Calculating chiller emissions and source energy use
Aumann, D.J. [Bevilacqua-Knight, Inc., Oakland, CA (United States)
1996-12-31
Various analyses have compared the emissions and over-all source energy use of different chillers. However, these analyses are typically based on national or regional electric power plant annual averages or rely on outdated emissions data that do not account for scrubbers and other pollution controls applied in response to the 1990 Clean Air Act Amendments (CAAA). Other analyses have used power generation data for a specific utility but require hourly generation profiles, which are difficult to obtain. Thus, many of the existing models are either too general to provide valuable information or too complex to be practical for the day-to-day applications engineers face. This paper introduces a simple yet reliable hand calculation method for estimating the combustion-related emissions and source energy use of gas and electric chillers. The user needs to supply only two inputs: annual chiller system energy use and the utility`s power generation mix during chiller operation. The analysis supplies electric power plant heat rates and emission factors. Referenced guidelines are documented for all calculation inputs.
Source waters Several factors influence the selection of source
1 Source waters Several factors influence the selection of source waters to feed desalination plants: the location of the plant in relation to water sources available, the deliv- ery destination of the treated water, the quality of the source water, the pretreatment options available, and the ecological
Fast spectral source integration in black hole perturbation calculations
Seth Hopper; Erik Forseth; Thomas Osburn; Charles R. Evans
2015-06-15
This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called \\emph{spectral source integration} (SSI), this method should see widespread future use in problems that entail (i) point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as $e \\simeq 0.7$. We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of three improvement in the overall speed. The primary initial application of SSI--for us its \\emph{raison d'\\^{e}tre}--is in an arbitrary precision \\emph{Mathematica} code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr, and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in solution of the geodesic orbital motion.
Scoping calculations of power sources for nuclear electric propulsion
Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)
1994-05-01
This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.
Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source
Traub, Richard J.
2010-03-26
The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.
Abushakra, B.; Haberl, J.S.; Claridge, D.E
2004-01-01
on monitored data collected for PG&E and the California Energy Commission (CEC). Noren (1997) and Noren and Pyrko (1998a and b) described a typical load shape technique used with data collected from 13 schools and nine hotels in Sweden. Major sources of data... Literature on Diversity Factors and Schedules for Energy and Cooling Load Calculations (1093-RP) Bass Abushakra, Ph.D. Jeff S. Haberl, Ph.D., P.E. David E. Claridge, Ph.D., P.E. Member ASHRAE Member ASHRAE Member ASHRAE ABSTRACT This paper provides...
Calculation of dose to soft tisse from implanted beta sources
Dauffy, Lucile
1998-01-01
, spherical radioactive particles are injected into these arteries. This study deals with the development of BRAIN-DOSES, a computer code based on VARSKIN MOD2 and SADDE MOD2, which evaluates gamma and beta dose distributions for radioactive sources with five...
Calculating CO2 Emissions from Mobile Sources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED: A New Model(RedirectedCalculating
Tian, Zhen; Li, Yongbao; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-01-01
We recently built an analytical source model for GPU-based MC dose engine. In this paper, we present a sampling strategy to efficiently utilize this source model in GPU-based dose calculation. Our source model was based on a concept of phase-space-ring (PSR). This ring structure makes it effective to account for beam rotational symmetry, but not suitable for dose calculations due to rectangular jaw settings. Hence, we first convert PSR source model to its phase-space let (PSL) representation. Then in dose calculation, different types of sub-sources were separately sampled. Source sampling and particle transport were iterated. So that the particles being sampled and transported simultaneously are of same type and close in energy to alleviate GPU thread divergence. We also present an automatic commissioning approach to adjust the model for a good representation of a clinical linear accelerator . Weighting factors were introduced to adjust relative weights of PSRs, determined by solving a quadratic minimization ...
Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types
Muir, B. R.; Rogers, D. W. O.
2014-11-01
Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.
Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity
Firestone, Jeremy
2005-01-01
Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating opens for "vehicle-to-grid" (V2G) power. This article defines the three vehicle types that can produce V. This article develops equations to calculate the capacity for grid power from three types of electric drive
THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS
Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.
2012-06-19
Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.
Madland, D.G.; Arthur, E.D.; Estes, G.P.; Stewart, J.E.; Bozoian, M.; Perry, R.T.; Parish, T.A.; Brown, T.H.; England, T.R.; Wilson, W.B.; Charlton, W.S.
1999-09-01
SOURCES 4A is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., a mixture of {alpha}-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 43 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 89 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron source. It also provides an analysis of the contributions to that source by each nuclide in the problem.
Wilson, W. B. (William B.); Perry, R. T. (Robert T.); Shores, E. F. (Erik F.); Charlton, W. S. (William S.); Parish, Theodore A.; Estes, G. P. (Guy P.); Brown, T. H. (Thomas H.); Arthur, Edward D. (Edward Dana),; Bozoian, Michael; England, T. R.; Madland, D. G.; Stewart, J. E. (James E.)
2002-01-01
SOURCES 4C is a computer code that determines neutron production rates and spectra from ({alpha},n) reactions, spontaneous fission, and delayed neutron emission due to radionuclide decay. The code is capable of calculating ({alpha},n) source rates and spectra in four types of problems: homogeneous media (i.e., an intimate mixture of a-emitting source material and low-Z target material), two-region interface problems (i.e., a slab of {alpha}-emitting source material in contact with a slab of low-Z target material), three-region interface problems (i.e., a thin slab of low-Z target material sandwiched between {alpha}-emitting source material and low-Z target material), and ({alpha},n) reactions induced by a monoenergetic beam of {alpha}-particles incident on a slab of target material. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The ({alpha},n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay {alpha}-particle spectra, 24 sets of measured and/or evaluated ({alpha},n) cross sections and product nuclide level branching fractions, and functional {alpha}-particle stopping cross sections for Z < 106. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code provides the magnitude and spectra, if desired, of the resultant neutron source in addition to an analysis of the'contributions by each nuclide in the problem. LASTCALL, a graphical user interface, is included in the code package.
Calculation of the molecular integrals with the range-separated correlation factor
Micha? Silkowski; Micha? Lesiuk; Robert Moszynski
2015-04-13
Explicitly correlated quantum chemical calculations require calculations of five types of molecular integrals beyond the standard electron repulsion integrals. We present a novel scheme, which utilises general ideas of the McMurchie-Davidson technique, to compute these integrals when the so-called \\range-separated" correlation factor is used. This correlation factor combines the well-known short range behaviour, resulting from the electronic cusp condition, with the exact long-range asymptotics found for the helium atom [M. Lesiuk, B. Jeziorski, and R. Moszynski, J. Chem. Phys. $\\textbf{139}$, 134102 (2013)]. Almost all steps of the presented procedure are formulated recursively, so that an efficient implementation and control of the precision are possible. Additionally, the present formulation is very flexible and general, and it allows for use of an arbitrary correlation factor in the electronic structure calculations with minor or no changes.
Sex-specific tissue weighting factors for effective dose equivalent calculations
Xu, X.G. [Rensselaer Polytechnic Inst., Troy, NY (United States); Reece, W.D. [Texas A& M Univ., College Station, TX (United States)
1996-01-01
The effective dose equivalent was defined in the International Commission on Radiological Protection Publication 26 in 1977 and later adopted by the U.S. Nuclear REgulatory Commission. To calculate organ doses and effective dose equivalent for external exposures using Monte Carlo simulations, sex-specific anthropomorphic phantoms and sex-specific weighting factors are always employed. This paper presents detailed mathematical derivation of a set of sex-specific tissue weighting factors and the conditions which the weighting factors must satisfy. Results of effective dose equivalent calculations using female and male phantoms exposed to monoenergetic photon beams of 0.08, 0.3, and 1.0 MeV are provided and compared with results published by other authors using different sex-specific weighting factors and phantoms. The results indicate that females always receive higher effective dose equivalent than males for the photon energies and geometries considered and that some published data may be wrong due to mistakes in deriving the sex-specific weighting factors. 17 refs., 2 figs., 2 tabs.
Gullinger, T.R.; Kelly, M.J.; Knapp, J.A.; Walsh, D.S.; Doyle, B.L. )
1991-08-01
In this paper, the authors demonstrate a new technique for measuring hydrogen isotope separation factors in hydrogen-absorbing metals. Using external ion beam nuclear reaction analysis of metal electrodes in an operating electrochemical cell, the authors monitor in situ the deuterium content of the electrode. changing the deuterium/hydrogen ratio in the electrolyte changes the observed deuterium content of the metal electrode, and, assuming identical ultimate total metal loading for deuterium, hydrogen, and any mixture of deuterium and hydrogen, a simple calculation yields the separation factor.
Influence of polarization and a source model for dose calculation in MRT
Bartzsch, Stefan Oelfke, Uwe; Lerch, Michael; Petasecca, Marco; Bräuer-Krisch, Elke
2014-04-15
Purpose: Microbeam Radiation Therapy (MRT), an alternative preclinical treatment strategy using spatially modulated synchrotron radiation on a micrometer scale, has the great potential to cure malignant tumors (e.g., brain tumors) while having low side effects on normal tissue. Dose measurement and calculation in MRT is challenging because of the spatial accuracy required and the arising high dose differences. Dose calculation with Monte Carlo simulations is time consuming and their accuracy is still a matter of debate. In particular, the influence of photon polarization has been discussed in the literature. Moreover, it is controversial whether a complete knowledge of phase space trajectories, i.e., the simulation of the machine from the wiggler to the collimator, is necessary in order to accurately calculate the dose. Methods: With Monte Carlo simulations in the Geant4 toolkit, the authors investigate the influence of polarization on the dose distribution and the therapeutically important peak to valley dose ratios (PVDRs). Furthermore, the authors analyze in detail phase space information provided byMartínez-Rovira et al. [“Development and commissioning of a Monte Carlo photon model for the forthcoming clinical trials in microbeam radiation therapy,” Med. Phys. 39(1), 119–131 (2012)] and examine its influence on peak and valley doses. A simple source model is developed using parallel beams and its applicability is shown in a semiadjoint Monte Carlo simulation. Results are compared to measurements and previously published data. Results: Polarization has a significant influence on the scattered dose outside the microbeam field. In the radiation field, however, dose and PVDRs deduced from calculations without polarization and with polarization differ by less than 3%. The authors show that the key consequences from the phase space information for dose calculations are inhomogeneous primary photon flux, partial absorption due to inclined beam incidence outside the field center, increased beam width and center to center distance due to the beam propagation from the collimator to the phantom surface and imperfect absorption in the absorber material of the Multislit Collimator. These corrections have an effect of approximately 10% on the valley dose and suffice to describe doses in MRT within the measurement uncertainties of currently available dosimetry techniques. Conclusions: The source for the first clinical pet trials in MRT is characterized with respect to its phase space and the photon polarization. The results suggest the use of a presented simplified phase space model in dose calculations and hence pave the way for alternative and fast dose calculation algorithms. They also show that the polarization is of minor importance for the clinical important peak and valley doses inside the microbeam field.
Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)
Calculated transport properties of CdO: thermal conductivity and thermoelectric power factor
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lindsay, Lucas R.; Parker, David S.
2015-10-01
We present first principles calculations of the thermal and electronic transport properties of the oxide semiconductor CdO. In particular, we find from theory that the accepted thermal conductivity ? value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our calculations of ? of CdO are in good agreement with recent measurements. We also find that alloying of MgO with CdO is an effective means to reduce the lattice contribution to ?, despite MgO having a much larger thermal conductivity. We further consider the electronic structure of CdO in relation to thermoelectric performance, finding that large thermoelectric powermore »factors may occur if the material can be heavily doped p-type. This work develops insight into the nature of thermal and electronic transport in an important oxide semiconductor.« less
Scoping Analysis of Source Term and Functional Containment Attenuation Factors
Pete Lowry
2012-10-01
In order to meet future regulatory requirements, the Next Generation Nuclear Plant (NGNP) Project must fully establish and validate the mechanistic modular high temperature gas-cooled reactor (HTGR) source term. This is not possible at this stage in the project, as significant uncertainties in the final design remain unresolved. In the interim, however, there is a need to establish an approximate characterization of the source term. The NGNP team developed a simplified parametric model to establish mechanistic source term estimates for a set of proposed HTGR configurations.
Calculation of extremity neutron fluence-to-dose equivalent conversion factors
Wood-Zika, Annmarie Ruth
1997-01-01
-to-dose equivalent conversion factors to Los Alamos National Laboratory extremity dosimeter correction factors is performed....
Abushakra, B.; Sreshthaputra, A.; Haberl, J. S.; Claridge, D. E.
2001-01-01
from the diversity factors are then compared with the EUI?s calculated directly from the raw data (Total kWh per year divided by the square footage) to assure that the data manipulation during the derivation of the diversity factors is free...
Gauntt, Randall O.; Powers, Dana Auburn; Ashbaugh, Scott G.; Leonard, Mark Thomas; Longmire, Pamela
2010-04-01
In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs2MoO4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses.
Regulation and Compensation of Source Harmonics for the Boost ConverterBased Power Factor
Perreault, Dave
Regulation and Compensation of Source Harmonics for the Boost ConverterBased Power Factor of a diode bridge and associated boost converter. This circuit is the most widely employed of the fam- ily for the boost based power factor precompensator which guarantees fast regulation of the output voltage towards
A journal impact factor (IF) is calculated as the ratio between the number of citations in a given
Crawford, John R.
A journal impact factor (IF) is calculated as the ratio between the number of citations in a given year to any item published in that journal in the previous two years and the number of research items published in the same journal in the same two years (Garfield, 2001). Several potential pitfalls of IF have
A journal impact factor (IF) is calculated as the ratio between the number of citations in a given
Crawford, John R.
A journal impact factor (IF) is calculated as the ratio between the number of citations in a given year to any item published in that journal in the previous two years and the number of research items published in the same journal in the same two years. IF, widely acknowledged as the standard measure
Luminosity function of binary X-ray sources calculated using the Scenario Machine
A. I. Bogomazov; V. M. Lipunov
2007-05-20
Using the ``Scenario Machine'' we have carried out a population synthesis of X-ray binaries for the purpose of modelling of X-ray luminosity functions (XLFs) in different types of galaxies: star burst, spiral, and elliptical. This computer code allows to calculate, by using Monte Carlo simulations, the evolution of a large ensemble of binary systems, with proper accounting for the spin evolution of magnetized neutron stars. We show that the XLF has no universal type. It depends on the star formation rate in the galaxy. Also it is of importance to take into account the evolution of binary systems and life times of X-ray stages in theoretical models of such functions. We have calculated cumulative and differential XLFs for the galaxy with the constant star formation rate. Also we have calculated cumulative luminosity functions for different intervals of time after the star formation burst in the galaxy and curves depicting the evolution of the X-ray luminosity after the star formation burst in the galaxy.
Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek
2011-03-01
Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.
Astrophysical S factor of {$^{12}$C($?,?$)$^{16}$O} Calculated with the Reduced R-matrix Theory
Zhen-Dong An; Zhen-Peng Chen; Yu-Gang Ma; Jian-Kai Yu; Ye-Ying Sun; Gong-Tao Fan; Yong-Jiang Li; Hang-Hua Xu; Bo-Song Huang; Kan Wang
2015-09-02
Determination of the accurate astrophysical S factor of {$^{12}$C($\\alpha,\\gamma$)$^{16}$O} reaction has been regarded as a holy grail of nuclear astrophysics for decades. In current stellar models, a knowledge of that value to better than 10\\% is desirable. Due to the practical issues, tremendous experimental and theoretical efforts over nearly 50 years are not able to reach this goal, and the published values contradicted with each other strongly and their uncertainties are 2 times larger than the required precision. To this end we have developed a Reduced R-matrix Theory, based on the classical R-matrix theory of Lane and Thomas, which treats primary transitions to ground state and four bound states as the independent reaction channels in the channel spin representation. With the coordination of covariance statistics and error propagation theory, a global fitting for almost all available experimental data of $^{16}$O system has been multi-iteratively analyzed by our powerful code. A reliable, accurate and self-consistent astrophysical S factor of {$^{12}$C($\\alpha,\\gamma$)$^{16}$O} was obtained with a recommended value $S_{tot}$ (300) = 162.7 $\\pm$ 7.3 keV b (4.5\\%) which could meet the required precision.
Lee, Seong T [ORNL; Burress, Timothy A [ORNL; Hsu, John S [ORNL
2009-01-01
This paper introduces a new method for calculating the power factor with consideration of the cross saturation between the direct-axis (d-axis) and the quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross-saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at high speed, which was developed for the traction motor of a hybrid electric vehicle.
Park, Kwangwoo; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino
2015-01-01
We studied the investigation of volume averaging effect for air-filled cylindrical ionization chambers to determine correction factors in small photon field for the given chamber. As a method, we measured output factors using several cylindrical ionization chambers and calculated with mathematical method similar to deconvolution in which we modeled non-constant and inhomogeneous exposure function in the cavity of chamber. The parameters in exposure function and correction factors were determined by solving a system of equations we developed with measurement data and geometry of the given chamber. Correction factors (CFs) we had found are very similar to that from Monte Carlo (MC) simulation. For example, CFs in this study were computed as 1.116 for PTW31010, and 1.0225 for PTW31016, while CFs from MC were reported as approximately between 1.17 and 1.20 for PTW31010, and between 1.02 and 1.06 for PTW31016 in of 6MV photon beam . Furthermore, the result from the method of deconvolution combined with MC for cham...
The Domain Chaos Puzzle and the Calculation of the Structure Factor and Its Half-Width
Nathan Becker; Guenter Ahlers
2005-11-30
The disagreement of the scaling of the correlation length xi between experiment and the Ginzburg-Landau (GL) model for domain chaos was resolved. The Swift-Hohenberg (SH) domain-chaos model was integrated numerically to acquire test images to study the effect of a finite image-size on the extraction of xi from the structure factor (SF). The finite image size had a significant effect on the SF determined with the Fourier-transform (FT) method. The maximum entropy method (MEM) was able to overcome this finite image-size problem and produced fairly accurate SFs for the relatively small image sizes provided by experiments. Correlation lengths often have been determined from the second moment of the SF of chaotic patterns because the functional form of the SF is not known. Integration of several test functions provided analytic results indicating that this may not be a reliable method of extracting xi. For both a Gaussian and a squared SH form, the correlation length xibar=1/sigma, determined from the variance sigma^2 of the SF, has the same dependence on the control parameter epsilon as the length xi contained explicitly in the functional forms. However, for the SH and the Lorentzian forms we find xibar ~ xi^1/2. Results for xi determined from new experimental data by fitting the functional forms directly to the experimental SF yielded xi ~ epsilon^-nu} with nu ~= 1/4 for all four functions in the case of the FT method, but nu ~= 1/2, in agreement with the GL prediction, in the the case of the MEM. Over a wide range of epsilon and wave number k, the experimental SFs collapsed onto a unique curve when appropriately scaled by xi.
Not Available
1991-08-01
MOBILE4.1 is the latest revision to EPA's highway vehicle mobile source emission factor model. Relative to MOBILE4, it contains numerous revisions and provides the user with additional options for modeling highway vehicle emission factors. it will calculate emission factors for hydrocarbons (HC), carbon monoxide, (CO), and oxides of nitrogen (NOx) from highway motor vehicles. It calculates emission factors for eight individual vehicle types, in two regions of the country (low and high altitude). The emission factors depend on various conditions such as ambient temperature, fuel volatility, speed, and mileage accrual rates. It will estimate emission factors for any calendar year between 1960 and 2020 inclusive. The 25 most recent model years are considered in operation in each calendar year. EPA is requiring that states and others preparing emission inventories for nonattainment areas for CO and ozone to use MOBILE4.1 in the development of the base year 1990 emission inventories required under the Clean Air Act of 1990.
Teague, Aarin Elizabeth
2009-06-02
. Locations of contributing non-point and point sources in the watershed were defined using Geographic Information Systems (GIS). By distributing livestock, wildlife, wastewater treatment plants, septic systems, and pet sources, the bacterial load...
PONCET, Bernard R.
2003-02-27
Electricite De France's Bugey-1 reactor, with graphite moderator, was shutdown permanently in 1994. The natural uranium elements are encased in graphite sleeves to facilitate handling. 2,000 m3 of concrete containers, containing non conditioned graphite sleeves, must be characterized and conditioned before shipment to the national repository site called ''Centre de l'Aube''. The characterization work consists in quantifying Difficult-To-Measure nuclides (DTM) by the use of Scaling Factors (SF), which use Co-60 as tracer. Bugey developed an industrial method for the gamma counting of each package to perform easily and rapidly the measurement of the Co-60 content. Depending upon the DTM radionuclide, Co-60 scaling factors are determined, or by measurement on graphite samples (case of C-14, Cl-36, Ni-63, H-3), either by using a calculation technique which is based upon the impurities present in the graphite sleeves. This method is applied for the other pure beta emitters all DTM radionucli des : Ag-108m, Be-10, Ca-41, Cd-109, Cd-113m, Co-57, Cs-135, Cs-137, Eu-155, Fe-55, Gd-153, Mo-93, Nb- 93m, Nb-94, Ni-59, Pd-107, Pm-147, Sm-151, Sn-119m, Sn-121m, Sn-126, Sr-90, Tc-99, V-49 and Zr-93. Calculations use six sleeve history cases : 1 year at 50% power, 2 years at 50 % power, 3 years at 50 % power, 4 years at 50 % power, 1 year at 100 % power and 2 years at 100 % power. The DTM nuclides have been calculated from impurity concentrations for each of these six cases, and the greatest scaling factor has been kept. The calculation is based upon two impurity sets: First impurity set : a reverse activation calculation provides us with the best estimate value of impurities calculated from the measured mean gamma spectrum and from measured scaling factors. It consists in solving a system of simultaneous equations for the impurities as a function of the mean gamma radioactive spectrum and of the measured scaling factors. The concerned calculated impurities are Co, Cl, Li, Ag, Cs, Eu, Fe, Ni, Sb, Sc, Zn and Sn. Second impurity set: The other impurities which were not available by this reverse calculation are originated from the greatest value, which has been measured in the graphite and sometimes by using the detection limit. This method allows us to avoid some detection limit problems and statistical weaknesses. It gets better, cheaper and faster characterization by mixing easy gamma spectrum measurement and simple linear calculation.
Jedek, Christoph
2012-01-01
calculation of the solar load of one specific Bin, it willfor the amount of solar load on one polygon of the manikina given day time. The solar radiation on the one hand can be
Fu, Yong
Outage Distribution Factors Jiachun Guo, Yong Fu, Member, IEEE, Zuyi Li, Member, IEEE, and Mohammad Shahidehpour, Fellow, IEEE Abstract--Line outage distribution factors (LODFs) are utilized to perform of LODFs, especially with multiple-line outages, could speed up contingency analyses and improve
Abushakra, B.; Haberl, J. S.; Claridge, D. E.
