Sample records for factors fuel code

  1. Stationary and Portable Fuel Cell Systems Codes and Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and...

  2. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  3. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect (OSTI)

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01T23:59:59.000Z

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  4. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources AgencyCompany...

  5. Early User Experience with BISON Fuel Performance Code

    SciTech Connect (OSTI)

    D. M. Perez

    2012-08-01T23:59:59.000Z

    Three Fuel Modeling Exercise II (FUMEX II) LWR fuel irradiation experiments were simulated and analyzed using the fuel performance code BISON to demonstrate code utility for modeling of the LWR fuel performance. Comparisons were made against the BISON results and the experimental data for the three assessment cases. The assessment cases reported within this report include IFA-597.3 Rod 8, Riso AN3 and Riso AN4.

  6. Overview of the BISON Multidimensional Fuel Performance Code

    SciTech Connect (OSTI)

    R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

    2013-10-01T23:59:59.000Z

    BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the codes computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

  7. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01T23:59:59.000Z

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  8. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect (OSTI)

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01T23:59:59.000Z

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  9. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects Photo ofSafety, Codes,

  10. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01T23:59:59.000Z

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  11. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

  12. Model of U3Si2 Fuel System using BISON Fuel Code

    SciTech Connect (OSTI)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01T23:59:59.000Z

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  13. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect (OSTI)

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01T23:59:59.000Z

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  14. Evaluation and validation of criticality codes for fuel dissolver calculations

    SciTech Connect (OSTI)

    Santamarina, A.; Smith, H.J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Whitesides, G.E. (Oak Ridge National Lab., TN (United States))

    1991-01-01T23:59:59.000Z

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to {plus minus} 12,000 pcm in the realistic fuel dissolver exercise n{degrees} 19 proposed by BNFL, and to {plus minus} 25,000 pcm in the benchmark n{degrees} 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P{sub IC} method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for {sup 238}U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs.

  15. Factors Affecting HCCI Combustion Phasing for Fuels with Single...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004...

  16. Computation of Dancoff Factors for Fuel Elements Incorporating Randomly Packed TRISO Particles

    SciTech Connect (OSTI)

    J. L. Kloosterman; Abderrafi M. Ougouag

    2005-01-01T23:59:59.000Z

    A new method for estimating the Dancoff factors in pebble beds has been developed and implemented within two computer codes. The first of these codes, INTRAPEB, is used to compute Dancoff factors for individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the pebble and explicitly accounting for the finite geometry of the fuel kernels. The second code, PEBDAN, is used to compute the pebble-to-pebble contribution to the overall Dancoff factor. The latter code also accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for fluctuations in the pebble packing density that naturally arises in pebble beds.

  17. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01T23:59:59.000Z

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  18. The Influence of Non-technical Factors on Code Review

    E-Print Network [OSTI]

    Godfrey, Michael W.

    The Influence of Non-technical Factors on Code Review Olga Baysal, Oleksii Kononenko, Reid Holmes, personal and organizational aspects, WebKit, open source software I. INTRODUCTION Many software development research has found that organizational structure can influence software quality. Nagappan et al

  19. Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel

    SciTech Connect (OSTI)

    Horak, W.C.; Lu, Ming-Shih

    1991-12-01T23:59:59.000Z

    This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

  20. Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies

    SciTech Connect (OSTI)

    Burgess, R.; Buttner, W.; Riykin, C.

    2011-12-01T23:59:59.000Z

    The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

  1. Identification and Analysis of Critical Gaps in Nuclear Fuel Cycle Codes Required by the SINEMA Program

    SciTech Connect (OSTI)

    Adrian Miron; Joshua Valentine; John Christenson; Majd Hawwari; Santosh Bhatt; Mary Lou Dunzik-Gougar: Michael Lineberry

    2009-10-01T23:59:59.000Z

    The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFC codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.

  2. Analysis of IFR driver fuel hot channel factors

    SciTech Connect (OSTI)

    Ku, J.Y.; Chang, L.K.; Mohr, D.

    1994-03-01T23:59:59.000Z

    Thermal-hydraulic uncertainty factors for Integral Fast Reactor (IFR) driver fuels have been determined based primarily on the database obtained from the predecessor fuels used in the IFR prototype, Experimental Breeder Reactor II. The uncertainty factors were applied to the channel factors (HCFs) analyses to obtain separate overall HCFs for fuel and cladding for steady-state analyses. A ``semistatistical horizontal method`` was used in the HCFs analyses. The uncertainty factor of the fuel thermal conductivity dominates the effects considered in the HCFs analysis; the uncertainty in fuel thermal conductivity will be reduced as more data are obtained to expand the currently limited database for the IFR ternary metal fuel (U-20Pu-10Zr). A set of uncertainty factors to be used for transient analyses has also been derived.

  3. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.

  4. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect (OSTI)

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01T23:59:59.000Z

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  5. Alternative Fuels Data Center: Codes and Standards Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC Printable

  6. Alternative Fuels Data Center: Codes and Standards Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC

  7. Alternative Fuels Data Center: E85 Codes and Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDCNaturalE85

  8. Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,Inc Place:

  9. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01T23:59:59.000Z

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  10. San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses

    SciTech Connect (OSTI)

    Hermann, O.W.

    1999-09-01T23:59:59.000Z

    The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium isotope) discharged from reactors is of interest to the Fissile Material Disposition Program. The validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre PWR, Unit I, during cycles 2 and 3. The data usually required as input to depletion codes, either one-dimensional or lattice codes, were taken from various sources and compiled into this report. Where data were either lacking or determined inadequate, the appropriate data were supplied from other references. The scope of the reactor operations and design data, in addition to the isotopic analyses, were considered to be of sufficient quality for depletion code validation.

  11. An improved structural mechanics model for the FRAPCON nuclear fuel performance code

    E-Print Network [OSTI]

    Mieloszyk, Alexander James

    2012-01-01T23:59:59.000Z

    In order to provide improved predictions of Pellet Cladding Mechanical Interaction (PCMI) for the FRAPCON nuclear fuel performance code, a new model, the FRAPCON Radial-Axial Soft Pellet (FRASP) model, was developed. This ...

  12. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect (OSTI)

    Jason Hales; Various

    2014-06-01T23:59:59.000Z

    The US DOEs Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  13. Interim report on fuel cycle neutronics code development.

    SciTech Connect (OSTI)

    Rabiti, C; Smith, M. A.; Kaushik, D.; Yang, W. S.

