Fox, E; Scott Greenway, S; Amy Ekechukwu, A

2007-08-27T23:59:59.000Z

42

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect (OSTI)

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

43

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water  

Science Journals Connector (OSTI)

Hydrogen Production by Noncatalytic Autothermal Reformation of Aviation Fuel Using Supercritical Water ... Energy Fuels, 2009, 23 (12), ...

Jason W. Picou; Jonathan E. Wenzel; H. Brian Lanterman; Sunggyu Lee

2009-10-07T23:59:59.000Z

44

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2008-10-01T23:59:59.000Z

45

DOE Hydrogen and Fuel Cells Program Record 5040: 2005 Hydrogen Cost from Water Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40 Date: December 12, 2008 40 Date: December 12, 2008 Title: 2005 Hydrogen Cost from Water Electrolysis Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 19, 2008 Item: The 2005 cost status for hydrogen produced from distributed water electrolysis is $5.90 / gge. Assumptions and References: The H2A analysis used to determine the projected cost of $5.88/gge (rounded up to $5.90/gge) was performed by Directed Technologies, Inc. and can be found in Record 5040a. The increase in cost compared to the 2004 analysis ($5.45/gge) is due to two assumptions changed in the model: (a) an increase in the industrial electricity price from 5¢/kWh to 5.5¢/kWh from the EIA Annual Energy Outlook, and (b) an increase in the capital cost estimate of the electrolyzer. The other assumptions in the analysis used standard values

46

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2006 Progress Update (Presentation)  

SciTech Connect (OSTI)

This presentation, given by NREL's Keith Wipke at EVS-22, provides an update on the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

2006-10-26T23:59:59.000Z

47

Hydrogen-on-Demand Using Metallic Alloy Nanoparticles in Water Kohei Shimamura,,,,,  

E-Print Network [OSTI]

energy to regenerate metal fuel.1-3 One potential application of this technology is on-board hydrogenHydrogen-on-Demand Using Metallic Alloy Nanoparticles in Water Kohei Shimamura,,,�,, Fuyuki Shimojo Supporting Information ABSTRACT: Hydrogen production from water using Al particles could provide a renewable

Southern California, University of

48

Rapid hydrogen production from water using aluminum nanoclusters: A quantum molecular dynamics simulation study  

E-Print Network [OSTI]

Rapid hydrogen production from water using aluminum nanoclusters: A quantum molecular dynamics Available online 31 December 2013 Keywords: Hydrogen production Water Aluminum nanoclusters Quantum molecular dynamics simulation It is hoped that a hydrogen-on-demand generator may one day start with just

Southern California, University of

49

70 Ground Water Monitoring & Remediation 31, no. 4/ Fall 2011/pages 7076 NGWA.org 2011, The Author(s)  

E-Print Network [OSTI]

70 Ground Water Monitoring & Remediation 31, no. 4/ Fall 2011/pages 70­76 NGWA.org © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j 93% to 117% for both spiked laboratory reagent water and natural ground- water matrices, the later

Alvarez, Pedro J.

50

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

51

Method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Method for simultaneous recovery of hydrogen and hydrogen isotopes from water and from hydrocarbons. A palladium membrane, when utilized in cooperation with a nickel catalyst in a reactor, has been found to drive reactions such as water gas shift, steam reforming and methane cracking to substantial completion by removing the product hydrogen from the reacting mixture. In addition, ultrapure hydrogen is produced, thereby eliminating the need for an additional processing step.

Willms, R. Scott (Los Alamos, NM)

1996-01-01T23:59:59.000Z

52

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

53

Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-25T23:59:59.000Z

54

Hydrogen production via carbon-assisted water electrolysis at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct carbon-assisted water electrolysis at room temperature with reduced energy costs for hydrogen production and to improve upon (more)

Bollineni, Shilpa

2008-01-01T23:59:59.000Z

55

Isotopic Effects of Hydrogen During the Decomposition of Water in Electrolysis with a Solid Polymer Electrolyte  

Science Journals Connector (OSTI)

The partition coefficients of hydrogen isotopes in the decomposition of water in electrolyzers with a solid polymer electrolyte are measured in a wide range of deuterium content in the initial water (from the ...

O. M. Ivanchuk; V. G. Goryanina; M. B. Rozenkevich

2000-09-01T23:59:59.000Z

56

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

57

Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy  

SciTech Connect (OSTI)

We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

2010-05-01T23:59:59.000Z

58

Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa  

SciTech Connect (OSTI)

We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

Borysow, Jacek, E-mail: jborysow@mtu.edu; Rosso, Leonardo del; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy)] [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Moraldi, Massimo [Dipartimento di Fisica e Astronomia, Universit degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)] [Dipartimento di Fisica e Astronomia, Universit degli Studi di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (Italy)

2014-04-28T23:59:59.000Z

59

Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor  

SciTech Connect (OSTI)

It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

Brady, Michael P [ORNL; Fayek, Mostafa [ORNL; Keiser, James R [ORNL; Meyer III, Harry M [ORNL; More, Karren Leslie [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

2011-01-01T23:59:59.000Z

60

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.  

SciTech Connect (OSTI)

The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y.; Picciolo, J. J.; Song, S. J.; Energy Systems

2008-03-04T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Depletion of heavy isotopes of oxygen and hydrogen in tissue water of intertidal plants: implications for water economy  

Science Journals Connector (OSTI)

Stable oxygen and hydrogen isotope ratios of leaf and thallus water of the intertidal seagrasses Phyllospadix scouleri and P. torreyi and the marine algae Egregia menziesii, Gelidium coulteri, and Corallina vanco...

L. W. Cooper; M. J. DeNiro

1989-05-01T23:59:59.000Z

62

Improvements and optimisation of water electrolysis for hydrogen production.  

E-Print Network [OSTI]

??[Truncated abstract] Hydrogen as an important energy carrier has wide applications and great potentials. With ever increasing energy costs and concerns with climate change associated (more)

Zeng, Kai

2012-01-01T23:59:59.000Z

63

Hydrogen from Water in a Novel Recombinant Cyanobacterial System  

SciTech Connect (OSTI)

Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being brought to life from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80 C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

2014-12-03T23:59:59.000Z

64

DOE NSF Partnership to Address Critical Challenges in Hydrogen Production from Solar Water Splitting  

Broader source: Energy.gov [DOE]

EERE and the National Science Foundation (NSF) announce a funding opportunity in the area of renewable hydrogen technology research and development, specifically addressing discovery and development of advanced materials systems and chemical proceesses for direct photochemical and/or thermochemical water splitting for application in the solar production of hydrogen fuel.

65

The effects of fall and spring burning on water quality and vegetative cover in the Post Oak Savannah of Texas  

E-Print Network [OSTI]

TRE EPFECTS OF FALL AND SPRING BURNING ON WATER QUALITY AND VEGETATIVE COVER IN TRE POST OAK SAVANNAH OF TEKAS A Thesis by NICK ERNEST GARZA Jr. Submitted to the Graduate College of Texas ASM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1983 Major Subject: Range Science THE EFFECTS OF FALL AND SPRING BURNING ON WATER QUALITY AND VEGETATIVE COVER IN THE POST OAK SAVANNAH OF TEXAS A Thesis by NICK ERNEST GARZA Jr. Approved as to style...

Garza, Nick Ernest

2012-06-07T23:59:59.000Z

66

Hydrogen production from the reaction of solvated electrons with benzene in water-ammonia mixtures  

SciTech Connect (OSTI)

Product analysis data for the reaction of the ammoniated electron with benzene-water mixtures in liquid ammonia show that the dominant product is evolved hydrogen and not 1,4-cyclohexadiene.

Dewald, R.R.; Jones, S.R.; Schwartz, B.S.

1980-11-27T23:59:59.000Z

67

Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy  

E-Print Network [OSTI]

We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

Nicodemus, Rebecca A.

68

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-Print Network [OSTI]

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

69

Water Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes on the Hydrogen Bond Network  

E-Print Network [OSTI]

emissions energy source is hydrogen. Hydrogen powered vehicles using polymer electrolyte membrane fuel cells and hydrophilic aggregates.1-4 Hydrogen fuel cells operate through the oxidation of hydrogen gas at the anodeWater Dynamics in Nafion Fuel Cell Membranes: The Effects of Confinement and Structural Changes

Fayer, Michael D.

70

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Todays energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

71

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et Mobilit'e du  

E-Print Network [OSTI]

Hydrogen Bonds, Water Rotation and Proton Mobility Liaisons Hydrog`ene, Rotation de l'eau et H 3 O + est presque immo­ bilis'e par des liaisons hydrog`ene extr??emement fortes. Ces derni liaisons hydrog`ene de l'eau pure. Dans l'eau en dessous de 20 0 C, la rotation des mol'ecules est plus

Agmon, Noam

72

Solar-Powered Production of Molecular Hydrogen from Water  

Science Journals Connector (OSTI)

At the present time, the majority of industrial-scale hydrogen is produced by steam?methane reformation (SMR), even though the high-temperature conversion of methane to hydrogen results in the concomitant production of carbon monoxide and carbon dioxide. ... 7-9 The PV arrays are used to convert solar light to electricity in order to power alkaline (e.g., 27% KOH at pH 14.7) electrolyzers for producing hydrogen gas. ... Narayanan et al. describe a DC-powered hybrid system that drives a methanol fuel cell in reverse,10 while Soler et al. report on a solar-powered photo-Fenton process that produces hydrogen noncatalytically under severe conditions with a limited number of organic substrates. ...

Hyunwoong Park; Chad D. Vecitis; Wonyong Choi; Oleh Weres; Michael R. Hoffmann

2008-01-04T23:59:59.000Z

73

Mpemba paradox: Hydrogen bond memory and water-skin supersolidity  

E-Print Network [OSTI]

Numerical reproduction of measurements, experimental evidence for skin super-solidity and hydrogen-bond memory clarified that Mpemba paradox integrates the heat emission-conduction-dissipation dynamics in the source-path-drain cycle system.

Chang Q Sun

2015-01-05T23:59:59.000Z

74

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

75

Aluminum hydroxide and hydrogen produced by water electrolysis  

Science Journals Connector (OSTI)

Thermodynamic and kinetic peculiarities of the water electrolysis in a reactor with aluminum electrodes are...

R. R. Salem

2009-11-01T23:59:59.000Z

76

Electrolysis of Water and Recombination of Oxygen and Hydrogen Lecture-Demonstration Equipment  

Science Journals Connector (OSTI)

Electrolysis of water takes place in an ordinary Hoffman type apparatus. Hydrogen and oxygen are collected in an explosion chamber where the mixture is detonated using a high-voltage spark coil. The whole equipment operates under the water contained in a large tank.

V. Acosta; D. L. Nordling; K. V. Freed; C. L. Cowan

1967-01-01T23:59:59.000Z

77

DOE Hydrogen Analysis Repository: Water Use for Power Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Use for Power Production Water Use for Power Production Project Summary Full Title: Consumptive Water Use for U.S. Power Production Project ID: 205 Principal Investigator: Paul Torcellini Keywords: Water, energy use, electricity generation Purpose Estimate the water consumption at power plants to provide a metric for determining water efficiency in building cooling systems. Performer Principal Investigator: Paul Torcellini Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-384-7528 Email: paul_torcellini@nrel.gov Additional Performers: R. Judkoff, National Renewable Energy Laboratory; N. Long, National Renewable Energy Laboratory Period of Performance End: December 2003 Project Description Type of Project: Analysis

78

High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water  

SciTech Connect (OSTI)

The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

2011-09-29T23:59:59.000Z

79

DOE Hydrogen Analysis Repository: Water Implications of Biofuels Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Implications of Biofuels Production Water Implications of Biofuels Production Project Summary Full Title: Water Implications of Biofuels Production in the United States Project ID: 227 Principal Investigator: William S. Logan Brief Description: The National Research Council conducted a workshop and wrote a report examining the potential effects of biofuels production in the U.S. on water and related land resources. Purpose Examine the possible effects of biofuel development on water and related land resources. The central questions are how water use and water quality are expected to change as the U.S. agricultural portfolio shifts to include more energy crops and as overall agricultural production potentially increases. Such questions are considered within the context of U.S. policy and also the expected advances in technology and agricultural practices

80

Experimental Study of Solar Hydrogen Production Performance by Water Electrolysis in the South of Algeria  

Science Journals Connector (OSTI)

Current environment problems require the uses of clean process and durable sources in industrial activities. Hydrogen, produced by water electrolysis, represents high clean energy source. In this process, a high electrical energy rate is needed which led to costly product. In order to remedy this issue, the uses of renewable energies are required. In this work, an experimental study of solar hydrogen production system by alkaline water electrolysis in Ouargla (Algeria) city is presented. The alkaline water electrolysis, with different NaOH concentrations, is feed by photovoltaic panels. The system is tested at different input conditions of voltages and currents. Effects of temperature and NaOH electrolyte concentration on hydrogen production are examined

N. Chennouf; N. Settou; B. Negrou; K. Bouziane; B. Dokkar

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light  

E-Print Network [OSTI]

and for the conversion of carbon dioxides into methanol and hydrocarbons. Metal chalcogenides1­9 are promisingCdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible driven pathway to hydrogen. Hydrogen is not only an environmentally benign fuel for the generation

Osterloh, Frank

82

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkolnikov; S. N. Klyamkin; M. S. Vlaskin

2010-12-01T23:59:59.000Z

83

Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.  

Broader source: Energy.gov [DOE]

Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

84

Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis  

Science Journals Connector (OSTI)

The General Electric Company -water electrolysis technology, which is based on a solid ... The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are....

L. J. Nuttall; A. P. Fickett; W. A. Titterington

1975-01-01T23:59:59.000Z

85

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial  

E-Print Network [OSTI]

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis, containing exoelectrogenic bacteria, and a cathode, forming a microbial reverse-electrodialysis electrolysis overpotential, while the reverse electrodialysis stack contributed 0.5­0.6 V at a salinity ratio (seawater

86

Hydrogen Evolution at Activated Nisx-Cathodes in Water Electrolysis  

Science Journals Connector (OSTI)

NiSx-coated nickel cathodes are used for commercial water electrolysis in concentrated KOH solutions. Such electrodes have ... to 5 mol% during 16 days of electrolysis and to about 0.7 mol% after...1.001.03. The...

B. Brresen; A. Bjrgum; G. Hagen; R. Tunold

1998-01-01T23:59:59.000Z

87

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury, Junrong Zheng, and M. D. Fayer*  

E-Print Network [OSTI]

Watching Hydrogen Bonds Break: A Transient Absorption Study of Water Tobias Steinel, John B. Asbury of picoseconds, observe hydrogen bond breaking and monitor the equilibration of the hydrogen bond network in water. In addition, the vibrational lifetime, the time constant for hydrogen bond breaking, and the rate

Fayer, Michael D.

88

Solar photocatalytic hydrogen production from water using a dual bed photosystem. Task 2 report; Annual report  

SciTech Connect (OSTI)

This work is an investigation into the use of photocatalytic particles in a dual bed configuration, so as to effect the solar-driven decomposition of water to its constituent elements, particularly hydrogen. The system envisioned would consist of two modules, each consisting of a shallow, flat, sealed container, in which micron-sized photocatalytic particles are immobilized. An aqueous solution containing a redox mediator is pumped between the two chambers. Different photoparticles and catalysts are chosen for their respective modules so as to effect oxidative water-splitting in one vessel to evolve oxygen gas, and reductive water-splitting in the other to evolve hydrogen. This is a direct photoconversion scheme that breaks down the energetic requirement for water decomposition into a 2-photon process, and enables separate production of hydrogen and oxygen. Titanium dioxide, TiO{sub 2}, and indium phosphide, InP, were employed as photoparticles in the O{sub 2}- and H{sub 2}-evolving beds, respectively. Platinum catalysts were evaluated to prompt H{sub 2}-evolution. Calculations on the energy band structure of free and immobilized particles provided guidance as to how the microstructure of the particles should be configured. A series of redox mediators, spanning a range of redox potentials, were tested. While many electron donors facilitated H{sub 2}-evolution, only the most oxidizing ones enabled O{sub 2}-evolution. A single redox couple, capable of charge exchange in both modules, is desirable to avoid system design complexity.

Linkous, C.A.; McKaige, G.T.; Slattery, D.K.; Ouellette, A.J.A.; Austin, B.C.N.

1995-12-01T23:59:59.000Z

89

Effect of water vapor/hydrogen environments on niobium, B-66 niobium alloy, tantalum, and Ta-10W alloy  

SciTech Connect (OSTI)

In this paper, the results of an experimental investigation of the effect of water vapor/hydrogen environments on the mechanical properties of niobium, B-66 niobium alloy, tantalum, and Ta-10W alloy are presented. Tensile tests were conducted on specimens of these materials in water vapor/hydrogen mixture ratios of 1 and 3. The water vapor/hydrogen environment caused strength reductions on tantalum and Ta-10W and ductility reductions on all four materials. The degree and causes of embrittlement were a complex function of temperature.

Walter, R.J.; Bentle, G.G.; Chandler, W.T. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.)

1991-04-01T23:59:59.000Z

90

Summary of water-level measurements around the 1325-N crib during the fall of 1985 and the winter of 1986-1987  

SciTech Connect (OSTI)

This report provides a summary of the water-level data collected from the ground water under the Hanford Site and from the Columbia River during the fall of 1985 and the winter of 1986-1987 by the Pacific Northwest Laboratory for UNC Nuclear Industries, Inc., and more recently under the direction of Westinghouse Hanford Company. During this study, water levels were measured in 28 wells around the 1325-N crib and connecting trench to monitor the rise and fall of ground-water levels resulting from operation of this facility. Analysis of the water-level data demonstrated that the water being added to the 1325-N crib has a direct effect on the ground-water movement at the 100-N Area. When the crib is in operation, a mound of water forms below the crib, and when the crib is shut down, the mound flattens out and dissipates outward in all directions.

Jensen, E.J.

1987-11-01T23:59:59.000Z

91

To build a photoelectrochemical (PEC) system that produces hydrogen fuel directly from water using sunlight as the energy source.  

E-Print Network [OSTI]

1 SS H2 O2 metaloxide GoalGoal To build a photoelectrochemical (PEC) system that produces hydrogen fuel directly from water using sunlight as the energy source. Approach: development of a multi provides voltage assist using lower-energy photons catalyst surface optimized for hydrogen evolution UH

92

Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.  

SciTech Connect (OSTI)

Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

2009-07-01T23:59:59.000Z

93

Hydrogen bond rearrangements and the motion of charge defects in water viewed using multidimensional ultrafast infrared spectroscopy  

E-Print Network [OSTI]

Compared with other molecular liquids, water is highly structured due to its ability to form up to four hydrogen bonds to its nearest neighbors, resulting in a tetrahedral network of molecules. However, this network is ...

Roberts, Sean T. (Sean Thomas)

2010-01-01T23:59:59.000Z

94

Hydrogen isotopic fractionation factor between brucite and water in the temperature range from 100 to 510 C  

Science Journals Connector (OSTI)

The hydrogen isotopic fractionation factor between brucite and water has been determined in the temperature range of 100510 C. Brucite is always depleted in deuterium relative to...3In?=8.72106 ...