1999-01-01
-05-01 COMPILATION OF DIVERSITY FACTORS AND SCHEDULES FOR ENERGY AND COOLING LOAD CALCULATIONS ASHRAE Research Project 1093 Preliminary Report LITERATURE REVIEW AND DATABASE SEARCH Bass Abushakra Jeff S. Haberl, Ph.D., P.E. David E. Claridge..., Ph.D., P.E. Energy Systems Laboratory Texas A&M University College Station, Texas, 77843-3581 May 1999 ASHRAE RP-1093 page i May 1999, Preliminary Report Energy...
Donald V. Martello; Natalie J. Pekney; Richard R. Anderson (and others) [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory
2008-03-15
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory particulate matter characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material, local secondary material, diesel combustion emissions, and gasoline combustion emissions. 26 refs., 10 figs., 1 tab.
An, Zhen-Dong; Ma, Yu-Gang; Yu, Jian-Kai; Sun, Ye-Ying; Fan, Gong-Tao; Li, Yong-Jiang; Xu, Hang-Hua; Huang, Bo-Song; Wang, Kan
2015-01-01
Determination of the accurate astrophysical S factor of {$^{12}$C($\\alpha,\\gamma$)$^{16}$O} reaction has been regarded as a holy grail of nuclear astrophysics for decades. In current stellar models, a knowledge of that value to better than 10\\% is desirable. Due to the practical issues, tremendous experimental and theoretical efforts over nearly 50 years are not able to reach this goal, and the published values contradicted with each other strongly and their uncertainties are 2 times larger than the required precision. To this end we have developed a Reduced R-matrix Theory, based on the classical R-matrix theory of Lane and Thomas, which treats primary transitions to ground state and four bound states as the independent reaction channels in the channel spin representation. With the coordination of covariance statistics and error propagation theory, a global fitting for almost all available experimental data of $^{16}$O system has been multi-iteratively analyzed by our powerful code. A reliable, accurate and ...
Martello, D.V.; Pekney, N.J.; Anderson, R.R.; Davidson, C.I. (Carnegie Mellon U., Pittsburgh, PA); Hopke, P.K. (Clarkson University, Potsdam, NY); Kim, E. (Clarkson University, Potsdam, NY); Christensen, W.F. (Brigham Young Univ., Provo, UT); Mangelson, N.F. (Brigham Young Univ., Provo, UT); Eatough, D.J. (Brigham Young Univ., Provo, UT)
2008-03-01
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.
Martello, DV [Martello, Donald V.; Pekney, NJ [Pekney, Natalie J.; Anderson, RR [Anderson, Richard; R,; Davidson, CI [Davidson, Cliff I.; Hopke, PK [Hopke, Philip K.; Kim, E [Kim, Eugene; Christensen, WF; (Christensen, William F.); Mangelson, NF [Mangelson, Nolan F.; Eatough, DJ [Eatough, Delbert J.
2008-03-01
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr amples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.
Martello, Donald [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pekney, Natalie [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Anderson, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Davidson, Cliff [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA; Hopke, Philip [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Kim, Eugene [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Christensen, William [Brigham Young Univ., Provo, UT (United States). Dept. of Statistics; Mangelson, Nolan [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry; Eatough, Delbert [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry
2008-03-01
Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.
Lee, Seong T [ORNL; Burress, Timothy A [ORNL; Tolbert, Leon M [ORNL
2009-01-01
This paper introduces a new method for calculating the power factor and output torque by considering the cross saturation between direct-axis (d-axis) and quadrature-axis (q-axis) of an interior permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include the cross saturation effect by adding the cross-coupled inductance terms. This paper also contains the new method of calculating the cross-coupled inductance values as well as self-inductance values in d- and q-axes. The analyzed motor is a high-speed brushless field excitation machine that offers high torque per ampere per core length at low speed and weakened flux at high speed, which was developed for the traction motor of a hybrid electric vehicle. The conventional two-axis IPMSM model was modified to include the cross-saturation effect by adding the cross-coupled inductance terms Ldq and Lqd. By the advantage of the excited structure of the experimental IPMSM, the analyzing works were performed under two conditions, the highest and lowest excited conditions. Therefore, it is possible to investigate the cross-saturation effect when a machine has higher magnetic flux from its rotor. The following is a summary of conclusions that may be drawn from this work: (1) Considering cross saturation of an IPMSM offers more accurate expected values of motor parameters in output torque calculation, especially when negative d-axis current is high; (2) A less saturated synchronous machine could be more affected by the cross-coupled saturation effect; (3) Both cross-coupled inductances, L{sub qd} and L{sub dq}, are mainly governed by d-axis current rather than q-axis current; (4) The modified torque equation, can be used for the dynamic model of an IPMSM for developing a better control model or control strategy; and (5) It is possible that the brushless field excitation structure has a common magnetic flux path on both d- and q-axis, and as a result, the reluctance torque of the machine could be reduced.
charlotb
2015-06-10
MA 15300Y Calculator Policy. ONLY a computer desktop calculator in scientific view is allowed on exams. If you have questions, please email the course ...
charlotb
2015-08-21
MA 15300 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...
Evaluated teletherapy source library
Cox, Lawrence J. (Los Alamos, NM); Schach Von Wittenau, Alexis E. (Livermore, CA)
2000-01-01
The Evaluated Teletherapy Source Library (ETSL) is a system of hardware and software that provides for maintenance of a library of useful phase space descriptions (PSDs) of teletherapy sources used in radiation therapy for cancer treatment. The PSDs are designed to be used by PEREGRINE, the all-particle Monte Carlo dose calculation system. ETSL also stores other relevant information such as monitor unit factors (MUFs) for use with the PSDs, results of PEREGRINE calculations using the PSDs, clinical calibration measurements, and geometry descriptions sufficient for calculational purposes. Not all of this information is directly needed by PEREGRINE. It also is capable of acting as a repository for the Monte Carlo simulation history files from which the generic PSDs are derived.
Wu, X.; Gao, J.; Wu, W.
2006-01-01
with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different...
Plutonium 239 Equivalency Calculations
Wen, J
2011-05-31
This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.
Walker, M. G.; Combet, C.; Hinton, J. A.; Maurin, D.; Wilkinson, M. I. E-mail: dmaurin@lspc.in2p3.fr
2011-06-01
We present a new analysis of the relative detectability of dark matter annihilation in the Milky Way's eight 'classical' dwarf spheroidal (dSph) satellite galaxies. Ours is similar to previous analyses in that we use Markov-Chain Monte Carlo techniques to fit dark matter halo parameters to empirical velocity dispersion profiles via the spherical Jeans equation, but more general in the sense that we do not adopt priors derived from cosmological simulations. We show that even without strong constraints on the shapes of dSph dark matter density profiles (we require only that the inner profile satisfies -liM{sub r {yields} 0} dln {rho}/dln r {<=} 1), we obtain a robust and accurate constraint on the astrophysical component of a prospective dark matter annihilation signal, provided that the integration angle is approximately twice the projected half-light radius of the dSph divided by distance to the observer, {alpha}{sub int} {approx} 2r{sub h} /d. Using this integration angle, which represents a compromise between maximizing prospective flux and minimizing uncertainty in the dSph's dark matter distribution, we calculate the relative detectability of the classical dSphs by ground- and space-based {gamma}-ray observatories.
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Geothermal Life Cycle Calculator
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Sullivan, John
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
Meskhidze, Nicholas
of diesel- and gasoline-powered vehicle emissions in Mexico City D. A. Thornhill, A. E. Williams, T. B be low. The second figure shows the background versus diesel factors. There may be a slight horizontal factors. In this case, even when the diesel factor's contributions are very high, the background factor
Petrophysical corner - calculating water cut
Elphick, R.Y. )
1990-02-01
The problem of determining the amount of water cut that can be expected from a well is discussed in conjunction with a program for making this calculation. The program was written for Amiga, Apple Macintosh, and MS DOS personal computers and source code for the program is provided.
Guha, Abhinav
2014-01-01
or vented sources and cogeneration plants in the oil and gasLa Paloma natural gas cogeneration plant; (c) and (d) CymricPaloma natural gas cogeneration plant, McKittrick; and (3)
Playful calculation : tangible coding for visual calculation
Ham, Derek (Derek Allen)
2015-01-01
Play and calculation are often considered to be at odds. Play embraces the wildness of youth, imagination, and a sense of freedom. Calculation, to most, represents rigor, mechanistic behavior, and following inflexible ...
Voirin, Marc
1994-01-01
, an uranium foil was used as the alpha particle source. The foil created new problems which needed to be studied in detail. Among these problems, the effect of the thickness of the oxide layer on the uranium metal foil surface was the most important. To study...
Cohen, Ofer
2015-01-01
The potential field approximation has been providing a fast, and computationally inexpensive estimation for the solar corona's global magnetic field geometry for several decades. In contrast, more physics-based global magnetohydrodynamic (MHD) models have been used for a similar purpose, while being much more computationally expensive. Here, we investigate the difference in the field geometry between a global MHD model and the potential field source surface model (PFSSM) by tracing individual magnetic field lines in the MHD model from the Alfven surface (AS), through the source surface (SS), all the way to the field line footpoint, and then back to the source surface in the PFSSM. We also compare the flux-tube expansion at two points at the SS and the AS along the same radial line. We study the effect of solar cycle variations, the order of the potential field harmonic expansion, and different magnetogram sources. We find that the flux-tube expansion factor is consistently smaller at the AS than at the SS for...
Zhu, G.; Lewandowski, A.
2012-11-01
A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of...
Calculation Complexity and Planning
Cockshott, W.P.
Cockshott,W.P. Cottrell,A. Socialism and the market: the socialist calculation debate revisited By Peter J. Boettke
Simulating variable source problems via post processing of individual particle tallies
Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.
2000-10-20
Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source for optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source.
Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study
Pajunen, A. J.; Tedeschi, A. R.
2012-09-18
This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.
Waste Package Lifting Calculation
H. Marr
2000-05-11
The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.
Multiphase flow calculation software
Fincke, James R. (Idaho Falls, ID)
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
Broader source: Energy.gov [DOE]
Our appliance and electronic energy use calculator allows you to estimate your annual energy use and cost to operate specific products. The wattage values provided are samples only; actual wattage...
quantum scattering calculations
Ihee, Hyotcherl
in a given quantum state per solid angle unit cross section : integral of the differential cross section) converged integral and differential cross sections geometriquantum scattering calculations on chemical reaction 1st Day #12;schedule day 1. 1.Introduction day
Excited state contamination in nucleon structure calculations
Jeremy Green; Stefan Krieg; John Negele; Andrew Pochinsky; Sergey Syritsyn
2011-11-28
Among the sources of systematic error in nucleon structure calculations is contamination from unwanted excited states. In order to measure this systematic error, we vary the operator insertion time and source-sink separation independently. We compute observables for three source-sink separations between 0.93 fm and 1.39 fm using clover-improved Wilson fermions and pion masses as low as 150 MeV. We explore the use of a two-state model fit to subtract off the contribution from excited states.
Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data
Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-André
2014-04-15
Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.
Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water
Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S. [Radiation Physics, UT M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Radiological Physics Center, UT M.D. Anderson Cancer Center, 7515 South Main Street, Suite 300, Houston, Texas 77030-4519 (United States)
2008-09-15
Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.
Broader source: Energy.gov [DOE]
This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.
Electromagetic proton form factors
M Y Hussein
2006-10-31
The electromagnetic form factors are crucial to our understanding of the proton internal structure, and thus provide a strong constraint of the distributions of the charge and magnetization current within the proton. We adopted the quark-parton model for calculating and understanding the charge structure of the proton interms of the electromagnetic form factors. A remarkable agreement with the available experimental evidence is found.
Calculation of the compressibility factor and thermodynamic properties for methane
Dowling, Dennis William
1966-01-01
?9453 0 ' 9522 0?9582 0?9636 O?9684 0?9727 0 ' 9766 0?9801 0 ' 9833 0 ' 9862 0?9888 0 ' 9912 0?9933 210?46 194?80 181 ~ 12 169 ~ 30 259 F 17 150?51 143eO'7 236?59 130 ' 79 125 ~ 41 ~220 ~ 23 s'I 15? 05 I 09 ~ 72 104 ~ 15 98 ~ 31...
EPA - Rainfall Erosivity Factor Calculator webpage | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformation ECrNEPA ComplianceCompliance
EPA Rainfall Erosivity Factor Calculator Website | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreaforInformation ECrNEPAStateEPANationalPlain
Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)
1984-01-01
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.
Calculating Residential Carbon Dioxide Emissions --A New Approach
Hughes, Larry
Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane of tables relating to national sources and sinks of greenhouse gases (principally carbon dioxide, methane, 1
Source Attribution of Light Absorbing Aerosol in Arctic Snow
Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008 Biomass/poll. Factor: all data Pollution factor: depth data #12;2009 Data set for receptor modeling with limited analytes Factor 1: biomass Factor 2: pollution Factor 3: marine Factor 4: biomass #12;Factor
Zero Temperature Hope Calculations
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.
A Methodology for Calculating Radiation Signatures
Klasky, Marc Louis; Wilcox, Trevor; Bathke, Charles G.; James, Michael R.
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Criticality calculations for Step-2 GPHS modules.
Hensen, Danielle Lynn; Lipinski, Ronald J.
2007-08-01
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
Criticality Calculations for Step-2 GPHS Modules
Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)
2008-01-21
The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.
SCALE Sensitivity Calculations Using Contributon Theory
Rearden, Bradley T [ORNL] [ORNL; Perfetti, Chris [University of Michigan] [University of Michigan; Williams, Mark L [ORNL] [ORNL; Petrie Jr, Lester M [ORNL] [ORNL
2010-01-01
The SCALE TSUNAMI-3D sensitivity and uncertainty analysis sequence computes the sensitivity of k-eff to each constituent multigroup cross section using adjoint techniques with the KENO Monte Carlo codes. A new technique to simultaneously obtain the product of the forward and adjoint angular flux moments within a single Monte Carlo calculation has been developed and implemented in the SCALE TSUNAMI-3D analysis sequence. A new concept in Monte Carlo theory has been developed for this work, an eigenvalue contributon estimator, which is an extension of previously developed fixed-source contributon estimators. A contributon is a particle for which the forward solution is accumulated, and its importance to the response, which is equivalent to the adjoint solution, is simultaneously accumulated. Thus, the contributon is a particle coupled with its contribution to the response, in this case keff. As implemented in SCALE, the contributon provides the importance of a particle exiting at any energy or direction for each location, energy and direction at which the forward flux solution is sampled. Although currently implemented for eigenvalue calculations in multigroup mode in KENO, this technique is directly applicable to continuous-energy calculations for many other responses such as fixed-source sensitivity analysis and quantification of reactor kinetics parameters. This paper provides the physical bases of eigenvalue contributon theory, provides details of implementation into TSUNAMI-3D, and provides results of sample calculations.
LCEs for Naval Reactor Benchmark Calculations
W.J. Anderson
1999-07-19
The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.
A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol
Chin, M.; Davis, D.D. [Georgia Institute of Technology, Atlanta, GA (United States)] [Georgia Institute of Technology, Atlanta, GA (United States)
1995-05-20
The authors present an analysis of carbonyl sulfide (OCS) in the earth`s atmosphere, with the objective being to assess its role in the formation of sulfate aerosols in the stratosphere. They review the amount of OCS in the atmosphere, its distribution between the troposphere and stratosphere, the estimated source term for emission to the atmosphere, and from one-dimensional model calculations infer a stratospheric lifetime to photochemical reactions of ten years. Calculations infer a sulfur production rate from OCS oxidation which is a factor of 2 to 5 less than recent sulfur aerosol estimates would infer. They discuss a number of possible explanations for the discrepancy.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
Sturgeon, Richard W.
2012-06-27
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.
Daylighting Calculation in DOE-2
Winkelmann, F.C
2013-01-01
2.9) DAYLIGHTING CALCULATION IN DOE-2 Table of Contents 1.55 —-17:-.. LBL-11353 (III.2.9 only) EEB-DOE-2 83—3DAYLIGHTING CALCULATION IN DOE-2 Frederick C. Winkelmann
How Are Momentum Savings Calculated?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simplifying the Math: How Are Momentum Savings Calculated? Many people have heard about Momentum savings but don't understand how these types of savings are calculated. The short...
Journal Information Journal Impact Factor
Krejcí, Pavel
Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index 2014 JCR Science Edition Journal: Applications of Mathematics Mark Journal Title ISSN Total- life APPL MATH-CZECH 0862-7940 241 0.400 0.430 0.024 42 8.9 >10.0 Cited Journal Citing Journal Source
Journal Information Journal Impact Factor
Krejcí, Pavel
Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index 2012 JCR Science Edition Journal: Applications of Mathematics Mark Journal Title ISSN Total- life APPL MATH-CZECH 0862-7940 240 0.222 0.549 0.054 37 7.3 >10.0 Cited Journal Citing Journal Source
Diversity employment and recruitment sources
Not Available
1994-08-01
Effective human resources management has been identified as one of four critical success factors in the Department of Energy Strategic Plan. The Plan states relative to this factor: ``The Department seeks greater alignment of resources with agency priorities and increased diversification of the workforce, including gender, ethnicity, age, and skills. This diversification will bring new thinking and perspectives that heretofore have not had a voice in departmental decision-making.`` This Guide has been developed as a key tool to assist Department of Energy management and administrative staff in achieving Goal 2 of this critical success factor, which is to ``Ensure a diverse and talented workforce.`` There are numerous sources from which to recruit minorities, women and persons with disabilities. Applying creativity and proactive effort, using traditional and non-traditional approaches, and reaching out to various professional, academic and social communities will increase the reservoir of qualified candidates from which to make selections. In addition, outreach initiatives will undoubtedly yield further benefits such as a richer cultural understanding and diversity awareness. The resource listings presented in this Guide are offered to encourage active participation in the diversity recruitment process. This Guide contains resource listings by state for organizations in the following categories: (1) African American Recruitment Sources; (2) Asian American/Pacific Islander Recruitment Sources; (3) Hispanic Recruitment Sources; (4) Native American/Alaskan Native Recruitment Sources; (5) Persons with Disabilities Recruitment Sources; and (6) Women Recruitment Sources.
Iterative acceleration methods for Monte Carlo and deterministic criticality calculations
Urbatsch, T.J.
1995-11-01
If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.
DOE's Roof Savings Calculator (RSC)
Wang, Xiaorui "Ray"
energy consumption, 2006 Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd and windows Source: Building Energy Data Book, U.S. DOE, Prepared by D&R International, Ltd., September 2008. Figure 3. Commercial energy loads attributed to envelope and windows Source: Building Energy Data Book, U
Isogeometric analysis in electronic structure calculations
Cimrman, Robert; Kolman, Radek; T?ma, Miroslav; Vacká?, Ji?í
2016-01-01
In electronic structure calculations, various material properties can be obtained by means of computing the total energy of a system as well as derivatives of the total energy w.r.t. atomic positions. The derivatives, also known as Hellman-Feynman forces, require, because of practical computational reasons, the discretized charge density and wave functions having continuous second derivatives in the whole solution domain. We describe an application of isogeometric analysis (IGA), a spline modification of finite element method (FEM), to achieve the required continuity. The novelty of our approach is in employing the technique of B\\'ezier extraction to add the IGA capabilities to our FEM based code for ab-initio calculations of electronic states of non-periodic systems within the density-functional framework, built upon the open source finite element package SfePy. We compare FEM and IGA in benchmark problems and several numerical results are presented.
Equation of State from Lattice QCD Calculations
Rajan Gupta
2011-04-01
We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest (W-B) collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T=150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that the lattice results of EoS are getting precise enough to justify being used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.
Followup calculations for the UVAR LEU conversion
Rydin, R.A.; Hosticka, B.; Burns, T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others
1995-12-31
The UVAR reactor was successfully converted to LEU fuel in April 1994. Void coefficient measurements were made on the 4-by-4 fully-graphite-reflected LEU-1 core configuration, and an isothermal temperature coefficient measurement was made on the operational 4-by-5 partially-graphite-reflected LEU-2 core configuration. Both of these experiments have now been modeled in their critical configurations using the 3DBUM code. The LEU cores were also modeled using the Monte Carlo code MCNP in order to obtain a neutron/gamma source for BNCT filter design calculations. Advanced BNCT filters have been evaluated using both MCNP and the discrete ordinates code DORT. The results indicate that the UVAR would be an ideal source for the BNCT treatment of brain tumors.
Quantum Monte Carlo Calculations of Light Nuclei
Steven C. Pieper
2004-10-27
Variational Monte Carlo and Green's function Monte Carlo are powerful tools for calculations of properties of light nuclei using realistic two-nucleon and three-nucleon potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v_18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.
Sources for Pu in near surface air
Hartmann, G.; Thom, C.; Baechmann, K.
1989-01-01
This paper provides evidence that most of the Pu in the near surface air today is due to resuspension. Vertical and particle size distribution in near surface air over a period of three years were measured. The seasonal variations of Pu in air and the influence of meteorological parameters on these variations are shown. Samples were taken before the Chernobyl accident in an area where only Pu fallout from the atmospheric nuclear tests of the early sixties occurs. The comparison of the behavior of Pu with other trace elements, which were also measured, showed similar behavior of Pu and elements like Ca, Ti and Fe in near surface air. This confirms that most Pu is resuspended because the main source for these elements in air is the soil surface. Resuspension factors and resuspension rate are estimated for all measured elements. A resuspension factor of 0.8 X 10(-8) m-1 and a resuspension rate of 0.09 X 10(-9) s-1 is calculated for Pu.
Computational Tools for Supersymmetry Calculations
Howard Baer
2009-12-16
I present a brief overview of a variety of computational tools for supersymmetry calculations, including: spectrum generators, cross section and branching fraction calculators, low energy constraints, general purpose event generators, matrix element event generators, SUSY dark matter codes, parameter extraction codes and Les Houches interface tools.