    2008-05-13T23:59:59.000Z

    As part of the Global Nuclear Energy Partnership (GNEP), a fast reactor simulation program was launched in April 2007 to develop a suite of modern simulation tools specifically for the analysis and design of sodium cooled fast reactors. The general goal of the new suite of codes is to reduce the uncertainties and biases in the various areas of reactor design activities by enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The final objective is to produce an integrated, advanced neutronics code that allows the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct coupling with thermal-hydraulics and structural mechanics calculations. Currently there are three solvers for the neutron transport code incorporated in UNIC: PN2ND, SN2ND, and MOCFE. PN2ND is based on a second-order even-parity spherical harmonics discretization of the transport equation and its primary target area of use is the existing homogenization approaches that are prevalent in reactor physics. MOCFE is based upon the method of characteristics applied to an unstructured finite element mesh and its primary target area of use is the fine grained nature of the explicit geometrical problems which is the long term goal of this project. SN2ND is based on a second-order, even-parity discrete ordinates discretization of the transport equation and its primary target area is the modeling transition region between the PN2ND and MOCFE solvers. The major development goal in fiscal year 2008 for the MOCFE solver was to include a two-dimensional capability that is scalable to hundreds of processors. The short term goal of this solver is to solve two-dimensional representations of reactor systems such that the energy and spatial self-shielding are accounted for and reliable cross sections can be generated for the homogeneous calculations. In this report we present good results for an OECD benchmark obtained using the new two-dimensional capability of the MOCFE solver. Additional work on the MOCFE solver is focused on studying the current parallelization algorithms that can be applied to both the two- and three-dimensional implementations such that they are scalable to thousands of processors. The initial research into this topic indicates that, as expected, the current parallelization scheme is not sufficiently scalable for the detailed reactor geometry that it is intended for. As a consequence, we are starting the investigative research to determine the alternatives that are applicable for massively parallel machines. The major development goal in fiscal year 2008 for the PN2ND and SN2ND solvers was to introduce parallelism by angle and energy. The motivation for this is two-fold: (1) reduce the memory burden by picking a simpler preconditioner with reduced matrix storage and (2) improve parallel performance by solving the angular subsystems of the within group equation simultaneously. The solver development in FY2007 focused on using PETSc to solve the within group equation where only spatial parallelization was utilized. Because most homogeneous problems required relatively few spatial degrees of freedom (tens of thousands) the only way to improve the parallelism was to spread the angular moment subsystems across the parallel system. While the coding has been put into place for parallelization by space, angle, and group, we have not optimized any of the solvers and therefore do not give an assessment of the achievement of this work in this report. The immediate task to be completed is to implement and validate Tchebychev acceleration of the fission source iteration algorithm (inverse power method in this work) and optimize both the PN2ND and SN2ND solvers. We further intend to extend the applicability of the UNIC code by adding a first-order discrete ordinates solver termed SN1ST. Upon completion of this work, all memory usage problems are to be identified and studied in the solvers with the intent of making th

  14. An Empirical Study of the Factors Affecting Co-Change Frequency of Cloned Code

    E-Print Network [OSTI]

    Zou, Ying

    1 An Empirical Study of the Factors Affecting Co-Change Frequency of Cloned Code Lionel Marks, Ying, ON lionel.marks@gmail.com, ying.zou@queensu.ca, iman.keivanloo@queensu.ca Abstract Code clones classes with low similarity in method names and high code complexity. Copyright 2013 Lionel Marks, Ying

  15. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2013-09-01T23:59:59.000Z

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  16. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect (OSTI)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01T23:59:59.000Z

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  17. Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01T23:59:59.000Z

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  18. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    SciTech Connect (OSTI)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01T23:59:59.000Z

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  19. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect (OSTI)

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01T23:59:59.000Z

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  20. Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels

    SciTech Connect (OSTI)

    Nakahara, Yoshinori; Suyama, Kenya; Inagawa, Jun; Nagaishi, Ryuji; Kurosawa, Setsumi; Kohno, Nobuaki; Onuki, Mamoru; Mochizuki, Hiroki [Japan Atomic Energy Research Institute (Japan)

    2002-02-15T23:59:59.000Z

    To establish a nuclide composition benchmark data set for the verification of burnup codes, destructive analyses of light water reactor spent-fuel samples, which were cut out from several heights of spent-fuel rods, were carried out at the analytical laboratory at the Japan Atomic Energy Research Institute. The 16 samples from three kinds of pressurized water reactor (PWR) fuel rods and the 18 samples from two boiling water reactor (BWR) fuel rods were examined. Their initial {sup 235}U enrichments and burnups were from 2.6 to 4.1% and from 4 to 50 GWd/t, respectively. One PWR fuel rod and one BWR fuel rod contained gadolinia as a burnable poison. The measurements for more than 40 nuclides of uranium, transuranium, and fission product elements were performed by destructive analysis using mass spectrometry, and alpha-ray and gamma-ray spectrometry. Burnup for each sample was determined by the {sup 148}Nd method. The analytical methods and the results as well as the related irradiation condition data are compiled as a complete benchmark data set.

  1. FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.

    2008-06-18T23:59:59.000Z

    Presentation on the NREL Fuel Cell Vehicle learning demonstration prepared for the 2008 ASME Fuel Cell Conference.

  2. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    SciTech Connect (OSTI)

    Croft, Stephen [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-06-19T23:59:59.000Z

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.

  3. Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code

    SciTech Connect (OSTI)

    Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

    2009-09-01T23:59:59.000Z

    Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

  4. Factors Affecting HCCI Combustion Phasing for Fuels with Single- and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof EnergyFact Sheet:Dual-Stage

  5. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    SciTech Connect (OSTI)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01T23:59:59.000Z

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

  6. Chemical factors affecting insolubles formation in shale derived diesel fuel

    SciTech Connect (OSTI)

    Beal, E.J.; Mushrush, G.W.; Cooney, J.V. (Fuels Section, Code 6180 Naval Research Lab., Washington, DC (US)); Watkins, J.M. (Geo-Centers, Ft. Washington, MD (US))

    1989-01-01T23:59:59.000Z

    Detrimental changes in fuel properties with time have been a continuing problem in the use of middle distillate fuels. Instability of diesel fuels is usually defined by the formation of insoluble sediments and gums. Gravimetric stability tests have been conducted at 43/sup 0/ and 80/sup 0/C, respectively, using three model nitrogen heterocycles, 2-methylpyridine, 2,6-di methyl quinoline, and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Potential interactive effects have been defined for these three model nitrogen heterocycles in the stable fuel in the presence of a second model dopant, t-butyl hydroperoxide. 2-Methyl pyridine and 2,6-dimethyl quinoline were inactive and only 2-methyl pyridine showed slight positive interactive effects. Dodecahydrocarbazole formed large amounts of insolubles by itself and exhibited positive interactive effects.

  7. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect (OSTI)

    Shapiro, A.B.

    1983-08-01T23:59:59.000Z

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  8. Fuel Cell Vehicle Learning Demonstration: Study of Factors Affecting Fuel Cell Degradation

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.