Hiroshi Satake; Sadao Matsuo

95

Effect of hydrogen bridge geometry on the vibrational spectra of water: Three-parameter potential of H bond  

Science Journals Connector (OSTI)

The ability of water molecules to form a three-dimensional network of hydrogen bonds basically determines both the intrinsic structure and unique properties of this liquid and also a character of interactions wit...

Yu. Ya. Efimov

2010-06-01T23:59:59.000Z

96

A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply  

Science Journals Connector (OSTI)

A novel method of hydrogen generation by water electrolysis using ultra-short-pulse power supply is ... pulse with the width of 300ns, electrolysis takes place with a mechanism dominated by ... from the conventi...

Naohiro Shimizu; Souzaburo Hotta; Takayuki Sekiya

2006-04-01T23:59:59.000Z

97

Hydrogen Production- Current Technology  

Broader source: Energy.gov [DOE]

The development of clean, sustainable, and cost-competitive hydrogen production processesis key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

98

Hydordesulfurization of dibenzothiophene using hydrogen generated in situ by the water-gas shift reaction in a trickle bed reactor  

E-Print Network [OSTI]

HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis BRUCE DAVID HOOK Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1984 Major Subject: Chemical Engineering HYDRODESULFURIZATION OF DIBENZOTHIOPHENE USING HYDROGEN GENERATED IN SITU BY THE WATER ? GAS SHIFT REACTION IN A TRICKLE BED REACTOR A Thesis by BRUCE...

Hook, Bruce David

2012-06-07T23:59:59.000Z

99

Metal-and hydrogen-bonding competition during water absorption on Pd(111) and Ru(0001)  

SciTech Connect (OSTI)

The initial stages of water adsorption on the Pd(111) and Ru(0001) surfaces have been investigated experimentally by Scanning Tunneling Microscopy in the temperature range between 40 K and 130 K, and theoretically with Density Functional Theory (DFT) total energy calculations and STM image simulations. Below 125 K water dissociation does not occur at any appreciable rate and only molecular films are formed. Film growth starts by the formation of flat hexamer clusters where the molecules bind to the metal substrate through the O-lone pair while making H-bonds with neighboring molecules. As coverage increases, larger networks of linked hexagons are formed with a honeycomb structure, which requires a fraction of the water molecules to have their molecular plane perpendicular to the metal surface with reduced water-metal interaction. Energy minimization favors the growth of networks with limited width. As additional water molecules adsorb on the surface they attach to the periphery of existing islands, where they interact only weakly with the metal substrate. These molecules hop along the periphery of the clusters at intermediate temperatures. At higher temperatures they bind to the metal to continue the honeycomb growth. The water-Ru interaction is significantly stronger than the water-Pd interaction, which is consistent with the greater degree of hydrogen-bonded network formation and reduced water-metal bonding observed on Pd relative to Ru.

Tatarkhanov, Mouslim; Ogletree, D. Frank; Rose, Franck; Mitsui, Toshiyuki; Fomin, Evgeny; Rose, Mark; Cerda, Jorge I.; Salmeron, Miquel

2009-09-03T23:59:59.000Z

100

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Integration of a Structural Water-Gas-Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 The InTegraTIon of a STrucTural WaTer- gaS-ShIfT caTalyST WITh a VanadIum alloy hydrogen TranSporT deVIce Description The purpose of this project is to produce a scalable device that simultaneously performs both water-gas-shift (WGS) and hydrogen separation from a coal-derived synthesis gas stream. The justification of such a system is the improved efficiency for the overall production of hydrogen. Removing hydrogen from the synthesis gas (syngas) stream allows the WGS reaction to convert more carbon monoxide (CO) to carbon dioxide (CO 2 ) and maximizes the total hydrogen produced. An additional benefit is the reduction in capital cost of plant construction due to the removal of one step in the process by integrating WGS with the membrane separation device.

102

Evolution of Water Reservoirs on Mars: Constraints from Hydrogen Isotopes in Martian Meteorites  

E-Print Network [OSTI]

Martian surface morphology implies that Mars was once warm enough to maintain persistent liquid water on its surface. While the high D/H ratios (~6 times the Earth's ocean water) of the current martian atmosphere suggest that significant water has been lost from the surface during martian history, the timing, processes, and the amount of the water loss have been poorly constrained. Recent technical developments of ion-microprobe analysis of martian meteorites have provided accurate estimation of hydrogen isotope compositions (D/H) of martian water reservoirs at the time when the meteorites formed. Based on the D/H data from the meteorites, this study demonstrates that the water loss during the pre-Noachian (>41-99 m global equivalent layers, GEL) was more significant than in the rest of martian history (>10-53 m GEL). Combining our results with geological and geomorphological evidence for ancient oceans, we propose that undetected subsurface water/ice (~100-1000 m GEL) should have existed, and it exceeds the ...

Kurokawa, Hiroyuki; Ushioda, Masashi; Matsuyama, Takeshi; Moriwaki, Ryota; Dohm, James M; Usui, Tomohiro

2014-01-01T23:59:59.000Z

103

Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal  

SciTech Connect (OSTI)

The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

Barton, Tom

2013-06-30T23:59:59.000Z

104

On falling spheres : the dynamics of water entry and descent along a flexible beam  

E-Print Network [OSTI]

This thesis has two parts. In Part I, we present the results of a combined experimental and theoretical investigation of the vertical impact of spheres on a water surface. Particular attention is given to characterizing ...

Aristoff, Jeffrey Michael

2009-01-01T23:59:59.000Z

105

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbons  

DOE Patents [OSTI]

Apparatus and method for simultaneous recovery of hydrogen from water and from hydrocarbon feed material. The feed material is caused to flow over a heated catalyst which fosters the water-gas shift reaction (H.sub.2 O+COH.sub.2 +CO.sub.2) and the methane steam reforming reaction (CH.sub.4 +H.sub.2 O3 H.sub.2 +CO). Both of these reactions proceed only to partial completion. However, by use of a Pd/Ag membrane which is exclusively permeable to hydrogen isotopes in the vicinity of the above reactions and by maintaining a vacuum on the permeate side of the membrane, product hydrogen isotopes are removed and the reactions are caused to proceed further toward completion. A two-stage palladium membrane reactor was tested with a feed composition of 28% CQ.sub.4, 35% Q.sub.2 O (where Q=H, D, or T), and 31% Ar in 31 hours of continuous operation during which 4.5 g of tritium were processed. Decontamination factors were found to increase with decreasing inlet rate. The first stage was observed to have a decontamination factor of approximately 200, while the second stage had a decontamination factor of 2.9.times.10.sup.6. The overall decontamination factor was 5.8.times.10.sup.8. When a Pt/.alpha.-Al.sub.2 O.sub.3 catalyst is employed, decoking could be performed without catalyst degradation. However, by adjusting the carbon to oxygen ratio of the feed material with the addition of oxygen, coking could be altogether avoided.

Willms, R. Scott (Los Alamos, NM); Birdsell, Stephen A. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

106

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

107

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

108

Efficient, sustainable production of molecular hydrogen -a promising alternative to batteries in terms of energy storage -is still an unsolved problem. Implementation of direct water splitting  

E-Print Network [OSTI]

in terms of energy storage - is still an unsolved problem. Implementation of direct water splitting usingEfficient, sustainable production of molecular hydrogen - a promising alternative to batteries

Ku?el, Petr

109

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis  

E-Print Network [OSTI]

X-ray Photoelectron Spectroscopy of GaP{1-x}N(x) Photocorroded as a Result of Hydrogen Production through Water Electrolysis

Mayer, Marie A

2006-01-01T23:59:59.000Z

110

Using of produced water associated with oil and gas production as a source of hydrogen: solar electrolysis cell application  

E-Print Network [OSTI]

Abstract In frame of the growing global concerns regarding to the high extent of environmental pollution and its serious consequences on the future of the planet. The seek out for a proper source of clean energy is considered to be a top priority. Where a substantial reduction in a present reliance on fossil fuels is achieved. This objective can not be factual without intensive efforts to find out the appropriate alternative, which are the sustainable and environmentally friendly energy alternatives. The use of hydrogen as an alternative fuel is gaining more and more acceptance as the environmental impact of hydrocarbons becomes more evident. The using of enormous amount of a polluted produced water associated oil and gas production activities to generate the hydrogen by solar hydrolysis cell, is considered to be a multi advantages alternative, where the volume of polluted and environmentally risky water been reduced and a significant volume of hydrogen been gained. This work is an attempt to design of a hydrogen generating station by water electrolysis whose energy resources are solar. The electricity supply is done by photovoltaic cells. The novelty of this work is the using of produced water to generate a clean energy (hydrogen), and in the same time reducing the threats caused by the disposal pits of the vast volume of the produced water at oilfields, which is the biggest challenge to the oil industry and the environment. In this work, the produced water has been electrolyzed by using solar energy. Standard chemical analyses methods have followed to determine the pollutants constitutes in this water. A pilot plant of

Maher A. R; Sadiq Al-baghdadi; Hashim R. Abdolhamid B; Omar A. Mkhatresh B

111

Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk  

E-Print Network [OSTI]

Planetary systems, ours included, are formed in disks of dust and gas around young stars. Disks are an integral part of the star and planet formation process, and knowledge of the distribution and temperature of inner disk material is crucial for understanding terrestrial planet formation, giant planet migration, and accretion onto the central star. While the inner regions of protoplanetary disks in nearby star forming regions subtend only a few nano-radians, near-IR interferometry has recently enabled the spatial resolution of these terrestrial zones. Most observations have probed only dust, which typically dominates the near-IR emission. Here I report spectrally dispersed near-IR interferometric observations that probe gas (which dominates the mass and dynamics of the inner disk), in addition to dust, within one astronomical unit of the young star MWC 480. I resolve gas, including water vapor and atomic hydrogen, interior to the edge of the dust disk; this contrasts with results of previous spectrally dispersed interferometry observations. Interactions of this accreting gas with migrating planets may lead to short-period exoplanets like those detected around main-sequence stars. The observed water vapor is likely produced by the sublimation of migrating icy bodies, and provides a potential reservoir of water for terrestrial planets.

J. A. Eisner

2007-06-08T23:59:59.000Z

112

Pt loaded carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas  

Science Journals Connector (OSTI)

We report development and characterization of platinum doped carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas. The carbon aerogel with uniformly dispersed platinum nanoparticles was prepared by adding platinum precursor during the sol-gel process. Thereafter colloidal PTFE was mixed with the platinum doped carbon aerogel powder and coated on Dixon rings to obtain hydrophobic catalyst with required mechanical strength. Detailed studies have been carried out to observe the effect of physical characteristics of the catalyst powder (surface area and pore size of aerogels Pt cluster size and its valence state etc) and the different coating parameters (PTFE to Pt-CA ratio and Pt loading on Dixon ring) on volume transfer rate (Ky.a) for H/D reaction. Ky.a values of ?0.8 m3 (STP).s?1. m?3 were obtained for Pt loading of 7% and Pt cluster size of 3 nm at atmospheric pressure.

P. K. Gupta

2013-01-01T23:59:59.000Z

113

Experimental investigation of the effects of water electrolysis parameters on the amount of hydrogen damage in Pb(Zr,Ti)O3  

Science Journals Connector (OSTI)

Water electrolysis technique has been used in this work...3 (PZT), and the effects of water electrolysis parameters on the amount of hydrogen damage ... investigations show that increasing the current density dur...

A. Shafiei; A. Alfantazi

2014-01-01T23:59:59.000Z

114

Ab initio Equation of State data for hydrogen, helium, and water and the internal structure of Jupiter  

E-Print Network [OSTI]

The equation of state of hydrogen, helium, and water effects interior structure models of giant planets significantly. We present a new equation of state data table, LM-REOS, generated by large scale quantum molecular dynamics simulations for hydrogen, helium, and water in the warm dense matter regime, i.e.for megabar pressures and temperatures of several thousand Kelvin, and by advanced chemical methods in the complementary regions. The influence of LM-REOS on the structure of Jupiter is investigated and compared with state-of-the-art results within a standard three-layer model consistent with astrophysical observations of Jupiter. Our new Jupiter models predict an important impact of mixing effects of helium in hydrogen with respect to an altered compressibility and immiscibility.

N. Nettelmann; B. Holst; A. Kietzmann; M. French; R. Redmer; D. Blaschke

2007-12-06T23:59:59.000Z

115

Stable isotopes of hydrogen and oxygen in surface water and ground water at selected sites on or near the Idaho National Engineering Laboratory, Idaho  

SciTech Connect (OSTI)

Relative stable isotopic ratios for hydrogen and oxygen compared to standard mean ocean water are presented for water from 4 surface-water sites and 38 ground-water sites on or near the Idaho National Engineering Laboratory (INEL). The surface-water samples were collected monthly from March 1991 through April 1992 and after a storm event on June 18, 1992. The ground-water samples either were collected during 1991 or 1992. These data were collected as part of the US Geological Survey`s continuing hydrogeological investigations at the INEL. The relative isotopic ratios of hydrogen and oxygen are reported as delta {sup 2}H ({delta}{sup 2}H) and as delta {sup 18}O ({delta}{sup 18}O), respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the four surface-water sites ranged from -143.0 to -122 and from -18.75 to -15.55, respectively. The values of {delta}{sup 2}H and {delta}{sup 18}O in water from the 38 ground-water sites ranged from -141.0 to -120.0 and from -18.55 to -14.95, respectively.

Ott, D.S.; Cecil, L.D.; Knobel, L.L.

1994-11-01T23:59:59.000Z

116

Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof  

DOE Patents [OSTI]

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

2010-09-21T23:59:59.000Z

117

Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allow reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.

Lewis, Nathan S. [California Institute of Technology] [California Institute of Technology

2014-03-26T23:59:59.000Z

118

Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting  

Science Journals Connector (OSTI)

...electacta.2007.11.027 37 Gahleitner G. , Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications . Int. J. Hydrogen Energy 38 , 2039 2061 ( 2013 ). 10.1016/j.ijhydene...

Benjamin Rausch; Mark D. Symes; Greig Chisholm; Leroy Cronin

2014-09-12T23:59:59.000Z

119

Oxygen tolerance of an in silico-designed bioinspired hydrogen-evolving catalyst in water  

Science Journals Connector (OSTI)

...32 Zipoli F Car R Cohen MH...A ( 2009 ) Hydrogen production...reduction at a fuel-cell cathode . J Phys...current for hydrogen evolution...Reduction at a Fuel-Cell cathode...Current for Hydrogen Evolution...Zipoli, F., Car, R., Cohen...

Patrick H.-L. Sit; Roberto Car; Morrel H. Cohen; Annabella Selloni

2013-01-01T23:59:59.000Z

120

Effect of Water Transport on the Production of Hydrogen and Sulfuric Acid in a PEM Electrolyzer  

E-Print Network [OSTI]

be developed that provides efficient production of clean hydrogen. The methods existing today for large-scale produc- tion of hydrogen typically involve hydrocarbon reforming of natural gas or coal gasification% , the overall efficiency is 40%.7 Two issues remain, however, that make the future of this technology un

Weidner, John W.

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting  

Science Journals Connector (OSTI)

...system that uses a carbon cathode to reduce protons and a...SiW 12 O 40 ] at a carbon cathode. Alternatively, starting from the fully oxidized...Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction . J...electrocatalysis to stack development . Int. J. Hydrogen Energy...

Benjamin Rausch; Mark D. Symes; Greig Chisholm; Leroy Cronin

2014-09-12T23:59:59.000Z

122

Water molecules insert into N-HCl-M hydrogen bonds while M-ClX-C halogen bonds remain intact in dihydrates of halopyridinium hexachloroplatinates  

Science Journals Connector (OSTI)

Crystals of the dihydrates of three halopyridinium hexachloroplatinate salts form networks that are propagated via N-HO and O-HCl-Pt hydrogen bonds and Pt-ClX-C halogen bonds. The water molecules can be considered to have been inserted into N-HCl-Pt hydrogen bonds anticipated in the anyhdrous form of such salts.

Zordan, F.

2004-09-15T23:59:59.000Z

123

Characterization of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, synthesized in supercritical water  

E-Print Network [OSTI]

Characterization of a new magnesium hydrogen orthophosphate salt, Mg3.5H2(PO4)3, synthesized 2007 Available online 31 March 2007 Abstract Beige crystals of a new magnesium hydrogen orthophosphate water; IR and Raman spectra; Magnesium; Orthophosphate; Nanomaterial 1. Introduction Inorganic

Ryan, Dominic

124

Solar energy: Hydrogen and oxygen  

Science Journals Connector (OSTI)

Solar energy: Hydrogen and oxygen ... Demonstrating the electrolysis of water with solar energy. ...

John J. Farrell

1982-01-01T23:59:59.000Z

125

Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions  

E-Print Network [OSTI]

schematically in Fig. 1, a fuel cell supplies two reactant streams, consisting of a fuel (hydrogen, H2Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water. Trabolda, * a General Motors Fuel Cell Laboratory, 10 Carriage Street, Honeoye Falls, New York, USA b

Kandlikar, Satish

126

Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect (OSTI)

The corrosion behavior of an austenitic stainless steel (UNS S30400) has been characterized in a 10,000 hour test conducted in hydrogenated, ammoniated water at 260 C. The corrosion kinetics were observed to follow a parabolic rate dependency, the parabolic rate constant being determined by chemical descaling to be 1.16 mg dm{sup -2} hr{sup -1/2}. X-ray photoelectron spectroscopy, in combination with argon ion milling and target factor analysis, was applied to provide an independent estimate of the rate constant that agreed with the gravimetric result. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and elemental state, it was found that: (a) corrosion occurs in a non-selective manner, and (b) the corrosion film consists of two spinel oxide layers--a ferrite-based outer layer (Ni{sub 0.2}Fe{sub 0.8})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.2}Fe{sub 0.8})(Cr{sub 0.7}Fe{sub 0.3}){sub 2}O{sub 4}. These compositions agree closely with the solvi phases created by immiscibility in the Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} binary, implying that immiscibility plays an important role in the phase separation process.

S.E. Ziemniak; M. Hanson

2001-05-04T23:59:59.000Z

127

Water Molecules Hydrogen Bonding to Aromatic Acceptors of Amino Acids: the Structure of Tyr-Tyr-Phe Dihydrate and a Crystallographic Database Study on Peptides  

Science Journals Connector (OSTI)

In the crystal structure of Tyr-Tyr-Phe dihydrate, one of the water molecules forms a hydrogen bond with the Phe side chain. In a database study four related examples in peptides are found.

Steiner, T.

1998-01-01T23:59:59.000Z

128

The Behaviour of Electrolytes in Mixed Solvents. Part I. The Free Energies and Heat Contents of Hydrogen Chloride in Water-Ethyl Alcohol Solutions  

Science Journals Connector (OSTI)

1 November 1929 research-article The Behaviour of Electrolytes in Mixed Solvents. Part I. The Free Energies and Heat Contents of Hydrogen Chloride in Water-Ethyl Alcohol Solutions J. A. V. Butler C. M. Robertson The Royal Society...

1929-01-01T23:59:59.000Z

129

Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water  

SciTech Connect (OSTI)

Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

S.E. Ziemniak; M. Hanson

2001-03-20T23:59:59.000Z

130

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

131

On Methods for the Large-Scale Production of Hydrogen from Water  

Science Journals Connector (OSTI)

Off-peak power would give sufficiently cheap hydrogen with classical electrolyzers. Emerging technology could produce it at between $0.85 and $2.90 (106 Btu)-1 for electricity costs (bulk purchase) between 2 and ...