Gibbons, John P., E-mail: john.gibbons@marybird.com [Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809 (United States); Antolak, John A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)] [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Followill, David S. [Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Huq, M. Saiful [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)] [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States); Klein, Eric E. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)] [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States); Lam, Kwok L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Palta, Jatinder R. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)] [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Roback, Donald M. [Department of Radiation Oncology, Cancer Centers of North Carolina, Raleigh, North Carolina 27607 (United States)] [Department of Radiation Oncology, Cancer Centers of North Carolina, Raleigh, North Carolina 27607 (United States); Reid, Mark [Department of Medical Physics, Fletcher-Allen Health Care, Burlington, Vermont 05401 (United States)] [Department of Medical Physics, Fletcher-Allen Health Care, Burlington, Vermont 05401 (United States); Khan, Faiz M. [Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)] [Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2014-03-15
A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D{sub 0}{sup ?}, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D{sub 0}{sup ?} = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D{sub 0}{sup ?} ? 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of d{sub m}, with D{sub 0}{sup ?} = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not be addressed in this calculation.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-N Goods POCTBT Y-12
Strategy Guideline. Accurate Heating and Cooling Load Calculations
Burdick, Arlan
2011-06-01
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Strategy Guideline: Accurate Heating and Cooling Load Calculations
Burdick, A.
2011-06-01
This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.
Entropy in an Arc Plasma Source
Kaminska, A.; Dudeck, M
2008-03-19
The entropy properties in a D.C. argon arc plasma source are studied. The local thermodynamical entropy relations are established for a set of uniform sub-systems (Ar, Ar{sup +}, e) in order to deduce the entropy balance equation in presence of dissipative effects and in the case of a thermal non equilibrium. Phenomenological linear laws are deduced in near equilibrium situation. The flow parameters inside the plasma source are calculated by a Navier-Stokes fluid description taking into account a thermal local non equilibrium. The entropy function is calculated in the plasma source using the values of the local variables obtained from the numerical code.
SB EE Calculator | Argonne National Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...
Laurent Berger TOPOLOGIE ET CALCUL
Berger, Laurent
Laurent Berger TOPOLOGIE ET CALCUL DIFF´ERENTIEL #12;Laurent Berger UMPA, ENS de Lyon, UMR 5669 du CNRS, Universit´e de Lyon. E-mail : laurent.berger@ens-lyon.fr Url : http://perso.ens-lyon
Agriculture-related radiation dose calculations
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Advanced Neutronics Tools for BWR Design Calculations
Santamarina, A.; Hfaiedh, N.; Letellier, R.; Sargeni, A.; Vaglio, C. [CEA-Cadarache, 13108 St Paul lez Durance Cedex (France); Marotte, V. [AREVA NP SAS (France); Misu, S. [AREVA NP GmbH (Germany); Zmijarevic, I. [CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France)
2006-07-01
This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007 BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)
Radiative accelerations for evolutionary model calculations
Richer, J.; Michaud, G.; Rogers, F.; Iglesias, C.; Turcotte, S.; LeBlanc, F.
1998-01-01
Monochromatic opacities from the OPAL database have been used to calculate radiative accelerations for the 21 included chemical species. The 10{sup 4} frequencies used are sufficient to calculate the radiative accelerations of many elements for T{gt}10{sup 5}K, using frequency sampling. This temperature limit is higher for less abundant elements. As the abundances of Fe, He, or O are varied, the radiative acceleration of other elements changes, since abundant elements modify the frequency dependence of the radiative flux and the Rosseland opacity. Accurate radiative accelerations for a given element can only be obtained by allowing the abundances of the species that contribute most to the Rosseland opacity to vary during the evolution and recalculating the radiative accelerations and the Rosseland opacity during the evolution. There are physical phenomena that cannot be included in the calculations if one uses only the OPAL data. For instance, one should correct for the momentum given to the electron in a photoionization. Such effects are evaluated using atomic data from Opacity Project, and correction factors are given. {copyright} {ital 1998} {ital The American Astronomical Society}
Transfer Area Mechanical Handling Calculation
B. Dianda
2004-06-23
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related manufacturer. A component produced by one manufacturer certainly varies dimensionally from a similar product produced by a different manufacturer. The internal envelope dimensions are dependent on the selection of the individual components. The external envelope dimensions, as well as, key interface dimensions are established within this calculation and are to be treated as bounding dimensions.
Thode, Lester E. (Los Alamos, NM)
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
Managing Milk Composition: Normal Sources of Variation
Stokes, Sandra R.; Jordan, Ellen R.; Looper, Mike; Waldner, Dan
2000-12-11
Sources of Variation Sandra R. Stokes, Dan N. Waldner, Ellen R. Jordan, and Michael L. Looper* Many factors influence the composition of milk, the major components of which are water, fat, protein, lactose and minerals. Nutrition or dietary influences...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01
reflection Component or IRC). The total the daylight factor,components as: SC + ERC + IRC THE SKY COMPONENT The skyformula for the average IRC is as: X where T ~ Transmittance
CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, Harvey J.
2013-01-01
Reflected Component or IRC). The total for these threeDaylight Factor m SC + ERC + IRC THE SKY COMPONENT The skyThe formula for the average IRC is given as: IRC "" T X W A(
-force-field method (MVFF) for the calculation of the thermal conductivity of the thin layers. We calculate the room1 Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si of a drastic reduction in their thermal conductivity, l, and possibilities of enhanced power factors
Development of a criteria based strategic sourcing model
Quiñonez, Carlo G. (Carlo Gabriel)
2013-01-01
Strategic sourcing is a key factor in enhancing Nike's competitiveness and organizational and operational performances. As Nike faces increasing pressure to expand margins and reduce source base risk during a climate of ...
Calculations of multiquark functions in effective models of strong interaction
Jafarov, R. G., E-mail: raufjafarov@bsu.az [Institute for Physical Problems of Baku State University (Azerbaijan); Rochev, V. E. [Institute of High Energy Physics, Theoretical Division (Russian Federation)] [Institute of High Energy Physics, Theoretical Division (Russian Federation)
2013-09-15
In this paper we present our results of the investigation of multiquark equations in the Nambu-Jona-Lasinio model with chiral symmetry of SU(2) group in the mean-field expansion. To formulate the mean-field expansion we have used an iteration scheme of solution of the Schwinger-Dyson equations with the fermion bilocal source. We have considered the equations for Green functions of the Nambu-Jona-Lasinio model up to third step for this iteration scheme. To calculate the high-order corrections to the mean-field approximation, we propose the method of the Legendre transformation with respect to the bilocal source, which allows effectively to take into account the symmetry constraints related with the chiral Ward identity. We discuss also the problem of calculating the multiquark functions in the mean-field expansion for Nambu-Jona-Lasinio-type models with other types of the multifermion sources.
Azcona, J; Burguete, J
2014-06-01
Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.
Graphical User Interface for Simplified Neutron Transport Calculations
Schwarz, Randolph; Carter, Leland L
2011-07-18
A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.
Numerical Calculation of Granular Entropy
Asenjo, Daniel; Paillusson, Fabien; Frenkel, Daan
2014-03-05
particles are distinguishable, we have to include a factor 1/N! to ensure that the entropy does not change when exchanging particles between systems in the same macroscopic state. Our simulations provide strong evidence that the packing entropy, when...
$?_b \\to p l^- \\bar?$ form factors from lattice QCD with static b quarks
William Detmold; C. -J. David Lin; Stefan Meinel; Matthew Wingate
2013-06-03
We present a lattice QCD calculation of form factors for the decay $\\Lambda_b \\to p \\mu^- \\bar{\
Spurious Effects in perturbative Calculations
M. Hortacsu; B. C. Lutfuoglu
1998-12-11
We show spurious effects in perturbative calculations due to different orderings of inhomogeneous terms while computing corrections to Green functions for two different metrics. These effects are not carried over to physically measurable quantities like the renormalized value of the vacuum expectation value of the stress-energy tensor.
TOUSCHEK LIFETIME CALCULATIONS AND SIMULATIONS FOR NSLS-II
MONTAG,C.; BENGTSSON, J.; NASH, B.
2007-06-25
The beam lifetime in most medium energy synchrotron radiation sources is limited by the Touschek effect, which describes the momentum transfer from the transverse into the longitudinal direction due to binary collisions between electrons. While an analytical formula exists to calculate the resulting lifetime, the actual momentum acceptance necessary to perform this calculation can only be determined by tracking. This is especially the case in the presence of small vertical apertures at insertion devices. In this case, nonlinear betatron coupling leads to beam losses at these vertical aperture restrictions. In addition, a realistic model of the storage ring is necessary for calculation of equilibrium beam sizes (particularly in the vertical direction) which are important for a self-consistent lifetime calculation.
Nucleon and flavor form factors in a light front quark model in AdS/QCD
Dipankar Chakrabarti; Chandan Mondal
2013-12-05
Using the light front wave functions for the nucleons in a quark model in AdS/QCD, we calculate the nucleon electromagnetic form factors. The flavor decompositions of the nucleon form factors are calculated from the GPDs in this model. We show that the nucleon form factors and their flavor decompositions calculated in AdS/QCD are in agreement with experimental data.
Bioaccumulation factor of {sup 137}Cs in some marine biotas from West Bangka Indonesia
Suseno, Heny
2014-03-24
Radionuclides may be released from nuclear facilities to the marine environment. Concentrations of radionuclides within marine biotic systems can be influenced by a number of factors, including the type of biota, its source, the radionuclide, and specific characteristics of the sampled specimens and the marine environment (salinity, etc.). The bioconcentration factor for a marine organism is the ratio of the concentration of a radionuclide in that organism to the concentration found in its marine water environment - under conditions of equilibrium. Information on the bioaccumulation of Cs-137 in marine organisms is required to risk assessment evaluates the potential risks to human health. Bioaccumulation of Cs was investigated in marine biota from west Bangka such as Marine cat fish (Arius thalassinus), Baramundi (Lates calcarifer), Mackerel (Scomberomorus commerson), Striped eel catfish (Plotosus lineatus), eel tailed fish (Euristhmus microceps), Yellowtail fusilier (Caesio erythrogaster), Coastal crab (Scylla sp), White shrimp (Penaeus merguiensis) and marine bivalve mollusk (Anadara granosa). Muscle of these marine biota, sediments and water were assayed for Cs-137 by HPGe gamma spectrometer. The bioaccumulation factor for fishes were calculated by ratio of concentration Cs-137 in muscle biota to the its concentration in water. The bioaccumulation factor for mollusks were calculates by ratio of concentration Cs-137 in muscle biota to the its concentration in sediments. The bioaccumulation factor were range 4.99 to 136.34.
Photon impact factor in the NLO
Balitsky, Ian [JLAB
2013-04-01
The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k{sub T}-factorization formula for the structure functions of small-x deep inelastic scattering.
The First Calculation of Fractional Jets
Daniele Bertolini; Jesse Thaler; Jonathan R. Walsh
2015-05-14
In collider physics, jet algorithms are a ubiquitous tool for clustering particles into discrete jet objects. Event shapes offer an alternative way to characterize jets, and one can define a jet multiplicity event shape, which can take on fractional values, using the framework of "jets without jets". In this paper, we perform the first analytic studies of fractional jet multiplicity $\\tilde{N}_{\\rm jet}$ in the context of $e^+e^-$ collisions. We use fixed-order QCD to understand the $\\tilde{N}_{\\rm jet}$ cross section at order $\\alpha_s^2$, and we introduce a candidate factorization theorem to capture certain higher-order effects. The resulting distributions have a hybrid jet algorithm/event shape behavior which agrees with parton shower Monte Carlo generators. The $\\tilde{N}_{\\rm jet}$ observable does not satisfy ordinary soft-collinear factorization, and the $\\tilde{N}_{\\rm jet}$ cross section exhibits a number of unique features, including the absence of collinear logarithms and the presence of soft logarithms that are purely non-global. Additionally, we find novel divergences connected to the energy sharing between emissions, which are reminiscent of rapidity divergences encountered in other applications. Given these interesting properties of fractional jet multiplicity, we advocate for future measurements and calculations of $\\tilde{N}_{\\rm jet}$ at hadron colliders like the LHC.
Reliability and Security Analysis of Open Source Software Prasanth Anbalagan1
Young, R. Michael
these factors in analyzing open source projects. We study the characteristics of FEDORA (a popular open source the trustworthiness of open source projects. The objectives of this study is to 1. Study the characteristics of FEDORA
Calculation of Neutral Beam Injection into SSPX
Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S
2006-06-13
The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.
Excited State Effects in Nucleon Matrix Element Calculations
Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner
2011-12-01
We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.
Calculating loops without loop calculations: NLO computation of pentaquark correlators
S. Groote; J. G. Körner; A. A. Pivovarov
2012-08-27
We compute next-to-leading order (NLO) perturbative QCD corrections to the correlators of interpolating pentaquark currents. We employ modular techniques in configuration space which saves us from the onus of having to do loop calculations. The modular technique is explained in some detail. We present explicit NLO results for several interpolating pentaquark currents that have been written down in the literature. Our modular approach is easily adapted to the case of NLO corrections to multiquark correlators with an arbitrary number of quarks/antiquarks.
Supernova neutrino detection at spallation neutron sources
Huang, Ming-Yang; Young, Bing-Lin
2015-01-01
With considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given.
BWR Source Term Generation and Evaluation
J.C. Ryman
2003-07-31
This calculation is a revision of a previous calculation (Ref. 7.5) that bears the same title and has the document identifier BBAC00000-01717-0210-00006 REV 01. The purpose of this revision is to remove TBV (to-be-verified) -41 10 associated with the output files of the previous version (Ref. 7.30). The purpose of this and the previous calculation is to generate source terms for a representative boiling water reactor (BWR) spent nuclear fuel (SNF) assembly for the first one million years after the SNF is discharged from the reactors. This calculation includes an examination of several ways to represent BWR assemblies and operating conditions in SAS2H in order to quantify the effects these representations may have on source terms. These source terms provide information characterizing the neutron and gamma spectra in particles per second, the decay heat in watts, and radionuclide inventories in curies. Source terms are generated for a range of burnups and enrichments (see Table 2) that are representative of the waste stream and stainless steel (SS) clad assemblies. During this revision, it was determined that the burnups used for the computer runs of the previous revision were actually about 1.7% less than the stated, or nominal, burnups. See Section 6.6 for a discussion of how to account for this effect before using any source terms from this calculation. The source term due to the activation of corrosion products deposited on the surfaces of the assembly from the coolant is also calculated. The results of this calculation support many areas of the Monitored Geologic Repository (MGR), which include thermal evaluation, radiation dose determination, radiological safety analyses, surface and subsurface facility designs, and total system performance assessment. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Disposal Container (Ref. 7.27, page 7). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 7.28). The performance of the calculation and development of this document are carried out in accordance with AP-3.124, ''Design Calculation and Analyses'' (Ref. 7.29).
Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations
Riendeau, C.D.; Moses, D.L.; Olson, A.P.
1998-11-01
Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.
Incorporating Weather Data into Energy Savings Calculations ...
Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...
Health Calculators & Logs - HPMC Occupational Health Services
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Calculators & Logs Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Body Mass Index Health Coaching Health Fairs and...
Using a calculator to do statistics
Dave
2012-03-25
Statistics on a Scientific Calculator. NOTE: Some of these may not be regular keys on your calculator and may appear in a different color above another key.
Roy, Prabir K.
2014-01-01
HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. Roya source of ?100 mA lithium ion current for the Neutralized
Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy
Reynoso, Francisco J.; Manohar, Nivedh; Cho, Sang Hyun
2014-10-15
Purpose: To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Methods: Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and NOREC codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the MCNP-calculated source spectra. Results: Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the dependence of the photoelectron yield on the atomic number of source filter material, consistent with the macroscopic dose enhancement results. A similar trend was also shown in the so-called microscopic dose enhancement factor, for example, resulting in the maximum values of 138 and 119 for the titanium- and the stainless steel-encapsulated Yb-169 sources, respectively. Conclusions: The current results consistently show that the dose enhancement achievable from the Yb-169 source is closely related with the atomic number (Z) of source encapsulation material. While the observed range of improvement in the dose enhancement may be considered moderate after factoring all uncertainties in the MC results, the current study provides a reasonable support for the encapsulation of the Yb-core with lower-Z materials than stainless steel, for GNRT applications. Overall, the titanium capsule design can be favored over the aluminum or dual aluminum/titanium capsule designs, due to its superior structural integrity and improved safety during manufacturing and clinical use.
NAPL Calculator - Energy Innovation Portal
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL Calculator
Impedance calculation for ferrite inserts
Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab
2005-01-01
Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.
Electrolytes for power sources
Doddapaneni, N.; Ingersoll, D.
1995-01-03
Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.
Electrolytes for power sources
Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)
1995-01-01
Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
S. A. Blundell; J. Griffith; J. Sapirstein
2012-05-10
Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.
Alcouffe, R.E.
1985-01-01
A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.
TEA: A Code for Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Bowman, M Oliver
2015-01-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...
Shinn, J.H.; Homan, D.N.
1982-06-21
This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.
Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S. [Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2 (Canada); Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada) and Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2011-04-15
Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.
PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS
Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC
2010-08-25
PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.
Analysis Of Factors Affecting Natural Source Slf Electromagnetic...
to the integrated axis of the artificial electromagnetic interference field, the noise is weakest. (3) Rain can exert great influence on the high frequency band of natural...
Analysis Of Factors Affecting Natural Source Slf Electromagnetic
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,In TheExperimentsExploration At
Photon impact factor and k{sub T} factorization in the next-to-leading order
Ian Balitsky
2012-12-01
The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as a NLO k{sub T}-factorization formula for the structure functions of small-x deep inelastic scattering.
An Inverse Source Location Algorithm for Radiation Portal Monitor Applications
Miller, Karen Ann
2011-08-08
the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron...
MATERIAL POINT METHOD CALCULATIONS WITH EXPLICIT CRACKS, FRACTURE PARAMETERS, AND CRACK
Nairn, John A.
MATERIAL POINT METHOD CALCULATIONS WITH EXPLICIT CRACKS, FRACTURE PARAMETERS, AND CRACK PROPAGATION." This new method has several advantages for numerical work on fracture. Compared to finite element analysis works well for calculating key fracture parameters such as J integral, stress intensity factors
Mosca, P.; Mounier, C.; Bellier, P.; Zmijarevic, I.
2012-07-01
This paper shows how to improve the accuracy of the transport calculations using in the APOLLO2 code the optimized multigroup libraries calculated by AEMC for fast neutron systems. These ameliorations concern the fission source calculation and the self-shielding models. The calculation of the fission source was generalized to fission spectra including an incident neutron energy dependence. The subgroup self-shielding model was updated for a mixture of resonant nuclides. Some tests on a Pu-239 sphere without reflectors and a fast sodium cell show that the use of four fission spectra guarantees a correct representation of the fission source. The test on a Pu-239 sphere with a thick steel reflector proves that the subgroup self-shielding, accounting for the mutual shielding of several resonant nuclides, allows us to improve the accuracy of the neutron transport solution in the reflector. (authors)
RTU Comparison Calculator Enhancement Plan
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method
Weston, Ken
Calculation of free-energy differences and potentials of mean force by a multi-energy gap method the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy
DENSITY OF STATES CALCULATIONS FOR CARBON
Adler, Joan
DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes
Human Factors @ UB Fall 2010 Human Factors
Krovi, Venkat
. Outsourcing aviation maintenance: Hu- man factors implications, specifically for communications. C. Drury, K. Guy, C. Wenner. International Journal of Aviation Psychology, 2010, 20, 124 143. #12;2 Human Factors
Quantum transport calculations using periodic boundaryconditions
Wang, Lin-Wang
2004-06-15
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.
Cohen, Ronald C.
with meteorological data helped identify contributions from known point sources for markers correlated with wind models. Diesel and gasoline mobile source factors were identified as the main sources of BC
Nucleon and flavor form factors in AdS/QCD
Chakrabarti, Dipankar
2013-01-01
The electromagnetic form factors for the nucleons are related with the GPDs by sum rules. Using the sum rules we calculate the valence GPDs for $u$ and $d$ quarks in a quark model using the lightfront wavefunctions for the nucleons obtained from AdS/QCD. The flavor decompositions of the nucleon form factors are also calculated from the GPDs in this model. We show that the nucleon form factors and their flavor decompositions calculated in AdS/QCD are in agreement with experimental data.
Campbell, Jeremy B; Newson, Steve
2013-02-26
Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.
The Transcription Factor Encyclopedia
2012-01-01
Transcription Factor Encyclopedia. Genome Biology 2012 13:Factor Encyclopedia. Gen- ome Biology 2012, 13:000. where ‘Biology 2012, 13:R24 http://genomebiology.com/2012/13/3/R24 SOFTWARE Open Access The Transcription Factor Encyclopedia
Estimating carbon dioxide emission factors for the California electric power sector
Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant
2002-08-01
The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.
Application of the sources code in nuclear safeguards
Beddingfield, D. H.
2002-01-01
The Sources Code System provides a greatly expanded calculational capacity in the field of nuclear safeguards. It is becoming more common that we are called upon to perform assays on materials for which no standards exist. These materials tend to be mixtures of nuclear materials and low-Z compounds (spent fuels in a variety of matrices, in-process compounds such as UF6, MOX with varying water content). We will present soma applications of the Sources Code and discuss the application calculated (a,n) source terms in neutron coincidence counting for nuclear safeguards.
Lumen Maintenance and Light Loss Factors: Consequences of Current Design Practices for LED's
Royer, Michael P.
2013-09-17
Synopsis: Light loss factors are used to help lighting systems meet quantitative design criteria throughout the life of the installation, but they also influence energy use. As the light sources currently being specified continue to evolve, it is necessary to reevaluate the methods used in calculating light loss factors, as well as carefully consider the consequences of different product performance attributes. Because of the unique operating characteristics of LEDs and lack of a comprehensive lifetime rating—as well as the problematic relationship between lifetime and lumen maintenance—determining an appropriate lamp lumen depreciation (LLD) factor for LED products is difficult. As a result, a unique solution has been advocated: when quantity of light is an important design consideration, the IES recommends using an LLD of not greater than 0.70. This method deviates from the typical practice for conventional sources of using the ratio of mean to initial lumen output, and can misrepresent actual performance, increase energy use, and inhibit comparisons between products. This paper discusses the complications related to LLD and LEDs, compares the performance of conventional and LED products, and examines alternatives to a maximum LLD of 0.70 for LEDs.
Chiral solitons in nuclei: Electromagnetic form factors
Jason R. Smith; Gerald A. Miller
2004-09-08
We calculate the electromagnetic form factors of a bound proton. The Chiral Quark-Soliton model provides the quark and antiquark substructure of the proton, which is embedded in nuclear matter. This procedure yields significant modifications of the form factors in the nuclear environment. The sea quarks are almost completely unaffected, and serve to mitigate the valence quark effect. In particular, the ratio of the isoscalar electric to the isovector magnetic form factor decreases by 20% at Q^2=1 GeV^2 at nuclear density, and we do not see a strong enhancement of the magnetic moment.
Pion form factor with twisted mass QCD
Abdou M. Abdel-Rehim; Randy Lewis
2004-09-10
The pion form factor is calculated using quenched twisted mass QCD with beta=6.0 and maximal twisting angle omega=pi/2. Two pion masses and several values of momentum transfer are considered. The momentum averaging procedure of Frezzotti and Rossi is used to reduce lattice spacing errors, and numerical results are consistent with the expected O(a) improvement.