    2008-11-01T23:59:59.000Z

    Conference paper prepared for the FuelCell2008 conference describing the results of the DOE Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  9. Formulation, Implementation and Validation of a Two-Fluid model in a Fuel Cell CFD Code

    SciTech Connect (OSTI)

    Kunal Jain, Vernon Cole, Sanjiv Kumar and N. Vaidya

    2008-11-01T23:59:59.000Z

    Water management is one of the main challenges in PEM Fuel Cells. While water is essential for membrane electrical conductivity, excess liquid water leads to ooding of catalyst layers. Despite the fact that accurate prediction of two-phase transport is key for optimal water management, understanding of the two-phase transport in fuel cells is relatively poor. Wang et. al. [1], [2] have studied the two-phase transport in the channel and diffusion layer separately using a multiphase mixture model. The model fails to accurately predict saturation values for high humidity inlet streams. Nguyen et. al. [3] developed a two-dimensional, two-phase, isothermal, isobaric, steady state model of the catalyst and gas diffusion layers. The model neglects any liquid in the channel. Djilali et. al. [4] developed a three-dimensional two-phase multicomponent model. The model is an improvement over previous models, but neglects drag between the liquid and the gas phases in the channel. In this work, we present a comprehensive two- fluid model relevant to fuel cells. Models for two-phase transport through Channel, Gas Diffusion Layer (GDL) and Channel-GDL interface, are discussed. In the channel, the gas and liquid pressures are assumed to be same. The surface tension effects in the channel are incorporated using the continuum surface force (CSF) model. The force at the surface is expressed as a volumetric body force and added as a source to the momentum equation. In the GDL, the gas and liquid are assumed to be at different pressures. The difference in the pressures (capillary pressure) is calculated using an empirical correlations. At the Channel-GDL interface, the wall adhesion affects need to be taken into account. SIMPLE-type methods recast the continuity equation into a pressure-correction equation, the solution of which then provides corrections for velocities and pressures. However, in the two-fluid model, the presence of two phasic continuity equations gives more freedom and more complications. A general approach would be to form a mixture continuity equation by linearly combining the phasic continuity equations using appropriate weighting factors. Analogous to mixture equation for pressure correction, a difference equation is used for the volume/phase fraction by taking the difference between the phasic continuity equations. The relative advantages of the above mentioned algorithmic variants for computing pressure correction and volume fractions are discussed and quantitatively assessed. Preliminary model validation is done for each component of the fuel cell. The two-phase transport in the channel is validated using empirical correlations. Transport in the GDL is validated against results obtained from LBM and VOF simulation techniques. The Channel-GDL interface transport will be validated against experiment and empirical correlation of droplet detachment at the interface. References [1] Y. Wang S. Basu and C.Y. Wang. Modeling two-phase flow in pem fuel cell channels. J. Power Sources, 179:603{617, 2008. [2] P. K. Sinha and C. Y. Wang. Liquid water transport in a mixed-wet gas diffusion layer of a polymer electrolyte fuel cell. Chem. Eng. Sci., 63:1081-1091, 2008. [3] Guangyu Lin and Trung Van Nguyen. A two-dimensional two-phase model of a pem fuel cell. J. Electrochem. Soc., 153(2):A372{A382, 2006. [4] T. Berning and N. Djilali. A 3d, multiphase, multicomponent model of the cathode and anode of a pem fuel cell. J. Electrochem. Soc., 150(12):A1589{A1598, 2003.

  10. Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration

    SciTech Connect (OSTI)

    Stull, Christopher J. [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory

    2012-07-05T23:59:59.000Z

    This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models would be reduced considerably. The authors note that the PMI is primarily intended to provide a high-level, quantitative description of year-to-year (or version-to-version) improvements in numerical models, where these descriptions can be used as a means of justifying funding requests to support further model development research. It is in this context that the present report should be considered: the availability of data from experimental tests should be viewed as a time-dependent variable, where experiments are added to the calibration suite as resources become available. For the present report, the experimental data is of course already available (permitting demonstration of the proposed methodology). Furthermore, the authors are not proposing this methodology as the answer to the question of how to allocate resources for experimental tests, and readers are directed to [5] and the references contained in Section 1 of [5] for additional information on the subject. However, the strength of this methodology is that it offers a means by which to select the sequence of experiments in a pre-arranged experimental campaign (a situation for which the methods discussed in [5] are less appropriate). The report is organized as follows. Section 2 describes the methodology employed to formulate the sequences of experiments for the calibrations performed for this study. Section 3 then presents the results associated with two sequences; supplementary results are provided in the Appendix. The report then concludes in Section 4 with a brief summary.

  11. DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop

    E-Print Network [OSTI]

    to update 14687. To date, Type l, Grade D, has been added for fuel cell vehicles (distinct from grade A for fuel cell vehicles. JARI evaluated existing standards, namely JIS K0512 and ISO 14687, as well for the guidelines and standards e. rough budget for R&D and guideline/standard development. f. cost of analysis

  12. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards

    Broader source: Energy.gov [DOE]

    Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

  13. Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code

    E-Print Network [OSTI]

    Bellanger, Philippe

    2012-06-07T23:59:59.000Z

    The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

  14. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VI. Safety and Codes & Standards

    E-Print Network [OSTI]

    to H2 from 0-100% at 450o C in N2 background Future Directions · Fabricate 2nd generation sensors.A Safety VI.A.1 Gallium Nitride Integrated Gas/Temperature Sensors for Fuel Cell System Monitoring catalytic gate field effect transistor (FET) sensors to resolve and detect carbon monoxide (CO

  15. Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035

    E-Print Network [OSTI]

    Cheah, Lynette W

    2008-01-01T23:59:59.000Z

    This thesis examines the vehicle design and sales mix changes necessary to double the average fuel economy of new U.S. cars and light-trucks by model year 2035. To achieve this factor of two target, three technology options ...

  16. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    SciTech Connect (OSTI)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

    2012-07-01T23:59:59.000Z

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  17. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and Standards Multi-Year Research,

  18. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Nuclear Energys Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. land use water use CO2 emissions radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  19. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2007-12-15T23:59:59.000Z

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  20. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Doucet, M.; Durant Terrasson, L.; Mouton, J. [AREVA-NP (France)

    2006-07-01T23:59:59.000Z

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)

  1. ACS Division of Fuel Chemistry, 44:4, 1011-1015 (August, 1999). PREDICTING EFFECTIVENESS FACTOR FOR M-TH ORDER AND LANGMUIR RATE

    E-Print Network [OSTI]

    Fletcher, Thomas H.