J. OM. Bockris

1975-01-01T23:59:59.000Z

132

Hybrid & Hydrogen Vehicle Research Laboratory  

E-Print Network [OSTI]

such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

Lee, Dongwon

133

NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen Dinh, focus on the following topics: Biological Water Splitting Fermentation Conversion of Biomass and Wastes Photoelectrochemical Water Splitting Solar Thermal Water Splitting Renewable Electrolysis Hydrogen Dispenser Hose Reliability Hydrogen Production and Delivery Pathway Analysis. Biological Water Splitting Certain photosynthetic microbes use light energy to produce hydrogen from

134

The role of hydrogen in methane formation from carbon and water over metal catalysts  

E-Print Network [OSTI]

in air at 300 C for 2 h and at 400 C for 2 h. Calcination was followed by reduction under hydrogen at 300oC for 2 h, then at 425oC for 2 h. Before the catalyst was used, it was crushed using a mortar and pestle, and sieved to between 10 and 20 mesh... OR Figure 1. Diagram of On-line Gas Chromatograph 11 Rt the termination of an analysis, both hydrogen and carbon containing products of each reaction were compared to assure reproducibility. The detector unit for the on-line gas chromatograph...

Moore, Stanley Edwin

2012-06-07T23:59:59.000Z

135

Formation of Hydrogen Peroxide in Water Irradiated with X- and Alpha-Rays  

Science Journals Connector (OSTI)

... of very different ionic density, namely, 09 A. X-rays and polonium or radon?-rays. Methods. The irradiation with X-rays and the titration of hydrogen peroxide ... x-rays. The ionic yield, in the case of X-rays, suggests that the radon (3-rays probably account for less than 5 per cent of the total effect ...

P. BONET-MAURY; M. LEFORT

1948-09-04T23:59:59.000Z

136

Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. For the first time stability of such oxides were tested for 100 redox cycles. Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

Datta, Pradyot, E-mail: pradyot.datta@gmail.com

2013-10-15T23:59:59.000Z

137

Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy  

SciTech Connect (OSTI)

We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

2009-04-24T23:59:59.000Z

138

Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report  

SciTech Connect (OSTI)

The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

NONE

1997-12-01T23:59:59.000Z

139

C:\\Users\\zita\\Documents\\FireWater\\2013fall\\workshops\\FWResQH.doc 1 Research Questions, Fire & Water wk. 1 (Thus. am, 4 Oct. 2013)  

E-Print Network [OSTI]

question, such as "Is there enough water flow anywhere on campus to support a micro-hydro energy system

Zita, E.J.

140

Coproduction of sulphuric acid and hydrogen by sulphur-assisted water electrolysis process  

Science Journals Connector (OSTI)

The addition of sulphur powder to the anode compartment of the sulphuric acid-water electrolysis cell resulted in the suppression of oxygen... 4 2? ...) by the ...

Y. S. Shih; M. J. Jong

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ion Hydration and Associated Defects in Hydrogen Bond Network of Water: Observation of Reorientationally Slow Water Molecules Beyond First Hydration Shell in Aqueous Solutions of MgCl$_2$  

E-Print Network [OSTI]

Effects of presence of ions, at moderate to high concentrations, on dynamical properties of water molecules are investigated through classical molecular dynamics simulations using two well known non-polarizable water models. Simulations reveal that the presence of magnesium chloride (MgCl$_2$) induces perturbations in the hydrogen bond network of water leading to the formation of bulk-like domains with \\textquoteleft defect sites\\textquoteright~on boundaries of such domains: water molecules at such defect sites have less number of hydrogen bonds than those in bulk water. Reorientational autocorrelation functions for dipole vectors of such defect water molecules are computed at different concentrations of ions and compared with system of pure water. Earlier experimental and simulation studies indicate significant differences in reorientational dynamics for water molecules in the first hydration shell of many dissolved ions. Results of this study suggest that defect water molecules, which are beyond the first hydration shells of ions, also experience significant slowing down of reorientation times as a function of concentration in the case of MgCl$_2$. However, addition of cesium chloride(CsCl) to water does not perturb the hydrogen bond network of water significantly even at higher concentrations. This difference in behavior between MgCl$_2$ and CsCl is consistent with the well-known Hofmeister series.

Upayan Baul; Satyavani Vemparala

2014-12-18T23:59:59.000Z

142

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

143

Influence of physisorbed water on the conductivity of hydrogen terminated silicon-on-insulator surfaces  

E-Print Network [OSTI]

the water layer is displaced by inert gas purging, heating, or pumping. The observed conductivity changes active defects as the surface oxidizes. Surprisingly, physisorbed water via adsorption from ambient.1063/1.2822417 On semiconductor surfaces adsorption or reaction events which result in charge redistribution give rise to changes

144

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

145

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

146

Proceedings of the workshop on the impact of hydrogen on water reactor safety. Volume II of IV  

SciTech Connect (OSTI)

Separate abstracts were prepared for the papers presented in the subject area: hydrogen sources and detection.

Berman, M. (ed.)

1981-01-26T23:59:59.000Z

147

Soluble Hydrogen-bonding Interpolymer Complexes in Water: A Small-Angle Neutron Scattering Study  

E-Print Network [OSTI]

The hydrogen-bonding interpolymer complexation between poly(acrylic acid) (PAA) and the poly(N,N-dimethylacrylamide) (PDMAM) side chains of the negatively charged graft copolymer poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N, N dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM), containing 48 wt % of PDMAM, and shortly designated as G48, has been studied by small-angle neutron scattering in aqueous solution. Complexation occurs at low pH (pH < 3.75), resulting in the formation of negatively charged colloidal particles, consisting of PAA/PDMAM hydrogen-bonding interpolymer complexes, whose radius is estimated to be around 165 A. As these particles involve more than five graft copolymer chains, they act as stickers between the anionic chains of the graft copolymer backbone. This can explain the characteristic thickening observed in past rheological measurements with these mixtures in the semidilute solution, with decreasing pH. We have also examined the influence of pH and PAA molecular weight on the formation of these nanoparticles.

Maria Sotiropoulou; Julian Oberdisse; Georgios Staikos

2006-04-03T23:59:59.000Z

148

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Water Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

149

Hydrogen Economy: The Role of Nano-scaled Support Material for Electrocatalysts Aimed for Water Electrolysis  

Science Journals Connector (OSTI)

The role and importance of support materials for electrocatalysts aimed for water electrolysis is given. Besides their superior support characteristics...2, (iii) multiwalled carbon nanotubes (MWCNTs) and (iv) Ma...

Perica Paunovi?; Orce Popovski

2011-01-01T23:59:59.000Z

150

The Sky is Falling  

E-Print Network [OSTI]

. The ice crystals quickly transform into a raindrop heavy enough to fall to the ground. Texas has a rather extensive weather modifica- tion program. ? The first statewide program, the Colorado River Municipal Water District, is one of the oldest... weather modification programs in the world. Established in 1971 to generate runoff into Lake Thomas and E.V. Spence Reservoir on the Colorado River, this program covers 2.6 million acres between Lubbock and Midland. ? The West Texas Weather...

Crawford, Amanda

2005-01-01T23:59:59.000Z

151

The Potential Cardioprotective Effects of Hydrogen in Irradiated Mice  

Science Journals Connector (OSTI)

......we investigated whether hydrogen-rich water exerted cardiopro...We demonstrated here that hydrogen treatment has a cardioprotective effect. MATERIALS AND METHODS Hydrogen-rich water production Hydrogen was dissolved in......

Liren Qian; Fei Cao; Jianguo Cui; Yicun Wang; Yuecheng Huang; Yunhai Chuai; Luqian Zaho; Hao Jiang; Jianming Cai

2010-11-01T23:59:59.000Z

152

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network [OSTI]

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 17 Credits 15 Credits 15 Credits (3) ENGIN 351 (3) ChE 120

Massachusetts at Amherst, University of

153

Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water  

E-Print Network [OSTI]

the use of strong acids and bases, thus reducing their environmental impact and increasing Generation from Water Yujie Sun,,,, Chong Liu,, David C. Grauer,, Junko Yano, Jeffrey R. Long,*,, Peidong, and long-term aqueous stability, offer promising features for potential use in solar energy applications

154

Oxygen- and Hydrogen-Isotopic Ratios of Water in Precipitation: Beyond Paleothermometry  

Science Journals Connector (OSTI)

...of water can be used to test Earth-system models focused on the hydrologic cycle...of the hydrologic cycles of Earth-system models that include appropriate isotopic...testing hydrologic cycles in Earth system models; this direction will be most...

Richard B. Alley; Kurt M. Cuffey

155

Color of fall leaves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Color of fall leaves Color of fall leaves Name: macmillan Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do leaves change color in the fall? Is the cold a contributing factor? What determines the ultimate color of a leaf? Is the change due to an absence of chlorophyll or the presence of something else? Replies: This will be a partial answer. The colors are due to chemicals called carotenes, the same chemicals that give rise to color of carrots. There are several and they have different colors. They are present in the leaves all of the time. We see them in the fall because the chlorophyll production in the leaves stops. I think it is due to the cooling, not directly the presence of freezing temperatures, it seems to depend on the plant. It would be a good experiment to see what events contribute to the changes. Clearly the amount of water in the plant contributes to the quality of the color.

156

ACCESS Magazine Fall 2005  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inof delivered hydrogen by various methods ? Production ?realize hydrogens bene- fits fully, production methods that

Cervero, Robert; Koppelman, Frank S.; Lipman, Timothy; Ogden, Joan; Varaiya, Pravin

2005-01-01T23:59:59.000Z

157

Adsorption of Water Dimer on Platinum(111): Identification of the ?OHPt Hydrogen Bond  

Science Journals Connector (OSTI)

Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan ... ? Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavk, Iceland ... In the decade and a half, the increased capability of surface scientists to probe at the mol.-level has resulted in more detailed information of the properties of water on progressively more complicated materials and under more stringent conditions. ...

Kenta Motobayashi; Lney rnadttir; Chikako Matsumoto; Eric M. Stuve; Hannes Jnsson; Yousoo Kim; Maki Kawai

2014-10-22T23:59:59.000Z

158

Neutron structure of human carbonic anhydrase II: A hydrogen bonded water network switch is observed between pH 7.8 and 10.0.  

SciTech Connect (OSTI)

The neutron structure of wild type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 resolution. Detailed analysis and comparison to the previous determined structure at pH 10.0 shows important differences in protonation of key catalytic residues in the active site as well as a rearrangement of the hydrogen bonded water network. For the first time, a completed hydrogen bonded network stretching from the Zn-bound solvent to the proton shuttling residue His64 has been directed observed.

Fisher, Zoe [Los Alamos National Laboratory (LANL); Langan, Paul [ORNL; Mustyakimov, Marat [Los Alamos National Laboratory (LANL); Kovalevsky, Andrey [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

159

Process and apparatus for coal hydrogenation  

DOE Patents [OSTI]

In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

Ruether, John A. (McMurray, PA)

1988-01-01T23:59:59.000Z

160

Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem  

SciTech Connect (OSTI)

A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

Florida Solar Energy Center

2003-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

162

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrates beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60C, 80C, and 95C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80C and ~95C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

163

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

164

Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production  

Science Journals Connector (OSTI)

Abstract A W-typed dye-sensitized serial solar module (W-typed DSSM) was designed for hydrogen production from water electrolysis. The optimal thickness and width of the TiO2 electrode film were 12?m and 5mm, and the optimal thickness of Pt counter electrode film was 4nm, respectively. The photocurrent density, open circuit voltage, and fill factor were 2.13mAcm?2, 3.51V, and 0.61, respectively, for a serial module assembled from five unit cells, which resulted in an overall conversion efficiency of 4.56%. The obtained voltage increased with increasing number of unit cells connected, and was 3.51V in the five column fabricated W-typed DSSM. 2.1mLh?1 of hydrogen gas was emitted when a W-typed DSSM assembled from five columns was connected to carbon electrodes in a water electrolysis system. The rate of hydrogen evolution in the five columned W-typed DSSM was 0.00213Lh?1. Therefore, the actual light-hydrogen conversion was calculated to be 2.02%.

Byeong Sub Kwak; Jinho Chae; Misook Kang

2014-01-01T23:59:59.000Z

165

Energetics of Hydrogen Bond Network Rearrangements in Liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print Wednesday, 25 May 2005 00:00 The unique...

166

Hydrogen Storage DOI: 10.1002/anie.200700303  

E-Print Network [OSTI]

Hydrogen Storage DOI: 10.1002/anie.200700303 Improved Designs of Metal­Organic Frameworks for Hydrogen Storage** Sang Soo Han, Wei-Qiao Deng, and William A. Goddard, III* Hydrogen fuel is considered% reversible hydrogen storage by 2010, but current mate- rials fall far short of this goal. Consequently, many

Goddard III, William A.

167

Optimized Hydrogen and Electricity Generation from Wind  

Broader source: Energy.gov [DOE]

Several optimizations can be employed to create hydrogen and electricity from a wind energy source. The key element in hydrogen production from an electrical source is an electrolyzer to convert water and electricity into hydrogen and oxygen.

168

FALL SPRING FALL SPRING FALL SPRING FALL SPRING FALL Year 1 Year 2 Year 3 Year 4 Year 5  

E-Print Network [OSTI]

FALL SPRING FALL SPRING FALL SPRING FALL SPRING FALL Year 1 Year 2 Year 3 Year 4 Year 5 CORE W to meet BioE Engineering Elective Reqt. (c) ­ course used to meet ChE Techical Elective Reqt Revised 11

Lawrence, Rick L.

169

5-Year Planning Document for CEE Course Offerings Course Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network [OSTI]

5-Year Planning Document for CEE Course Offerings Course Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring CEE 001 Cooperative Education Program Archambault Archambault Archambault Archambault CEE 251 Engineering Spatial Measurements CEE 290 Construction Systems Hanna Farhan Hanna Farhan CEE

Wisconsin at Madison, University of

170

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

171

e University of Min nthony Falls La  

E-Print Network [OSTI]

. The turbine was placed in a water flume at the St. Anthony Falls Laboratory at the University of Minnesota under subcritical conditions. A circular cylinder was placed upstream of the turbine to induce

Minnesota, University of

172

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer water

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

173

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network [OSTI]

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 15 Credits 18 Credits 15 Credits 16 Credits 17 Credits 15 Credits 15 Credits (3) ENGIN 351 (3) ChE 120 (3credits) ENGLWP 112 (3) ENGIN 110 (4) MATH 131 (4) Social World Elective (3) MATH 331 (3) CHEM 262

Massachusetts at Amherst, University of

174

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG in structural engineering should take both; one will count as 4 credits of BSCE elective course work. PH 211-213 are interchangeable with PH 221-223 Math / Science Requirements CALCULUS PHYSICS Engineering / Computer Science

Latiolais, M. Paul

175

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG 5/1/2013AL Department of Civil and Environmental Engineering Civil Engineering Program pdx.edu/cee Possible 4 Year Course Plan SOPHOMORE INQUIRY Engineering / Computer Science Requirements General Education

Bertini, Robert L.

176

FirstYear Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network [OSTI]

FirstYear Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 15 Credits 18 Credits 15 Credits 16 Credits 17 Credits 19 Credits 17 Credits (3) ENGIN 3514 (3) ChE 120 Fundamentals (1) ChE 291A

Mountziaris, T. J.

177

Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014 Spring 2015 Fall 2015 Spring 2016 Fall 2016 College of Applied Sciences  

E-Print Network [OSTI]

285 EDSE 285 College of Engineering Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014 Spring 2015 Fall 2015 Spring 2016 242 SCWK 242 SCWK 242 SCWK 242 SCWK 242 College of Business Spring 2012 Fall 2012 Spring 2013 Fall

Su, Xiao

178

Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Philip D. Weyman (Primary Contact), Isaac T. Yonemoto, Hamilton O. Smith J. Craig Venter Institute 10355 Science Center Dr. San Diego, CA 92121 Phone: (858) 200-1815 Email: pweyman@jcvi.org DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15027 National Laboratory Collaborators: * Karen Wawrousek, Scott Noble, Jianping Yu, and Pin-Ching Maness * National Renewable Energy Laboratory (NREL), Golden, CO Project Start Date: May 1, 2005 Project End Date: January 30, 2014

179

Effect of the hydrogen bridge geometry on the vibrational spectra of water: Two-parameter H-bonding potentials  

Science Journals Connector (OSTI)

A principle to design the multi-parameter potentials of hydrogen bonding is proposed and developed. Based on fluctuation theory, they provide the description of temperature evolution of the shape of OH vibrati...

Yu. Ya. Efimov

2009-08-01T23:59:59.000Z

180

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

Office of Legacy Management (LM)

Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site. LMSS10631. March 2014 Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings...

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

182

Hydrogen, Fuel Infrastructure  

E-Print Network [OSTI]

results of using hydrogen power, of course, will be energy independence for this nation... think about between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

183

EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Fall 2013) Thermodynamics is the study of processes (e.g., expansion of a gas, boiling of water, or diffusion  

E-Print Network [OSTI]

EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Fall 2013) Thermodynamics is the study in order to take place? We will study the thermodynamics of two types of processes: mechanical, or the chemical conversion of glucose into useful work), and a good understanding of thermodynamics is essential

Vajda, Sandor

184

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

185

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

186

Water Electrolysis  

Science Journals Connector (OSTI)

Production of ammonium sulfate fertilizer via synthetic ammonia was a national project in Japan just after World War II, and water electrolysis as the source of hydrogen was active....3 of hydrogen and 700 Nm3 of...

Fumio Hine

1985-01-01T23:59:59.000Z

187

Selection of clc, cba, andfcb Chlorobenzoate-Catabolic Genotypes from Groundwater and Surface Waters Adjacent to the Hyde Park, Niagara Falls, Chemical Landfill  

Science Journals Connector (OSTI)

...Elements Dioxygenases Fresh Water microbiology Hydrolases...Restriction Fragment Length Water Microbiology georef...enrichment geochemistry ground water Hyde Park New York industrial...North America pollution remediation sediments transport United...

Michelle C. Peel; R. Campbell Wyndham

1999-04-01T23:59:59.000Z

188

Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water  

SciTech Connect (OSTI)

High-resolution microscopy of a high-purity Ni-5Cr alloy exposed to 360C hydrogenated water reveals intergranular selective oxidation of Cr accompanied by local Cr depletion and diffusion-induced grain boundary migration (DIGM). The corrosion-product oxide consists of a porous, interconnected network of Cr2O3 platelets with no further O ingress into the metal ahead. Extensive grain boundary depletion of Cr (to <0.05at.%) is observed typically 20100 nm wide as a result of DIGM and reaching depths of many micrometers beyond the oxidation front.

Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

2014-10-15T23:59:59.000Z

189

Angular and energy dependence of cross sections for ejection of electrons from water vapor. III. 20150-keV neutral-hydrogen impact  

Science Journals Connector (OSTI)

Absolute values of cross sections for electron production in collisions of neutral hydrogen atoms of 20150 keV energy with water vapor molecules have been measured as a function of the ejection energy and angle. The range of angles was 10 to 160 and the electron energy range was 1300 eV. The doubly differential cross sections were integrated over angle and/or energy to obtain singly differential cross sections, total electron production cross sections, and average energies of ejection. The angular distribution of the electron loss peak was found to have some features in common with the cross section for elastic scattering of electrons.