Structure Functions, Form Factors, and Lattice QCD
Walter Wilcox; B. Andersen-Pugh
1993-12-07
We present results towards the calculation of the pion electric form factor and structure function on a $16^3\\times 24$ lattice using charge overlap. By sacrificing Fourier transform information in two directions, it is seen that the longitudinal four point function can be extracted with reasonable error bars at low momentum.
Rosenbaum, Ralph K.
2010-01-01
characterisation factors (CFs) is within a factor of 100-variation between the CFs of each model respectively. Thebeen used to calculate CFs for several thousand substances
Some Calculations for Cold Fusion Superheavy Elements
Zhong, X H; Ning, P Z
2004-01-01
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; L. Li; P. Z. Ning
2004-10-18
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.
2005-07-26
A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.
Watson, David J.; Strom, Daniel J.
2011-02-25
This paper is part two of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Assumptions about equilibrium with long-lived parents are made for the 28 other radionuclides in these series lacking data. This paper describes the methods developed to group the collected data into source regions described in the Radiation Dose Assessment Resource (RADAR) dosimetric methodology. Methods for converting the various units of data published over 50 years into a standard form are developed and described. Often, meaningful values of uncertainty of measurements were not published so that variability in data sets is confounded with measurement uncertainty. A description of the methods developed to estimate variability is included in this paper. The data described in part one are grouped by gender and age to match the RADAR dosimetric phantoms. Within these phantoms, concentration values are grouped into source tissue regions by radionuclide, and they are imputed for source regions lacking tissue data. Radionuclide concentrations are then imputed for other phantoms’ source regions with missing concentration values, and the uncertainties of the imputed values are increased. The content concentrations of hollow organs are calculated, and activities are apportioned to the bone source regions using assumptions about each radionuclide’s bone-seeking behavior. The data sets are then ready to be used to estimate equivalent doses to target tissues from these source regions. The target tissues are then mapped to lists of tissues with International Commission on Radiation Protection (ICRP) tissue weighting factors, or they are mapped to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue weighting factors recommended in 1977, 1990, and 2007, are calculated from tissue and organ equivalent doses.
Cooling airflow design calculations for UFAD
Bauman, Fred; Webster, Tom; Benedek, Corinne
2007-01-01
written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-
Minimum Day Time Load Calculation and Screening
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
from field measurements available to calculate feeder PV production based in installed Capacity per feeder (Example: capture clear day vs cloudy day): PV gen. on circuit...
Evaluation Of Chemical Geothermometers For Calculating Reservoir...
Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Dynamic radioactive particle source
Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence
2012-06-26
A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.
Leung, K.N.; Ehlers, K.W.
1982-05-04
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,
Morales, J
2014-06-01
Purpose: The goal of this work was to evaluate Sun Nuclear MapCheck2 capability for quantitative determination of both HDR source strength and position. Predictive power of Mapcheck2 dose matrix, originated by a microSelectron-v2 source from 22mm distance, was investigated. Methods: A Mick MultiDoc phantom with the 1400mm indexer length mark aligned over MapCheck2 central detector plus two additional 5cm plastic slabs were used as a composite phantom. Dose readings were transformed by applying published source anisotropy corrections and experimentally established radial dose and relative sensitivity factors. Angular dependence was not considered. Only readings from diodes located 2cm around the central detector were evaluated. The reproducibility of a fit between transformed dose readings and the ratio of virtual source strength and the square of source-detector distance was investigated. Four parameters were considered in the model: virtual source strength, lateral, longitudinal and vertical source positions. Final source strength calibration factor was calculated from the ratio of reference measurements and results from the fit. Results: Original lateral and longitudinal source position estimations had systematic errors of 0.39mm and 0.75mm. After subtracting these errors, both source positions were predicted with a standard deviation of 0.15mm. Results for vertical positions were reproducible with a standard deviation of 0.05mm. The difference between calculated and reference source strengths from 34 independent measurement setups had a standard deviation of 0.3%. The coefficient of determination for the linear regression between known indexer lengths and results from the fit in the range 1400mm ± 5mm was 0.985. Conclusions: ource strength can be estimated with MapCheck2 at appropriate accuracy levels for quality control. Verification of indexer length with present implementation is more accurate than visual alternatives. Results can be improved by designing a coupling catheter phantom and refining relative diode calibration. Diode angular dependence in MapCheck2 does not play significant role.
Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables
Haberl, J.; Yazdani, B.; Culp, C.
2008-01-01
Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period occurs during Ozone Season... Reductions from Wind Farms What issues did TCEQ ask ESL to resolve to calculate OSP NOx reductions from wind farms in the base year? Capacity Factors Using NOAA Daily Models 0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100...
Benchmarking kinetic calculations of resistive wall mode stability
Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.
2014-05-15
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].
Chemistry 365: Force Constant Calculations David Ronis
Ronis, David M.
cost energy, and hence, there will no force in thy y or z directions (thereby resulting in 4 zero eigenChemistry 365: Force Constant Calculations © David Ronis McGill University Here is an example of a force constant matrix calculation. We will consider a diatomic molecule, where the two atoms interact
PVWatts (R) Calculator India (Fact Sheet)
Not Available
2014-01-01
The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.
Radiation Source Replacement Workshop
Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.
2010-12-01
This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.
Roy, Prabir K.
2014-01-01
HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion
Tsunami Sources Icosahedron Globe
Tsunami Sources Icosahedron Globe August 2012 Edition NOAA National Geophysical Data Center World to reduce to 8.5" x 11". This globe of Earth shows the locations of historical tsunami sources, extracted from NGDC'sGlobal Historical Tsunami Database (ngdc.noaa.gov/hazard). A tsunamiisaseriesof traveling
Nuclear physics in soft-wall AdS/QCD: deuteron electromagnetic form factors
Gutsche, Thomas; Schmidt, Ivan; Vega, Alfredo
2015-01-01
We present a calculation of the deuteron electromagnetic form factors in a soft-wall AdS/QCD approach. The power scaling of the deuteron form factors is consistent with quark counting rules.
Tools for calculations in color space
Malin Sjodahl; Stefan Keppeler
2013-07-04
Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.
SolarStat: Modeling Photovoltaic Sources through Stochastic Markov Processes
Rossi, Michele
SolarStat: Modeling Photovoltaic Sources through Stochastic Markov Processes Marco Miozzo target photovoltaic panels with small form factors, as those exploited by embedded communication devices the GPL license at [1]. Index Terms--Renewable Photovoltaic Sources, Stochastic Markov Modeling, Empirical
Piezotube borehole seismic source
Daley, Tom M; Solbau, Ray D; Majer, Ernest L
2014-05-06
A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.
Method for determining formation quality factor from seismic data
Taner, M. Turhan; Treitel, Sven
2005-08-16
A method is disclosed for calculating the quality factor Q from a seismic data trace. The method includes calculating a first and a second minimum phase inverse wavelet at a first and a second time interval along the seismic data trace, synthetically dividing the first wavelet by the second wavelet, Fourier transforming the result of the synthetic division, calculating the logarithm of this quotient of Fourier transforms and determining the slope of a best fit line to the logarithm of the quotient.
Price, Jacqueline Elaine
2004-11-15
Engineering directly impacts current and future regulatory policy decisions. The foundation of air pollution control and air pollution dispersion modeling lies in the math, chemistry, and physics of the environment. ...
MCNP6 Dose Calculations for the Carousel in the LDRGIF Using an AmBe Source
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) |management (Patent)SciTech ConnectSciTech(Technical
MCNP6 Dose Calculations for the Carousel in the LDRGIF Using an AmBe Source
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) |management (Patent)SciTech
California at Berkeley, University of
Discrepancies in the prediction of solar wind using potential field source surface model expansion factor (FTE) at the source surface and the solar wind speed (SWS) observed at Earth, which has been made use of in the prediction of solar wind speed near the Earth with reasonable accuracy. However
Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor
Hartini, Entin; Andiwijayakusuma, Dinan [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Isnaeni, Muh Darwis [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)
2013-09-09
The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.
Key Factors in Displacement Ventilation Systems for Better IAQ
Wang, X.; Chen, J.; Li, Y.; Wang, Z.
2006-01-01
This paper sets up a mathematical model of three-dimensional steady turbulence heat transfer in an air-conditioned room of multi-polluting heat sources. Numerical simulation helps identify key factors in displacement ventilation systems that affect...
Rooftop Unit Comparison Calculator User Manual
Miller, James D.
2015-04-30
This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.
Assessment of seismic margin calculation methods
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Microfabricated diffusion source
Oborny, Michael C. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
Quantum Monte Carlo calculations of spectroscopic overlaps in $A \\leq 7$ nuclei
I. Brida; Steven C. Pieper; R. B. Wiringa
2011-06-15
We present Green's function Monte Carlo calculations of spectroscopic overlaps for $A \\leq 7$ nuclei. The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and Green's function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and asymptotic normalization coefficients, and they can serve as an input for low-energy reaction calculations.
Review of Subcritical Source-Driven Noise Analysis Measurements
Valentine, T.E.
1999-11-01
Subcritical source-driven noise measurements are simultaneous Rossia and randomly pulsed neutron measurements that provide measured quantities that can be related to the subcritical neutron multiplication factor. In fact, subcritical source-driven noise measurements should be performed in lieu of Rossia measurements because of the additional information that is obtained from noise measurements such as the spectral ratio and the coherence functions. The basic understanding of source-driven noise analysis measurements can be developed from a point reactor kinetics model to demonstrate how the measured quantities relate to the subcritical neutron multiplication factor.
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS
Finley Jr., Russell L.
INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST TUITION STIPEND EQUIPMENT] (.52 ) + DIRECT
HYDRAULIC CALCULATIONS FOR A MODIFIED IN-SITU RETORT
Hall, W.G.
2012-01-01
LBL-1 0431 UC-91 HYDRAULIC CALCULATIONS FOR A MODIFIED IN-REFERENCES • . • • • • . , . HYDRAULIC CALCULATIONS FOR ACalifomia. LBL-10431 HYDRAULIC CALCULATIONS FOR A MODIFIED
Algorithm for Building a Spectrum for NREL's One-Sun Multi-Source Simulator: Preprint
Moriarty, T.; Emery, K.; Jablonski, J.
2012-06-01
Historically, the tools used at NREL to compensate for the difference between a reference spectrum and a simulator spectrum have been well-matched reference cells and the application of a calculated spectral mismatch correction factor, M. This paper describes the algorithm for adjusting the spectrum of a 9-channel fiber-optic-based solar simulator with a uniform beam size of 9 cm square at 1-sun. The combination of this algorithm and the One-Sun Multi-Source Simulator (OSMSS) hardware reduces NREL's current vs. voltage measurement time for a typical three-junction device from man-days to man-minutes. These time savings may be significantly greater for devices with more junctions.
B. A. Harmon
1998-12-21
A new class of X-ray sources was clearly established with the discovery of highly relativistic radio jets from the galactic sources GRS 1915+105 and GRO J1655-40. Both of these objects have given us a broader view of black holes and the formation of jets, yet they also show the complexity of the accretion environment near relativistic objects. The fast apparent motion of the jets, their luminosity and variability, their high energy spectrum, and approximate scaling to the behavior of active galactic nuclei, certainly warrant the description "microquasar". I present a review of the observational data on these sources, and discuss where we stand on a physical picture of GRS 1915+105 and GRO J1655-40 as taken from multi-wavelength studies. I also point out other galactic sources which share some of the properties of the microquasars, and what to look for as a high energy "signature" in future observations.
Acosta, Roberto, S.M. Massachusetts Institute of Technology
2009-01-01
Open source software development models have created some of the most innovative tools and companies in the industry today modifying the way value is created and businesses developed. The purpose of this thesis is to analyze ...
National Synchrotron Light Source
None
2010-01-08
A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole
Forbus, K.
1977-05-01
The perception of surface luster in achromatic single view images seems to depend on the existence of regions with source-like properties. These regions are due to the interaction of specular component of the surface's ...
Buzatu, Daniel J.
1995-01-01
The main part of the work described herein is the development and testing of a surface ionization source for use on a collinear fast beam laser spectroscopy apparatus. A description of the previously existing fast beam apparatus is given...
Medical physics calculations with MCNP: a primer
Lazarine, Alexis D
2006-10-30
of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...
Essential Value, Pmax, and Omax Automated Calculator
Kaplan, Brent A.; Reed, Derek D.
2014-08-21
Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be applied to initial regression...
Impact of the 235U Covariance Data in Benchmark Calculations
Leal, Luiz C [ORNL] [ORNL; Mueller, Don [ORNL] [ORNL; Arbanas, Goran [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Derrien, Herve [ORNL] [ORNL
2008-01-01
The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems.
Field emission electron source
Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)
2000-01-01
A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.
Makowiecki, Daniel M. (Livermore, WA); McKernan, Mark A. (Livermore, CA); Grabner, R. Fred (Brentwood, CA); Ramsey, Philip B. (Livermore, CA)
1994-01-01
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.
Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.
1994-08-02
A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.
National Synchrotron Light Source
BNL
2009-09-01
A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.
Dose factor entry and display tool for BNCT radiotherapy
Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)
1999-01-01
A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).
First principle thousand atom quantum dot calculations
Wang, Lin-Wang; Li, Jingbo
2004-03-30
A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.
Accident source terms for Light-Water Nuclear Power Plants. Final report
Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.
1995-02-01
In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.
Photon impact factor and k{sub T}-factorization for DIS in the next-to-leading order
Ian Balitsky, Giovanni Chirilli
2013-01-01
The photon impact factor for the BFKL pomeron is calculated in the next-to-leading order (NLO) approximation using the operator expansion in Wilson lines. The result is represented as an NLO k{sub T}-factorization formula for structure functions of small-x deep inelastic scattering.
Wang Jianhua; Zhang Hualin [Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Department of Radiation Medicine, Ohio State University, Columbus, Ohio 43210 (United States)
2008-04-15
A recently developed alternative brachytherapy seed, Cs-1 Rev2 cesium-131, has begun to be used in clinical practice. The dosimetric characteristics of this source in various media, particularly in human tissues, have not been fully evaluated. The aim of this study was to calculate the dosimetric parameters for the Cs-1 Rev2 cesium-131 seed following the recommendations of the AAPM TG-43U1 report [Rivard et al., Med. Phys. 31, 633-674 (2004)] for new sources in brachytherapy applications. Dose rate constants, radial dose functions, and anisotropy functions of the source in water, Virtual Water, and relevant human soft tissues were calculated using MCNP5 Monte Carlo simulations following the TG-43U1 formalism. The results yielded dose rate constants of 1.048, 1.024, 1.041, and 1.044 cGy h{sup -1} U{sup -1} in water, Virtual Water, muscle, and prostate tissue, respectively. The conversion factor for this new source between water and Virtual Water was 1.02, between muscle and water was 1.006, and between prostate and water was 1.004. The authors' calculation of anisotropy functions in a Virtual Water phantom agreed closely with Murphy's measurements [Murphy et al., Med. Phys. 31, 1529-1538 (2004)]. Our calculations of the radial dose function in water and Virtual Water have good agreement with those in previous experimental and Monte Carlo studies. The TG-43U1 parameters for clinical applications in water, muscle, and prostate tissue are presented in this work.
Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations The heat capacity has played a major role in relating microscopic and macroscopic properties of proteins, and configurational averaging. To better understand these factors on calculating a protein heat capacity, we provide
Vibrational Spectra of Water Solutions of Azoles from QM/MM Calculations: Effects of Solvation
Guidoni, Leonardo
the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts the structural and dynamical aspects of water solutions. X-ray as well as neutron diffraction are the main source and electronic structure of the molecule.1 We expect therefore that also its vibrational properties could
Improved operation of the nonambipolar electron source
Longmier, Ben; Hershkowitz, Noah [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2008-09-15
Significant improvements have been made to the nonambipolar electron source (NES), a radio frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface [B. Longmier, S. Baalrud, and N. Hershkowitz, Rev. Sci. Instrum. 77, 113504 (2006)]. A prototype NES has produced 30 A of continuous electron current, using 2 SCCM (SCCM denotes cubic centimeter per minute at STP) Xe, 1300 W rf power at 13.56 MHz, yielding a 180 times gas utilization factor. A helicon mode transition has also been identified during NES operation with an argon propellant, using 15 SCCM Ar, 1000 W rf, and 100 G magnetic field. This NES technology has the ability to replace hollow cathode electron sources and to enable high power electric propulsion missions, eliminating one of the lifetime restrictions that many ion thrusters have previously been faced with.
Greenly, J.B.
1997-08-12
An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.
2015-05-04
The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source-receptor relationships for atmospheric BC and its deposition to snow over Western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over the Northwest USA andmore »West Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based Positive Matrix Factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, R.; Wang, H.; Hegg, D. A.; Qian, Y.; Doherty, S. J.; Dang, C.; Ma, P.-L.; Rasch, P. J.; Fu, Q.
2015-11-18
The Community Atmosphere Model (CAM5), equipped with a technique to tag black carbon (BC) emissions by source regions and types, has been employed to establish source–receptor relationships for atmospheric BC and its deposition to snow over western North America. The CAM5 simulation was conducted with meteorological fields constrained by reanalysis for year 2013 when measurements of BC in both near-surface air and snow are available for model evaluation. We find that CAM5 has a significant low bias in predicted mixing ratios of BC in snow but only a small low bias in predicted atmospheric concentrations over northwestern USA and westernmore »Canada. Even with a strong low bias in snow mixing ratios, radiative transfer calculations show that the BC-in-snow darkening effect is substantially larger than the BC dimming effect at the surface by atmospheric BC. Local sources contribute more to near-surface atmospheric BC and to deposition than distant sources, while the latter are more important in the middle and upper troposphere where wet removal is relatively weak. Fossil fuel (FF) is the dominant source type for total column BC burden over the two regions. FF is also the dominant local source type for BC column burden, deposition, and near-surface BC, while for all distant source regions combined the contribution of biomass/biofuel (BB) is larger than FF. An observationally based positive matrix factorization (PMF) analysis of the snow-impurity chemistry is conducted to quantitatively evaluate the CAM5 BC source-type attribution. While CAM5 is qualitatively consistent with the PMF analysis with respect to partitioning of BC originating from BB and FF emissions, it significantly underestimates the relative contribution of BB. In addition to a possible low bias in BB emissions used in the simulation, the model is likely missing a significant source of snow darkening from local soil found in the observations.« less
Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)
1982-01-01
What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.
COMBUSTION SOURCES OF NITROGEN COMPOUNDS
Brown, Nancy J.
2011-01-01
Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS
The Origins of the SPAR-H Method's Performance Shaping Factor Multipliers
Ronald L. Boring; Harold S. Blackman
2007-08-01
The Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method has proved to be a reliable, easy-to-use method for human reliability analysis. Calculation of human error probability (HEP) rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action oriented tasks, and incorporating performance shaping factor (PSF) multipliers upon those nominal error rates. SPAR-H uses eight PSFs with multipliers typically corresponding to nominal, degraded, and severely degraded human performance for individual PSFs. Additionally, some PSFs feature multipliers to reflect enhanced performance. Although SPAR-H enjoys widespread use among industry and regulators, current source documents on SPAR-H such as NUREG/CR-6883 do not provide a clear account of the origin of these multipliers. The present paper redresses this shortcoming and documents the historic development of the SPAR-H PSF multipliers, from the initial use of nominal error rates, to the selection of the eight PSFs, to the mapping of multipliers to available data sources such as a Technique for Human Error Rate Prediction (THERP). Where error rates were not readily derived from THERP and other sources, expert judgment was used to extrapolate appropriate values. In documenting key background information on the multipliers, this paper provides a much needed cross-reference for human reliability practitioners and researchers of SPAR-H to validate analyses and research findings.
Fulkerson, Regina K. Micka, John A.; DeWerd, Larry A.
2014-02-15
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR){sup 192}Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR {sup 192}Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and{sup 192}Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Improved Calculation of Thermal Fission Energy
Ma, X B; Wang, L Z; Chen, Y X; Cao, J
2013-01-01
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.
Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)
2008-03-25
The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.
Radiological Dose Calculations for Fusion Facilities
Michael L. Abbott; Lee C. Cadwallader; David A. Petti
2003-04-01
This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.
Heat Exchanger Support Bracket Design Calculations
Rucinski, Russ; /Fermilab
1995-01-12
This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.
Direct capture astrophysical S factors at low energy
B. K. Jennings; S. Karataglidis; T. D. Shoppa
1998-04-14
We investigate the energy dependence of the astrophysical S factors for the reactions 7Be(p,gamma)8B, the primary source of high-energy solar neutrinos in the solar pp chain, and 16O(p,gamma)17F, an important reaction in the CNO cycle. Both of these reactions have predicted S factors which rise at low energies; we find the source of this behavior to be a pole in the S factor at a center-of-mass energy E = -E_B, the point where the energy of the emitted photon vanishes. The pole arises from a divergence of the radial integrals.
Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1
Anlage, Steven
Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1 and Oded 2011 A model for the thermoelectric properties of nanowires was used to demonstrate the contrasting influences of quantization and degeneracy on the thermoelectric power factor. The prevailing notion
Leung, Ka-Ngo (Hercules, CA)
1996-01-01
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.
Leung, K.N.
1996-05-14
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.
Sealed Radioactive Source Accountability
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1991-12-24
To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.
Sealed Radioactive Source Accountability
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1994-12-22
This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Elise P. Kenny; Ivan Kassal
2015-09-09
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions.
Spin Contamination in Inorganic Chemistry Calculations
Schlegel, H. Bernhard
R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of IronSulfur ia618 Clusters). It is important to note that while spin-contaminated and broken
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR
Su, Xiao
CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single
Multipole Electrostatics in Hydration Free Energy Calculations
Ponder, Jay
Multipole Electrostatics in Hydration Free Energy Calculations YUE SHI,1 CHUANJIE WU,2 JAY W: Hydration free energy (HFE) is generally used for evaluating molecular solubility, which is an important interactions. The effect of long-range correction to van der Waals interaction on the hydration free energies
PIC : Protein Interaction Calculator HELP AND GUIDELINES
Srinivasan, N.
PIC : Protein Interaction Calculator HELP AND GUIDELINES CONTENTS 1. Overview 2. Method 3. Input 4 (PIC) is a server which, given the coordinate set of threedimensional structure of a protein colored by PIC programmes can be downloaded and conveniently displayed with structural viewers
Calculated fission properties of the heaviest elements
Moeller, P.; Nix, J.R.; Swiatecki, W.J.
1986-09-01
A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab.