    ACS Division of Fuel Chemistry, 44:4, 1011-1015 (August, 1999). PREDICTING EFFECTIVENESS FACTOR catalytic pellets and solid fuel particles. The effectiveness factor is defined as the ratio of the reaction catalytic pellet or a solid fuel particle) may be expressed as: d2 C dr2 + 2 r dC dr - r De = 0 (1) where r

  2. SUPPLEMENT 1 The procedure for calculating the SOx emission factor from fuel sulphur content is given

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    is given below. The units are given in parenthesis. SFOC = Specific Fuel Oil Consumption (g/kWh) SC in parenthesis. SFOC = Specific Fuel Oil Consumption (g/kWh) CC = Carbon content of fuel (mass-%) M(C) = Molar_CRD = Crude Oil tankers, T_PROD = Oil Product tankers, BULK = Bulk Cargo ships, RoPax = Roll On ­ Roll Off

  3. Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

    2010-11-01T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

  4. Chemical factors affecting insolubles formation in shale-derived diesel fuel

    SciTech Connect (OSTI)

    Beal, E.J.; Cooney, J.V.; Hazlett, R.N.

    1987-04-01T23:59:59.000Z

    In an effort to define the stability of shale-derived diesel fuel, the authors have conducted gravimetric accelerated storage stability tests at 43 and 80/sup 0/C using three model nitrogen compounds, 2-methylpyridine, 2,6-dimethylquinoline and dodecahydrocarbazole, as dopants in an otherwise stable shale diesel fuel. Also, information about potential interactive effects has been defined for these three model nitrogen compounds in the stable fuel in the presence of a second model dopant (a hydroperocide, organic acid or base).

  5. Code Description Code Description

    E-Print Network [OSTI]

    Leave* 5127 Officials 5217 Faculty Sick Leave Payment 5124 Personal Service Contracts 5211 Research Services Contracts Scholarships & Fellowships Faculty Fringe Contract Services #12;Banner Account Code

  6. Hydrogen Production CODES & STANDARDS

    E-Print Network [OSTI]

    Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 · Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

  7. What Factors Affect the Decision to Invest in a Fuel Ethanol Plant? A Structural Model of the Ethanol Investment Timing Game1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 What Factors Affect the Decision to Invest in a Fuel Ethanol Plant? A Structural Model of the Ethanol Investment Timing Game1 C.-Y. Cynthia Lin and Fujin Yi Abstract The decision to invest in building an ethanol plant that uses a particular feedstock is a dynamic decision that may be affected by economic

  8. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total" "(Data051.3

  9. Midwest Energy Codes Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project 2014

  10. Spinal codes

    E-Print Network [OSTI]

    Perry, Jonathan, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the ...

  11. Market Transformation: Fuel Cell Early Adoption (Presentation...

    Office of Environmental Management (EM)

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

  12. Effect of boron and gadolinium concentration on the calculated neutron multiplication factor of U(3)O/sub 2/ fuel pins in optimum geometries

    SciTech Connect (OSTI)

    Thomas, J.T.

    1984-10-01T23:59:59.000Z

    The KENO-Va improved Monte Carlo criticality program is used to calculate the neutron multiplication factor for TMI-U2 fuel compositions in a variety of configurations and to display parametric regions giving rise to maximum reactivity contributions. The lattice pitch of UO/sub 2/ fuel pins producing a maximum k/sub eff/ is determined as a function of boron concentrations in the coolant for infinite and finite systems. The characteristics of U/sub 3/O/sub 8/-coolant mixtures of interest to modeling the rubble region of the core are presented. Several disrupted core configurations are calculated and comparisons made. The results should be useful to proposed defueling of the TMI-U2 reactor.

  13. Introduction to Algebraic Codes

    E-Print Network [OSTI]

    codes. Since the elementary coding theory is assumed to be of interest only to ... the algebraic codes, mainly BCH codes, Reed-Solomon codes and classical...

  14. Holographic codes

    E-Print Network [OSTI]

    Latorre, Jose I

    2015-01-01T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  15. Holographic codes

    E-Print Network [OSTI]

    Jose I. Latorre; German Sierra

    2015-02-23T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  16. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

    2010-08-01T23:59:59.000Z

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  17. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01T23:59:59.000Z

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  18. GENII Code | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas as aGEA HonorsGENII Code GENII

  19. code | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop Home7 August, 2013code

  20. High Performance Reach Codes

    E-Print Network [OSTI]

    Edelson, J.

    2011-01-01T23:59:59.000Z

    Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

  1. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01T23:59:59.000Z

    Model of hydrogen fuel cell kinetic losses includingschematic of typical hydrogen fuel cell performancephase factors on hydrogen fuel cell theoretical efficiency,

  2. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08T23:59:59.000Z

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  3. Occupation Codes

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge,8 8 8WeatherizationFunding

  4. Timing analysis of PWR fuel pin failures

    SciTech Connect (OSTI)

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Straka, M. (Halliburton NUS, Idaho Falls, ID (United States))

    1992-09-01T23:59:59.000Z

    This report discusses research conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PF1/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design burnup. Using peaking factors commensurate with actual burnups would result in longer intervals for both reactor designs. This document provides appendices K and L of this report which provide plots for the timing analysis of PWR fuel pin failures for Oconee and Seabrook respectively.

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year...

  6. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01T23:59:59.000Z

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  7. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  8. Cermet fuel thermal conductivity

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01T23:59:59.000Z

    CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

  9. Fuel cycle analysis in a thorium fueled reactor using bidirectional fuel movement : correction to report MIT-2073-1, MITNE-51

    E-Print Network [OSTI]

    Stephen, James D.

    1965-01-01T23:59:59.000Z

    This report corrects an error discovered in the code used in the study "Fuel Cycle Analysis in a Thorium Fueled Reactor Using Bidirectional Fuel Movement," MIT-2073-1, MITNE-51. The results of the correction show considerable ...

  10. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotionMunicipalCodes @

  11. Field demonstration of aviation turbine fuel MIL-T-83133C, grade JP-8 (NATO code F-34) at Fort Bliss, TX. Interim report 1 Feb 89-31 Jul 90

    SciTech Connect (OSTI)

    Butler, W.E.; Alvarez, R.A.; Yost, D.M.; Westbrook, S.R.; Buckingham, J.P.

    1990-12-01T23:59:59.000Z

    A JP-8 fuel demonstration was initiated at Ft. Bliss, TX, to demonstrate the impact of using aviation turbine fuel MIL-T-83133C, grade JP-8 in all military diesel fuel-consuming ground vehicles and equipment. Three major organizations, one ordnance battalion and two activities with a total of 2807 vehicles/equipment (V/E), were identified as participants in the demonstration program, which is authorized to continue through 30 September 1991. No fuel storage tank or V/E fuel cells were drained and flushed prior to introduction of JP-8 fuel. This procedure resulted in a commingling of JP-8 fuel with existing diesel fuel. As of 31 July 1990 approximately 4,700,000 gallons of JP-8 fuel had been dispensed to user units at Ft. Bliss and at Ft. Irwin National Training Center (NTC) in California. Three areas of concern arose from the beginning of the program: (1) plugging of fuel filters, (2) loss of power, and (3) overheating. The use of JP-8 fuel did not cause or exacerbate any V/E fuel filter plugging. Where power loss was apparent, generally it was commensurate with the difference in heating values between JP-8 and diesel fuel. The V/E at Ft. Bliss operated satisfactorily with the JP-8 fuel with no alterations, mechanical or otherwise, having to be made to any engines or fuel systems. There were no major differences in fuel procurement costs, V/E fuel consumption, AOAP-directed oil changes, and fuel-wetted component replacements.