M. A. Bolorizadeh and M. E. Rudd

1986-02-01T23:59:59.000Z

190

Water Electrolysis  

Science Journals Connector (OSTI)

In this chapter, water electrolysis technology and its applications for nuclear hydrogen ... of the chapter, a general classification of water electrolysis systems is given, the fundamentals of water electrolysis

Greg F. Naterer; Ibrahim Dincer

2013-01-01T23:59:59.000Z

191

Cost Analysis of Hydrogen Storage Systems  

Broader source: Energy.gov (indexed) [DOE]

In 2004, DOE has selected TIAX to evaluate the lifecycle cost and WTW energy use and GHG emissions of various hydrogen storage options. Water Electrolyzer Water Electrolyzer...

192

Hydrogen Isotope Fractionation in the System Brucite-Water at 3 GPa Dept of Geological Science,University of Michigan; * now at Dept of Geology & Geophysics,University of Minnesota.Email:anthony.c.withers-1@umn.edu  

E-Print Network [OSTI]

Hydrogen Isotope Fractionation in the System Brucite-Water at 3 GPa Dept of Geological Science apparatus, we have made measurements in the chemically simple brucite-water system, which has beenCl pressure medium Experiments quenched at >200 °C/s Starting material:fine grained brucite (D = -100

Chikamoto, Megumi

193

Hydrogens Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

194

Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation  

Science Journals Connector (OSTI)

...energy conversion with consumption of a pollutant, CO2...energy conversion with consumption of a pollutant, CO...energy conversion with consumption of a pollutant, CO2...energy by producing fuels (hydrogen, carbon...M) in the reaction vessel; the gas contained...

Jean-Marie Lehn; Raymond Ziessel

1982-01-01T23:59:59.000Z

195

Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells  

Science Journals Connector (OSTI)

...renewable source of energy, such as solar (5), wind, or waste organic...collection for MREC operation. The pump and effluent reservoirs...9] where {delta}H is the heat of combustion (J/mol...BE ( 2005 ) Electrochemically assisted microbial production of hydrogen...

Younggy Kim; Bruce E. Logan

2011-01-01T23:59:59.000Z

196

First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible lightw  

E-Print Network [OSTI]

­10 but can produce H2 from aqueous solutions containing sacrificial electrons donors, such as Na2S and Na2SO3% aqueous methanol, a known sacrificial electron donor,21 the hydrogen evolution rate was about three to four times higher, producing a total H2 amount of 18.4 mmol after 5 h. The increase in the H2 rate

Osterloh, Frank

197

Hydrogenation of carbonaceous materials  

DOE Patents [OSTI]

A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

1980-01-01T23:59:59.000Z

198

Kinetic Studies on the Hydrogen Peroxide-Enhanced In Situ Biodegradation of Hydrocarbons in Water-Saturated Ground Zone  

Science Journals Connector (OSTI)

Techniques are rapidly developing for aerobic biodegradation of hydrocarbons in lower water-bearing formations. It is well known that...

Dr. E. R. Barenschee; Dr. O. Helmling; S. Dahmer; B. Del Grosso

1990-01-01T23:59:59.000Z

199

Applicability of Henry's law to hydrogen, helium, and nitrogen solubilities in water and olive oil at 37 C and pressures up to 300 atmospheres  

Science Journals Connector (OSTI)

The solubilities of pure hydrogen, helium, and nitrogen in water and olive oil were measured at 37 C at gas-saturation pressures from 25 to 300 atmospheres. Rigorous thermodynamic criteria were used to assess the applicability of Henry's law to the pressure dependence of the gas solubility in each system. The solubilities of the three gases in water and helium in olive oil followed Henry's law as given by the Krichevsky-Kasarnovsky equation. In contrast, hydrogen and nitrogen in olive oil each attained concentrations high enough to cause significant concentration-dependent variations of the dissolved gas activity coefficient and/or partial molal volume. The consequent deviations from Henry's law were greatest in the nitrogen-oil system, where mole fraction nitrogen solubilities calculated from the Krichevsky-Kasarnovsky equation exceeded measured values by 8, 14, and 23% at 50, 100, and 250 atm, respectively. Incorporation of results into the critical volume model of nitrogen anesthesia, using olive oil as a model of the physiological anesthetic site and literature data for the anesthetic potency of nitrogen in mice breathing high-pressure He-N2-O2 atmospheres, shows that nonideal solution behavior may become important for gases dissolved in physiological hydrophobic regions at biologically active concentrations, even if dissolved gas binding to proteins or other macromolecules is not involved.

Wayne A. Gerth

1985-01-01T23:59:59.000Z

200

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E  

E-Print Network [OSTI]

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E I ELECTIVE E - APPROVED MATH ELECTIVE SOPHOMORE INQUIRY LANG AND COMP DESIGN CS UD ELEC Engineering

Bertini, Robert L.

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Quantifying Temperature Effects on Fall Chinook Salmon  

SciTech Connect (OSTI)

The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

Jager, Yetta [ORNL

2011-11-01T23:59:59.000Z

202

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

203

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

204

River Falls Municipal Utilities - Renewable Energy Finance Program |  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program River Falls Municipal Utilities - Renewable Energy Finance Program < Back Eligibility Residential Savings Category Other Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Wisconsin Program Type PACE Financing Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU) offers loans of $2,500 - $50,000 to its residential customers for the installation of photovoltaic (PV), solar thermal, geothermal, wind electric systems. The program will also support the installation of energy efficiency measures in connection with a qualifying renewable energy project, provided that the renewable energy

205

Idaho Falls Power - Commercial Energy Conservation Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate General: $50,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount General: up to $50,000 Provider Idaho Falls Power Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy

206

Development and Parametric Testing of Alkaline Water Electrolysis Cells for Hydrogen Production Based on Inorganic-Membrane-Electrolyte Technology  

Science Journals Connector (OSTI)

A research programme aiming at the development of a new advanced concept in alkaline water electrolysis has been demonstrated at S.C.K....

H. Vandenborre; L. H. Baetsle; W. Hebel; R. Leysen

1980-01-01T23:59:59.000Z

207

Effects Of a Transition to a Hydrogen Economy on Employment in...  

Energy Savers [EERE]

long-term feedstock for hydrogen production, little effect on gas imports is projected. Oil imports, on the other hand, will fall as gasoline is replaced with hydrogen. By 2050,...

208

Hydrogen Storage Workshop Argonne National Laboratory  

E-Print Network [OSTI]

hydrogen, fuel cells, and distribution..." #12;1. Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Energy & Water Appropriations #12;FY 2002 Budget = $47.425M Transportation Fuel Cell Stack Subsystem Rossmeissl Hydrogen, Fuel Cells & Infrastructure Technologies Program Energy Efficiency and Renewable Energy

209

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network [OSTI]

alternatives and assess economics and life cycle analysis of borohydride/water to hydrogen · Millennium CellChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

210

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

211

Relationship of Hydrogen Bioavailability to Chromate Reduction in Aquifer Sediments  

Science Journals Connector (OSTI)

...Media Ecosystem Fresh Water microbiology Geologic...Oxidation-Reduction Water Supply georef;2010007932...studies geochemistry ground water hydrogen laboratory studies...Oklahoma pollution reduction remediation sediments United States...

Tamara L. Marsh; Michael J. McInerney

2001-04-01T23:59:59.000Z

212

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

213

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (Livermore, CA); Whinnery, LeRoy L. (Livermore, CA)

1998-11-17T23:59:59.000Z

214

NREL: Learning - Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

215

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH  

E-Print Network [OSTI]

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH Ojwang' J.G.O.*, Rutger van is the fall in potential energy surface during heating. Keywords: hydrogen storage, reactive force field governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge

Goddard III, William A.

216

Experimental and theoretical study of pressure effects on hydrogen isotope fractionation in the system brucite-water at elevated temperatures  

Science Journals Connector (OSTI)

A detailed, systematic experimental and theoretical study was conducted to investigate the effect of pressure on equilibrium D/H fractionation between brucite (Mg(OH)2) and water at temperatures from 200 to 600C and pressures up to 800 MPa. A fine-grained brucite was isotopically exchanged with excess amounts of water, and equilibrium D/H fractionation factors were calculated by means of the partial isotope exchange method. Our experiments unambiguously demonstrated that the D/H fractionation factor between brucite and water increased by 4.4 to 12.4 with increasing pressure to 300 or 800 \\{MPa\\} at all the temperatures investigated. The observed increases are linear with the density of water under experimental conditions. We calculated the pressure effects on the reduced partition function ratios (?-factor) of brucite (300800 K and P ? 800 MPa) and water (400600C and P ? 100 MPa), employing a statistical-mechanical method similar to that developed by Kieffer (1982) and a simple thermodynamic method based on the molar volumes of normal and heavy waters, respectively. Our theoretical calculations showed that the reduced partition function ratio of brucite increases linearly with pressure at a given temperature (as much as 12.6 at 300 K and 800 MPa). The magnitude of the pressure effects rapidly decreases with increasing temperature. On the other hand, the ?-factor of water decreases 4 to 5 with increasing pressure to 100 \\{MPa\\} at 400 to 600C. Overall D/H isotope pressure effects combined from the separate calculations on brucite and water are in excellent agreement with the experimental results under the same temperature-pressure range. Our calculations also suggest that under the current experimental conditions, the magnitude of the isotope pressure effects is much larger on water than brucite. Thus, the observed pressure effects on D/H fractionation are common to other systems involving water. It is very likely that under some geologic conditions, pressure is an important variable in controlling D/H partitioning.

Juske Horita; David R. Cole; Veniamin B. Polyakov; Thomas Driesner

2002-01-01T23:59:59.000Z

217

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network [OSTI]

11]. One method for hydrogen production is a water-splittingof various methods of hydrogen production, the Department ofOne method of reducing the cost of hydrogen production is to

Luc, Wesley Wai

218

DOE - Office of Legacy Management -- Falls  

Office of Legacy Management (LM)

Texas Texas Falls City, Texas, Disposal Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site Data Validation Package-April 2013 Groundwater Sampling Ground Water Compliance Action Plan Long-Term Surveillance Plan for the U.S. Department of Energy Falls City Uranium Mill Tailings Disposal Site Falls City, Texas Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon

219

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

220

Idaho Falls Attractions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrolysis of Sea Water  

Science Journals Connector (OSTI)

In implementation of the hydrogen economy, the electrolysis of sea water as the source of hydrogen has been ... . Two options exist for performance of this electrolysis. The first option is to subject the water t...

L. O. Williams

1975-01-01T23:59:59.000Z

222

Process analysis and economics of biophotolysis of water. IEA technical report from the IEA Agreement on the Production and Utilization of Hydrogen  

SciTech Connect (OSTI)

This report is a preliminary cost analysis of the biophotolysis of water and was prepared as part of the work of Annex 10 of the IEA Hydrogen agreement. Biophotolysis is the conversion of water and solar energy to hydrogen and oxygen using microalgae. In laboratory experiments at low light intensities, algal photosynthesis and some biophotolysis reactions exhibit highlight conversion efficiencies that could be extrapolated to about 10% solar efficiencies if photosynthesis were to saturate at full sunlight intensities. The most promising approach to achieving the critical goal of high conversion efficiencies at full sunlight intensities, one that appears within the capabilities of modern biotechnology, is to genetically control the pigment content of algal cells such that the photosynthetic apparatus does not capture more photons than it can utilize. A two-stage indirect biophotolysis system was conceptualized and general design parameters extrapolated. The process comprises open ponds for the CO{sub 2}fixation stage, an algal concentration step, a dark adaptation and fermentation stage, and a closed tubular photobioreactor in which hydrogen production would take place. A preliminary cost analysis for a 200 hectare (ha) system, including 140 ha of open algal ponds and 14 ha of photobioreactors was carried out. The cost analysis was based on prior studies for algal mass cultures for fuels production and a conceptual analysis of a hypothetical photochemical processes, as well as the assumption that the photobioreactors would cost about $100/m(sup 2). Assuming a very favorable location, with 21 megajoules (MJ)/m{sup 2} total insolation, and a solar conversion efficiency of 10% based on CO{sub 2} fixation in the large algal ponds, an overall cost of $10/gigajoule (GJ) is projected. Of this, almost half is due to the photobioreactors, one fourth to the open pond system, and the remainder to the H{sub 2} handling and general support systems. It must be cautioned that these are highly preliminary, incomplete, and optimistic estimates. Biophotolysis processes, indirect or direct, clearly require considerable basic and applied R and D before a more detailed evaluation of their potential and plausible economics can be carried out. For example, it is not yet clear which type of algae, green algae, or cyanobacteria, would be preferred in biophotolysis. If lower-cost photobioreactors can be developed, then small-scale (<1 ha) single-stage biophotolysis processes may become economically feasible. A major basic and applied R and D effort will be required to develop such biophotolysis processes.

Benemann, J.R.

1998-03-31T23:59:59.000Z

223

Renewable Hydrogen: Integration, Validation, and Demonstration  

SciTech Connect (OSTI)

This paper is about producing hydrogen through the electrolysis of water and using the hydrogen in a fuel cell or internal combustion engine generator to produce electricity during times of peak demand, or as a transportation fuel.

Harrison, K. W.; Martin, G. D.

2008-07-01T23:59:59.000Z

224

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

225

An Overview of Hydrogen Production Technologies  

SciTech Connect (OSTI)

Currently, hydrogen is primarily used in the chemical industry, but in the near future it will become a significant fuel. There are many processes for hydrogen production. This paper reviews reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase), pyrolysis, hydrogen from biomass, electrolysis and other methods for generating hydrogen from water, and hydrogen storage. In addition, desulfurization, water-gas-shift, and hydrogen purification methods are discussed. Basics of these processes are presented with a large number of references for the interested reader to learn more.

Holladay, Jamie D.; Hu, Jianli; King, David L.; Wang, Yong

2009-01-30T23:59:59.000Z

226

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

227

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

228

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

229

Hydrogen Cryomagnetics  

E-Print Network [OSTI]

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4 Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

230

DOE HydrogenDOE Hydrogen Fuel CellsFuel Cells  

E-Print Network [OSTI]

between hydrogen and oxygen generates energy, which can be used to power a car producing only water that America can lead the world in developing clean, hydrogen-powered automobiles. "A simple chemical reaction to taking these cars from laboratory to showroom so that the first car driven by a child born today could

231

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

232

STILL CHASING THE HYDROGEN ECONOMY  

Science Journals Connector (OSTI)

Water electrolysis firm aims to help meet 2015 global target for first commercial FUEL-CELL CARS ... IN HIS 2003 State of the Union address, President George W. Bush proclaimed that the time was ripe for the hydrogen economy, a world in which hydrogen is the primary energy currency instead of fossil fuels. ...

STEPHEN K. RITTER

2011-11-07T23:59:59.000Z

233

Hydrogen,Fuel Cells & Infrastructure  

E-Print Network [OSTI]

chemical reaction between hydrogen and oxygen generates energy, which can be used to power a car producing funding so that America can lead the world in developing clean, hydrogen-powered automobiles." "A simple only water, not exhaust fumes. With a new national commitment, our scientists and engineers

234

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

hydrogen via electrolysis using water as a feedstock. Forhydrogen via electrolysis using water as a feedstock. For

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

235

Fall: Energy Saving Changes with the Season | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fall: Energy Saving Changes with the Season Fall: Energy Saving Changes with the Season Fall: Energy Saving Changes with the Season October 18, 2011 - 6:42am Addthis Andrea Spikes Communicator at DOE's National Renewable Energy Laboratory I'm sure you've noticed the change in seasons by now. Fall brings cooler weather, and with it my thoughts turn to warm things like putting blankets on the couch, enjoying my fireplace, and adjusting my thermostat (as little as possible, of course). One thing we did over the weekend is we insulated our water heater. Depending on how efficient your water heater tank is, adding insulation can reduce standby heat losses by 25%-45% and save you around 4%-9% in water heating costs. Since water heating contributes an average of 18% to the typical home utility bill, it's definitely worth it to add insulation!

236

Fall 2001 Vol. 2, No. 4 ii Colorado Climate  

E-Print Network [OSTI]

Colorado Climate Fall 2001 Vol. 2, No. 4 #12;ii Colorado Climate Table of Contents On Being a Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Colorado Climate in Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 A Review of the 2001 WaterYear in Colorado

237

Hydrogen Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

238

Hydrogen Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

239

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

240

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Potential Carriers and Approaches for Hydrogen Delivery  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Carriers Calculation Tools Truck Transport Available H 2 Carrier Solution (Oil or water) Additional Reactant H 2 Carrier 16 Storage and forecourt tabs have been...

242

NWHA Fall Workshop & Tour  

Broader source: Energy.gov [DOE]

This years Fall Regional Workshop on October 30 will focus on extending the longevity of our legacy hydropower projects through upgrades, refurbishment and life extensions, while meeting needs of...

243

Refinery Outages: Fall 2014  

U.S. Energy Information Administration (EIA) Indexed Site

well- supplied with middle distillate fuel oil, not only from Europe but also from Russia, India and the Middle East. As a result, planned maintenance this fall at Eastern...

244

cctoday_fall_2005_Final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

491 * ISSUE NO. 64, FALL 2005 491 * ISSUE NO. 64, FALL 2005 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION NEW DOE PROGRAM TO ADVANCE FUEL CELL CENTRAL POWER STATIONS Recent advances in technology have precipitated movement of fuel cells into the central power arena in support of FutureGen - coal-based central power plants capable of co-producing electricity and clean fuels (including hydrogen), enabling carbon sequestration, and producing near-zero emis- sions. While the initial focus of the Offi ce of Fossil Energy (FE) stationary fuel cell research and development program has been on distributed genera- tion applications, the strategy has always included eventual integration with central power plants. The central power element of the strategy is now being implemented under the Fuel Cell Coal-Based Systems program.

245

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Principal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principal Investigator Principal Investigator Below are hydrogen analyses and analytical models grouped by principal investigator. | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | R | S | T | U | V | W A Portfolio of Power-Trains for Europe Review of FreedomCAR and Fuel Partnership Ahluwalia, Rajesh Fuel Cell Systems Analysis GCtool-ENG Ahluwalia, Rajesh K. Hydrogen Storage Systems Analysis Ahmed, Shabbir Cost Implications of Hydrogen Quality Requirements Fuel Quality Effects on Stationary Fuel Cell Systems Fuel Quality in Fuel Cell Systems Quick Starting Fuel Processors - A Feasibility Study Amos, Wade Biological Water-Gas Shift Costs of Storing and Transporting Hydrogen Photobiological Hydrogen Production from Green Algae Cost Analysis Arif, Muhammad Fuel Cell Water Transport Mechanism

246

Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis  

SciTech Connect (OSTI)

Electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten were characterized for the hydrogen evolution reaction (HER) in the electrolysis of 30 w/o KOH alkaline water at 25 C. The rate-determining step (rds) of the HER was suggested based on the Tafel slope of polarization and the capacitance of electrode-solution interface determined by ac impedance measurement. The HER on the nickel- and cobalt-based codeposits was enhanced significantly compared with that o the electrolytic nickel and cobalt with comparable deposit loadings. The decrease in the HER overpotential was more pronounced on the molybdenum-containing codeposits, particularly on cobalt-molybdenum which also showed a high stability. The enhancement of the HER was attributed to both the synergetic composition and the increased active surface of the codeposits. The real electrocatalytic activity of te electrodes and the effect of their and the increased active surface of the codeposits. The real electrocatalytic activity of the electrodes and the effect of their surface increase were distinguished quantitatively. The linear relations between HER overpotential and surface roughness factor of the electrodes on a Y-log(X) plot were obtained experimentally and interpreted based on the Tafel law.