Oberseminar -ICP Temperature Calculation for Tribological
Harting, Jens
and passing to third parties. 0 #12;Overview Where to calculate the heat: diesel injection pump First focus in the steel in the meantime of one step It takes some rotations to have the heat penetrate the whole pump even in the event of industrial property rights. We reserve all rights of disposal such as copying
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS
URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÑON RIDGE PROJECT MONTROSE COUNTY, COLORADO (EFRC) proposes to license, construct, and operate a conventional acid leach uranium and vanadium mill storage pad, and access roads. The mill is designed to process ore containing uranium and vanadium
Improved Calculation of Thermal Fission Energy
X. B. Ma; W. L. Zhong; L. Z. Wang; Y. X. Chen; J. Cao
2013-06-30
Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel isotopes, with improvements on three aspects. One is more recent input data acquired from updated nuclear databases. the second one is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The last one is more carefully calculation of the average energy taken away by antineutrinos in thermal fission with the comparison of antineutrino spectrum from different models. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.32%, and the uncertainties of the new values are about 50% smaller.
Analytical calculation of neutral transport and its effect on ions
Calvin, M.D.; Hazeltine, R.D.; Valanju, P.M.; Solano, E.R. (Texas Univ., Austin, TX (USA). Inst. for Fusion Studies Texas Univ., Austin, TX (USA). Fusion Research Center)
1991-06-01
We analytically calculate the neutral particle distribution and its effects on ion heat and momentum transport in three-dimensional plasmas with arbitrary temperature and density profiles. A general variational principle taking advantage of the simplicity of the charge-exchange (CX) operator is derived to solve self-consistently the neutral-plasma interaction problem. To facilitate an extremal solution, we use the short CX mean-free-path ({lambda}{sub x}) ordering. Further, a non-variational, analytical solution providing a full set of transport coefficient is derived by making the realistic assumption that the product of the CX cross section with relative velocity is constant. The effects of neutrals on plasma energy loss and rotation appear in simple, sensible forms. We find that neutral viscosity dominates ion viscosity everywhere, and in the edge region by a large factor. 13 refs.
Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements
Mert Aybat, Ted Rogers, Alexey Prokudin
2012-06-01
In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.
Calculation of Kinetics Parameters for the NBSR
Hanson A. L.; Diamond D.
2012-03-06
The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.
Atmospheric Environment 40 (2006) 15261537 Source apportionment of PM2.5 in Beijing by positive
Zheng, Mei
2006-01-01
, and suggested sources to be dust storms, motor vehicle emissions, and biomass burning. Duan et al. (2004) demon factorization (PMF) was used to apportion sources of PM2.5, and eight sources were identified: biomass burning (11%), secondary sulfates (17%), secondary nitrates (14%), coal combustion (19%), industry (6%), motor
Numerical model of Electron Cyclotron Resonance Ion Source
Mironov, V; Bondarchenko, A; Efremov, A; Loginov, V
2015-01-01
Important features of Electron Cyclotron Resonance Ion Source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model a dynamics of ions in ECRIS plasma. It is shown that gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for few sources. Changes in the extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.
Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis
Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C
2013-01-01
The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.
Phase and Frequency Locked Magnetrons for SRF Sources
Neubauer, Michael; Johnson, Rolland
2014-09-12
There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of the ferrite had not changed. A major problem that remains is to develop a ferrite material with low enough loss that it does not reduce the quality factor of the magnetron to an unacceptable level.
Proper Orthogonal Decomposition for Flow Calculations
North Carolina State University Raleigh, NC 276958205 USA March 23, 1998 Abstract Proper orthogonal with the energy and the species equa tions. In addition, we also examined the feasibility and efficiency of POD method in the optimal control of the source vapors to obtain the most uniform deposition profile
Chiral extrapolation of nucleon magnetic form factors
P. Wang; D. Leinweber; A. W. Thomas; R.Young
2007-04-01
The extrapolation of nucleon magnetic form factors calculated within lattice QCD is investigated within a framework based upon heavy baryon chiral effective-field theory. All one-loop graphs are considered at arbitrary momentum transfer and all octet and decuplet baryons are included in the intermediate states. Finite range regularization is applied to improve the convergence in the quark-mass expansion. At each value of the momentum transfer (Q{sup 2}), a separate extrapolation to the physical pion mass is carried out as a function of m{sub {pi}} alone. Because of the large values of Q{sup 2} involved, the role of the pion form factor in the standard pion-loop integrals is also investigated. The resulting values of the form factors at the physical pion mass are compared with experimental data as a function of Q{sup 2} and demonstrate the utility and accuracy of the chiral extrapolation methods presented herein.
Calculating the mass spectrum of primordial black holes
Sam Young; Christian T. Byrnes; Misao Sasaki
2015-03-04
We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation $\\mathcal{R}_{c}$ in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, $\\Delta$, should be used instead as super-horizon modes are damped by a factor $k^{2}$. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes.
Improved initial guess for minimum energy path calculations
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
2014-06-07
A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.
Calibrated vapor generator source
Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.
1995-09-26
A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.
Calibrated vapor generator source
Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)
1995-01-01
A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.
Falabella, S.; Sanders, D.M.
1994-01-18
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.
Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)
1990-01-01
An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.
The European Spallation Source
Peggs, S; Eshraqi, M; Hahn, H; Jansson, A; Lindroos, M; Ponton, A; Rathsman, K; Trahern, G; Bousso, S; Calaga, R; Devanz, G; Duperrier, R D; Eguia, J; Gammino, S; Moller, S P; Oyon, C; Ruber, R.J.M.Y.
2011-03-01
The European Spallation Source (ESS) is a 5 MW, 2.5 GeV long pulse proton linac, to be built and commissioned in Lund, Sweden. The Accelerator Design Update (ADU) project phase is under way, to be completed at the end of 2012 by the delivery of a Technical Design Report. Improvements to the 2003 ESS design will be summarised, and the latest design activities will be presented.
BERNAS ION SOURCE DISCHARGE SIMULATION
RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.
2007-08-26
The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.
Delmore, J.E.
1984-05-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Delmore, James E. (Idaho Falls, ID)
1987-01-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Analysis of 3-panel and 4-panel microscale ionization sources
Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Piascik, Jeffrey R.; Gilchrist, Kristin H. [Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Center for Materials and Electronic Technologies, RTI International, Research Triangle Park, North Carolina 27709 (United States)
2010-06-15
Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10{sup -4} to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.
Commissioning of output factors for uniform scanning proton beams
Zheng Yuanshui; Ramirez, Eric; Mascia, Anthony; Ding Xiaoning; Okoth, Benny; Zeidan, Omar; Hsi Wen; Harris, Ben; Schreuder, Andries N.; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)
2011-04-15
Purpose: Current commercial treatment planning systems are not able to accurately predict output factors and calculate monitor units for proton fields. Patient-specific field output factors are thus determined by either measurements or empirical modeling based on commissioning data. The objective of this study is to commission output factors for uniform scanning beams utilized at the ProCure proton therapy centers. Methods: Using water phantoms and a plane parallel ionization chamber, the authors first measured output factors with a fixed 10 cm diameter aperture as a function of proton range and modulation width for clinically available proton beams with ranges between 4 and 31.5 cm and modulation widths between 2 and 15 cm. The authors then measured the output factor as a function of collimated field size at various calibration depths for proton beams of various ranges and modulation widths. The authors further examined the dependence of the output factor on the scanning area (i.e., uncollimated proton field), snout position, and phantom material. An empirical model was developed to calculate the output factor for patient-specific fields and the model-predicted output factors were compared to measurements. Results: The output factor increased with proton range and field size, and decreased with modulation width. The scanning area and snout position have a small but non-negligible effect on the output factors. The predicted output factors based on the empirical modeling agreed within 2% of measurements for all prostate treatment fields and within 3% for 98.5% of all treatment fields. Conclusions: Comprehensive measurements at a large subset of available beam conditions are needed to commission output factors for proton therapy beams. The empirical modeling agrees well with the measured output factor data. This investigation indicates that it is possible to accurately predict output factors and thus eliminate or reduce time-consuming patient-specific output measurements for proton treatments.
Asymptotic normalization coefficients from ab initio calculations
Kenneth M. Nollett; R. B. Wiringa
2011-04-14
We present calculations of asymptotic normalization coefficients (ANCs) for one-nucleon removals from nuclear states of mass numbers 3 to 9. Our ANCs were computed from variational Monte Carlo solutions to the many-body Schroedinger equation with the combined Argonne v18 two-nucleon and Urbana IX three-nucleon potentials. Instead of computing explicit overlap integrals, we applied a Green's function method that is insensitive to the difficulties of constructing and Monte Carlo sampling the long-range tails of the variational wave functions. This method also allows computation of the ANC at the physical separation energy, even when it differs from the separation energy for the Hamiltonian. We compare our results, which for most nuclei are the first ab initio calculations of ANCs, with existing experimental and theoretical results and discuss further possible applications of the technique.
Robert E. Rutledge; Robert J. Brunner; Thomas A. Prince; Carol Lonsdale
2000-04-04
We quantitatively cross-associate the 18811 ROSAT Bright Source Catalog (RASS/BSC) X-ray sources with optical sources in the USNO-A2 catalog, calculating the the probability of unique association (Pid) between each candidate within 75 arcsec of the X-ray source position, on the basis of optical magnitude and proximity. We present catalogs of RASS/BSC sources for which the probability of association is >98%, >90%, and >50%, which contain 2705, 5492, and 11301 unique USNO-A2 optical counterparts respectively down to the stated level of significance. We include in this catalog a list of objects in the SIMBAD database within 10 arcsec of the USNO position, as an aid to identification and source classification. The catalog is more useful than previous catalogs which either rely on plausibility arguments for association, or do not aid in selecting a counterpart between multiple off-band sources in the field. We find that a fraction ~65.8% of RASS/BSC sources have an identifiable optical counterpart, down to the magnitude limit of the USNO catalog which could be identified by their spatial proximity and high optical brightness.
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Index calculation by means of harmonic expansion
Yosuke Imamura
2015-10-28
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Transport calculations of antiproton-nucleus interactions
A. B. Larionov; I. N. Mishustin; I. A. Pshenichnov; L. M. Satarov; W. Greiner
2010-01-15
The Giessen Boltzmann-Uehling-Uhlenbeck transport model is extended and applied to the antiproton-nucleus interactions in a wide beam momentum range. The model calculations are compared with the experimental data on $\\bar p$-absorption cross sections on nuclei with an emphasis on extraction of the real part of an antiproton optical potential. The possibility of the cold compression of a nucleus by an antiproton in-flight is also considered.
Economic Calculations for the ASHRAE Handbook
Haberl, J. S.
1993-01-01
ESL-TR-93/04-07 Economic Calculations for the ASHRAE Handbook Jeff S. Haberl Dept. of Mechanical Engineering Texas A&M University College Station, TX 77843-3123 For any proposed capital investment, the capital and interest costs, salvage costs... Office, Washington, D.C. BIBLIOGRAPHY ASTM. 1985. Definition of terms relating to building economics. ASTM Standard E933-S5. ASTM, Philadelphia. Kurtz, M. 1984. Handbook of engineering economics: A guide for engineers, technicians, scientists and managers...
Permeability Calculation in a Fracture Network - 12197
Lee, Cheo Kyung; Kim, Hyo Won [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, Sung Paal [Korea Atomic Energy Research Institute, Yusong, Daejon, 305-600 (Korea, Republic of)
2012-07-01
Laminar flow of a viscous fluid in the pore space of a saturated fractured rock medium is considered to calculate the effective permeability of the medium. The effective permeability is determined from the flow field which is calculated numerically by using the finite element method. The computation of permeability components is carried out with a few different discretizations for a number of fracture arrangements. Various features such as flow field in the fracture channels, the convergence of permeability, and the variation of permeability among different fracture networks are discussed. The longitudinal permeability in general appears greater than the transverse ones. The former shows minor variations with fracture arrangement whereas the latter appears to be more sensitive to the arrangement. From the calculations of the permeability in a rock medium with a fracture network (two parallel fractures aligned in the direction of 45-deg counterclockwise from the horizontal and two connecting fractures(narrowing, parallel and widening) the following conclusions are drawn. 1. The permeability of fractured medium not only depends on the primary orientation of the main fractures but also is noticeably influenced by the connecting fractures in the medium. 2. The transverse permeability (the permeability in the direction normal to the direction of the externally imposed macro-scale pressure gradient) is only a fraction of the longitudinal one, but is sensitive to the arrangement of the connecting fractures. 3. It is important to figure out the pattern of the fractures that connect (or cross) the main fractures for reliable calculation of the transverse permeability. (authors)
Free Energy Calculation in MD Simulation
Nielsen, Steven O.
Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0
Iron loss calculation for synchronous reluctance machines
Leonardi, F.; Matsuo, T.; Lipo, T.A. [Univ. of Wisconsin, Madison, WI (United States)
1995-12-31
A numerical method for iron loss calculation is presented in this paper. The method is suitable for any synchronous and most dc machines, especially if the current waveforms are known a priori . This technique will be principally useful for high speed machines and in particular for the synchronous reluctance machines and in particular for the synchronous reluctance machine, where the iron losses are often an important issue. The calculation is based on Finite Element Analysis, which provides the flux density waveforms in the iron, and on the Fourier Analysis of these waveforms. Several Finite Element Simulations are necessary to obtain the induced voltage versus time waveforms. To reduce the post-processing time the majority of the elements of the model are grouped together to create super elements. Also the periodicity of the motor can be used to reduce the number of required simulations. The method is applied to the calculation of the iron losses of a synchronous reluctance generator, and a number of interesting results are discussed in the paper.
Hybrid reduced order modeling for assembly calculations
Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Field Test of a Low-Frequency Sparker Source for Acoustic Waveform Logging
Paillet, Frederick L.
1984-01-01
Low-frequency acoustic-energy sources for waveform logging have important applications in: 1) Verifying theoretical calculations; 2) generating tube waves in large-diameter boreholes; and 3) providing larger sample volumes ...
Source Selection Guide | Department of Energy
Source Selection Guide Source Selection Guide Source Selection Guide More Documents & Publications Source Selection Guide Attachment FY2011-77 OPAM Policy Flash 2011-77 Attachment...
Composition, sources, and formation of secondary organic aerosols from urban emissions
Liu, Shang; Liu, Shang
2012-01-01
combustion, biomass burning, petroleum operation, vegetative detritus, biogenic emission,combustion emissions. The second factor spectrum correlated to the biomassbiomass burning factor and two combustion factors, which were not attributed to specific source types as a consequence of the complexity of emission
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
MX Factor Test films played a strategic-planning role in the debates of the late 1970s and early 1980s about where and how to deploy the MX intercontinental ballistic missile...
Viljoen, T. A.
1979-01-01
and disadvantages of various locations in the electrical network are described including the cost of installation and network capacity improvement. Sizing of capacitors is also covered. Finally, some case studies involving power factor improvement are presented...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Before PF 100142 0.70 or 70% After PF 100105 0.95 or 95% PB References: B.C. Hydro. Power Factor. The GEM Series. October 1989. Commonwealth Sprague Capacitor, Inc....
Hadronic form factors in kaon photoproduction
Syukurilla, L. Mart, T.
2014-09-25
We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the K?N vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.
SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS
Blancard, Christophe; Cosse, Philippe; Faussurier, Gerald
2012-01-20
An opacity model (OPAS) combining detailed configuration and level accounting treatments has been developed to calculate radiative opacity of plasmas in local thermodynamic equilibrium. The model is presented and used to compute spectral opacities of a solar mixture. Various density-temperature couples have been considered from the solar center up to the vicinity of the radiative/convective zone interface. For a given solar thermodynamic path, OPAS calculations are compared to Opacity Project (OP) and OPAL data. Rosseland mean opacity values are in very good agreement over all the considered solar thermodynamic path, while OPAS and OP spectral opacities of each element may vary considerably. Main sources of discrepancy are discussed.
Optimizing Power Factor Correction
Phillips, R. K.; Burmeister, L. C.
1986-01-01
FACTOR CORRECTION Robert K. Phillips and Louis C. Burmeister, Mechanical Engineering, University of Kansas, Lawrence, KS The optimal investment for power factor correcting capacitors for Kansas Power and Light Company large power contract customers... consumer of electricity were made for demands of 200, 400, 800, 1,600, 3,200, and 6,400 k\\~ and monthly energy consumption periods of 100, 150, 200, 300, 400, and 500 hours for several capacitor purchase and installation costs. The results...
Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)
2012-07-24
The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.
A Dual Method for Computing Power Transfer Distribution Factors
Ronellenfitsch, Henrik; Witthaut, Dirk
2015-01-01
Power Transfer Distribution Factors (PTDFs) play a crucial role in power grid security analysis, planning, and redispatch. Fast calculation of the PTDFs is therefore of great importance. In this letter, we present a dual method of computing PTDFs. It uses power flows along topological cycles of the network but still relies on simple matrix algebra. For power grids containing a relatively small number of cycles, the method offers a significant speedup of numerical calculations.
Phillips, J.E.; Easterly, C.E.
1980-12-01
A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water.
Compact ion accelerator source
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali
2014-04-29
An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhoton Source Parameters Print
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp in thePhoton Source Parameters
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for AccidentalHealth, Safety,FOIAHeatSource
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformance andAreaPhotoinduced electron transferPhoton Source
Fragment Yields Calculated in a Time-Dependent Microscopic Theory...
Office of Scientific and Technical Information (OSTI)
Fragment Yields Calculated in a Time-Dependent Microscopic Theory of Fission Citation Details In-Document Search Title: Fragment Yields Calculated in a Time-Dependent Microscopic...
Energy Department Report Calculates Emissions and Costs of Power...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant...
Illustrative Calculation of Economics for Heat Pump and "Grid...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...
Calculation of nuclear reaction cross sections on excited nuclei...
Office of Scientific and Technical Information (OSTI)
Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method Citation Details In-Document Search Title: Calculation of nuclear reaction cross...
A comparison of world-wide uses of severe reactor accident source terms
Ang, M.L. [NNC Ltd., Knutsford (United Kingdom); Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Kersting, E.J.; Friederichs, H.G. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany); Lee, R.Y. [Nuclear Regulatory Commission, Washington, DC (United States); Meyer-Heine, A. [CEA Centre d`Etudes de Cadarache, Saint Paul Lez Durance (France); Powers, D.A. [Sandia National Labs., Albuquerque, NM (United States); Soda, K. [Japan Atomic Energy Research Inst., Tokyo (Japan); Sweet, D. [AEA Technology, Winfrith (United Kingdom)
1994-09-01
The definitions of source terms to reactor containments and source terms to the environment are discussed. A comparison is made between the TID-14844 example source term and the alternative source term described in NUREG-1465. Comparisons of these source terms to the containments and those used in France, Germany, Japan, Sweden, and the United Kingdom are made. Source terms to the environment calculated in NUREG-1500 and WASH-1400 are discussed. Again, these source terms are compared to those now being used in France, Germany, Japan, Sweden, and the United Kingdom. It is concluded that source terms to the containment suggested in NUREG-1465 are not greatly more conservative than those used in other countries. Technical bases for the source terms are similar. The regulatory use of the current understanding of radionuclide behavior varies among countries.
Touschek Lifetime Calculations for NSLS-II
Nash,B.; Kramer, S.
2009-05-04
The Touschek effect limits the lifetime for NSLS-II. The basic mechanism is Coulomb scattering resulting in a longitudinal momentum outside the momentum aperture. The momentum aperture results from a combination of the initial betatron oscillations after the scatter and the non-linear properties determining the resultant stability. We find that higher order multipole errors may reduce the momentum aperture, particularly for scattered particles with energy loss. The resultant drop in Touschek lifetime is minimized, however, due to less scattering in the dispersive regions. We describe these mechanisms, and present calculations for NSLS-II using a realistic lattice model including damping wigglers and engineering tolerances.
Microscopic calculations in asymmetric nuclear matter
D. Alonso; F. Sammarruca
2003-02-06
A microscopic calculation of the equation of state for asymmetric nuclear matter is presented. We employ realistic nucleon-nucleon forces and operate within the Dirac-Brueckner-Hartree-Fock approach to nuclear matter. The focal point of this paper is a (momentum-space) G-matrix which properly accounts for the asymmetry between protons and neutrons. This will merge naturally into the development of an effective interaction suitable for applications to asymmetric nuclei, which will be the object of extensive study in the future.
Calculations of Surface Thermal-Expansion
KENNER, VE; Allen, Roland E.
1973-01-01
expansion. At high temperatures, the results for the surface thermal expansion are in agreement with the prediction of an approximate model which we gave earlier, +surface/abu)k ?(3/4) & ur ) su f / (0 )b lk At lOW temperatureS, a,???e/ab?,k paSSeS thr... influence the shifts in the Bragg peaks which are observed experimentally, as has been found to be the case in other attempts to measure surface thermal expansion. A nonkinematical calculation of temperature effects in low-energy-electron diffraction from...
Linear Transformation Method for Multinuclide Decay Calculation
Ding Yuan
2010-12-29
A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.
Distributed Energy Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,DepartmentCalculator Jump to: navigation, search
Cool Roof Calculator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, EtInformationRoof Calculator Jump to:
Charm and bottom hadronic form factors with QCD sum rules
Bracco, M. E.; Rodrigues, B. O.; Cerqueira, A. Jr.
2013-03-25
We present a brief review of some calculations of form factors and coupling constants in vertices with charm and bottom mesons in the framework of QCD sum rules. We first discuss the motivation for this work, describing possible applications of these form factors to charm and bottom decays processes. We first make a summarize of the QCD sum rules method. We give special attention to the uncertainties of the method introducing by the intrinsic variation of the parameters. Finally we conclude.
Electromagnetic deuteron form factors in point form relativistic quantum mechanics
N. A. Khokhlov
2015-03-10
A study of electromagnetic structure of the deuteron in the framework of relativistic quantum mechanics is presented. The deuteron form factors dependencies on the transferred 4-momentum Q are calculated. We compare results obtained with different realistic deuteron wave functions stemming from Nijmegen-I, Nijmegen-II, JISP16, CD-Bonn, Paris and Moscow (with forbidden states) potentials. A nucleon form factor parametrization consistent with modern experimental analysis was used as an input data.
Hamlet, Jason R; Pierson, Lyndon G
2014-10-21
Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.
Geothermal Plant Capacity Factors
Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood
2015-01-01
The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.