  12. [Searching for Commodity Codes] February 13, 2012

    E-Print Network [OSTI]

    Sheremet, Alexandru

    the search... link to begin searching for a Commodity Code Search Tips Enter a broad term in the Description Another example, for "gasoline" enter "fuel" ­ think in general terms o For this term, only two Commodity[Searching for Commodity Codes] February 13, 2012 © Office of Human Resource Services, University

  13. Generalized concatenated quantum codes

    E-Print Network [OSTI]

    Grassl, Markus

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using ...

  14. Concatenated Conjugate Codes

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-31T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  15. Code for LOLCAT Method (Variant of Gillespie Algorithm)

    E-Print Network [OSTI]

    Beal, Jacob

    2009-09-04T23:59:59.000Z

    This code and data is publicly listed code for the LOLCAT Method developed by Sagar Indurkhya and Jacob Beal, in the paper: "Reaction factoring and bipartite update graphs accelerate the Gillespie algorithm for large-scale ...

  16. Homological stabilizer codes

    SciTech Connect (OSTI)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15T23:59:59.000Z

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  17. Clustered Error Correction of Codeword-Stabilized Quantum Codes

    E-Print Network [OSTI]

    Yunfan Li; Ilya Dumer; Leonid P. Pryadko

    2010-03-08T23:59:59.000Z

    Codeword stabilized (CWS) codes are a general class of quantum codes that includes stabilizer codes and many families of non-additive codes with good parameters. For such a non-additive code correcting all t-qubit errors, we propose an algorithm that employs a single measurement to test all errors located on a given set of t qubits. Compared with exhaustive error screening, this reduces the total number of measurements required for error recovery by a factor of about 3^t.

  18. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"

  19. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Grassl, Markus

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are ...

  20. Codes and Standards Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes and Standards Technical Team Roadmap June 2013

  1. Texas Natural Resources Code | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to:TetraSun Jump to: navigation,TexasInformationCode

  2. Design Code Survey Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic Relations & the196-2011Waste viaDesign Code

  3. SPEERs Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER's Building Energy Codes Program

  4. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Stationary and Portable Fuel Cell Systems Codes and Standards Citations

    E-Print Network [OSTI]

    of Plant · Compressed Hydrogen Gas Storage · Design · Electrical Equipment · Equipment Safety · Fire Safety Storage · 6.4.1 Ventilation Air · 6.4.3 Hydrogen Piping · 7.1.1 General · 7.2.2 When Natural Ventilation Permitted · 7.3 Exhaust Systems Compressed Hydrogen Gas Storage International Building Code (International

  5. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  6. Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Andrew Cross; Graeme Smith; John A. Smolin; Bei Zeng

    2007-09-27T23:59:59.000Z

    We present a unifying approach to quantum error correcting code design that encompasses additive (stabilizer) codes, as well as all known examples of nonadditive codes with good parameters. We use this framework to generate new codes with superior parameters to any previously known. In particular, we find ((10,18,3)) and ((10,20,3)) codes. We also show how to construct encoding circuits for all codes within our framework.

  7. Generalized Concatenated Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter Shor; Graeme Smith; John Smolin; Bei Zeng

    2009-01-09T23:59:59.000Z

    We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.

  8. Encoding Subsystem Codes

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli; Andreas Klappenecker

    2008-06-30T23:59:59.000Z

    In this paper we investigate the encoding of operator quantum error correcting codes i.e. subsystem codes. We show that encoding of subsystem codes can be reduced to encoding of a related stabilizer code making it possible to use all the known results on encoding of stabilizer codes. Along the way we also show how Clifford codes can be encoded. We also show that gauge qubits can be exploited to reduce the encoding complexity.

  9. On optimal constacyclic codes

    E-Print Network [OSTI]

    Giuliano G. La Guardia

    2013-11-11T23:59:59.000Z

    In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as well as families of asymmetric quantum MDS codes derived from (classical-block) constacyclic codes. These results are mainly derived from the investigation of suitable properties on cyclotomic cosets of these corresponding codes.

  10. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  11. Determination of Radial Power Profiles in Thorium-Plutonium Mixed Oxide Fuel Pellets.

    E-Print Network [OSTI]

    fredriksson, patrik

    2014-01-01T23:59:59.000Z

    ??To be able to license fuel for use in commercial nuclear reactors its thermomechanical behavior needs to be well known. For this, fuel performance codes (more)

  12. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Energy Savers [EERE]

    Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

  13. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    NONE

    1995-01-31T23:59:59.000Z

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  14. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total" "(Data051.32

  15. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total" "(Data051.324

  16. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total" "(Data051.32411.4

  17. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total" "(Data051.32411.43.4

  18. "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative Standard

  19. "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative Standard9

  20. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuelFuel

  1. Codes and Standards to Support Vehicle Electrification | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes and Standards Technical Team Roadmap June

  2. State and Local Code Implementation: Southwest Region - 2014 BTO Peer

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the AmericasDOE-STD-3020-2005Code of Recordthe3

  3. Hydrogen Education for Code Officials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap Hydrogen Deliveryfor Code Officials

  4. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter W. Shor; Bei Zeng

    2009-05-04T23:59:59.000Z

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are found, including both stabilizer codes as well as so-called nonadditive codes.

  5. Code of Conduct Regarding Holiday Gifts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublicationCode of Conduct

  6. NAICS Codes @ Headquarters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EM programA listing of NAICS codes used

  7. Integrated Codes | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAXfor NewIntegrated Codes |

  8. Code Tables | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks(. ©Code

  9. Graph concatenation for quantum codes

    E-Print Network [OSTI]

    Beigi, Salman

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code and every codeword stabilized code can be described by a graph and a classical code. For the ...

  10. Fuel Cells - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells » Fuel Cells

  11. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells » Fuel

  12. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells » FuelMay

  13. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells » FuelMayFact

  14. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells »Fuel Cells

  15. Fuel Cells at NASCAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsat NASCAR Fuel

  16. CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES John M. Shea, Florida Abstract--Turbo-codes provide communications near capac- ity when very large interleavers (and parity-check code can be used as an outer code with a turbo code as an inner code in a serial

  17. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20T23:59:59.000Z

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  18. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08T23:59:59.000Z

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  19. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  20. Joint Source-Channel Coding via Turbo Codes

    E-Print Network [OSTI]

    Alajaji, Fady

    Joint Source-Channel Coding via Turbo Codes by Guang-Chong Zhu A dissertation submitted coding. One of the most exciting break- throughs in channel coding is the invention of Turbo codes, whose- tigate three joint source-channel coding issues in the context of Turbo codes. In the #12;rst part

  1. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06T23:59:59.000Z

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  2. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratoryFuels

  3. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing | ArgonnechallengingFryFuel

  4. List decoding of subspace codes and rank-metric codes

    E-Print Network [OSTI]

    Mahdavifar, Hessam

    2012-01-01T23:59:59.000Z

    2.2.2 Koetter-Kschischang Codes . . . . . . . . . . . .of Subspace Codes . . . . . . . . . . . . . . 2.3.1 OverviewList-decodable Codes of Arbitrary Dimension . . . . . . .