Fan, C.; Piron, D.L.; Sleb, A.; Paradis, P. (Ecole Polytechnique de Montreal, Quebec (Canada). Dept. de Metallurgie et de Genie des Materiaux)

1994-02-01T23:59:59.000Z

247

AC03CH05-Levinger ARI 11 February 2010 22:19 Analysis of Water in Confined  

E-Print Network [OSTI]

of hydrogen fuel cells. Water's unique properties can be traced to its formation of an extended hydrogen micelles, nanoscopically confined water, hydrogen bond dynamics, orientational dynamics Abstract The properties of water depend on its extended hydrogen bond network and thecontinualpicosecond

Fayer, Michael D.

248

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can efficiently capture and use the power of hydrogen the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

249

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels, but fall with increased scale to $3-4/kg (~$2-3/gal gasoline) Hydrogen Cost in Selected Cities 0.06 0.08 0

California at Davis, University of

250

Producing hydrogen using nuclear energy  

Science Journals Connector (OSTI)

The earliest means of separating hydrogen from water was by electrolysis using electrical energy that usually had been produced by low-efficiency thermodynamic processes. Substitution of thermal energy for electrical energy in high-temperature electrolysis gives a somewhat higher overall efficiency, but significantly complicates the process. Today, the vast majority of hydrogen is produced by steam methane reforming (SMR) followed by a water-shift reaction. A well-designed SMR plant will yield hydrogen having 75??80% of the energy of the methane used. Recent work in Japan has demonstrated the feasibility of substituting high-temperature heat from a gas-cooled nuclear reactor to replace the heat supplied in SMR by the combustion of methane. Using high-temperature heat from nuclear plants to drive thermochemical processes for producing hydrogen has been studied extensively. Bench-scale tests have been carried out in Japan demonstrating the sulphur-iodine (SI) process to produce hydrogen.

Robert E. Uhrig

2008-01-01T23:59:59.000Z

251

Water-splitting using photocatalytic porphyrin-nanotube composite devices  

DOE Patents [OSTI]

A method for generating hydrogen by photocatalytic decomposition of water using porphyrin nanotube composites. In some embodiments, both hydrogen and oxygen are generated by photocatalytic decomposition of water.

Shelnutt, John A. (Tijeras, NM); Miller, James E. (Albuquerque, NM); Wang, Zhongchun (Albuquerque, NM); Medforth, Craig J. (Winters, CA)

2008-03-04T23:59:59.000Z

252

Hydrogen from renewable resources research  

SciTech Connect (OSTI)

In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

Takahashi, P.K.; McKinley, K.R.

1990-07-01T23:59:59.000Z

253

Support of a pathway to a hydrogen future  

SciTech Connect (OSTI)

This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

Hoffman, A.R. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

254

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

255

Experimental Studies in Hydrogen Generation for Fuel Cell Applications using Aluminum Powder.  

E-Print Network [OSTI]

??One method of producing on-demand hydrogen for fuel cells is through the use of aluminum which reacts with water under certain conditions to produce hydrogen. (more)

Ahmad, Faizan

2010-01-01T23:59:59.000Z

256

Intrinsic Diffusion of Hydrogen on Rutile TiO2(110). | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

images demonstrate a complex behavior of hydrogen formed by water dissociation on BBO vacancies. Different diffusion rates are observed for the two hydrogens in the original...

257

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

258

Idaho Falls Power - Residential Energy Efficiency Loan Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program Idaho Falls Power - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Heat Pumps: $7,500 Weatherization: $5000 Appliances: $2,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount $100-$7500 Provider Idaho Falls Power Idaho Falls Power's Energy Efficiency Loan Program offers zero interest loans for qualifying customers to purchase and install efficient electric appliances. The program will loan up to 100% of the actual cost of eligible measures for qualifying customers. Electric appliances eligible for financing include, but are not limited to, the following:

259

FOCUS: HYDROGEN EXCHANGE AND COVALENT MODIFICATION ACCOUNT AND PERSPECTIVE  

E-Print Network [OSTI]

hydrogen exchange behavior, understand the underlying chemistry and structural physics of hydrogen exchange-protected by their H-bonding interactions, they engage in continual ex- change with the hydrogens of solvent water of the underlying chemistry and structural phys- ics of protein HX processes. The study of protein hydrogen exchange

Englander, S. Walter

260

Refinery Outages: Fall 2014  

Reports and Publications (EIA)

This report examines refinery outages planned for Fall 2014 and the potential implications for available refinery capacity, petroleum product markets and supply of gasoline and middle distillate fuel oil (diesel, jet fuel, and heating oil). EIA believes that dissemination of such analyses can be beneficial to market participants who may otherwise be unable to access such information.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Earnings Fall In Japan  

Science Journals Connector (OSTI)

Earnings Fall In Japan ... Japans economy expanded at an annualized rate of 3.5% in the first three months of 2013, but its chemical industry did not benefit from this growth. ... For the fiscal year that ended on March 31, most of Japans large chemical companies reported earnings lower than in the previous fiscal year or even losses. ...

JEAN-FRANOIS TREMBLAY

2013-05-20T23:59:59.000Z

262

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

263

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

264

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

265

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

266

Hydrogen- and Oxygen from Water  

Science Journals Connector (OSTI)

...DUFFIE, J.A., SOLAR ENERGY THERMAL 178 ( 1974 ). FUNK...4, in which the thermal effects of operation...curve, QH, is the net solar heat flow into the...A. Beckman, in Solar Ener-gy Thermal Processes (Wiley...

Edward A. Fletcher; Roger L. Moen

1977-09-09T23:59:59.000Z

267

Extractive distribution of microamounts of europium and americium in the two phase water HCl nitrobenzene N,N,N?,N?-tetraethyl-2,6-dipicolinamide hydrogen dicarbollylcobaltate system  

Science Journals Connector (OSTI)

Extraction of microamounts of europium and americium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B?) in the presence of N,N,N?,N?-tetraethyl-2,6-dipicolinamide (TEtDPA, L) has been investigated...

E. Makrlk; P. Va?ura; P. Seluck

2009-03-01T23:59:59.000Z

268

(ME 117, 118) Fall Spring  

E-Print Network [OSTI]

Spring 16 cr. 18 cr. Sophomore Fall Spring 17 cr. 18 cr. Junior Fall Spring 15 cr. 18 cr. Senior Fall Spring 14 cr. 12 cr. Co-requisite Course. Course at start of line to be taken prior to or at the same of all 100- 200 level courses, except core Mechanical Engineering 2010-2012 Flowsheet, Rev 2

Dyer, Bill

269

Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production  

Science Journals Connector (OSTI)

...cocatalyst|hydrogen production|water splitting...Photocatalytic hydrogen generation...promising way for H2 production. For water splitting...solid-state reaction method [12]. Y2O3...versus normal hydrogen electrode, negative...of CdS for H2 production could be increased...hydrothermal method through loading...

2013-01-01T23:59:59.000Z

270

Monday, February 23, 2009 Cheap Hydrogen from Scraps  

E-Print Network [OSTI]

because burning it creates only water as a waste product. MECs harness the electrons produced by certainMonday, February 23, 2009 Cheap Hydrogen from Scraps Turning organic waste into hydrogen now works scraps and waste water to generate clean hydrogen fuel. But over the past few years, researchers have

271

River Falls Municipal Utilities - Business Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Business Energy Efficiency Rebate River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Manufacturing Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Shared Savings Program: $2,500 - $50,000 Energy Improvement Incentive: Varies, Contact WPPI RFP for Energy Efficiency: Varies, Contact WPPI Efficient Lighting Program: Will match Focus on Energy incentive to $5,000

272

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

273

FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4  

E-Print Network [OSTI]

B FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4 ECHM 100 (CHBE 100) 2). There is a pre- requisite of M-273Q (MATH 224). CHMY-373 (CHEM 324) could be taken Spring of year 3. Also, CHMY Math Placement ExamB M-172-Q (MATH 182) 4 cr Chemical Engineering Prerequisite Flowchart Catalog: 2010

Lawrence, Rick L.

274

FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4  

E-Print Network [OSTI]

B FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4 CHBE 100 2 cr CHMY-141 324) could be taken Spring of year 3. Also, CHMY-371 (CHEM 323) may be substituted for CHMY-373 (CHEM Engineering Prerequisite Flowchart Catalog: 2008-2010 updated 2009 rev. 06/29/10, rwl ­ new course numbers E

Lawrence, Rick L.

275

10 - Thermochemical production of hydrogen  

Science Journals Connector (OSTI)

Abstract: The growing interest in hydrogen as a chemical reactant and energy carrier requires evaluation of all possible conversion processes for its production. This chapter analyses the different processes currently used for hydrogen production, together with the most promising approaches currently under development. Among the latter are thermochemical water-splitting cycles powered by renewable (sustainable) energy sources. A simplified description of the basic thermodynamic aspects of this process is presented, and some examples are presented.

A. Giaconia

2014-01-01T23:59:59.000Z

276

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

277

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

278

Analysis of Ontario's hydrogen economy demands from hydrogen fuel cell vehicles  

Science Journals Connector (OSTI)

The Hydrogen Economy is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen \\{FCVs\\} in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen \\{FCVs\\} market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.

Hui Liu; Ali Almansoori; Michael Fowler; Ali Elkamel

2012-01-01T23:59:59.000Z

279

Edible Fall Fruits  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fall Fruits Fall Fruits Nature Bulletin No 161-A September 19, 1948 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor EDIBLE FALL FRUITS Autumn is the favorite season for many people, and especially those who have the hobby of harvesting wild fruits for home use. In the forest preserves they, and you too, can have the fun of hunting, finding and gathering them. You can have the added satisfaction of making -- for enjoyment by your family and friends -- jellies, jam, preserves, pickles, and beverages that are "different". One of the most abundant, but least used of all wild fruits in the Chicago region are those of the hawthorns, We have perhaps 200 species, hybrids and varieties, most of them along woodland borders and in thickets that have taken over many old fields and clearings. Their fruits, called haws, vary widely in size and color when ripe. Most of them are small and many are dull red; some are yellow and some are spotted. Only a few bear the mealy, bright scarlet fruits, from 3/4 inch to more than an inch in diameter, which are most desirable and known as "red haws". Some folks, mostly boys, eat them raw. Others use them to make a unique jelly.

280

Zirfon as Separator Material for Water Electrolysis Under Specific Conditions  

Science Journals Connector (OSTI)

Hydrogen production through alkaline water electrolysis requires improvements to use renewable energy more...

Mara Jos Lavorante; Juan Isidro Franco

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

282

Klamath Falls geothermal field, Oregon  

SciTech Connect (OSTI)

Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

Lienau, P.J.; Culver, G.; Lund, J.W.

1989-09-01T23:59:59.000Z

283

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

284

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

285

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

286

Hydrogen and Fuel Cell Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine that is purifying biological catalysts for hydrogen production. Hydrogen is the simplest element on Earth. A hydrogen atom consists of only one proton and one electron. It is also the most plentiful element in the universe. Despite its simplicity and abundance, hydrogen doesn't occur naturally as a gas on Earth. It is always combined with other elements. Water, for example, is a combination of hydrogen and oxygen. Hydrogen is also found in many organic compounds, notably the "hydrocarbons" that make up fuels such as gasoline, natural gas, methanol, and propane. To generate electricity using hydrogen, pure hydrogen must first be

287

Are You Ready for Fall? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Are You Ready for Fall? Are You Ready for Fall? Are You Ready for Fall? October 21, 2011 - 6:38am Addthis This week, Andrea talked about insulating her water heater tank in preparation for cooler weather (of course, that's something you can do any time of year to save money and energy at home). She also listed many other ways to reduce your water heating costs. Erin blogged about something we don't often think about: the historical perspective of using renewable energy. For example, Leonardo da Vinci had designed a solar powered water heater among other things. As for geothermal energy, archaeological evidence shows that the first human use of geothermal resources in North America occurred more than 10,000 years ago. Whether you're using renewables or energy efficiency (or both), what are

288

Are You Ready for Fall? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Are You Ready for Fall? Are You Ready for Fall? Are You Ready for Fall? October 21, 2011 - 6:38am Addthis This week, Andrea talked about insulating her water heater tank in preparation for cooler weather (of course, that's something you can do any time of year to save money and energy at home). She also listed many other ways to reduce your water heating costs. Erin blogged about something we don't often think about: the historical perspective of using renewable energy. For example, Leonardo da Vinci had designed a solar powered water heater among other things. As for geothermal energy, archaeological evidence shows that the first human use of geothermal resources in North America occurred more than 10,000 years ago. Whether you're using renewables or energy efficiency (or both), what are

289

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

290

DOE Hydrogen Program FY 2005 Progress Report IV.F Photoelectrochemical  

E-Print Network [OSTI]

barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells and Infrastructure TechnologiesDOE Hydrogen Program FY 2005 Progress Report 13 IV.F Photoelectrochemical IV.F.1 High-Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water - UNLV: Photoelectrochemical Hydrogen

291

The water-gas shift (WGS) reaction (CO + H2O = CO2+ H2) is an important reaction for hydrogen upgrading during fuel  

E-Print Network [OSTI]

-treatment units in practical low-temperature PEM fuel cell systems, whereby the deleterious CO should be totally for hydrogen upgrading during fuel gas processing. Emerging applications in fuel cells require active, non-pyrophoric, and cost-effective catalysts. Along with a new group of platinum catalysts with atomically dispersed Pt

Napp, Nils

292

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

293

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

294

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Broader source: Energy.gov [DOE]

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

295

NREL: Hydrogen and Fuel Cells Research - Biological Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological Sciences Biological Sciences NREL's biological scientists conduct research on microorganisms-such as photosynthetic bacteria, cyanobacteria, and algae-and are discovering new ways to produce hydrogen and valuable reduced-carbon compounds. We are studying how, through photosynthesis, green algae and cyanobacteria can split water to produce hydrogen, and how, through fermentation, bacteria can produce hydrogen from lignocellulosic biomass feedstocks. Photobiological Water Splitting Image of two green ovals with two yellow strands at the bottom of each oval. Microscopic view of the green alga Chlamydomonas reinhardtii. Microorganisms, like green algae and cyanobacteria, can produce hydrogen by splitting water through a process called "biophotolysis" or "photobiological hydrogen production." This photosynthetic pathway produces

296

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

297

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

298

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

299

DOE Hydrogen Analysis Repository: Centralized Hydrogen Production from Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Wind Project Summary Full Title: Well-to-Wheels Case Study: Centralized Hydrogen Production from Wind Project ID: 214 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via centralized water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

300

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production from Wind  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Wind from Wind Project Summary Full Title: Well-to-Wheels Case Study: Distributed Hydrogen Production from Wind Project ID: 216 Principal Investigator: Fred Joseck Keywords: Wind; hydrogen production; well-to-wheels (WTW); fuel cell vehicles (FCV); electrolysis Purpose Provide well-to-wheels energy use and emissions data on a potential pathway for producing hydrogen from wind via distributed water electrolysis. This data was used in developing the U.S. Department of Energy Hydrogen Posture Plan. Performer Principal Investigator: Fred Joseck Organization: DOE/EERE/HFCIT Address: 1000 Independence Avenue, SW Washington, DC 20585 Telephone: 202-586-7932 Email: Fred.Joseck@ee.doe.gov Additional Performers: Margaret Mann, National Renewable Energy Laboratory; Michael Wang, Argonne National Laboratory

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Albeni Falls-Sand Creek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Albeni-Falls-Sand-Creek- Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand Customer Involvement...

302

High Temperature Falling Particle Receiver  

Broader source: Energy.gov (indexed) [DOE]

(SNL) 8 Evaluate use of air recirculation in falling particle receiver to reduce heat loss and impacts of external wind - Prototype system constructed and modeled - Blower...

303

New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Earl H. Wagener (Primary Contact), Brad P. Morgan, Jeffrey R. DiMaio Tetramer Technologies L.L.C. 657 S. Mechanic St. Pendleton, SC 29670 Phone: (864) 646-6282 Email: earl.wagener@tetramertechnologies.com DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Contract Number: DE-SC0006172 Project Start Date: June 17, 2011 Project End Date: March 16, 2012 Fiscal Year (FY) 2012 Objectives Demonstrate water vapor transport membrane with * >18,000 gas permeation units (GPU) Water vapor membrane with less than 20% loss in * performance after stress tests Crossover leak rate: <150 GPU * Temperature Durability of 90°C with excursions to * 100°C Cost of <$10/m

304

8 - Photocatalytic production of hydrogen  

Science Journals Connector (OSTI)

Abstract: The photocatalytic production of hydrogen represents a fascinating way to convert and store solar energy as chemical energy, in the form of renewable hydrogen, the ideal fuel for the future. Hydrogen can be produced either by direct water splitting or by photo-reforming of organics in either liquid or gas phase. Both methods are reviewed in this chapter. Starting with a brief historical background, the most recent achievements in the field of photocatalytic hydrogen production are discussed, concerning both the development of innovative materials able to exploit a larger portion of the solar spectrum compared to traditional photocatalytic materials, and the different set-ups and devices which have been developed and tested.

G.L. Chiarello; E. Selli

2014-01-01T23:59:59.000Z

305

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

306

September 2004 Water Sampling  

Office of Legacy Management (LM)

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Water Elevation (ft) Date Falls City Disposal Site Groundwater Compliance...

307

December 2006 HydrogenHydrogen PPostureosture PlanPlan  

E-Print Network [OSTI]

and improve the environment. The President urged the development of commercially viable fuel cells for cars in a fuel cell, it can power consumer products from computers to cell phones to cars that emit pure water obstacles...so that the first car driven by a child born today could be powered by hydrogen, and pollution

308

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

309

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Closed loop hydrogen turbine & steam turbine, without atmospheric air, equals zero air pollution Heat Exchanger Electrolyzer produces H 2 & O 2 gases by water electrolysis...

310

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

311

Albeni Falls Wildlife Mitigation Project  

E-Print Network [OSTI]

from the Albeni Falls Hydroelectric Project #12;Biological Objective 1 Protect 900 acres of wetland hydroelectric project. · 1988 publication of the Final Report Albeni Falls Wildlife Protection, Mitigation effects on wildlife resulting from hydroelectric development. 2. Select target wildlife species

312

2006 Fall Meeting Search Results  

E-Print Network [OSTI]

2006 Fall Meeting Search Results Cite abstracts as Author(s) (2006), Title, Eos Trans. AGU, 87 browsers. The iCronus project intends to create a publicly accessible website that contains published and weathering DE: 5475 Tectonics (8149) SC: Tectonophysics [T] MN: 2006 Fall Meeting #12;

Zreda, Marek

313

Hydrogenases and Hydrogen Metabolism of Cyanobacteria  

Science Journals Connector (OSTI)

...lowers the potential solar energy conversion efficiencies...molecular hydrogen from solar energy and water by using...several individual projects, two major international...International Energy Agency; http...direct conversion of solar energy (114...