Advanced Photon Source Upgrade Project
Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej
2013-04-19
Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ
Completeness of Integrated Information Sources
Freytag, Johann-Christoph
Completeness of Integrated Information Sources Felix Naumann, Johann-Christoph Freytag, Ulf Leser attributes of these entities. Mediator-based information systems allow integrated access to such sources new merge operators, which formalize the integration of multiple source responses. A completeness
Odd orders in Shor's factoring algorithm
Thomas Lawson
2015-01-13
Shor's factoring algorithm (SFA) finds the prime factors of a number, $N=p_1 p_2$, exponentially faster than the best known classical algorithm. Responsible for the speed-up is a subroutine called the quantum order finding algorithm (QOFA) which calculates the order -- the smallest integer, $r$, satisfying $a^r \\mod N =1$, where $a$ is a randomly chosen integer coprime to $N$ (meaning their greatest common divisor is one, $\\gcd(a, N) =1$). Given $r$, and with probability not less than $1/2$, the factors are given by $p_1 = \\gcd (a^{\\frac{r}{2}} - 1, N)$ and $p_2 = \\gcd (a^{\\frac{r}{2}} + 1, N)$. For odd $r$ it is assumed the factors cannot be found (since $a^{\\frac{r}{2}}$ is not generally integer) and the QOFA is relaunched with a different value of $a$. But a recent paper [E. Martin-Lopez: Nat Photon {\\bf 6}, 773 (2012)] noted that the factors can sometimes be found from odd orders if the coprime is square. This raises the question of improving SFA's success probability by considering odd orders. We show that an improvement is possible, though it is small. We present two techniques for retrieving the order from apparently useless runs of the QOFA: not discarding odd orders; and looking out for new order finding relations in the case of failure. In terms of efficiency, using our techniques is equivalent to avoiding square coprimes and disregarding odd orders, which is simpler in practice. Even still, our techniques may be useful in the near future, while demonstrations are restricted to factoring small numbers. The most convincing demonstrations of the QOFA are those that return a non-power-of-two order, making odd orders that lead to the factors attractive to experimentalists.
A Generalized Adjoint Approach for Quantifying Reflector Assembly Discontinuity Factor Uncertainties
Yankov, Artem [University of Michigan] [University of Michigan; Collins, Benjamin [University of Michigan] [University of Michigan; Jessee, Matthew Anderson [ORNL] [ORNL; Downar, Thomas [University of Michigan] [University of Michigan
2012-01-01
Sensitivity-based uncertainty analysis of assembly discontinuity factors (ADFs) can be readily performed using adjoint methods for infinite lattice models. However, there is currently no adjoint-based methodology to obtain uncertainties for ADFs along an interface between a fuel and reflector region. To accommodate leakage effects in a reflector region, a 1D approximation is usually made in order to obtain the homogeneous interface flux required to calculate the ADF. Within this 1D framework an adjoint-based method is proposed that is capable of efficiently calculating ADF uncertainties. In the proposed method the sandwich rule is utilized to relate the covariance of the input parameters of 1D diffusion theory in the reflector region to the covariance of the interface ADFs. The input parameters covariance matrix can be readily obtained using sampling-based codes such as XSUSA or adjoint-based codes such as TSUNAMI. The sensitivity matrix is constructed using a fixed-source adjoint approach for inputs characterizing the reflector region. An analytic approach is then used to determine the sensitivity of the ADFs to fuel parameters using the neutron balance equation. A stochastic approach is used to validate the proposed adjoint-based method.
Initiation Pressure Thresholds from Three Sources
Souers, P C; Vitello, P
2007-02-28
Pressure thresholds are minimum pressures needed to start explosive initiation that ends in detonation. We obtain pressure thresholds from three sources. Run-to-detonation times are the poorest source but the fitting of a function gives rough results. Flyer-induced initiation gives the best results because the initial conditions are the best known. However, very thick flyers are needed to give the lowest, asymptotic pressure thresholds used in modern models and this kind of data is rarely available. Gap test data is in much larger supply but the various test sizes and materials are confusing. We find that explosive pressures are almost the same if the distance in the gap test spacers are in units of donor explosive radius. Calculated half-width time pulses in the spacers may be used to create a pressure-time curve similar to that of the flyers. The very-large Eglin gap tests give asymptotic thresholds comparable to extrapolated flyer results. The three sources are assembled into a much-expanded set of near-asymptotic pressure thresholds. These thresholds vary greatly with density: for TATB/LX-17/PBX 9502, we find values of 4.9 and 8.7 GPa at 1.80 and 1.90 g/cm{sup 3}, respectively.
Ott, L.
1994-11-15
The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.
Ecker, Amir L. (Duncanville, TX)
1983-01-01
A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.
Neutrino Sources and Properties
Francesco Vissani
2015-05-19
In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.
Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE GASES FOR THE UK
Bateman, Ian J.
ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE GASES FOR THE UK by W. Neil Adger Katrina are listed at the back of this publication. #12;ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE The Climate Change Framework Convention will require countries to calculate inventories of greenhouse gas
Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data
Lande, Joshua; Ackermann, Markus; Allafort, Alice; Ballet, Jean; Bechtol, Keith; Burnett, Toby; Cohen-Tanugi, Johann; Drlica-Wagner, Alex; Funk, Stefan; Giordano, Francesco; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne
2012-07-13
Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of seven new spatially extended sources.
Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation
Felak, R. P.
1986-01-01
, TX, June 17-19, 1986 Table 1 (Cont'd) Situation Utility has a temp orary oversupply of its own baseload power sources and thus at certain times prefers dis patching the inde pendent power source Requirement If the producer does not comply... factor range, as as intended output range as a functi time, and rate of change) Delivery (and purchase) voltage leve preferred Auxiliary power requirements Start-up/Standby/Emergency power requirements Sendout characteristics (e.g., net v surplus...
BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN
T.L. Lotz
1997-02-15
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.
Gordon Chalmers
2005-09-20
An algorithm is given to factor an integer with $N$ digits in $\\ln^m N$ steps, with $m$ approximately 4 or 5. Textbook quadratic sieve methods are exponentially slower. An improvement with the aid of an a particular function would provide a further exponential speedup.
Zero energy scattering calculation in Euclidean space
Carbonell, J
2016-01-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Benchmark On Sensitivity Calculation (Phase III)
Ivanova, Tatiana [IRSN; Laville, Cedric [IRSN; Dyrda, James [Atomic Weapons Establishment; Mennerdahl, Dennis [E. Mennerdahl Systems; Golovko, Yury [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Raskach, Kirill [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Tsiboulia, Anatoly [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Lee, Gil Soo [Korea Institute of Nuclear Safety (KINS); Woo, Sweng-Woong [Korea Institute of Nuclear Safety (KINS); Bidaud, Adrien [Labratoire de Physique Subatomique et de Cosmolo-gie (LPSC); Patel, Amrit [NRC; Bledsoe, Keith C [ORNL; Rearden, Bradley T [ORNL; Gulliford, J. [OECD Nuclear Energy Agency
2012-01-01
The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.
Matrix Factorization and Matrix Concentration
Mackey, Lester
2012-01-01
PCA 3 Mixed Membership Matrix Factorization 3.15.2 Matrix concentration3.3 Mixed Membership Matrix Factorization . . . 3.4
A primer for criticality calculations with DANTSYS
Busch, R.D.
1997-08-01
With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.
Risk Management Plan Electron Beam Ion Source Project
Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002. There are three specific areas of risk that can be controlled and managed by the EBIS Project team and these are and operations. The BNL ISM clearly indicates that risk management is everybody's business and will be factored
Dauphas, N; Alp, E E; Golden, D C; Sio, C K; Tissot, F L H; Hu, M; Zhao, J; Gao, L; Morris, R V
2012-01-01
We measured the reduced partition function ratios for iron isotopes in goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite (H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements were made on synthetic minerals enriched in 57Fe. A new method (i.e., the general moment approach) is presented to calculate {\\beta}-factors from the moments of the NRIXS spectrum S(E). The first term in the moment expansion controls iron isotopic fractionation at high temperature and corresponds to the mean force constant of the iron bonds, a quantity that is readily measured and often reported in NRIXS studies.
A PROCEDURE FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR
Bryan, H.J.
2010-01-01
Reflected Component or IRC). The total for these threeDaylight Factor = SC + ERC + IRC THE SKY COMPONENT The skyfrom ground Overcast Sky The IRC is the ratio between the
Quantum description and properties of electrons emitted from pulsed nanotip electron sources
Pavel Lougovski; Herman Batelaan
2011-03-31
We present a quantum calculation of the electron degeneracy for electron sources. We explore quantum interference of electrons in the temporal and spatial domain and demonstrate how it can be utilized to characterize a pulsed electron source. We estimate effects of Coulomb repulsion on two-electron interference and show that currently available nano tip pulsed electron sources operate in the regime where the quantum nature of electrons can be made dominant.
Isospin Violation and the Proton's Strange Form Factors
Randy Lewis; Nader Mobed
1999-10-22
The strange form factors of the proton are basic to an understanding of proton structure, and are presently the focus of many experiments. Before the strangeness effects can be extracted from data, it is necessary to calculate and remove effects due to isospin violation, which exist independently of the strange quark but which contribute nevertheless to the experimentally measured ``strange'' form factors. A discussion of the isospin violating contributions to vector form factors is given here in the context of heavy baryon chiral perturbation theory.
Krishnan, Anupama
2011-08-08
and petrochemical industries to ozone formation in the atmosphere. Source-oriented emissions needed to drive the model were generated using a revised Sparse Matrix Operator Kernel Emissions (SMOKE) model version 2.4. VOC/NOx ratios are found to be a critical factor...
Method and system for imaging a radiation source
Myjak, Mitchell J. (Richland, WA) [Richland, WA; Seifert, Carolyn E. (Kennewick, WA) [Kennewick, WA; Morris, Scott J. (Kennewick, WA) [Kennewick, WA
2011-04-19
A method for imaging a radiation source, and a device that utilizes these methods that in one embodiment include the steps of: calculating at least one Compton cone of a first parameter of a radiation emission from information received from a sensor occurrence; and tracing this Compton cone on to a unit sphere having preselected characteristics using an estimated angular uncertainty to limit at least a portion of said tracing. In another embodiment of the invention at least two Compton cones are calculated and then intersected upon a predefined surface such as a sphere. These intersection points can then be iterated over a preselected series of prior events.
MODIFIED SOLAR INSOLATION AS AN AGRONOMIC FACTOR IN TERRACED ENVIRONMENTS
Evans, Tom
of altitude, latitude, slope aspect, slope angle, and season. The net solar bene®t or cost from slope levelingMODIFIED SOLAR INSOLATION AS AN AGRONOMIC FACTOR IN TERRACED ENVIRONMENTS T. P. EVANS*1 AND B; Accepted 16 August 1999 ABSTRACT We present a model that calculates incident solar radiation falling
DETERMINATION OF LOSS FACTORS IN A DEREGULATED SYSTEM Ashikur Bhuiya
Saskatchewan, University of
is computationally efficient and can be utilized to calculate the loss factors associated with the generators of the world electric utilities are facing the challenge of transformation - from regulated monopoly market plays the role of a supervisor for system planning and security. An ISO may also work as a spot market
UMTS Capacity and Throughput Maximization for Different Spreading Factors
Akl, Robert
for signal-to-interference threshold from 5 dB to 10 dB and spreading factor values of 256, 64, 16, and 4 Erlang capacity based on the Lost Call Held (LCH) model as described in [4]. This algorithm calculates expression of Erlang capacity for a single type of traffic loading and compare analytical results
RESRAD for Radiological Risk Assessment. Comparison with EPA CERCLA Tools - PRG and DCC Calculators
Yu, C.; Cheng, J. -J.; Kamboj, S.
2015-07-01
The purpose of this report is two-fold. First, the risk assessment methodology for both RESRAD and the EPA’s tools is reviewed. This includes a review of the EPA’s justification for 2 using a dose-to-risk conversion factor to reduce the dose-based protective ARAR from 15 to 12 mrem/yr. Second, the models and parameters used in RESRAD and the EPA PRG and DCC Calculators are compared in detail, and the results are summarized and discussed. Although there are suites of software tools in the RESRAD family of codes and the EPA Calculators, the scope of this report is limited to the RESRAD (onsite) code for soil contamination and the EPA’s PRG and DCC Calculators also for soil contamination.
Farrar, G.R.; Huleihel, K.; Zhang, H. (Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855 (United States))
1995-01-30
We obtain the perturbative QCD (PQCD) prediction for the leading twist deuteron form factor, treated as a pair of nucleons in nonrelativistic bound state. It is [lt]10[sup [minus]3] times experiment at [ital Q][sup 2]=4 GeV[sup 2], suggesting that PQCD is not relevant to the deuteron form factor at present values of [ital Q][sup 2], or that non-nucleon (e.g., hidden color'') degrees of freedom must be included for a correct description of the deuteron. The tree-level amplitude [similar to][ital eg][sup 10] and is the sum of several 10[sup 6] Feynman diagrams, making it an interesting case study in the behavior of perturbation theory.
Nominal Performance Biosphere Dose Conversion Factor Analysis
Wasiolek, Maryla A.
2000-12-21
The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.
2011-01-01
S. : Optimizing automotive LPG blend for Mexico city, Fuel,Calculated using 6 (traffic + LPG) factors; r 2 = 0.86 withfactor and r 2 = 0.56 for LPG factor. e N = 851 for emission
Relaxation times calculated from angular deflections
E. Athanassoula; Ch. L. Vozikis; J. C. Lambert
2001-08-21
In this paper we measure the two-body relaxation time from the angular deflection of test particles launched in a rigid configuration of field particles. We find that centrally concentrated configurations have relaxation times that can be shorter than those of the corresponding homogeneous distributions by an order of magnitude or more. For homogeneous distributions we confirm that the relaxation time is proportional to the number of particles. On the other hand centrally concentrated configurations have a much shallower dependence, particularly for small values of the softening. The relaxation time increases with the inter-particle velocities and with softening. The latter dependence is not very strong, of the order of a factor of two when the softening is increased by an order of magnitude. Finally we show that relaxation times are the same on GRAPE-3 and GRAPE-4, dedicated computer boards with limited and high precision respectively.
Triton Electric Form Factor at Low-Energies
H. Sadeghi
2009-08-14
Making use of the Effective Field Theory(EFT) expansion recently developed by the authors, we compute the charge form factor of triton up to next-to-next-to-leading order (N$^2$LO). The three-nucleon forces(3NF) is required for renormalization of the three-nucleon system and it effects are predicted for process and is qualitatively supported by available experimental data. We also show that, by including higher order corrections, the calculated charge form factor and charge radius of $^3$H are in satisfactory agreement with the experimental data and the realistic Argonne $v_{18}$ two-nucleon and Urbana IX potential models calculations. This method makes possible a high precision few-body calculations in nuclear physics. Our result converges order by order in low energy expansion and also cut-off independent.
GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS
Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.
2013-11-12
This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1 g?cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.
Improved approximate formulas for flux from cylindrical and rectangular sources
Wallace, O.J.; Bokharee, S.A.
1993-03-01
This report provides two new approximate formulas for the flux at detector points outside the radial and axial extensions of a homogeneous cylindrical source and improved approximate formulas for the flux at points opposite rectangular surface sources. These formulas extend the range of geometries for which analytic approximations may be used by shield design engineers to make rapid scoping studies and check more extensive calculations for reasonableness. These formulas can be used to support skeptical, independent evaluations and are also valuable teaching tools for introducing shield designers to complex shield analyses.
Journal Information Journal Impact Factor
Krejcí, Pavel
Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index Journal Cited Half-Life 2014 JCR Science Edition Journal: CZECHOSLOVAK MATHEMATICAL JOURNAL Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items
Journal Information Journal Impact Factor
Krejcí, Pavel
Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index Journal Cited Half-Life 2012 JCR Science Edition Journal: CZECHOSLOVAK MATHEMATICAL JOURNAL Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items
Multiple factoring in the parallel solution of algebraic equations. Final report
Van Ness, J.E.
1985-03-01
Many power system simulations call for solving large sets of simultaneous algebraic equations. A new multiple factoring algorithm for use in parallel processing requires fewer calculations than past algorithms, thereby reducing computation time and costs for utility multiprocessor networks.
Progress on charm semileptonic form factors from 2+1 flavor lattice QCD
Jon A. Bailey; A. Bazavov; C. Bernard; C. Bouchard; C. DeTar; A. X. El-Khadra; E. D. Freeland; W. Freeman; E. Gamiz; Steven Gottlieb; U. M. Heller; J. E. Hetrick; A. S. Kronfeld; J. Laiho; L. Levkova; P. B. Mackenzie; M. B. Oktay; M. Di Pierro; J. N. Simone; R. Sugar; D. Toussaint; R. S. Van de Water
2009-12-01
Lattice calculations of the form factors for the charm semileptonic decays D to K l nu and D to pi l nu provide inputs to direct determinations of the CKM matrix elements |V(cs)| and |V(cd)| and can be designed to validate calculations of the form factors for the bottom semileptonic decays B to pi l nu and B to K l l-bar. We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline improvements to the previous calculation of the charm form factors and detail our progress. We expect our current round of data production to allow us to reduce the theoretical uncertainties in |V(cs)| and |V(cd)| from 10.5% and 11%, respectively, to about 7%.
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.
Development of a Roof Savings Calculator
New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)
2011-01-01
A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.
Visual Analytics for Roof Savings Calculator Ensembles
Jones, Chad [University of California, Davis] [University of California, Davis; New, Joshua Ryan [ORNL] [ORNL; Sanyal, Jibonananda [ORNL] [ORNL; Ma, Kwan-Liu [University of California, Davis] [University of California, Davis
2012-01-01
The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.
Constricted glow discharge plasma source
Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)
2000-01-01
A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.
Alternative Energy Sources – Myths and Realities
Youngquist, Walter
1998-01-01
Alternative Energy Sources - Myths and Realities Walterneed to think about alternative energy sources; the worlddepletion of oil? Alternative energy sources can be divided
Fingerprints of Disorder Source in Graphene
Zhao, Pei-liang; Katsnelson, M I; De Raedt, H
2015-01-01
We present a systematic study of the electronic, transport and optical properties of disordered graphene including the next-nearest-neighbor hopping. We show that this hopping has a non-negligible effect on resonant scattering but is of minor importance for long-range disorder such as charged impurities, random potentials or hoppings induced by strain fluctuations. Different types of disorder can be recognized by their fingerprints appearing in the dc conductivity, carrier mobility, optical spectroscopy and Landau level spectrum. By matching our calculations to the experimental observations, we conclude that the long-range disorder potential induced by strain is the most important source of disorder in high-quality graphene on a substrate.
Neutrino detection at a spallation source
Huang, Ming-Yang
2015-01-01
In this paper, we study the detection of accelerator neutrinos and supernova (SN) neutrinos at China Spallation Neutron Source (CSNS). Firstly, by using the code FLUKA, the processes of accelerator neutrinos production during the proton beam hitting on the tungsten target can be simulated, and the yield efficiency, numerical flux, average energy of different flavor neutrinos are given. Secondly, the detection of accelerator neutrinos through two reaction channels: the neutrino-electron reactions and the neutrino-carbon reactions, is studied, and the neutrino event numbers can be calculated. Finally, while considering the SN shock effects, the MSW effects, the neutrino collective effects, and the Earth matter effects, the detection of SN neutrinos on the Earth is studied. Then, the event numbers of SN neutrinos observed through various reaction channels are given.
Media Center | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
distributed to all APS users and others interested in the APS. Research Highlights Books Articles on Advanced Photon Source research and engineering highlights that are...
Linac Coherent Light Source Overview
Office of Energy Efficiency and Renewable Energy (EERE)
Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.
Linac Coherent Light Source Overview
None
2013-05-29
Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall.
APS Publications | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Publications Publications Database The APS Publications Database is a searchable compendium of information on results from research at the APS. It is the official source for...
Calvin, Genevieve J.
2011-01-01
s allotment of energy and today's needs, before completelytoday's sunlight which is, and always has been, the ONLY source of energy.
Advanced Neutron Source (ANS) Project
Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.
1991-02-01
This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)
Two-loop enhancement factor for 1/Q corrections to event shapes in deep inelastic scattering
Mrinal Dasgupta; Bryan R. Webber
2000-10-22
We compute the two-loop enhancement factors for our earlier one-loop calculations of leading (1/Q) power corrections to the mean values of some event shape variables in deep inelastic lepton scattering. The enhancement is found to be equal to the universal ``Milan factor'' for those shape variables considered, provided the one-loop calculation is performed in a particular way. As a result, the phenomenology of power corrections to DIS event shapes remains largely unaffected.
LAHET calculations for accelerator neutron production
Prael, R.E.
1993-07-01
LAHET is a Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons in complex geometry; it is the result of a major effort at Los Alamos National Laboratory to develop a code system based on the LANL version of the HETC Monte Carlo code for the transport of nucleons, pions, and muons, which was originally developed at Oak Ridge National Laboratory. The system of codes based on LAHET is designated as the LAHET Code System (LCS). LAHET, as all the variants of HETC, has been widely used over the years for design of neutron production targets, facility shielding, and experimental analysis. LAHET is now widely used for medical accelerator facility design and application. Particle tracking uses the general geometry model of the LANL MCNP code, and shares the geometry description and input of MCNP, except for lattices and/or repeated structures. HMCNP is a modification of MCNP which accepts an. external neutron/photon source created by LAHET. Neutron transport from 20 MeV to thermal and all photon/electron transport is done with HMCNP.
Handbook of Industrial Engineering Equations, Formulas, and Calculations
Badiru, Adedeji B; Omitaomu, Olufemi A
2011-01-01
The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?
The $B \\to D \\ell ?$ form factors at nonzero recoil and $|V_{cb}|$ from $2+1$-flavor lattice QCD
Fermilab Lattice; MILC Collaborations; :; Jon A. Bailey; A. Bazavov; C. Bernard; C. M. Bouchard; C. DeTar; Daping Du; A. X. El-Khadra; J. Foley; E. D. Freeland; E. Gámiz; Steven Gottlieb; U. M. Heller; J. Komijani; A. S. Kronfeld; J. Laiho; L. Levkova; P. B. Mackenzie; E. T. Neil; Si-Wei Qiu; J. Simone; R. Sugar; D. Toussaint; R. S. Van de Water; Ran Zhou
2015-03-24
We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay $\\overline{B} \\rightarrow D \\ell \\overline{\
Arc plasma simulation of the KAERI large ion source
In, S. R.; Jeong, S. H.; Kim, T. S.
2008-02-15
The KAERI large ion source, developed for the KSTAR NBI system, recently produced ion beams of 100 keV, 50 A levels in the first half campaign of 2007. These results seem to be the best performance of the present ion source at a maximum available input power of 145 kW. A slight improvement in the ion source is certainly necessary to attain the final goal of an 8 MW ion beam. Firstly, the experimental results were analyzed to differentiate the cause and effect for the insufficient beam currents. Secondly, a zero dimensional simulation was carried out on the ion source plasma to identify which factors control the arc plasma and to find out what improvements can be expected.