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  7. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Homological Product Codes

    E-Print Network [OSTI]

    Sergey Bravyi; Matthew B. Hastings

    2013-11-04T23:59:59.000Z

    Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $\\sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

  11. Sustainable Acquisition Coding System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System Sustainable Acquisition Coding System More Documents &...

  12. Understanding Perception Through Neural 'Codes'

    E-Print Network [OSTI]

    Freeman, Walter J III

    2011-01-01T23:59:59.000Z

    Perception Through Neural Codes. In: Special Issue on Perception Through Neural Codes. In: Special Issue on Perception Through Neural Codes. In: Special Issue on

  13. Biodiesel Fuel

    E-Print Network [OSTI]

    unknown authors

    publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

  14. Fuel Cells Go Live | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells »

  15. Fuel Cells in Telecommunications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsat

  16. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01T23:59:59.000Z

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  17. Shortened Turbo Codes

    E-Print Network [OSTI]

    David J.C. MacKay

    Simple arguments suggest that shortened codes must have distance properties equal to or better than those of their parent codes, and that they should be equally practical to decode. This relationship holds true in the case of low density generator codes and low density parity check codes. We investigate the properties of shortened turbo codes. I. Motivation for Shortening In our previous work on codes based on very sparse matrices we have observed that while codes with a low density generator matrix [1] are asymptotically bad, codes with a low density parity check matrix [2] are asymptotically good [3, 4, 5]. One way of viewing the relationship between low density generator matrix codes and low density parity check matrix codes is that one obtains a low density parity check matrix by taking the M \\Theta N parity check matrix [P IM ] of a (N; K) low density generator matrix code and chopping off its right-most M columns (where M = N \\Gamma K), to yield an M \\Theta K matrix [P], which...

  18. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015

  19. Code Red 2 kills off Code Red 1

    E-Print Network [OSTI]

    Paxson, Vern

    #12;#12;Code Red 2 kills off Code Red 1 Code Red 2 settles into weekly pattern Nimda enters the ecosystem Code Red 2 dies off as programmed CR 1 returns thanks to bad clocks #12;Code Red 2 dies off as programmed Nimda hums along, slowly cleaned up With its predator gone, Code Red 1 comes back, still

  20. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and07-01-3994 Fuel EconomyFuel

  1. Evaluation of the DRAGON code for VHTR design analysis.

    SciTech Connect (OSTI)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12T23:59:59.000Z

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by the IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.

  2. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  3. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19T23:59:59.000Z

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  4. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  5. Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner

    E-Print Network [OSTI]

    Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner Finance (FO-P's). Implementation of the Index has greatly decreased data entry coding ­ Account (object) - Program (FOAP) code numbers on any of your accounting forms (Contracts, Purchase Orders

  6. Graph Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Salman Beigi; Isaac Chuang; Markus Grassl; Peter Shor; Bei Zeng

    2010-02-03T23:59:59.000Z

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.

  7. Careers In Fuel Cell Technologies

    E-Print Network [OSTI]

    , to combined heat and power (CHP) units used for distributed electricity generation, to passenger vehicles. Today's Technology and Its Growth Potential Today's fuel cell technology offers cost in hydrogen and fuel cells. Activities have reduced the amount of platinum needed by more than a factor

  8. Statistical Mechanical Models and Topological Color Codes

    E-Print Network [OSTI]

    H. Bombin; M. A. Martin-Delgado

    2007-11-03T23:59:59.000Z

    We find that the overlapping of a topological quantum color code state, representing a quantum memory, with a factorized state of qubits can be written as the partition function of a 3-body classical Ising model on triangular or Union Jack lattices. This mapping allows us to test that different computational capabilities of color codes correspond to qualitatively different universality classes of their associated classical spin models. By generalizing these statistical mechanical models for arbitrary inhomogeneous and complex couplings, it is possible to study a measurement-based quantum computation with a color code state and we find that their classical simulatability remains an open problem. We complement the meaurement-based computation with the construction of a cluster state that yields the topological color code and this also gives the possibility to represent statistical models with external magnetic fields.

  9. Comparison of isotopic transmutation modelling codes

    E-Print Network [OSTI]

    Beard, Carl Allen

    1990-01-01T23:59:59.000Z

    . STAMATELATOS, "Fission Product Data for Thermal Reactors Part 2: Users Manual for EPRI-CINDER Code and Data, " LA-6746-MS, Los Alamos National Laboratory (Dec. 1976). 5. H. BATEMAN, ~RGE~di gH gf ~t gym~id 6. M. J. BEIL, "ORIGEN ? The ORNL Isotope... Generation and Depletion Code, " ORNL-4628, Oak Ridge National Laboratory (May, 1973). 7. O. W. HERMANN and R. M. WESTFALL, "ORIGEN-S Scale System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product. Buildup and Decay...

  10. Advances in Fuel Cell Vehicle Design.

    E-Print Network [OSTI]

    Bauman, Jennifer

    2008-01-01T23:59:59.000Z

    ??Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) (more)

  11. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsat NASCARforand

  12. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and07-01-3994 FuelMicroturbine

  13. Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

    E-Print Network [OSTI]

    Kapralova, Olga

    2013-01-01T23:59:59.000Z

    Linear codes . . . . . . . . . . . . . . . . . . . . . . .3.3 Code parameters . . . . . . . . . . . . . .of linear codes . . . . . . . . . . . . 1.5 Reed-Muller

  14. Unconventional fuel: Tire derived fuel

    SciTech Connect (OSTI)

    Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

    1995-09-01T23:59:59.000Z

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  15. BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly

    National Nuclear Security Administration (NNSA)

    BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

  16. LMFBR models for the ORIGEN2 computer code

    SciTech Connect (OSTI)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1983-06-01T23:59:59.000Z

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-/sup 233/U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given.

  17. Universal space-time codes from demultiplexed trellis codes

    E-Print Network [OSTI]

    Kose, Cenk; Wesel, R D

    2006-01-01T23:59:59.000Z

    and A. R. Calderbank, Space-time codes for high data ratePerformance criteria and code construction, IEEE Trans.of spacetime trellis codes, IEEE Trans. Commun. , vol. 51,

  18. Relation Between Surface Codes and Hypermap-Homology Quantum Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli

    2014-03-14T23:59:59.000Z

    Recently, a new class of quantum codes based on hypermaps were proposed. These codes are obtained from embeddings of hypergraphs as opposed to surface codes which are obtained from the embeddings of graphs. It is natural to compare these two classes of codes and their relation to each other. In this context two related questions are addressed in this paper: Can the parameters of hypermap-homology codes be superior to those of surface codes and what is precisely the relation between these two classes of quantum codes? We show that a canonical hypermap code is identical to a surface code while a noncanonical hypermap code can be transformed to a surface code by CNOT gates alone. Our approach is constructive; we construct the related surface code and the transformation involving CNOT gates.