Paula Tamagnini; Rikard Axelsson; Pia Lindberg; Fredrik Oxelfelt; Rbbe Wnschiers; Peter Lindblad

2002-03-01T23:59:59.000Z

314

Sandia National Laboratories: accelerate hydrogen infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have been a major water- and air-pollution source in the U.S.-but remained ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

315

Sandia National Laboratories: hydrogen fuel systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have been a major water- and air-pollution source in the U.S.-but remained ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

316

Hydrogenases and Hydrogen Metabolism of Cyanobacteria  

Science Journals Connector (OSTI)

...wastes into valuable, energy-rich compounds such...hydrogen from solar energy and water by using a renewable process. The present...IEA (International Energy Agency; http...the European program COST (European Cooperation...

Paula Tamagnini; Rikard Axelsson; Pia Lindberg; Fredrik Oxelfelt; Rbbe Wnschiers; Peter Lindblad

2002-03-01T23:59:59.000Z

317

W:WPGRAPHSCCTCCTODAY_fall  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PSDF and Vision 21 PSDF and Vision 21 ..................... 1 Project News Bytes ..................... 1 Barge-Mounted PFBC ................. 4 PM 2.5 Monitoring Efforts ............. 6 NETL's PM 2.5 Research .............. 8 Upcoming Events ......................... 8 Advanced Turbine Program ......... 9 International Initiatives .............. 10 R&D Milestones ........................ 12 Specialty NO x Conferences ....... 13 Status of CCT Projects .............. 14 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION PROJECT NEWS BYTES OFFICE OF FOSSIL ENERGY, U.S. DEPARTMENT OF ENERGY * DOE/FE-0215P-41 ISSUE NO. 41, FALL 2000 See "News Bytes" on page 7... See "PSDF" on page 2... SGI International, owner of the Liquids-From-Coal ® technology used in the ENCOAL Mild Coal

318

2009, Webbers Falls Open  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern and its Southwestern and its customers, the May 27, 2009, Webbers Falls Open House hosted by the Tulsa District of the U.S. Army Corps of Engineers (Corps) was just one more example of what can be accomplished when partners in Federal hydropower work together. The event, which was designed to publicize the upcoming rehabilitation of the project, drew staff members from several congressional offices as well as a healthy contingent of Corps, Southwestern, and customer representatives. Colonel Anthony Funkhouser, Commander of the Tulsa District, welcomed the attendees and emphasized the importance of working together to accomplish common goals. Southwestern's Administrator, Jon Worthington, spoke of the importance of hydropower, both regionally and nationally, and quantified its benefits by citing the average 5,570

319

2003 Fall TOPICS 1  

U.S. Energy Information Administration (EIA) Indexed Site

SUMMARY of the SUMMARY of the Fall Meeting of the American Statistical Association (ASA) Committee on Energy Statistics with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 October 16 and 17, 2003 Thursday, October 09, 2003 Background: EIA's Strategic Plan and Performance Goals for 2003-2008 (Plenary Session): Session emphasis was on the action plan for Goal 1, the first of the three EIA Goals: Goal 1: EIA's information program is relevant, reliable and consistent with changing industry structures, and EIA's information products are high quality and timely. Goal 2: EIA's resource base is sufficient to accomplish its mission Goal 3: EIA employees rate EIA high in the areas of leadership management, and meaningful work; and they rate themselves high in motivation and

320

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York |  

Broader source: Energy.gov (indexed) [DOE]

Highlights Hydrogen Fuel Initiative In Western New Highlights Hydrogen Fuel Initiative In Western New York Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York February 23, 2006 - 12:23pm Addthis HONEOYE FALLS, NY - Department of Energy (DOE) Secretary Samuel W. Bodman highlighted President Bush's $1.2 billion, five-year commitment to the Hydrogen Fuel Initiative while visiting General Motors Fuel Cell Activities in western New York today. As part of President Bush's Advanced Energy Initiative, the Fiscal Year (FY) 2007 budget request for the Hydrogen Fuel Initiative is being increased by $53 million over FY 2006 to $289.5 million. "Developing hydrogen as a key energy source for automobiles is an important step in diversifying our nation's energy mix," Secretary Bodman said. "If

322

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

323

Photoelectrochemical Water Splitting  

Broader source: Energy.gov [DOE]

In this process, hydrogen is produced from water using sunlight and specialized semiconductors called photoelectrochemical materials. In the photoelectrochemical (PEC) system, the semiconductor uses light energy to directly dissociate water molecules into hydrogen and oxygen. Different semiconductor materials work at particular wavelengths of light and energies.

324

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

325

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

326

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

327

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water;Objectives · To come up with a mechanistic understanding of hydrogen embrittlement in pipeline steels

328

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang*  

E-Print Network [OSTI]

Hydrogen Bonding Penalty upon Ligand Binding Hongtao Zhao, Danzhi Huang* Department of Biochemistry, University of Zurich, Zurich, Switzerland Abstract Ligand binding involves breakage of hydrogen bonds with water molecules and formation of new hydrogen bonds between protein and ligand. In this work, the change

Caflisch, Amedeo

329

Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila  

E-Print Network [OSTI]

Hydrogen isotope fractionation during lipid biosynthesis by Tetrahymena thermophila Sitindra S Accepted 7 September 2013 Available online 16 September 2013 a b s t r a c t Hydrogen isotope ratio values from recording the hydrogen isotope composition of ambient water, dD values of lipids also depend

330

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

331

An Analysis of Near-Term Hydrogen Vehicle Rollout Scenarios for Southern California  

E-Print Network [OSTI]

hydrogen dispenser Reverse osmosis and deionizer waterAlkaline Electrolyzer Reverse osmosis and deionizer waterhydrogen dispenser Reverse osmosis and deionizer water

Nicholas, Michael A; Ogden, J

2010-01-01T23:59:59.000Z

332

Photobiological Water Splitting  

Broader source: Energy.gov [DOE]

In this process, hydrogen is produced from water using sunlight and specialized microorganisms, such as green algae and cyanobacteria. Just as plants produce oxygen during photosynthesis, these microorganisms consume water and produce hydrogen as a byproduct of their natural metabolic processes. Photobiological water splitting is a long-term technology. Currently, the microbes split water much too slowly to be used for efficient, commercial hydrogen production. But scientists are researching ways to modify the microorganisms and to identify other naturally occurring microbes that can produce hydrogen at higher rates. Photobiological water splitting is in the very early stages of research but offers long-term potential for sustainable hydrogen production with low environmental impact.

333

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

334

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per...

335

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

336

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

337

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

338

Hydrogen Vehicles and Refueling Infrastructure in India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HYDROGEN VEHICLES AND FUELLING HYDROGEN VEHICLES AND FUELLING INFRASTRUCTURE IN INDIA Prof. L. M. Das Centre for Energy Studies Indian Institute of Technology Delhi INDIA " The earth was not given to us by our parents , it has been loaned to us by our children" Kenyan Proverb Same feeling exists in all societies Our moral responsibility---to handover a safer earth to future generation IIT Delhi August 18, 2004 -:Hydrogen:- Not a Radically New Concept JULES VERNE Mysterious Island (1876) ...." I believe that water will one day be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together will furnish an inexhaustible source of heat and light of an intensity of which coal is not capable.........water will be coal of the future" IIT Delhi August 18, 2004 Source: T. Nejat Veziroglu , Hydrogen Energy Technologies, UNIDO

339

Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test Rig  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test are causing catalyst plugging. Objectives Air Products requested that a test rig be constructed to entrain the hydrogen reforming facilities and aid Air Products in understanding the plugging problem. Approach

Demirel, Melik C.

340

University of California, Berkeley Fall 2014 Energy and Resources Group (ERG) & Goldman School of Public Policy  

E-Print Network [OSTI]

is the role of nuclear power in our present and future energy mix? · Could fuel cells or the hydrogen economyUniversity of California, Berkeley Fall 2014 Energy and Resources Group (ERG) & Goldman School of Public Policy ER 100 / 200 and Pub Pol C184 / C284 Energy and Society Professor Daniel Kammen 326 Barrows

Kammen, Daniel M.

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Storage Experiments for an Undergraduate Laboratory CourseClean Energy: Hydrogen/Fuel Cells  

Science Journals Connector (OSTI)

Hydrogen Storage Experiments for an Undergraduate Laboratory CourseClean Energy: Hydrogen/Fuel Cells ... Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. ... First-Year Undergraduate/General; Green Chemistry; Laboratory Instruction; Environmental Chemistry; Hands-On Learning/Manipulatives; Applications of Chemistry; Electrolytic/Galvanic Cells/Potentials ...

Alla Bailey; Lisa Andrews; Ameya Khot; Lea Rubin; Jun Young; Thomas D. Allston; Gerald A. Takacs

2014-12-09T23:59:59.000Z

342

Solar-hydrogen energy system for Pakistan  

SciTech Connect (OSTI)

A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

Lutfi, N.

1990-01-01T23:59:59.000Z

343

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

SciTech Connect (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

344

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

345

The Transition to Hydrogen  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inrealize hydrogens bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

346

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

347

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of todays ...

Andreas Zttel

2004-04-01T23:59:59.000Z

348

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

349

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

350

ARM - Measurement - Hydrometeor fall velocity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fall velocity fall velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor fall velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments DISDROMETER : Impact Disdrometer LDIS : Laser Disdrometer WSACR : Scanning ARM Cloud Radar, tuned to W-Band (95GHz) Field Campaign Instruments DISDROMETER : Impact Disdrometer PDI : Phase Doppler Interferometer

351

Anti-reflective nanoporous silicon for efficient hydrogen production  

DOE Patents [OSTI]

Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

Oh, Jihun; Branz, Howard M

2014-05-20T23:59:59.000Z

352

Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants  

SciTech Connect (OSTI)

IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

Elias Stefanakos; Burton Krakow; Jonathan Mbah

2007-07-31T23:59:59.000Z

353

Solar-Thermal ALD Ferrite-Based Water Splitting Cycle - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Alan W. Weimer (Primary Contact), Darwin Arifin, Xinhua Liang, Victoria Aston and Paul Lichty University of Colorado Campus Box 596 Boulder, CO 80309-0596 Phone: (303) 492-3759 Email: alan.weimer@colorado.edu DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Contract Number: DE-FC36-05GO15044 Project Start Date: March 31, 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Demonstrate the "hercynite cycle" feasibility for * carrying out redox. Initiate design, synthesis and testing of a nanostructured * active material for fast kinetics and transport.

354

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

355

Solar High-Temperature Water Splitting Cycle with Quantum Boost - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Robin Taylor (Primary Contact), Roger Davenport, David Genders 1 , Peter Symons 1 , Lloyd Brown 2 , Jan Talbot 3 , Richard Herz 3 Science Applications International, Corp. (SAIC) 10210 Campus Point Drive San Diego, CA 92121 Phone: (858) 826-9124 Email: taylorro@saic.com 1 Electrosynthesis Co., Inc. (ESC) 2 Thermochemical Engineering Solutions (TCHEME) 3 University of California, San Diego (UCSD) DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17002 Subcontractors: * Electrosynthesis Co., Inc., Lancaster, NY * Thermochemical Engineering Solutions, San Diego, CA

356

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

357

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 22492258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schth

2005-04-06T23:59:59.000Z

358

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

359

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

360

Fresh Water Increased temperature means higher proportion of water  

E-Print Network [OSTI]

Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

Houston, Paul L.

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

362

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2  

SciTech Connect (OSTI)

The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

NONE

1996-11-01T23:59:59.000Z

363

Polymer formulations for gettering hydrogen  

DOE Patents [OSTI]

A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

Shepodd, Timothy J. (330 Thrasher Ave., Livermore, CA 94550); Even, Jr., William R. (4254 Drake Way, Livermore, CA 94550)

2000-01-01T23:59:59.000Z

364

Solar hydrogen production using Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} solid solutions via a thermochemical, two-step water-splitting cycle  

SciTech Connect (OSTI)

The reactivity of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.1) solid solutions during the redox and two-step water-splitting cycles has been investigated in this work. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) patterns and field-emission scanning electron microscopy (FE-SEM) indicate that there are two reaction mechanisms in the O{sub 2}-releasing step and the shift in the reaction mechanisms occurs in the O{sub 2}-releasing step because of sintering at high temperatures, and a decrease in the concentration of lattice oxygen occurs as the O{sub 2}-releasing step proceeds. The reaction in the O{sub 2}-releasing step follows a second-order mechanism over a temperature range of 1000-1170 Degree-Sign C and a contracting-area model over a temperature range of 1170-1500 Degree-Sign C. According to direct gas mass spectroscopy (DGMS), ceria doped at 5 mol% Li exhibits the highest reactivity in the O{sub 2}-releasing step during both redox cycles in air and two-step water-splitting cycles, whereas ceria doped at 2.5 mol% Li yields the highest amount of hydrogen (4.79 ml/g) in the H{sub 2}-generation step during the two-step water-splitting cycles, which is higher than ceria doped with other metals. DGMS and electrochemical impedance spectroscopy (EIS) suggest that the average reaction rate in the H{sub 2}-generation step is influenced by the concentration of extrinsic oxygen vacancies, and thus, the reactivity in the H{sub 2}-generation step, to some degree, could be tuned by varying the concentration of extrinsic oxygen vacancies (Li content). - Graphical abstract: Average reduction fraction of Ce{sub 1-x}Li{sub x}O{sub 2-{delta}} (x=0.025, 0.05, 0.075 and 0.10) solid solutions versus Li content in the O{sub 2}-releasing step during the redox cycles in air and the two-step water-splitting cycles. Highlights: Black-Right-Pointing-Pointer We have investigated Li-doped ceria for hydrogen production using two-step water-splitting cycles. Black-Right-Pointing-Pointer The sintering effect on the reaction mechanisms was first clarified. Black-Right-Pointing-Pointer The shift of reaction mechanisms occurs during the O{sub 2}-releasing step. Black-Right-Pointing-Pointer The reaction-mechanism shift occurs because of sintering at high temperatures. Black-Right-Pointing-Pointer Doping at 2.5 mol% Li results in the highest H{sub 2} yield and cyclability for hydrogen production.

Meng, Qing-Long; Lee, Chong-il; Shigeta, Satoshi [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Kaneko, Hiroshi [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Solutions Research Laboratory, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan); Tamaura, Yutaka, E-mail: ytamaura@chem.titech.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)] [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo 1528850 (Japan)

2012-10-15T23:59:59.000Z

365

Synthesis of Longtime Water/Air-Stable Ni Nanoparticles and Their High Catalytic Activity for Hydrolysis of Ammonia?Borane for Hydrogen Generation  

Science Journals Connector (OSTI)

Soluble starch (amylose), a renewable polymer, is the main component of starch which is the main energy reserve of all higher plants, and can form a dispersion in water. ... The TEM samples were prepared by depositing one or two droplets of the nanoparticle suspensions onto the amorphous carbon coated copper grids, which were dried in argon atmosphere. ... Nitrogen sorption measurements were carried out on an automatic volumetric adsorption equipment (BEL mini, Japan) using the Brunauer?Emmett?Teller (BET) method to test the surface areas of the in situ synthesized catalysts with/without starch after washing with water and vacuum drying at 90 C. ...

Jun-Min Yan; Xin-Bo Zhang; Song Han; Hiroshi Shioyama; Qiang Xu

2009-07-09T23:59:59.000Z

366

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

367

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

368

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

hydrogen fuel by electrolysis meeting equal consumer costhydrogen fuel production by water electrolysis to provide lower fuel costFig. 2: Cost hydrogen bywater of (Coil) electrolysis as

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

369

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

370

Hydrogen energy  

Science Journals Connector (OSTI)

...present-day petrol-driven car engines. When heat...combined heat and power (CHP) systems...most of their output power range. This scalability...decentralized stationary power generation. Fuel...fuel cells emit only water and have virtually...battery-driven electric cars, because the chemical...

2007-01-01T23:59:59.000Z

371

Theoretical Design by First Principles Molecular Dynamics of a Bioinspired Electrode?Catalyst System for Electrocatalytic Hydrogen Production from Acidified Water  

Science Journals Connector (OSTI)

Our study is based on Car?Parrinello (CP)(26) FPMD simulations of the [FeFe]H cluster in a liquid-water environment with or without hydronium ions. ... To achieve these results, we have employed the first principles molecular dynamics method at an advanced level of system complexity and have illustrated thereby the utility and power of FPMD for molecular design. ...

Federico Zipoli; Roberto Car; Morrel H. Cohen; Annabella Selloni

2010-09-29T23:59:59.000Z

372

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

373

River Falls Municipal Utilities - Energy Star Appliance Rebates |  

Broader source: Energy.gov (indexed) [DOE]

River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates River Falls Municipal Utilities - Energy Star Appliance Rebates < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Other Program Info Start Date 05/01/2010 Expiration Date 12/31/12 State Wisconsin Program Type Utility Rebate Program Rebate Amount Tree Planting: 50% of cost up to $50 (limit 3 trees) Freezer Recycling: $30 Refrigerator Recycling: $30 Energy Star Home Performance: 33.3% up to $1,500 15% Energy Savings from Installed Measures: $200

374

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

375

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

or hydro-powered water electrolysis. Ammonia as a HydrogenV for conventional water electrolysis (Cooper and Botte,electricity required for water electrolysis under standard

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

376

Hydrogen & Our Energy Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

377

Hydrogen Compatibility of Materials  

Broader source: Energy.gov [DOE]

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

378

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

379

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

380

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chapter 4 - Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, hydrogen and fuel cell systems are introduced. Hydrogen is closely related to fuel cells because fuel cells are very efficient devices for power generation which when supplied with hydrogen generate non-polluting effluents, mainly water or steam. A hydrogen economy is necessary in the context of continuous growth of population and per-capita energy consumption. In this context, renewable energy solutionsespecially solarbecome more important and their harvesting requires hydrogen as energy carrier. Therefore the role of hydrogen and fuel cell systems in power generation becomes very important. As detailed in the chapter, these systems are useful for converting the fluctuating and intermittent energy of renewable sources and providing power on demand. Hydrogen and fuel cell systems can work either as grid-connected or as independent power generators. Connection to the grid allows for better load leveling and major savings as well as for reduction of pollution associated with power generation. Hydrogen can also be used to power residences and to cogenerate heat or other commodities. In addition, hydrogen and fuel cell technologies are much required for the transportation sector, where they can contribute to pollution and cost reduction and increased efficiency. Hydrogen production methods are reviewed in this chapter with a focus on electrolysis and thermochemical cycles. These systems appear to be leading technologies for the future. Other revised hydrogen production methods are gasification and reforming, which are very relevant for biomass conversion into hydrogen. Photochemical and photo-biochemical hydrogen production methods are also discussed. All types of fuel cells are introduced; these include alkaline, proton-exchange-membrane, phosphoric acid, molten carbonate, solid oxide, direct methanol, and direct ammonia fuel cells. Construction and specific application for power generation are presented for each type. The modeling and optimization aspects of fuel cells and their systems are explained. Several power generation systems with fuel cells are discussed, in which each type of fuel cells has specific system requirements. The overall system must include various types of separators, pumps, and compressors depending on the case. In aqueous systems water must be recycled, e.g., in the case of proton-exchange membrane fuel cells water must be actually fed in excess so that the membrane is wetted. Also for a direct methanol fuel cell water must be recovered and recycled. In molten carbonate fuel cell systems carbon dioxide must be recovered and recycled. In solid oxide fuel cell systems, the fuel must be supplied in excess and is not completely consumed; therefore it is important to couple these systems with gas turbines.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

382

Safe Fall: Humanoid robot fall direction change through intelligent stepping and inertia shaping  

E-Print Network [OSTI]

Although fall is a rare event in the life of a humanoid robot, we must be prepared for it because its consequences are serious. In this paper we present a fall strategy which rapidly modifies the robot's fall direction in ...