Methods for point source analysis in high energy neutrino telescopes
Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli
2008-01-10
Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.
On the stability of thermonuclear shell sources in stars
S. -C. Yoon; N. Langer; M. van der Sluys
2004-06-07
We present a quantitative criterion for the thermal stability of thermonuclear shell sources. We find the thermal stability of shell sources to depend on exactly three factors: they are more stable when they are geometrically thicker, less degenerate and hotter. This confirms and unifies previously obtained results in terms of the geometry, temperature and density of the shell source, by a simplified but quantitative approach to the physics of shell nuclear burning. We present instability diagrams in the temperature-density plane for hydrogen and helium shell burning, which allow a simple evaluation of the stability conditions of such shell sources in stellar models. The performance of our stability criterion is demonstrated in various numerical models: in a 3 Msun AGB star, in helium accreting CO white dwarfs, in a helium white dwarf which is covered by a thin hydrogen envelope, and in a 1.0 Msun giant.
Pairsuwan, Weerapong
2007-01-19
A short history of the SIAM Photon Source in Thailand is described. The facility is based on the 1 GeV storage ring obtained from the SORTEC consortium in Japan. After a redesign to include insertion straight sections it produced the first light in December 2001 and the first beam line became operational in early 2002. Special difficulties appear when a synchrotron light facility is obtained by donation, which have mostly to do with the absence of human resource development that elsewhere is commonly accomplished during design and construction. Additional problems arise by the distance of a developing country like Thailand from the origin of technical parts of the donation. A donation does not provide time to generate local capabilities or include in the technical design locally obtainable parts. This makes future developments, repairs and maintenance more time consuming, difficult and expensive than it should be. In other cases, parts of components are proprietary or obsolete or both which requires redesign and engineering at a time when the replacement part should be available to prevent stoppage of operation.The build-up of a user community is very difficult, especially when the radiation spectrum is confined to the VUV regime. Most of scientific interest these days is focused on the x-ray regime. Due to its low beam energy, the SIAM storage ring did not produce useful x-ray intensities and we are therefore in the midst of an upgrade to produce harder radiation. The first step has been achieved with a 20% increase of energy to 1.2 GeV. This step shifts the critical photon energy of bending magnet radiation from 800 eV to 1.4 keV providing useful radiation up to 7 keV. A XAS-beam line has been completed in 2005 and experimentation is very active by now. The next step is to install a 6.4 T wavelength shifter by the end of 2006 resulting in a critical photon energy of 6.15 keV. Further upgrades are planed for the comming years.
Randomly poled crystals as a source of photon pairs
Jan Perina Jr; Jiri Svozilik
2011-01-04
Generation of photon pairs from randomly poled nonlinear crystals is investigated using analytically soluble model and numerical calculations. Randomly poled crystals are discovered as sources of entangled ultra broad-band signal and idler fields. Their photon-pair generation rates scale linearly with the number of domains. Entanglement times as short as several fs can be reached. Comparison with chirped periodically-poled structures is given and reveals close similarity.
Clanton, John L
1956-01-01
. CALCULATION OF OIL INITIALLY IN PLACE BY SCHILTHUIS MATERIAL BALANCE . . . ZO 6. MATERIAL BALANCE BASED ON EQUILIBRIUM CONSTANTS 7. DISCUSSION OF RESULTS 8. CONCLUSIONS 9. ACKNOWLEDGEMENT 10. REFERENCES 11. BIBLIOGRAPHY , 36 . 38 39 LIST... OF FIGURES AND TABLES FIGURES FOLLOWING PAGE Isovol Map of Scurry Reef Reservoir 22 Histogram of Production, Gas-Oil Ratio, Pressure and Water Injection History. Shrinkage of Scurry Reef Reservoir Oil, Scurry County, Texas. Gas Volumes Liberated from...
TDHF fusion calculations for spherical+deformed systems
A. S. Umar; V. E. Oberacker
2006-04-04
We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.
Radiological and chemical source terms for Solid Waste Operations Complex. Revision 1
Boothe, G.F.
1994-06-03
The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ``source term`` means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements.
hp calculators HP 50g Confidence Intervals Real Estate
Vetter, Frederick J.
hp calculators HP 50g Confidence Intervals Real Estate The STAT menu Confidence Intervals Practice finding confidence intervals Real Estate #12;hp calculators HP 50g Confidence Intervals Real Estate hp calculators - 2 - HP 50g Confidence Intervals Real Estate The STAT menu The Statistics menu
hp calculators HP 50g Hypothesis tests Real Estate
Vetter, Frederick J.
hp calculators HP 50g Hypothesis tests Real Estate The STAT menu Hypothesis tests Practice evaluating hypothesis tests Real Estate #12;hp calculators HP 50g Hypothesis tests Real Estate hp calculators - 2 - HP 50g Hypothesis tests Real Estate The STAT menu The Statistics menu is accessed from
The melting lines of model systems calculated from coexistence simulations
Song, Xueyu
rapidly as a function of the potential cutoff, indicating that long-range corrections to the free energies of the solid and liquid phases very nearly cancel. This approach provides an alternative to traditional methods them. Tradition- ally, these calculations have been made using free energy calculations: by calculating
Hollow electrode plasma excitation source
Ballou, Nathan E. (West Richland, WA)
1992-01-01
A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.
Hollow electrode plasma excitation source
Ballou, N.E.
1992-04-14
A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.
The Linac Coherent Light Source
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
White, William E.; Robert, Aymeric; Dunne, Mike
2015-05-01
The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.
Ultrabright source of polarization-entangled photons Paul G. Kwiat,1
Kwiat, Paul
, Berkeley, California 94720 Received 2 October 1998 Using the process of spontaneous parametric down-conversion than ten times brighter, per unit of pump power, than previous sources, with another factor of 30 to 75 and controllable source of entanglement arises from the process of spontaneous para- metric down-conversion
Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model: An
Zhao, Xuepu
Discrepancies in the Prediction of Solar Wind using Potential Field Source Surface Model. This inverse relation has been made use of in the prediction of solar wind speed at 1 AU using a potential between the magnetic flux tube expansion factor (FTE) at the source surface and the solar wind speed
Particle Acceleration in Astrophysical Sources
Amato, Elena
2015-01-01
Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...
Localization from near-source quasi-static electromagnetic fields
Mosher, J.C.
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Volume57, number2 15 JnIy 1978 ON CALCULATING PHASE SHIFTS AND PERFORMING FrrS
Le Roy, Robert J.
_ Introduction Differential and integral scattering cross sections measured by molecular beam scatteringVolume57, number2 15 JnIy 1978 ON CALCULATING PHASE SHIFTS AND PERFORMING FrrS TO SCATl-ERlNG CROSS-Ixrameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. I
CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112
Tarr, Lucas; Longcope, Dana
2012-04-10
The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.
Tiled QR factorization algorithms
Bouwmeester, Henricus; Langou, Julien; Robert, Yves
2011-01-01
This work revisits existing algorithms for the QR factorization of rectangular matrices composed of p-by-q tiles, where p >= q. Within this framework, we study the critical paths and performance of algorithms such as Sameh and Kuck, Modi and Clarke, Greedy, and those found within PLASMA. Although neither Modi and Clarke nor Greedy is optimal, both are shown to be asymptotically optimal for all matrices of size p = q^2 f(q), where f is any function such that \\lim_{+\\infty} f= 0. This novel and important complexity result applies to all matrices where p and q are proportional, p = \\lambda q, with \\lambda >= 1, thereby encompassing many important situations in practice (least squares). We provide an extensive set of experiments that show the superiority of the new algorithms for tall matrices.
Mobile source emission control cost-effectiveness: Issues, uncertainties, and results
Wang, M.Q.
1994-12-01
Emissions from mobile sources undoubtedly contribute to US urban air pollution problems. Consequently, mobile source control measures, ranging from vehicle emission standards to reducing vehicle travel, have been adopted or proposed to help attain air quality standards. To rank various mobile source control measures, various government agencies and private organizations calculate cost-effectiveness in dollars per ton of emissions reduced. Arguments for or against certain control measures are often made on the basis of the calculated cost-effectiveness. Yet, different studies may yield significantly different cost-effectiveness results, because of the various methodologies used and assumptions regarding the values of costs and emission reductions. Because of the methodological differences, the cost-effectiveness results may not be comparable between studies. Use of incomparable cost-effectiveness results may result in adoption of ineffective control measures. This paper first discusses some important methodological issues involved in cost-effectiveness calculation for mobile sources and proposes appropriate, systematic methods for dealing with these issues. Various studies have been completed recently to evaluate the cost-effectiveness of mobile source emission control measures. These studies resulted in wide variations in the cost-effectiveness for same control measures. Methodological assumptions used in each study are presented and, based on the proposed methods for cost-effectiveness calculation, adjustments are applied to the original estimates in each study to correct inappropriate methodological assumptions and to make the studies comparable. Finally, mobile source control measures are ranked on the basis of the adjusted cost-effectiveness estimates.
Geodesics in the field of a rotating deformed gravitational source
Boshkayev, Kuantay; Abutalip, Marzhan; Kalymova, Zhanerke; Suleymanova, Sharara
2015-01-01
We investigate equatorial geodesics in the gravitational field of a rotating and deformed source described by the approximate Hartle-Thorne metric. In the case of massive particles, we derive within the same approximation analytic expressions for the orbital angular velocity, the specific angular momentum and energy, and the radii of marginally stable and marginally bound circular orbits. Moreover, we calculate the orbital angular velocity and the radius of lightlike circular geodesics. We study numerically the frame dragging effect and the influence of the quadrupolar deformation of the source on the motion of test particles. We show that the effects originating from the rotation can be balanced by the effects due to the oblateness of the source.
Geodesics in the field of a rotating deformed gravitational source
Kuantay Boshkayev; Hernando Quevedo; Marzhan Abutalip; Zhanerke Kalymova; Sharara Suleymanova
2015-10-07
We investigate equatorial geodesics in the gravitational field of a rotating and deformed source described by the approximate Hartle-Thorne metric. In the case of massive particles, we derive within the same approximation analytic expressions for the orbital angular velocity, the specific angular momentum and energy, and the radii of marginally stable and marginally bound circular orbits. Moreover, we calculate the orbital angular velocity and the radius of lightlike circular geodesics. We study numerically the frame dragging effect and the influence of the quadrupolar deformation of the source on the motion of test particles. We show that the effects originating from the rotation can be balanced by the effects due to the oblateness of the source.
International Data on Radiological Sources
Martha Finck; Margaret Goldberg
2010-07-01
ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.
Electrical and Production Load Factors
Sen, T.; Heffington, W. M.
2009-01-01
factors and operating hours of small and medium-sized industrial plants are analyzed to classify shift-work patterns and develop energy conservation diagnostic tools. This paper discusses two types of electric load factors for each shift... The purpose of this paper is to analyze operating hours of small and medium-sized manufacturing plants in the United States and develop ranges of load factors for use as diagnostic tools for effective energy management. Load factor is defined...
Once-through steam-generator sensitivity calculations
Steiner, J.L.; Siebe, D.A.
1988-01-01
A series of TRAC-PF1/MOD2 thermal-hydraulic calculations has been performed to determine the effect of uncertainties in modeling once through steam-generator (OTSG) secondary-side phenomena on the calculated behavior of Babcock and Wilcox power plants. The calculations were performed by varying parameters in correlations for the secondary-side phenomena. The parameters and transients were chosen to show the maximum expected sensitivity of the calculated results to the parameter variations. The parameters were then varied over a range representing the estimated uncertainty in the correlation. In this manner, the sensitivity if the calculated plant behavior to the modeling uncertainties was determined with a reasonable number of calculations. The sensitivity of calculated plant behavior to variations in interfacial heat-transfer in the OTSG secondaries was determined in a series of steam-generator overfill transient calculations. Calculations were performed for a main steam line break (MSLB) transient to quantify the sensitivity to variations in interfacial drag in the secondaries; the interfacial drag was varied in these calculations to indicate the effects of entrainment and de-entrainment processes, for which no specific models exist in the code. In addition to the transient calculations, a series of steady-state calculations was performed to determine the sensitivity of the OTSG primary-to-secondary heat transfer to the assumed fraction of tubes wetted by the auxiliary feedwater (AFW) injection. The plant model used for the sensitivity calculations was qualified by performing a benchmark calculation for a natural circulation test in the TMI-1 plant.
S. S. Raghuwanshi; G. M. Saxena
2009-10-21
In this paper we report generalized approach to calculate magnetic shielding factor (MSF) of multi-layer mu metal concentric cylindrical shields for arbitrary length to radius ratios and different values of magnetic permeability. We report in this paper the generalized results on the magnetic shielding factor of multi-layered magnetic shields used in Rb atomic clocks
Yang, W.; Wu, H.; Cao, L.
2012-07-01
More and more MOX fuels are used in all over the world in the past several decades. Compared with UO{sub 2} fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for {sup 240}Pu and {sup 242}Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)
Three chamber negative ion source
Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.
1983-11-10
It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.
Radiation Skyshine Calculation with MARS15 for the mu2e Experiment at Fermilab
Leveling, A F
2015-01-01
The Fermilab Antiproton source is to be repurposed to provide an 8 kW proton beam to the Mu2e experiment by 1/3 integer, slow resonant extraction. Shielding provided by the existing facility must be supplemented with in-tunnel shielding to limit the radiation effective dose rate above the shield in the AP30 service building. In addition to the nominal radiation shield calculations, radiation skyshine calculations were required to ensure compliance with Fermilab Radiological Control Manual. A complete model of the slow resonant extraction system including magnets, electrostatic septa, magnetic fields, tunnel enclosure with shield, and a nearby exit stairway are included in the model. The skyshine model extends above the beam enclosure surface to 10 km vertically and 5 km radially.
Ab-initio calculations on two-electron ions in strongly coupled plasma environment
Bhattacharyya, S; Mukherjee, T K
2015-01-01
In this work, the controversy between the interpretations of recent measurements on dense aluminum plasma created with Linac coherent light sources (LCLS) X-ray free electron laser (FEL) and Orion laser has been addressed. In both kind of experiments, helium-like and hydrogen-like spectral lines are used for plasma diagnostics . However, there exist no precise theoretical calculations for He-like ions within dense plasma environment. The strong need for an accurate theoretical estimates for spectral properties of He-like ions in strongly coupled plasma environment leads us to perform ab initio calculations in the framework of Rayleigh-Ritz variation principle in Hylleraas coordinates where ion-sphere potential is used. An approach to resolve the long-drawn problem of numerical instability for evaluating two-electron integrals with extended basis inside a finite domain is presented here. The present values of electron densities corresponding to disappearance of different spectral lines obtained within the fram...
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
P. Sanchez
2001-05-30
The qualification is being completed in accordance with the Data Qualification Plan DQP-NBS-GS-000006, Rev. 00 (CRWMS M&O 2001). The purpose of this data qualification activity is to evaluate for qualification the unqualified developed input and porosity output included in Data Tracking Number (DTN) M09910POROCALC.000. The main output of the analyses documented in DTN M09910POROCALC.000 is the calculated total porosity and effective porosity for 40 Yucca Mountain Project boreholes. The porosity data are used as input to Analysis Model Report (AMR) 10040, ''Rock Properties Model'' (MDL-NBS-GS-000004, Rev. 00), Interim Change Notice [ICN] 02 (CRWMS M&O 2000b). The output from the rock properties model is used as input to numerical physical-process modeling within the context of a relationship developed in the AMR between hydraulic conductivity, bound water and zeolitic zones for use in the unsaturated zone model. In accordance with procedure AP-3.15Q, the porosity output is not used in the direct calculation of Principal Factors for post-closure safety or disruptive events. The original source for DTN M09910POROCALC.000 is a Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) report, ''Combined Porosity from Geophysical Logs'' (CRWMS M&O 1999a and hereafter referred to as Rael 1999). That report recalculated porosity results for both the historical boreholes covered in Nelson (1996), and the modern boreholes reported in CRWMS M&O (1996a,b). The porosity computations in Rael (1999) are based on density-porosity mathematical relationships requiring various input parameters, including bulk density, matrix density and air and/or fluid density and volumetric water content. The main output is computed total porosity and effective porosity reported on a foot-by-foot basis for each borehole, although volumetric water content is derived from neutron data as an interim output. This qualification report uses technical assessment and corroboration to evaluate the original subject DTN. Rael (1999) provides many technical details of the technical assessment and corroboration methods and partially satisfies the intent of the qualification plan for this analysis. Rael presents a modified method based on Nelson (1996) to recompute porosity and porosity-derived values and uses some of the same inputs. Rael's (1999) intended purpose was to document porosity output relatively free of biases introduced by differing computational methods or parameter selections used for different boreholes. The qualification report necessarily evaluates the soundness of the pre-Process Validation and Re-engineering (PVAR) analyses and methodology, as reported in Rael (1999).
APS News | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Young, Director of the X-ray Science Division in Argonne's Advanced Photon Source; Elliot Kanter, of the Atomic, Molecular, and Optical Physics Group in the X-ray Science...
Radiation source with shaped emission
Kubiak, Glenn D.; Sweatt, William C.
2003-05-13
Employing a source of radiation, such as an electric discharge source, that is equipped with a capillary region configured into some predetermined shape, such as an arc or slit, can significantly improve the amount of flux delivered to the lithographic wafers while maintaining high efficiency. The source is particularly suited for photolithography systems that employs a ringfield camera. The invention permits the condenser which delivers critical illumination to the reticle to be simplified from five or more reflective elements to a total of three or four reflective elements thereby increasing condenser efficiency. It maximizes the flux delivered and maintains a high coupling efficiency. This architecture couples EUV radiation from the discharge source into a ring field lithography camera.
Electrolyte salts for power sources
Doddapaneni, N.; Ingersoll, D.
1995-11-28
Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.
Roadmap for commodity sourcing strategy
Chong, Wenzheng
2015-01-01
The procurement and sourcing group of OG company was tasked to systematically forecast, design and develop the future state of the company's next generation supply base. The main objective is to anticipate the preferred ...
Calvin, Genevieve J.
2011-01-01
of photosynthesis of energy (the sun) still of mil Teniapast due that we use the sun's energy on a current basis andenergy farm" with the sunshine as the source. The sugar cane captures the sun,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Programs Service (EDRP) With EDRP, you'll discover ways to make your EE and demand-response programs more effective. With E Source EDRP you can: Identify attributes...
Next Generation Light Source Workshops
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...
Calvin, Genevieve J.
2011-01-01
past due that we use the sun's energy on a current basis andof photosynthesis of energy (the sun) still of mil Teniaenergy farm" with the sunshine as the source. The sugar cane captures the sun,
Unimodular gravity with external sources
Álvarez, Enrique; Herrero-Valea, Mario, E-mail: enrique.alvarez@uam.es, E-mail: mario.herrero@estudiante.uam.es [Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica Universidad Autónoma de Madrid, E-28049, Madrid (Spain)
2013-01-01
The only allowed source of the gravitational field in the unimodular theory, invariant under area-preserving (transverse) diffeomorphisms as well as Weyl transformations, is just the traceless piece of the energy-momentum tensor. This fact notwithstanding, the free energy produced by arbitrary sources (not only static ones) is identical to the one predicted by general relativity. This encompasses all weak field tests of gravitation.
Calculating energy storage due to topological changes in emerging active region NOAA AR 11112
Tarr, L A
2012-01-01
The Minimum Current Corona (MCC) model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore develop...
Gravitational Microlensing of Fractal Sources
Geraint F. Lewis
2004-08-11
Gravitational microlensing has proven to be a powerful tool in the study of quasars, providing some of the strongest limits on the scales of structure in the central engine. Typically sources are considered to be smoothly varying on some particular scale; such simple sources result in recognisable time scales in microlensing light curves from which the size of the source can be determined. Various emission processes, however, result in sources with a fractal appearance, possessing structure on a range of scales. Here, the gravitational microlensing of such fractal sources at the heart of quasars is considered. It is shown that the resulting light curves reflect the fractal nature of the sources, possessing pronounced structure at various scales, markedly different to the case with the random distribution of emission clouds that are typically considered. Hence, the determination of a characteristic scale of variability in a microlensing light curve may not necessarily reveal the size of the individual emission clouds, the key value that is required to determine the physical state of the emission region, rather it may correspond to a particular hierarchy in a fractal structure. Current X-ray satellites can detect such fractal structure via the monitoring of gravitationally lensed quasars during a microlensing event, providing a test of high energy emission processes in quasars.
Application analysis of ground source heat pumps in building space conditioning
Qian, Hua; Wang, Yungang
2013-07-01
The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.
The Dirac Form Factor Predicts the Pauli Form Factor in the Endpoint Model
Sumeet Dagaonkar; Pankaj Jain; John P. Ralston
2015-03-24
We compute the momentum-transfer dependence of the proton Pauli form factor $F_{2}$ in the endpoint overlap model. We find the model correctly reproduces the scaling of the ratio of $F_{2}$ with the Dirac Form factor $F_{1}$ observed at the Jefferson Laboratory. The calculation uses the leading-power, leading twist Dirac structure of the quark light-cone wave function, and the same endpoint dependence previously determined from the Dirac form factor $F_{1}$. There are no parameters and no adjustable functions in the endpoint model's prediction for $F_{2}$. The model's predicted ratio $F_{2}(Q^{2})/F_{1}(Q^{2})$ is quite insensitive to the endpoint wave function, which explains why the observed ratio scales like $1/Q$ down to rather low momentum transfers. The endpoint model appears to be the only comprehensive model consistent with all form factor information as well as reproducing fixed-angle proton-proton scattering at large momentum transfer. Any one of the processes is capable of predicting the others.
Hunting for treasures among the Fermi unassociated sources: A multiwavelength approach
Acero, F.; Ojha, R.; Edwards, P. G.; Blanchard, J.; Lovell, J. E. J.; Thompson, D. J.
2013-12-20
The Fermi Gamma-Ray Space Telescope has been detecting a wealth of sources where the multiwavelength counterpart is either inconclusive or missing altogether. We present a combination of factors that can be used to identify multiwavelength counterparts to these Fermi unassociated sources. This approach was used to select and investigate seven bright, high-latitude unassociated sources with radio, UV, X-ray, and ?-ray observations. As a result, four of these sources are candidates to be active galactic nuclei, and one to be a pulsar, while two do not fit easily into these known categories of sources. The latter pair of extraordinary sources might reveal a new category subclass or a new type of ?-ray emitter. These results altogether demonstrate the power of a multiwavelength approach to illuminate the nature of unassociated Fermi sources.