  19. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  20. Thermal-Hydraulic Analysis of Advanced Mixed-Oxide Fuel Assemblies with VIPRE-01

    E-Print Network [OSTI]

    Bingham, Adam R.

    2010-07-14T23:59:59.000Z

    depletion and core reshuffling, and fuel material thermal-physical properties. Additionally, a text-based coupling method is developed to facilitate the exchange of information between the neutronic code DRAGON and thermal-hydraulic code VIPRE-01. The new...

  1. Quantum convolutional stabilizer codes

    E-Print Network [OSTI]

    Chinthamani, Neelima

    2004-09-30T23:59:59.000Z

    constructions of good quantum error-correcting codes were given by Steane [2] and Calderbank and Shor [3]. These codes protect the quantum information using additional qubits and make it possible to reverse the eects of the most likely errors. 10 Encouraged... is that accurate computation does not require perfect physical devices. B. Background The rst quantum error correcting codes were discovered independently by Shor [1] and Steane [2], as mentioned in the previous section. Shor proved that 9 qubits could be used...

  2. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli

    2008-10-14T23:59:59.000Z

    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.

  3. Fossil Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

  4. Standard Review Plan - Code of Record | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * AnalyzerNano Olivines8forCode of

  5. Property:Incentive/ResCode | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY JumpThis isWebsite"InActDt JumpResCode Jump

  6. CODES & STANDARDS FOR THE HYDROGEN ECONOMY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, June 2011TO0CNG and3,CODES &

  7. Reducing Energy Demand in Buildings Through State Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

  8. California Fish and Game Code Section 86 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2California EndangeredCode Section

  9. Title 20, California Code of Regulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal539Rules ofCode of Regulations

  10. Title 22 California Code of Regulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal539Rules ofCode of

  11. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProteinNewsatCompiler

  12. Unequal Error Protection Turbo Codes

    E-Print Network [OSTI]

    Henkel, Werner

    Unequal Error Protection Turbo Codes Diploma Thesis Neele von Deetzen Arbeitsbereich Nachrichtentechnik School of Engineering and Science Bremen, February 28th, 2005 #12;Unequal Error Protection Turbo Convolutional Codes / Turbo Codes 18 3.1 Structure

  13. Rateless Codes for AVC Models

    E-Print Network [OSTI]

    Sarwate, A D; Gastpar, M

    2010-01-01T23:59:59.000Z

    2004. [7] M. Luby, LT codes, in Proc. 43rd Ann. IEEE Symp.8] A. Shokrollahi, Fountain codes, in Proc. 41st AllertonChannel capacities for list codes, J. Appl. Probabil. ,

  14. Hydrogen Storage CODES & STANDARDS

    E-Print Network [OSTI]

    W by 2010. · Develop a distributed generation PEM fuel cell system operating on natural gas or propane) 45% (w/ reformer) Fuel Cell System WeightWeightLifeLifeCostCost, etc. #12;6 Fuel Cell R&D Activities are Based on the Critical Challenges · Cost ­ Lowering the cost

  15. Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    .g. $3,000/kW for 5kW PEM fuel cell ­ though industry reports cost reductions of 10-20%/yr Sources: (1 is primarily focused on the research and development of PEM fuel cells. Polymer Electrolyte Membrane (PEMFC Barriers Fuel Cell Cost and Durability (Targets: $30 per kW, 5000-hour durability) Safety, Codes

  16. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05T23:59:59.000Z

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  17. No Code: Null Programs

    E-Print Network [OSTI]

    Montfort, Nick

    2014-06-05T23:59:59.000Z

    To continue the productive discussion of uninscribed artworks in Craig Dworkins No Medium, this report discusses, in detail, those computer programs that have no code, and are thus empty or null. Several specific examples ...

  18. Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes

    E-Print Network [OSTI]

    Dave Bacon; Andrea Casaccino

    2006-10-17T23:59:59.000Z

    The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of Shor's original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the number of stabilizer measurements needed in their error recovery routines.

  19. Quantum error control codes

    E-Print Network [OSTI]

    Abdelhamid Awad Aly Ahmed, Sala

    2008-10-10T23:59:59.000Z

    QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  20. NAICS Codes Description:

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving AwayAvailability ofMy Trip toUSECodes

  1. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation | DepartmentDavid Cohan

  2. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation | DepartmentDavidProgram

  3. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23T23:59:59.000Z

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  4. Neutronics studies of uranium-based fully ceramic micro-encapsulated fuel for PWRs

    SciTech Connect (OSTI)

    George, N. M.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States); Terrani, K.; Godfrey, A.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01T23:59:59.000Z

    This study evaluates the core neutronics and fuel cycle characteristics using uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR assembly designs with FCM fuel have been developed, which by virtue of their TRISO particle-based elements are expected to achieve higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software used to model the assembly designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities; however, the Reactivity-Equivalent Physical Transformation (RPT) method was used for lattice calculations due to the long run times associated with the SCALE DH capability. In order to understand the impact on reactivity and reactor operating cycle length, a parametric study was performed by varying TRISO particle design features, such as kernel diameter, coating layer thicknesses, and packing fraction. Also, other features such as the selection of matrix material (SiC, zirconium) and fuel rod dimensions were studied. After evaluating different uranium-based fuels, the higher compound density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime and temperature coefficients of reactivity, as well as pin cell and assembly peaking factors. (authors)

  5. Nested Quantum Error Correction Codes

    E-Print Network [OSTI]

    Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

    2009-09-28T23:59:59.000Z

    The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

  6. Physics Features of TRU-Fueled VHTRs

    E-Print Network [OSTI]

    Lewis, Tom G. III; Tsvetkov, Pavel V.

    2009-01-01T23:59:59.000Z

    composition that can be obtained for typical PWRs assuming burnup levels of 41.200 MWd/MTHM followed by cooling for 23 years. 4. Methodology The analysis is performed using the ORNL SCALE 5.1 code system, and MatLab tool boxes. The code systems and tools... model was performed using the ORNL SCALE code system [12]. The standard SCALE 5.1 TRITON sequence has been upgraded to allow fuel cycle modeling accounting for double heterogeneity effects. A combination of Matlab, Excel, and Perl was used to build...