Yun, Seung-kook

383

Species measurements in a hypersonic, hydrogen-air, combustion wake  

SciTech Connect (OSTI)

A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

Skinner, K.A.; Stalker, R.J. [Univ. of Queensland, Brisbane, Queensland (Australia)] [Univ. of Queensland, Brisbane, Queensland (Australia)

1996-09-01T23:59:59.000Z

384

Composition for absorbing hydrogen  

DOE Patents [OSTI]

A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

Heung, L.K.; Wicks, G.G.; Enz, G.L.

1995-05-02T23:59:59.000Z

385

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

386

Gaseous Hydrogen Delivery Breakout - Strategic Directions for...  

Broader source: Energy.gov (indexed) [DOE]

Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop Gaseous Hydrogen Delivery Breakout - Strategic Directions for Hydrogen Delivery Workshop...

387

NREL: Hydrogen and Fuel Cells Research - NREL Hydrogen Expert Sees Promise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Hydrogen Expert Sees Promise in New Discovery NREL Hydrogen Expert Sees Promise in New Discovery Photoelectrochemical pioneer John Turner says nickel film cracks the door for tandem artificial photosynthesis, greater efficiency January 8, 2014 Producing hydrogen directly from the sun -- and in a way that is commercially viable -- is more a reality, less a pipedream, thanks in part to a new discovery, renowned hydrogen water-splitting expert John Turner stated in a commentary in the journal Science. Turner, a research fellow at the Energy Department's National Renewable Energy Laboratory, demonstrated 15 years ago that he could use sunlight in a photoelectrochemical process to extract hydrogen from water at a remarkable 12.4% efficiency. Ever since, researchers have been trying to make that process more stable

388

HMNewsFall07  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Simulation Results ................. New Simulation Results ................. 1 Methane Flux from Bering Sea Sediments .......................................... 4 Results for China's First Gas Hydrate Drilling Expedition .......... 6 GHOBS Workshop Report ........10 Korean Hydrate Research Results Are Encouraging .............12 Fresh Water Hydrates from Lake Baikal ......................................13 Announcements .......................14 * ICGH2008 Conference * Second Fellowship Award * Updated Publication * Proposal Review Schedule * Interagency Brochure Available Spotlight on Research ............16 Michael Riedel CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov Methane Hydrate Newsletter 1 New SimulatioNS of the ProductioN

389

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate  

E-Print Network [OSTI]

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis National Cost Estimate Using Water Electrolysis To: Mr. Mark Ruth, NREL, DOE Hydrogen Systems Integration Office. For central production, the hydrogen cost is at the plant gate of an electrolysis facility with a capacity

390

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

391

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

392

Fall 2007 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

7 Meeting of the 7 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's fall 2007 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place October 18 and 19, 2007 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and three of the break-out sessions were in 8E-089. The three remaining break-out sessions were in 5E-069. The fall meeting agenda, papers, presentation slides and other materials

393

falls-city2.cdr  

Office of Legacy Management (LM)

Falls City Disposal Site Falls City Disposal Site Uranium ore was processed near Falls City, Texas, between 1961 and 1982. The milling operations created process-related waste and tailings, a sandlike waste containing radioactive material and other contaminants. The U.S. Department of Energy (DOE) encapsulated the tailings in an engineered disposal cell in 1994. DOE established the LTSM Program in 1988 to provide stewardship of disposal cells that contain low-level radioactive material after completion of environmental restoration activities. The mission of the LTSM Program is to ensure that the disposal cells continue to prevent release of contaminated materials to the environment. These materials will remain potentially hazardous for thousands of years. As long as the cells function as

394

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen is a clean fuel. When used in fuel cells, the Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat. * Clean hydrogen technology has the potential to strengthen national economies and create high-quali- ty jobs in industries such as fuel cell manufacturing. * Hydrogen can be derived from renewable sources and is fully interchangeable with electricity - hydrogen can be used to generate electricity, while electricity can be used to produce hydrogen. * Over 100 years of safe production, transportation and use of hydrogen shows that it carries no more risk than natural gas or gasoline. * Hydrogen can be produced from diverse domestic sources and processes, freeing it from the political instabilities that affect the world's oil and gas supplies. * Fuel cells have more than double the energy-efficien-

395

Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4  

SciTech Connect (OSTI)

Zircaloy-4, which is widely used as a core structural material in Pressurized-Water Reactors (PWR), picks up hydrogen during service. Hydrogen solubility in Zircaloy-4 is low and hydrides precipitate after the Zircaloy-4 matrix becomes supersaturated with hydrogen. These hydrides embrittle the Zircaloy-4. To study hydrogen pickup and concentration, a postirradiation nondestructive radiographic technique for measuring hydrogen concentration was developed and qualified. Experiments on hydrogen pickup were conducted in the Advanced Test Reactor (ATR). Ex-reactor tests were conducted to determine the conditions for which hydrogen would dissolve, migrate, and precipitate. Finally, a phenomenological model for hydrogen diffusion was indexed to the data. This presentation describes the equipment and the model, presents the results of experiments, and compares the model predictions to experimental results.

Kammenzind, B.F.; Franklin, D.G.; Duffin, W.J. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Peters, H.R. [Martin Marietta Corp., Schenectady, NY (United States). Knolls Atomic Power Lab.

1996-06-01T23:59:59.000Z

396

Hypersonic hydrogen combustion in the thin viscous shock layer  

SciTech Connect (OSTI)

Different models of hypersonic diffusive hydrogen combustion in a thin viscous shock layer (TVSL) at moderate Reynolds numbers have been developed. The study is based on computations of nonequilibrium multicomponent flowfield parameters of air-hydrogen mixture in the TVSL near the blunt probe. The structure of computed combustion zones is analyzed. Under conditions of slot and uniform injections the zone structures are essentially different. Hydrogen injection conditions are discovered at which the nonreacting hydrogen zone and the zone enriched with the hydrogen combustion products appear near the body surface. Hydrogen, water, and OH concentrations identify these zones. More effective cooling of the probe surface occurs at moderate injections compared to strong ones. Under the blowing conditions at moderate Reynolds numbers the most effective cooling of the body surface occurs at moderate uniform hydrogen injection. The results can be helpful for predicting the degree of supersonic hydrogen combustion in hypersonic vehicle engines. 21 refs.

Riabov, V.V.; Botin, A.V. [Worcester Polytechnic Inst, Worcester, MA (United States)

1995-04-01T23:59:59.000Z

397

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

398

Development of an electrochemical hydrogen separator  

SciTech Connect (OSTI)

The EHS is an electrochemical hydrogen separator based on the uniquely reversible nature of hydrogen oxidation-reduction reactions in electrochemical systems. The principle and the hardware concept are shown in Figure 1. Hydrogen from the mixed gas stream is oxidized to H{sup +} ions, transported through a cation transport electrolyte membrane (matrix) under an applied electric field and discharged in a pure hydrogen state on the cathode. The cation transfer electrolyte membrane provides a barrier between the feed and product gases. The EHS design is an offshoot of phosphoric acid fuel cell development. Although any proton transfer electrolyte can be used, the phosphoric acid based system offers a unique advantage because its operating temperature of {approximately}200{degree}C makes it tolerant to trace CO and also closely matches the water-shift reactor exit gas temperature ({approximately}250{degree}C). Hydrogen-containing streams in coal gasification systems have large carbon monoxide contents. For efficient hydrogen recovery, most of the CO must be converted to hydrogen by the low temperature water-shift reaction (Figure 2). Advanced coal gasification and gas separation technologies offer an important pathway to the clean utilization of coal resources.

Abens, S.; Fruchtman, J.; Kush, A.

1993-09-01T23:59:59.000Z

399

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

400

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline...

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main ThemesCaveats Bulk...

402

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...  

Broader source: Energy.gov (indexed) [DOE]

Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22,...

403

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

404

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

405

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

406

Scheduling drip irrigation for fall tomatoes (Lycopersicon esculentum Mill. cv. Sunny) in the Lower Rio Grande Valley  

E-Print Network [OSTI]

of the soils used in the experiment . . 15 2 Water a as irrigation (mm) for fall tomato test, September 12 through November 29 25 3 Effect of irrigation on tomato production, mean of fields 1 and 2 27 4 Effect of irrigation on tomato production by size... category for field 1 29 5 Effect of irrigation category for field 2 on tomato production by size 30 6 Water use efficiency for fall tomato test. Field 1 32 7 Water use efficiency for fall tomato test. Field 2 CHAPTER I INTRODUCTION Texas ranks...

Vargas Prieto, Alberto Miguel

1985-01-01T23:59:59.000Z

407

SNES 2000: Environmental Sciences Colloquium Water Resource Management  

E-Print Network [OSTI]

SNES 2000: Environmental Sciences Colloquium Fall 2011 Water Resource Management Friday afternoons for first speaker September 9 The world water savings bank Mike Walter, Biological and Environmental, Biological and Environmental Engineering, Cornell University October 7 OPEN October 14 Water Quality

Keinan, Alon

408

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

produce hydrogen in a centralized coal based operation for .79kg at the plant gate with carbon sequestration. Develop advanced OTM, HTM, technology, advanced reforming and shift...

409

Resource Assessment for Hydrogen Production: Hydrogen Production...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration ERR Estimated Recoverable Reserves FCEV fuel cell electric vehicle GHG greenhouse gas GW gigawatt GWh gigawatt-hour GWdt gigawatt-days thermal H2A Hydrogen...

410

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE  

SciTech Connect (OSTI)

HYBRID HETEROGENEOUS CATALYSTS FOR HYDROGENATION OF CARBON DIOXIDE Lucia M. Petkovic, Harry W. Rollins, Daniel M. Ginosar, and Kyle C. Burch Idaho National Laboratory P.O. Box 1625 Idaho Falls, ID 83415-2208 Introduction Anthropogenic emissions of carbon dioxide, a gas often associated with global warming, have increased considerably since the beginning of the industrial age.1 In the U.S., stationary CO2 sources, such as electricity generation plants, produce about one-third of the anthropogenic CO2 generation. Reports2 indicate that the power required to recover 90% of the CO2 from an integrated coal-fired power-plant is about 10% of the power-plant capacity. This energy requirement can be reduced to less than 1% if the recovered CO2 is applied to the production of synthetic fuels. However, the lack of efficient catalysts along with the costs of energy and hydrogen has prevented the development of technologies for direct hydrogenation of CO2.3 Although the cost of hydrogen for hydrogenating CO2 is not economically attractive at present, the future production of hydrogen by nuclear power sources could completely change this scenario.2 Still, an efficient catalyst will be essential for commercial application of those processes. The objective of the work presented here was the development of hybrid catalysts for one-step carbon dioxide hydrogenation to liquid fuels. The hybrid catalysts, which were prepared by two novel techniques, included a copper/zinc oxide catalytic function distributed within an acidic zeolitic matrix. Results of catalyst activity and selectivity studies at atmospheric pressure are presented in this contribution. Experimental Catalysts were prepared by two novel techniques and under several different conditions to produce copper/zinc oxide/zeolite materials. Once synthesized, samples were pelletized and the fraction between 40-60 mesh was utilized for the experiments. Two hundred milligrams of catalyst were loaded in a U-tube stainless steel reactor and a flow of 100 cm3/min of a 10:90 H2:Ar mixture was passed through the catalyst bed while the temperature was increased from room temperature to 513 K at 1.8 K/min and held at 513 K for 15 h. A reactant gas mixture composed by 10 cm3/min of CO2 and 30 cm3/min of H2 was then passed through the catalyst bed and the reaction products monitored by on-line gas chromatographic analyses using an SRI Multiple Gas Analyzer #2 equipped with 3 columns (MoleSieve 13X, Hayesep-D, and MXT-1) and 3 detectors (TCD, FID, and FID-methanizer). This GC system allowed for quantification of inert gases, CO, CO2, methanol, dimethylether, higher alcohols, water, and hydrocarbons up to C20. One hundred milligrams of a commercial syngas-to-methanol catalyst along with the same amount of a commercial zeolite catalyst was utilized under the same reaction conditions for comparison purposes. These catalysts were utilized either in two-layers (Com1) or mixed together (Com2). Results and Discussion Under the conditions applied in this study, the main reaction products were CO, CH3OH, CH3OCH3, and H2O. Methanol and dimethylether production rates and selectivities with respect to CO formation are presented in Figures 1 and 2, respectively. Although the activity of the synthesized catalysts did not surpass the commercial catalysts, the selectivity to oxygenates with respect to CO on most of the synthesized catalysts were better than on the commercial catalysts. For example, cat

Licia M. Petkovic; Harry W. Rollins; Daniel M. Ginosar; Kyle C. Burch

2006-09-01T23:59:59.000Z

411

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions  

Science Journals Connector (OSTI)

Hydrogen Generation and Coke Formation over a Diesel Oxidation Catalyst under Fuel Rich Conditions ... Hydrogen production via hydrocarbon steam reforming and water gas shift reactions was investigated over a monolith-supported Pt-based diesel oxidation catalyst. ...

Meshari AL-Harbi; Jin-Yong Luo; Robert Hayes; Martin Votsmeier; William S. Epling

2010-12-08T23:59:59.000Z

412

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

413

The Bumpy Road to Hydrogen  

E-Print Network [OSTI]

will trump hydrogen and fuel cell vehicles. Advocates ofbenefits sooner than hydrogen and fuel cells ever could.emissions from a hydrogen fuel cell vehicle will be about

Sperling, Dan; Ogden, Joan M

2006-01-01T23:59:59.000Z

414

Microbial Fuel Cells for Recycle of Process Water from Cellulosic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to improve ethanol process economics in biorefineries Decreased water consumption Enables wastewater recycling Electricity or hydrogen generation Inexpensive Versatile Applications...

415

FALL / AUTOMNE 2014 RECREATION PROGRAMS  

E-Print Network [OSTI]

FALL / AUTOMNE 2014 RECREATION PROGRAMS ACTIVIT�S R�CR�ATIVES Follow us on Facebook / Suivez nous sur Facebook: Bishop's University Recreation ONLINE REGISTRATION FROM AUGUST 23 TO SEPTEMBER 11 www.gaiters.ca/recreation Breckles Director of Athletics & Recreation Bishop's University Je tiens � profiter de cette occasion pour

416

A Meteorite Falls on Ice  

Science Journals Connector (OSTI)

...the clearest accounts of the solar system's most ancient events...the earliest history of the solar system. The more pristine meteoritic...better we will understand how our solar system formed and how the remnants...in India, and a 1938 fall in Tanzania [HN9] yielded a total of around...

Jeffrey N. Grossman

2000-10-13T23:59:59.000Z

417

ARM - Field Campaign - Fall 1997 SCM IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Send Campaign : Fall 1997 SCM IOP 1997.09.15 - 1997.10.05 Lead Scientist : David Randall Data Availability The fall 1997 SCM IOP was conducted from 1500 UTC on September 15,...

418

DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

Angela D. Lueking; Qixiu Li; John V. Badding; Dania Fonseca; Humerto Gutierrez; Apurba Sakti; Kofi Adu; Michael Schimmel

2010-03-31T23:59:59.000Z

419

Effect of the Protein Denaturants Urea and Guanidinium on Water Structure: A Structural and Thermodynamic Study  

E-Print Network [OSTI]

in the hydrogen bond network of water in the first hydration shell of urea and guanidinium were analyzed in terms of the random network model using Monte Carlo simulations. Bulk water consists of two populations of hydrogen and more bent hydrogen bonds. In the first shell of urea, hydrogen bonds between waters solvating the amino

Sharp, Kim

420

Role of Water States on Water Uptake and Proton Transport in Nafion using Molecular Simulations and Bimodal Network  

E-Print Network [OSTI]

hydrogen permeation properties and water uptake of Nfion 117 membrane and recast film for PEM fuel cell.

Hwang, Gi Suk

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Thermal Conversion of Water Wind Electrolysis n.s. (10 MWp)method is the electrolysis of water using a renewableobtain higher Electrolysis of Water Hydrogen can be produced

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

422

Fall 2013 Composite Data Products - Backup Power  

SciTech Connect (OSTI)

This report includes 28 composite data products (CDPs) produced in Fall 2013 for fuel cell backup power systems.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-12-01T23:59:59.000Z

423

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

424

Catalyzed Hydrogen Spillover for Hydrogen Storage  

Science Journals Connector (OSTI)

Catalyzed Hydrogen Spillover for Hydrogen Storage ... Storing sufficient H on-board a wide range of vehicle platforms, while meeting all consumer requirements (driving range, cost, safety, performance, etc.), without compromising passenger or cargo space, is a tremendous tech. ... The authors show that for the 1st time significant amts. of H can be stored in MOF-5 and IRMOF-8 at ambient temp. ...

Ralph T. Yang; Yuhe Wang

2009-02-27T23:59:59.000Z

425

Hydrogen Permeability and Integrity of Hydrogen  

E-Print Network [OSTI]

· To develop suitable welding technology for H2 pipeline construction and repair · To develop technical basisHydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J pressure permeation test · Edison Welding Institute - Pipeline materials · Lincoln Electric Company

426

Investigation of oxides formed in the corrosion of SUS-304 in high-temperature water through the measurement of evolved hydrogen and radiochemical analyses  

SciTech Connect (OSTI)

Corrosion behavior of SUS-304 at 280/sup 0/C in deaerated water has been traced both through measuring H/sub 2/ gas, concomitantly formed with corrosion, and through radiochemical analysis of the corrosion layers. The calculated H/sub 2/ yield based on the reaction, M + x.H/sub 2/O = MO /sub x/ + x.H/sub 2/ (M: iron, chromium, nickel, manganese, and cobalt), agreed reasonably well with the observed H/sub 2/ yields, showing that iron is mainly in a magnetite form and chromium is in a Cr(III) state. More than 85% of the corrosion layers were recovered by repeating ultrasonic cleaning and electrostripping processes. The residual fraction was rich in chromium and dissolved in the subsequent electropolishing process. The total corrosion increases with the reaction time, although the ''inner layer'' tends to stay almost constant at a longer reaction time. In some cases, both neutron irradiated and nonirradiated SUS coexisted. Mutual transfer of the elements from one SUS to the other has been examined.

Tachikawa, E.; Hoshi, M.; Nakashima, M.; Sagawa, C.; Yonezawa, C.

1984-04-01T23:59:59.000Z

427

Gaseous Hydrogen Delivery Breakout- Strategic Directions for Hydrogen Delivery Workshop  

Broader source: Energy.gov [DOE]

Targets, barriers and research and development priorities for gaseous delivery of hydrogen through hydrogen and natural gas pipelines.