Cavity loss factors of non-relativistic beams for Project X
Lunin, A.; Yakovlev, V.; Kazakov, S.; /Fermilab
2011-03-01
Cavity loss factor calculation is an important part of the total cryolosses estimation for the super conductive (SC) accelerating structures. There are two approaches how to calculate cavity loss factors, the integration of a wake potential over the bunch profile and the addition of loss factors for individual cavity modes. We applied both methods in order to get reliable results for non-relativistic beam. The time domain CST solver was used for a wake potential calculation and the frequency domain HFSS code was used for the cavity eigenmodes spectrum findings. Finally we present the results of cavity loss factors simulations for a non-relativistic part of the ProjectX and analyze it for various beam parameters.
Separation of beam and electrons in the spallation neutron source H{sup -} ion source
Whealton, J.H.; Raridon, R.J.; Leung, K.N.
1997-12-01
The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.
A Cosmology Calculator for the World Wide Web
Edward L. Wright
2006-10-10
A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.
Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations
Aaron Puzder; Maxime Dion; David C. Langreth
2005-09-15
The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.
Shan Cheng; Zhen-Jun Xiao
2015-05-12
We calculate the time-like pion electromagnetic form factor in the $k_T$ factorization formalism with the inclusion of the next-to-leading-order(NLO) corrections to the leading-twist and sub-leading-twist contributions. It's found that the total NLO correction can enhance (reduce) the magnitude (strong phase) of the leading order form factor by $20\\% - 30\\%$ ( $ 5$ GeV$^2$, and the NLO twist-3 correction play the key role to narrow the gap between the pQCD predictions and the measured values for the time-like pion electromagnetic form factor.
M. Puhr; P. V. Buividovich
2014-11-03
The overlap Dirac operator obeys the Ginsparg-Wilson equation and offers a possibility to introduce chiral symmetry on the lattice. Evaluating the overlap operator is numerically very expensive and one has to rely on approximation methods. At finite chemical potential the overlap operator can be efficiently computed with the two-sided Lanczos algorithm. To calculate conserved currents on the lattice, or to evaluate the fermionic force in HMC calculations, one needs to compute derivatives of the Dirac operator with respect to gauge fields. In this paper we present a method to simultaneously compute the action of the overlap operator and its derivative on a source vector.
Inverter for interfacing advanced energy sources to a utility grid
Steigerwald, Robert L. (Scotia, NY)
1984-01-01
A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.
Neutron charge form factor at large $q^2$
R. Schiavilla; I. Sick
2001-07-06
The neutron charge form factor $G_{En}(q)$ is determined from an analysis of the deuteron quadrupole form factor $F_{C2}$ data. Recent calculations, based on a variety of different model interactions and currents, indicate that the contributions associated with the uncertain two-body operators of shorter range are relatively small for $F_{C2}$, even at large momentum transfer $q$. Hence, $G_{En}(q)$ can be extracted from $F_{C2}$ at large $q^2$ without undue systematic uncertainties from theory.
Multigroup Radiation Transport in Supernova Light Curve Calculations...
Office of Scientific and Technical Information (OSTI)
Multigroup Radiation Transport in Supernova Light Curve Calculations Even, Wesley P. Los Alamos National Laboratory; Frey, Lucille H. Los Alamos National Laboratory; Fryer,...
Multigroup Radiation Transport in Supernova Light Curve Calculations...
Office of Scientific and Technical Information (OSTI)
Technical Report: Multigroup Radiation Transport in Supernova Light Curve Calculations Citation Details In-Document Search Title: Multigroup Radiation Transport in Supernova Light...
Energy savings estimates and cost benefit calculations for high...
Office of Scientific and Technical Information (OSTI)
Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings estimates and cost...
Integrated System Transmission and Ancillary Services Rate Calculation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1 Integrated System Transmission and Ancillary Services Rate Calculation...
Integrated System Transmission and Ancillary Services Rate Calculation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
System Transmission and Ancillary Services 2013 Rate True-up Calculation Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1...
XOP : a graphical user interface for spectral calculations and...
Office of Scientific and Technical Information (OSTI)
XOP : a graphical user interface for spectral calculations and x-ray optics utilities. Citation Details In-Document Search Title: XOP : a graphical user interface for spectral...
Qualified Software for Calculating Commercial Building Tax Deductions
Office of Energy Efficiency and Renewable Energy (EERE)
On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements.
Quantum Monte Carlo Calculations of Light Nuclei Using Chiral...
Office of Scientific and Technical Information (OSTI)
Details In-Document Search This content will become publicly available on November 4, 2015 Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials...
A Method for Calculating Reference Evapotranspiration on Daily Time Scales
Farmer, William
Measures of reference evapotranspiration are essential for applications of agricultural management and water resources engineering. Using numerous esoteric variables, one can calculate daily reference evapotranspiration ...
Remarks on calculation of positron flux from galactic dark matter...
Office of Scientific and Technical Information (OSTI)
involves solving transport equations, which account for interaction of positrons with matter and galactic magnetic fields. Existing calculations solve the equations inside the...
Magnetic Field Line Tracing Calculations for Conceptual PFC Design...
Office of Scientific and Technical Information (OSTI)
Conference: Magnetic Field Line Tracing Calculations for Conceptual PFC Design in the National Compact Stellarator Experiment Citation Details In-Document Search Title: Magnetic...
NREL: Energy Analysis - Levelized Cost of Energy Calculator
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
distributed generation data used within this calculator. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database...
NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...
material. An evaluation of methods for calculation of the dispersion of potential chemical releases for the purpose of estimating the chemical exposure at the co-located worker...
A science based emission factor for particulate matter emitted from cotton harvesting
Wanjura, John David
2009-05-15
and PM2.5 emission factors were developed from TSP emission concentration measurements converted to emission rates using the results of PSD analysis. The total TSP, PM10, and PM2.5 emission factors resulting from the source measurement protocol are 1...
Multilevel cascade voltage source inverter with separate DC sources
Peng, F.Z.; Lai, J.S.
1997-06-24
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)
1997-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng; Lai, Jih-Sheng
2001-04-03
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Multilevel cascade voltage source inverter with seperate DC sources
Peng, Fang Zheng (Knoxville, TN); Lai, Jih-Sheng (Blacksburg, VA)
2002-01-01
A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.
Morabito, D.D.; Preston, R.A.; Slade, M.A.; Jauncey, D.L.
1981-12-01
Very long Baseline Interferometry measurements at 2290 MHz on baselines of approximately 10 to the 4th power km between Deep Space Network stations were used to identify sources that are suitable for precision astrometric applications. The use of relatively crude time delay measurements along with fringe frequency measurements to determine the positions of the milliarcsecond nuclei in 546 extragalactic sources with accuracies of generally approximately 1' is described. The calculated positions of the sources and the corresponding uncertainties are presented and the positions are referenced to the equinox of 1950.0 and elliptical aberration terms are included so as to agree with past astronomical convention. The source positions and position uncertainties for sources which were multiply observed were estimated from a weighted average. The reliability of the determined positions was demonstrated by testing the repeatability of multiple observations on the same source and by position comparisons with more accurate radio catalogs.
CANCELLED Microwave Ion Source and Beam Injection for an Accelerator-Driven Neut ron Source
2008-01-01
Abstract An over-dense microwave driven ion source capableregion. Matching of the microwave power from the waveguideperveance. ION SOURCE Microwave source was selected due to
Accident source terms for boiling water reactors with high burnup cores.
Gauntt, Randall O.; Powers, Dana Auburn; Leonard, Mark Thomas
2007-11-01
The primary objective of this report is to provide the technical basis for development of recommendations for updates to the NUREG-1465 Source Term for BWRs that will extend its applicability to accidents involving high burnup (HBU) cores. However, a secondary objective is to re-examine the fundamental characteristics of the prescription for fission product release to containment described by NUREG-1465. This secondary objective is motivated by an interest to understand the extent to which research into the release and behaviors of radionuclides under accident conditions has altered best-estimate calculations of the integral response of BWRs to severe core damage sequences and the resulting radiological source terms to containment. This report, therefore, documents specific results of fission product source term analyses that will form the basis for the HBU supplement to NUREG-1465. However, commentary is also provided on observed differences between the composite results of the source term calculations performed here and those reflected NUREG-1465 itself.
Abushakra, B.; Haberl, J. S.; Claridge, D. E.; Sreshthaputra, A.
2000-01-01
This is a draft of the Final Report in the ASHRAE RP-1093 project that, first summarizes the work completed during the scheduled Phase I and Phase II (presented to the PMSC in Seattle - June 1999, and Dallas February 2000), ...
Design, manufacture, and calibration of infrared radiometric blackbody sources
Byrd, D.A.; Michaud, F.D.; Bender, S.C.
1996-04-01
A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.
Research on fusion neutron sources
Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)
2012-06-19
The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.
A test of resuspension factor models against Chernobyl data
Garger, E.K. [Ukrainian Academy of Agricultural Sciences, Kiev (Ukraine). Inst. of Radioecology; Anspaugh, L.R.; Shinn, J.H. [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States)
1995-04-01
After the accident at Unit 4 of the Chernobyl nuclear power plant (NPP), stationary air samplers were operated at Chernobyl and Baryshevka, cities which are 16 km and 150 km, respectively, from the NPP. Other air samplers were operated simultaneously, but intermittently, at locations within the 30 km zone at distances of 4-25 km from the NPP. These data were used to check the validity of time dependent models of the resuspension factor K (m{sup -1}). Seven different models were examined, three of which are discussed in the paper. Data from the stationary air samplers were averaged over one day or one month; dam from the intermittent air samplers were averaged over three days in 1986 and over four hours in 1991. The concentrations of eight radionuclides were measured at ten points during the same time period (14-17 September 1986). The calculated resuspension factors range from 6 x 10{sup -9} m{sup -1} to 3 x 10{sup -6} m{sup -1}. Data for the spatial means of K are given for certain time periods in 1986 and 1991; also presented are the calculated values according to the models. The experimental data and the calculated values differ by up to more than one order of magnitude. Also analysed was the temporal change in experimental values of K and these values were compared with model predictions. The annual means of the resuspension factor as determined experimentally and as calculated with the models are presented. The model derived from empirical data measured in Neuherberg after the Chernobyl accident agrees best with the data. The Garland model systematically gives results lower than the experimental values, and the calculated values of K from the Linsley model are consistently conservative. Also considered were the uncertainty of K due to fluctuations in air concentrations and possible biological effects of episodic exposures.
Calculating the Jet Quenching Parameter $\\hat{q}$ in Lattice Gauge Theory
Abhijit Majumder
2013-03-01
We present a framework where first principles calculations of jet modification may be carried out in a non-perturbative thermal environment. As an example of this approach, we compute the leading order contribution to the transverse momentum broadening of a high energy (near on-shell) quark in a thermal medium. This involves a factorization of a non-perturbative operator product from the perturbative process of scattering of the quark. An operator product expansion of the non-perturbative operator product is carried out and related via dispersion relations to the expectation of local operators. These local operators are then evaluated in quenched SU(2) lattice gauge theory.
Astrophysical factors:Zero energy vs. Most effective energy
Theodore E. Liolios
2001-05-02
Effective astrophysical factors for non-resonant astrophysical nuclear reaction are invariably calculated with respect to a zero energy limit. In the present work that limit is shown to be very disadvantageous compared to the more natural effective energy limit. The latter is used in order to modify the thermonuclear reaction rate formula so that it takes into account both plasma and laboratory screening effects.
Carbajo, J.J.
1995-07-01
This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.
TMD theory, factorization and evolution
John Collins
2013-07-10
The concepts and methods of factorization using transverse-momentum-dependent (TMD) parton densities and/or fragmentation functions are summarized.
Filling factors and Braid group
Wellington Cruz
1998-02-25
We extract the Braid group structure of a recently derived hierarchy scheme for the filling factors proposed by us which related the Hausdorff dimension, $h$, to statistics, $\
Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)
2002-01-01
A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.
Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)
2000-01-01
A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.
Compact portable electric power sources
Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.
1997-02-01
This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.
Dithering Strategies and Point-Source Photometry
Samsing, Johan
2011-01-01
Strategies and Point-Source Photometry Johan Samsing DARK-The accuracy in the photometry of a point source depends onobjects in a single source photometry (Lauer 1999a) and the
EPA Source Reduction Assistance Grant Program
Broader source: Energy.gov [DOE]
The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.
MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE
MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1
4th Generation ECR Ion Sources
Lyneis, Claude M.
2010-01-01
4th Generation ECR Ion Sources Claude M Lyneis, D. Leitner,to developing a 4 th generation ECR ion source with an RFover current 3 rd generation ECR ion sources, which operate
Advanced Light Source Activity Report 2005
Tamura Ed., Lori S.
2010-01-01
upgrade on the Advanced Light Source," Nucl. Instrum. Meth.n photoemission at the Advanced Light Source," Radiât. Phys.high-pressure studies at the Advanced Light Source w i t h a
A global sourcing strategy for durable tooling
Vasovski, Steven
2006-01-01
Competitive pressures in manufacturing industries have led to an increased utilization of strategic sourcing initiatives: among them is low cost sourcing. While low cost sourcing has been used extensively for direct ...
Independent review of SCDAP/RELAP5 natural circulation calculations
Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.
1994-01-01
A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.
Computing Partial Eigenvalue Sum in Electronic Structure Calculations
Bai, Zhaojun
and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial
Dynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov
Sosonkina, Masha
and Molecular Electronic Structure System (GAMESS) used for ab initio molecular quantum chemistry calculationsDynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov Masha Sosonkina, network, or disk I/O. For large-scale scientific applications, dynamic adjustments to a computationally
Realistic shell-model calculations: current status and open problems
A. Covello; A. Gargano
2010-03-29
The main steps involved in realistic shell-model calculations employing two-body low-momentum interactions are briefly reviewed. The practical value of this approach is exemplified by the results of recent calculations and some remaining open questions and directions for future research are discussed.
Fission life-time calculation using a complex absorbing potential
Guillaume Scamps; Kouichi Hagino
2015-12-28
A comparison between the semi-classical approximation and the full quantum calculation with a complex absorbing potential is made with a model of the fission of 258Fm. The potential barrier is obtained with the constrained Skyrme HF+BCS theory. The life-time obtained by the two calculations agree with each other the difference being only by 25%.
An efficient Java implementation of the immediate successors calculation
Paris-Sud XI, Université de
An efficient Java implementation of the immediate successors calculation Cl´ement Gu´erin, Karell an effective Java imple- mentation of the concept immediate successors calculation. It is based on the lattice Java library, developed by K. Bertet and the Limited Objects Access algorithm, proposed by C. Demko [5
Processus communicants Communication synchrone CSP/CCS/-calcul
Grigoras, .Romulus
Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation
Tolbert, Leon M.
OF IPMSM Below is the well-known electromagnetic torque equation for all synchronous machines: dqqd iip Permanent Magnet Synchronous Motor with Brushless Field Excitation Seong Taek Lee1,2 , Timothy A. Burress1 permanent magnet synchronous motor (IPMSM). The conventional two-axis IPMSM model is modified to include
Jedek, Christoph
2012-01-01
J.A. , Beckman, W.A. (1991). Solar engineering of thermalA new method for predicting the solar heat gain of complexfenestration systems. ASHRAE Solar Heat Gain Project 548-RP
Jedek, Christoph
2012-01-01
like heat transfer through radiation, convection,J.R. (1972). Thermal Radiation Heat Transfer. New York, NY:radiation, it follows, that adjacent bodies exchange energy in form of heat transfer.
Jedek, Christoph
2012-01-01
References References ANSI/ASHRAE Standard 55 (2010).that applied in the American ANSI/ASHRAE Standard 55 (2010)The adaptive model after ANSI/ASHRAE Standard 55 (2010, p.
Jedek, Christoph
2012-01-01
2007). A concentrated solar thermal energy system. Thesis (thermal energy emissivity of the individual window. As the solar
Couture, A.
2013-06-07
Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.
SOURCE PHENOMENOLOGY EXPERIMENTS IN ARIZONA
Jessie L. Bonner; Brian Stump; Mark Leidig; Heather Hooper; Xiaoning (David) Yang; Rongmao Zhou; Tae Sung Kim; William R. Walter; Aaron Velasco; Chris Hayward; Diane Baker; C. L. Edwards; Steven Harder; Travis Glenn; Cleat Zeiler; James Britton; James F. Lewkowicz
2005-09-30
The Arizona Source Phenomenology Experiments (SPE) have resulted in an important dataset for the nuclear monitoring community. The 19 dedicated single-fired explosions and multiple delay-fired mining explosions were recorded by one of the most densely instrumented accelerometer and seismometer arrays ever fielded, and the data have already proven useful in quantifying confinement and excitation effects for the sources. It is very interesting to note that we have observed differences in the phenomenology of these two series of explosions resulting from the differences between the relatively slow (limestone) and fast (granodiorite) media. We observed differences at the two SPE sites in the way the rock failed during the explosions, how the S-waves were generated, and the amplitude behavior as a function of confinement. Our consortium's goal is to use the synergy of the multiple datasets collected during this experiment to unravel the phenomenological differences between the two emplacement media. The data suggest that the main difference between single-fired chemical and delay-fired mining explosion seismograms at regional distances is the increased surface wave energy for the latter source type. The effect of the delay-firing is to decrease the high-frequency P-wave amplitudes while increasing the surface wave energy because of the longer source duration and spall components. The results suggest that the single-fired explosions are surrogates for nuclear explosions in higher frequency bands (e.g., 6-8 Hz Pg/Lg discriminants). We have shown that the SPE shots, together with the mining explosions, are efficient sources of S-wave energy, and our next research stage is to postulate the possible sources contributing to the shear-wave energy.
Tikal obsidian: sources and typology
Moholy-Nagy, H.; Asaro, F.; Stross, F.H.
1984-01-01
The obsidian industry of Classic period Tikal, Guatemala, is discussed with regard to geological source determinations and behavioral typology. The potential of these two approaches for cultural reconstruction is greatly extended when they can supplement each other. Recent source determinations of obsidian artifacts from Tikal indicate (1) a behavioral link between locally-produced prismatic blades of Highland Guatemalan stone and ceremonial incised obsidians and eccentrics, and (2) a Central Mexican origin for a seemingly large portion of Tikal's obsidian projectile points and knives. 25 references, 3 figures, 5 tables.
Primordial Gravitational Wave Calculations: Nonlinear vs Linear Codes
Garrison, David
2015-01-01
This work is a follow-up to the paper, "Numerical Relativity as a Tool for Studying the Early Universe". In this article, we present the first results of direct numerical simulations of primordial plasma turbulence as it applies to the generation of gravitational waves. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed at the electroweak scale, 246 GeV. This calculation is completed using two numerical codes, one which utilizes full General Relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of General Relativity. Our results show that there is a significant difference between the spectrum of gravitational waves calculated using a nonlinear code as opposed to that calculated with a linear approximation. This implies that simulations that do not take into account nonlinear effects may not give accurate results.
Primordial Gravitational Wave Calculations: Nonlinear vs Linear Codes
David Garrison
2015-06-17
This work is a follow-up to the paper, "Numerical Relativity as a Tool for Studying the Early Universe". In this article, we present the first results of direct numerical simulations of primordial plasma turbulence as it applies to the generation of gravitational waves. We calculate the normalized energy density, strain and degree of polarization of gravitational waves produced by a simulated turbulent plasma similar to what was believed to have existed shortly after the electroweak scale. This calculation is completed using two numerical codes, one which utilizes full General Relativity calculations based on modified BSSN equations while the other utilizes a linearized approximation of General Relativity. Our results show that there is a significant difference between the spectrum of gravitational waves calculated using a nonlinear code as opposed to that calculated with a linear approximation. This implies that simulations that do not take into account nonlinear effects may not give accurate results.
A simplified spherical harmonic method for coupled electron-photon transport calculations
Josef, J.A.
1997-12-01
In this thesis the author has developed a simplified spherical harmonic method (SP{sub N} method) and associated efficient solution techniques for 2-D multigroup electron-photon transport calculations. The SP{sub N} method has never before been applied to charged-particle transport. He has performed a first time Fourier analysis of the source iteration scheme and the P{sub 1} diffusion synthetic acceleration (DSA) scheme applied to the 2-D SP{sub N} equations. The theoretical analyses indicate that the source iteration and P{sub 1} DSA schemes are as effective for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. In addition, he has applied an angular multigrid acceleration scheme, and computationally demonstrated that it performs as well as for the 2-D SP{sub N} equations as for the 1-D S{sub N} equations. It has previously been shown for 1-D S{sub N} calculations that this scheme is much more effective than the DSA scheme when scattering is highly forward-peaked. The author has investigated the applicability of the SP{sub N} approximation to two different physical classes of problems: satellite electronics shielding from geomagnetically trapped electrons, and electron beam problems.
Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation
Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com [Badan Meteorologi Klimatologi Geofisika, Jl Angkasa I No. 2 Jakarta (Indonesia); Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan [Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)
2014-03-24
This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (?) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio ?=?6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, ?=?5.1 and To=27 s which characterized as a small tsunamigenic earthquake.
Weather data for simplified energy calculation methods. Volume II. Middle United States: TRY data
Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.
1984-08-01
The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 22 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.
Bon, D.M.; Springston, S.; M.Ulbrich, I.; de Gouw, J. A.; Warneke, C.; Kuster, W. C.; Alexander, M. L.; Baker, A.; Beyersdorf, A. J.; Blake, D.; Fall, R.; Jimenez, J. L., Herndon, S. C.; Huey, L. G.; Knighton, W. B.; Ortega, J.; Vargas, O.
2011-03-16
Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of {approx}2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species.
California Nonpoint Source Program Strategy and Implementation...
LibraryAdd to library Legal Document- OtherOther: California Nonpoint Source Program Strategy and Implementation Plan, 1998-2013Legal Abstract California Nonpoint Source Program...
Open Source Software Update | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Open Source Software Update Open Source Software Update CCBY932011.pdf DrewDEAR Data clauses for Software.pdf More Documents & Publications Microsoft Word -...
Inversion Methods for Determining Tsunami Source Amplitudes
Percival, Don
Inversion Methods for Determining Tsunami Source Amplitudes from DART Buoy Data Don Percival: given data from DART buoys and models for unit magnitude earthquakes from various tsunami source
RECENT PROGRESS IN HEAVY ION SOURCES
Clark, D.J.
2010-01-01
of hydrogen into thermonuclear fusion reactors. A summary ofFusion Plasma Sources Other sources of high charge state ions include the dense plasma in magnetic confinement thermonuclear
Alternative Energy Sources - An Interdisciplinary Module for...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information about the...
Seidman, Jeri
2008-01-01
(cont.) In total, my thesis suggests that recent changes in the book-tax income gap may be exogenous and transitory, due to changes to the calculation of book income, general business conditions or other factors which ...