428

BP and Hydrogen Pipelines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BP and Hydrogen Pipelines BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P. Yoho, P.E. i l i * Green corporate philosophy and senior management commitment * Reduced greenhouse gas emissions nine years ahead of target * Alternatives to oil are a big part of BP' including natural gas, LNG, solar and hydrogen * Hydrogen Bus Project won Australia' prestigious environmental award * UK partnership opened the first hydrogen demonstration refueling station * Two hydrogen pipelines in Houston area BP Env ronmenta Comm tment s portfolio, s most BP' * li l " li i i * i l pl i i * Li l li l * " i i l i 2 i i ll i i l pl ifi i * 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand new 12 ne s act ve Connect Houston area chem ca ant w th a ref nery nes come off a p

429

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the hydrogen economy may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. OM. Bockris

1981-01-01T23:59:59.000Z

430

Solar Hydrogen Production  

Science Journals Connector (OSTI)

The common methods of hydrogen production impose many concerns regarding the decline in...2...emission, and ecological impacts. Subsequently, all the downstream industries that consume hydrogen involve the aforem...

Ibrahim Dincer; Anand S. Joshi

2013-01-01T23:59:59.000Z

431

Hydrogen Fuel Quality (Presentation)  

SciTech Connect (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

432

Novel Mg-rich materials for hydrogen storage: bulk and nanoconfined Mg6Pd1-xTMx  

E-Print Network [OSTI]

Novel Mg-rich materials for hydrogen storage: bulk and nanoconfined Mg6Pd1-xTMx (TM = Ni, Ag, Cu for hydrogen storage: bulk and nanoconfined Mg6Pd1-xTMx (TM = Ni, Ag, Cu) compounds and MgH2-TiH2 on Hydrogen Storage) and in Warsaw (E-MRS Fall Meeting). I would like to share this PhD thesis with all

Paris-Sud XI, Université de

433

Numerical Analysis of the Flow Characteristics and Heat and Mass Transfer of Falling-Water Films in an Industrial-Scale Dip Tube of a WSCC in an OMB Gasifier  

Science Journals Connector (OSTI)

A water-scrubbing cooling chamber (WSCC) is applied to an opposed multi-burner (OMB) gasifier(1-3) in which high-temperature syngas (with molten slag) is cooled, washed, and humidified, and the coarse particles are collected. ... On a lab.-scale testing platform of impinging entrained-flow gasifier with two opposed burners, the detailed measurements of gas concn. ...

Yifei Wang; Qiangqiang Guo; Bihua Fu; Jiangliang Xu; Guangsuo Yu; Fuchen Wang

2013-06-12T23:59:59.000Z

434

Webinar: Hydrogen Refueling Protocols  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Refueling Protocols, originally presented on February 22, 2013.

435

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. OM. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

436

Hydrogen Technologies Safety Guide  

SciTech Connect (OSTI)

The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

Rivkin, C.; Burgess, R.; Buttner, W.

2015-01-01T23:59:59.000Z

437

National Hydrogen Energy Roadmap  

Broader source: Energy.gov [DOE]

This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

438

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogenation of Magnesium Nickel Boride for Reversible Hydrogen Storage ... Use of hydrogen for transportation applications requires materials that not only store hydrogen at high density but that can operate reversibly at temperatures and pressures below approximately 100 C and 10 bar, respectively. ... This composition is based on assuming the following complete hydrogenation reaction:which stores 2.6 wt % hydrogen. ...

Wen Li; John J. Vajo; Robert W. Cumberland; Ping Liu; Son-Jong Hwang; Chul Kim; Robert C. Bowman, Jr.

2009-11-06T23:59:59.000Z

439

Direct Water-Cooled Power Electronics Substrate Packaging | Department...  

Broader source: Energy.gov (indexed) [DOE]

Direct Water-Cooled Power Electronics Substrate Packaging Direct Water-Cooled Power Electronics Substrate Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

440

Gaseous Hydrogen Delivery Breakout  

E-Print Network [OSTI]

or reduce the likelihood of hydrogen embrittlement Test existing high strength steel alloys for use in largeGaseous Hydrogen Delivery Breakout Strategic Directions for Hydrogen Delivery Workshop May 7 compression. Safety, integrity, reliability: Metal embrittlement, no H2 odorant, low ignition energy

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama II.K.14 University of Alabama, Tuscaloosa: Protein-Templated Synthesis and Assembly of Nanostructuctures for Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 V.F.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 V.F.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 Arizona II.C.1 Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen

442

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

443

New Materials for Hydrogen Pipelines  

Broader source: Energy.gov [DOE]

Barriers to Hydrogen Delivery: Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H2 distribution.

444

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect (OSTI)

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

445

NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Animated Map Correlates Fuel Cell Usage for Backup Power with Grid Outages Snapshot graphic of a U.S. map that shows the location and operational status of backup power fuel cells systems as well as the location of grid outages. Learn how NREL developed the time-lapse geographical visualization map or view the animation, which covers January 2010 to August 2013. Learning Demonstration Validates Hydrogen Fuel Cell Vehicles and Infrastructure in a Real-World Setting Two icons depict a fuel cell car (left) and hydrogen infrastructure (right). The cars icon is a drawing of a car with a water droplet at the gas tank. The infrastructure icon is a drawing of a hydrogen fueling nozzle. NREL analyzed seven years of real-world validation data, validated key DOE

446

Anti-Hydrogen Jonny Martinez  

E-Print Network [OSTI]

Anti-Hydrogen Jonny Martinez University of California, Berkeley #12;OUTLINE WHAT IS ANTI-HYDROGEN? HISTORY IMPORTANCE THEORY HOW TO MAKE ANTI-HYDROGEN OTHER ANTI-MATTER EXPERIMENTS CONCLUSION #12;WHAT IS ANTI-HYDROGEN? Anti-hydrogen is composed of a Positron(anti-electron) and anti-Proton. Anti-Hydrogen

Budker, Dmitry

447

APS ALternative Fuel (Hydrogen) Pilot Plant Monitoring System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

502 502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard James Francfort July 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard a James Francfort b July 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

448

Hydrogen peroxide safety issues  

SciTech Connect (OSTI)

A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors.

Conner, W.V.

1993-04-14T23:59:59.000Z

449

Hydrogen Use and Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USE AND SAFETY USE AND SAFETY The lightest and most common element in the universe, hydrogen has been safely used for decades in industrial applications. Currently, over 9 million tons of hydrogen are produced in the U.S. each year and 3.2 trillion cubic feet are used to make many common products. They include glass, margarine, soap, vitamins, peanut butter, toothpaste and almost all metal products. Hydrogen has been used as a fuel since the 1950s by the National Aeronautics & Space Administration (NASA) in the U.S. space program. Hydrogen - A Safe, Clean Fuel for Vehicles Hydrogen has another use - one that can help our nation reduce its consumption of fossil fuels. Hydrogen can be used to power fuel cell vehicles. When combined with oxygen in a fuel cell, hydrogen generates electricity used

450

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen preparation by commercial purification units, such as palladium filters, could give a good initial level

Kammel, Peter

451

Hydrogen and deuterium sorption on titanium under vacuum conditions  

Science Journals Connector (OSTI)

Investigation of titanium sponge as storage material for Hydrogen isotopes, Protium and Deuterium, represent one of the main issue to solve in order to build a safe storage container for Tritium resulted in a heavy water detritiation facility. During ... Keywords: deuterium, hydrogen, isotopes, storage, titanium

Eusebiu Ilarian Ionete; Bogdan Monea; Marius Zamfirache

2011-09-01T23:59:59.000Z

452

DOE Hydrogen Analysis Repository: Hydrogen Production by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production by Photovoltaic-powered Electrolysis Production by Photovoltaic-powered Electrolysis Project Summary Full Title: Production of Hydrogen by Photovoltaic-powered Electrolysis Project ID: 91 Principal Investigator: D.L. Block Keywords: Hydrogen production; electrolysis; photovoltaic (PV) Purpose To evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. Performer Principal Investigator: D.L. Block Organization: Florida Solar Energy Center Address: 1679 Clearlake Road Cocoa, FL 32922 Telephone: 321-638-1001 Email: block@fsec.ucf.edu Sponsor(s) Name: Michael Ashworth Organization: Florida Energy Office Name: Neil Rossmeissl Organization: DOE/Advanced Utilities Concepts Division Name: H.T. Everett Organization: NASA/Kennedy Space Center Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

453

Hydrogen Material Compatibility for Hydrogen ICE | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pm04smith.pdf More Documents & Publications Hydrogen Materials Compatibility for the H-ICE...

454

Gastric Secretion: Mechanism for Production of Hydrogen Ions  

Science Journals Connector (OSTI)

...from the hydro-lytic treatment of collective carotenoids...dissociation con-stant of water and other weak elec-trolytes...electro-lyte can be water, to produce hydrogen...under conditions of electrodialysis. These studies were...electric field, of either water or carbonic acid at...

Harry P. Gregor; Jesse M. Berkowitz

1965-11-05T23:59:59.000Z

455

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

hydrogen than electrolysis of water (Silversand, 2002). Natural gas reforming is estimated to be the lowest cost

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

456

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report President Bush Launches the Hydrogen Fuel Initiative  

E-Print Network [OSTI]

of using hydrogen power, of course, will be energy independence for this nation... think about a legacy between hydrogen and oxygen generates energy, which can be used to power a car producing only water to taking these cars from laboratory to showroom so that the first car driven by a child born today could

457

Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas  

SciTech Connect (OSTI)

To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

Not Available

1986-02-01T23:59:59.000Z

458

Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China  

Science Journals Connector (OSTI)

Abstract Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision-making method by incorporating fuzzy AHP and fuzzy TOPSIS was proposed to prioritize the roles of different technologies. The proposed method is capable of allowing multiple groups of stakeholders/decision-makers to participate in the decision-making and addressing problems with uncertainty and imprecise information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen economy in China among the five assessed technologies.

Jingzheng Ren; Suzhao Gao; Shiyu Tan; Lichun Dong; Antonio Scipioni; Anna Mazzi

2015-01-01T23:59:59.000Z

459

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

460

E-Print Network 3.0 - anaerobic hydrogen producing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a small percentage of hydrogen sulfide, water vapor, carbon... Technology Biomethane (biogas) is an alternative and renewable energy source produced through the anaerobic... are...

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

462

SMART WATER GRID PLAN B TECHNICAL REPORT  

E-Print Network [OSTI]

SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network, and others. A review of the benefits of Smart Water Grids is presented in the context of water conservation

Julien, Pierre Y.

463

Life cycle assessment of various hydrogen production methods  

Science Journals Connector (OSTI)

A comprehensive life cycle assessment (LCA) is reported for five methods of hydrogen production, namely steam reforming of natural gas, coal gasification, water electrolysis via wind and solar electrolysis, and thermochemical water splitting with a CuCl cycle. Carbon dioxide equivalent emissions and energy equivalents of each method are quantified and compared. A case study is presented for a hydrogen fueling station in Toronto, Canada, and nearby hydrogen resources close to the fueling station. In terms of carbon dioxide equivalent emissions, thermochemical water splitting with the CuCl cycle is found to be advantageous over the other methods, followed by wind and solar electrolysis. In terms of hydrogen production capacities, natural gas steam reforming, coal gasification and thermochemical water splitting with the CuCl cycle methods are found to be advantageous over the renewable energy methods.

E. Cetinkaya; I. Dincer; G.F. Naterer

2012-01-01T23:59:59.000Z

464

A fully relativistic radial fall  

E-Print Network [OSTI]

Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A {\\it gedankenexperiment} in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this letter, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes an higher value of the maximal coordinate velocity, this value being reached earlier on during infall. In the second part of this letter, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.

Alessandro D. A. M. Spallicci; Patxi Ritter

2014-07-21T23:59:59.000Z

465

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2011-01-01T23:59:59.000Z

466

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

467

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

468

Hydrogen Based Bacteria  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Based Bacteria Hydrogen Based Bacteria Name: Ellen Location: N/A Country: N/A Date: N/A Question: i was in my Biology class and a very respectable someone mentioned something about the discovery of a hydrogen based bacteria. my teacher wasnt aware of this study, and assigned me to find out about it. so i thought i would Email you and see if you people knew anything about it. Awaiting your repsonse Replies: I'm not quite sure what you mean by hydrogen based bacteria but I will take a stab that you mean bacteria that use hydrogen for energy. Some bacteria are chemolithotrophs which mean that they are autrophs but don't use the sun as their energy source; they get their energy from chemical sources. There are bacteria that use hydrogen as their energy source. They are diverse as a group and are all facultative. The overall chemical reaction looks like this:

469

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Natural Gas Pipelines Hydrogen embrittlement What is the relevance to hydrogen pipelines? ORNL researchHydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory

470

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Issues for H2 Service Materials of Construction Hydrogen Embrittlement Presence of atomic hydrogen susceptible to Hydrogen Embrittlement. #12;Pipeline Transmission of Hydrogen --- 7 Copyright: H2 Induced, characteristic of hydrogen embrittlement. Photo Courtesy of NASA/Kennedy Space Center Materials Lab #12;Pipeline

471

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

472

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network [OSTI]

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

473

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

474

Hydrogen storage composition and method  

DOE Patents [OSTI]

A hydrogen storage composition based on a metal hydride dispersed in an aerogel prepared by a sol-gel process. The starting material for the aerogel is an organometallic compound, including the alkoxysilanes, organometals of the form M(OR)x and MOxRy, where R is an alkyl group of the form C.sub.n H.sub.2n+1, M is an oxide-forming metal, n, x, and y are integers, and y is two less than the valence of M. A sol is prepared by combining the starting material, alcohol, water, and an acid. The sol is conditioned to the proper viscosity and a hydride in the form of a fine powder is added. The mixture is polymerized and dried under supercritical conditions. The final product is a composition having a hydride uniformly dispersed throughout an inert, stable and highly porous matrix. It is capable of absorbing up to 30 moles of hydrogen per kilogram at room temperature and pressure, rapidly and reversibly. Hydrogen absorbed by the composition can be readily be recovered by heat or evacuation.

Heung, Leung K (Aiken, SC); Wicks, George G. (Aiken, SC)

2003-01-01T23:59:59.000Z

475

Formation and Dissociation of Intra-Intermolecular Hydrogen-Bonded Solute-Solvent Complexes: Chemical  

E-Print Network [OSTI]

architectures in supramolecular chemistry, molecular recognition, and self-assembly. The strength of hydrogen, such as the properties of water4 and biological recognition.3 Hydrogen bonding has been studied extensively in many contexts since the birth of the concept in the early 1900s.2,3,5 Hydrogen bonds can be separated into two

Fayer, Michael D.

476

Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species  

E-Print Network [OSTI]

Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species Zhaohui in media containing different concentrations of deuterium. The hydrogen isotopic ratios of lipids that lipid dD values can be used to determine water dD values, hydrogen isotope fractionation was found

Sachs, Julian P.

477

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized  

E-Print Network [OSTI]

Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other. For drinking water treatment, an electron donor must be added. Hydrogen is an ideal electron donor, as it is non-toxic, inexpensive, and sparsely soluble. We tested a hydrogen-based, hollow-fiber membrane

Nerenberg, Robert

478

Collisional excitation of water by hydrogen atoms  

E-Print Network [OSTI]

We present quantum dynamical calculations that describe the rotational excitation of H$_2$O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm$^{-1}$. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H$_2$O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H$_2$O / He and H$_2$O / H$_2$ collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory.

Daniel, F; Dagdigian, P J; Dubernet, M -L; lique, F; forts, G Pineau des

2014-01-01T23:59:59.000Z

479

Hydrogen Compatibility of Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

480

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

Note: This page contains sample records for the topic "falling water hydrogen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, Joseph C. (Richland, WA); Brehm, William F. (Richland, WA)

1982-01-01T23:59:59.000Z

482

Hydrogen Generator Appliance  

Broader source: Energy.gov (indexed) [DOE]

lAbOrAtOry NG Workshop summary report - appeNDIX J slide presentation: hydrogen Generator appliance Gus Block, Nuvera Fuel Cells...

483

Module 2: Hydrogen Use  

Broader source: Energy.gov [DOE]

This course covers the processes by which hydrogen is extracted, how it is stored and transported, and the inherent advantages and disadvantages of each method

484

Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

electric cooperatives* to offer net metering to customers who generate electricity using solar energy, wind energy, hydropower, hydrogen, biomass, landfill gas, geothermal energy,...

485

Hydrogen Production & Delivery  

Energy Savers [EERE]

* Address key materials needs for P&D: Membranes, Catalysts, PEC Devices, Reactors, and Tanks Hydrogen from Coal * Complete laboratory-scale development of separation and...

486

Renewable Hydrogen (Presentation)  

SciTech Connect (OSTI)

Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

Remick, R. J.

2009-11-16T23:59:59.000Z

487

Hydrogen Production & Delivery  

Broader source: Energy.gov [DOE]

"2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation H2 and Fuel Cells Plenary "

488

Hydrogen Release Behavior  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

489

Hydrogen permeation resistant barrier  

DOE Patents [OSTI]

A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

McGuire, J.C.; Brehm, W.F.

1980-02-08T23:59:59.000Z

490

President's Hydrogen Fuel Initiative  

Broader source: Energy.gov [DOE]

Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

491

Hydrogen Safety Knowledge Tools  

SciTech Connect (OSTI)

With hydrogen gaining acceptance as an energy carrier for fuel cell vehicles and stationary fuel cell applications, a new community of hydrogen users is emerging and continues to grow. With this growth has come the need to spread the word about safe practices for handling, storing, and using hydrogen. Like all energy forms, hydrogen can be used safely through proper procedures and engineering techniques. However, hydrogen involves a degree of risk that must be respected, and the importance of avoiding complacency or haste in the safe conduct and performance of projects involving hydrogen cannot be overstated. To encourage and promote the safe use of hydrogen, Pacific Northwest National Laboratory (PNNL) has developed and continues to enhance two software tools in support of the U.S. Department of Energy's Fuel Cell Technologies Program: the Hydrogen Safety Best Practices online manual (www.H2BestPractices.org) and the Hydrogen Incident Reporting and Lessons Learned database (www.H2Incidents.org).

Fassbender, Linda L.

2011-01-31T23:59:59.000Z

492

Hydrogen ion microlithography  

DOE Patents [OSTI]

Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

Tsuo, Y.S.; Deb, S.K.

1990-10-02T23:59:59.000Z

493

Detroit Commuter Hydrogen Project  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

494

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

495

Department of Energy - Hydrogen  

Broader source: Energy.gov (indexed) [DOE]

Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology http:energy.goveerearticlesand-oscar-sustainable-mobile-lighting-goes-lighting-operations-hydro...

496

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

497

STAT 490 Fall 2012 Test 2  

E-Print Network [OSTI]

STAT 490. Fall 2012. Test 2. October 30, 2012. 1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: Age xl. Age xl. 0.

Owner

2014-06-29T23:59:59.000Z

498

The Decline and Fall of Nuclear Power  

Science Journals Connector (OSTI)

The Decline and Fall of Nuclear Power ... As adults, as a nation, haven't we applied this same line of reasoning to our nuclear power industry? ...

LESLIE S. RAMSEY

1989-02-20T23:59:59.000Z

499

Idaho Falls Power- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an...

500

Condensed Matter Theory Center Fall 2009 Symposium  

E-Print Network [OSTI]

Condensed Matter Theory Center Fall 2009 Symposium September 28 - October 2, 2009 2202 Physics Barnett, "Vortex lattice locking in rotating BECs and spinor condensates" Maxim Dzero, "Cooper pair

Lathrop, Daniel P.