  7. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

  8. Combination of Diesel fuel system architectures and Ceria-based fuel-borne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment of Energy 0 DOE

  9. Code: A Lightweight and Flexible Mobile Code Toolkit

    E-Print Network [OSTI]

    Picco, Gian Pietro

    evaluation of mobile code technology does not exist yet, some studies already evidenced that the powerful of clientserver and mobile code in reducing the network traffic generated by management. The theoreticalCode: A Lightweight and Flexible Mobile Code Toolkit Gian Pietro Picco Dip. Automatica e

  10. Fuel Cells and RPSs: An Introduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells »Fuel

  11. Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center

    E-Print Network [OSTI]

    Parham, Neil A.

    2010-07-14T23:59:59.000Z

    For the Texas A&M University Nuclear Science Center reactor a fuel depletion code was created to develop real-time fuel management capability. This code package links MCNP8 and ORIGEN26 and is interfaced through a Visual Basic code. Microsoft Visual...

  12. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACMEFUTURE MOBILITY IN NEVADA:

  13. Compiling Codes on Carver

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProteinNewsatCompiler ComparisonsEffective Use

  14. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProteinNewsatCompiler ComparisonsEffective

  15. T ID CODE I

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL to ModAdministration |51 *T

  16. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010 or 1 PAGE 1 OF2

  17. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center forClimate

  18. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1Energy Thomas

  19. Sandia National Laboratories: Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergyMapping WaterMonitoringClimate

  20. MHD Generation Code

    E-Print Network [OSTI]

    Frutos-Alfaro, Francisco

    2015-01-01T23:59:59.000Z

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  1. Extended quantum color coding

    SciTech Connect (OSTI)

    Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)

    2005-01-01T23:59:59.000Z

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  2. Coding for Cooperative Communications

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21T23:59:59.000Z

    develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c... modulation. The CF strategy is implemented with low-density parity-check (LDPC) and irregular repeat- accumulate codes and is found to operate within 0.34 dB of the theoretical limit. For the quasi-static fading relay channel, we assume that no channel...

  3. Simulation of the nuclear fuel cycle with recycling : options and outcomes

    E-Print Network [OSTI]

    Silva, Rodney Busquim e

    2008-01-01T23:59:59.000Z

    A system dynamics simulation technique is applied to generate a new version of the CAFCA code to study the mass flow in the nuclear fuel cycle, and the impact of different options for advanced reactors and fuel recycling ...

  4. Determination of the proper operating range for the CAFCA IIB fuel cycle model

    E-Print Network [OSTI]

    Warburton, Jamie (Jamie L.)

    2007-01-01T23:59:59.000Z

    The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

  5. NERSC Announces 20 Next-Gen Coding Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale Subsurface BiogeochemicalOverviewSelects 20 NESAP Code

  6. Sandia National Laboratories: WEC-Sim code development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code:

  7. Sandia National Laboratories: Hydrogen Safety, Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle Technologies On NovemberSafety, Codes and

  8. The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark - FY 2006 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2006-09-01T23:59:59.000Z

    This document describes the recent developments of the PEBBED code suite and its application to the PBMR-400 Coupled Code Benchmark. This report addresses an FY2006 Level 2 milestone under the NGNP Design and Evaluation Methods Work Package. The milestone states "Complete a report describing the results of the application of the integrated PEBBED code package to the PBMR-400 coupled code benchmark". The report describes the current state of the PEBBED code suite, provides an overview of the Benchmark problems to which it was applied, discusses the code developments achieved in the past year, and states some of the results attained. Results of the steady state problems generated by the PEBBED fuel management code compare favorably to the preliminary results generated by codes from other participating institutions and to similar non-Benchmark analyses. Partial transient analysis capability has been achieved through the acquisition of the NEM-THERMIX code from Penn State University. Phase I of the task has been achieved through the development of a self-consistent set of tools for generating cross sections for design and transient analysis and in the successful execution of the steady state benchmark exercises.

  9. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  10. Course Code: Course Title

    E-Print Network [OSTI]

    Painter, Kevin

    - Frameworks; Decision Making Development life-cycle of a software system Bi-directional influence between-Critical Systems; Technology & Society. Brave New Worlds - Co-operative Computing; eLife. Learning OutcomesCourse Code: F29PD Course Title: Professional Development Course Co-ordinator: Sandy Jean

  11. Chaotic Turbo Codes

    E-Print Network [OSTI]

    S. Adrian Barbulescu; Andrew Guidi; Steven S. Pietrobon

    This paper describes a new class of codes, chaotic turbo codes. They were born from a symbiosis between a chaotical digital encoder and a turbo code. This paper investigates the most important properties of both chaotic digital encoders and turbo encoders in order to understand how the two complement each other. A Chaotic Turbo Encoder is then described and initial results will be presented. I. INTRODUCTION A chaotic digital encoder was defined for the first time in [1] as a non--linear digital filter with finite precision (8 bits) which behaves in a quasi--chaotic fashion, both with zero and nonzero input sequences. A simple chaotic encoder is shown in Figure 1 [1]. D Y k X k LCIRC D Figure 1: Chaotic Digital Encoder Mapper L L L L L L 1 The main features of chaotic digital encoders that are used in this paper are: # The system is digital which makes possible its integration with a turbo code. # The output of a chaotic digital encoder with arbitrary inputs has a broad...

  12. Minor Codes Accounting 1100

    E-Print Network [OSTI]

    Bolding, M. Chad

    Minor Codes Accounting 1100 Adult/Extension Education 1220 Aerospace Studies 1225 Agricultural Business Management 1250 Agricultural Mechanization and Business 1600 American Sign Language Studies 5650 and Policy 3790 Equine Business 4690 Film Studies 7756 Financial Management 3900 Food Science 4100 Forest

  13. Fuel Processing Valri Lightner

    E-Print Network [OSTI]

    of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

  14. Erasure Techniques in MRD codes

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; R. Sujatha; R. S. Raja Durai

    2012-05-03T23:59:59.000Z

    This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.

  15. Fuel reforming for fuel cell application.

    E-Print Network [OSTI]

    Hung, Tak Cheong

    2006-01-01T23:59:59.000Z

    ??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is (more)

  16. REDUCED-COMPLEXITY DECODING FOR CONCATENATED CODES BASED ON RECTANGULAR PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    AND TURBO CODES John M. Shea and Tan F. Wong University of Florida Department of Electrical and Computer-check code (RPCC) with a turbo code. These concatenated codes are referred to as RPCC+turbo codes. RPCC+turbo codes have been shown to significantly outperform turbo codes in several scenarios [1],[2]. One

  17. Alternative Fuel Vehicle Resources

    Broader source: Energy.gov [DOE]

    Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

  19. Alternative Fuel Implementation Toolkit

    E-Print Network [OSTI]

    ? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas...........................................................................................................................................................................6 Trends and Fleet Examples: Alternative Fuel Decision Table

  20. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01T23:59:59.000Z

    would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

  1. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

  2. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  3. Adaptive code generators for tree coding of speech

    E-Print Network [OSTI]

    Dong, Hui

    1998-01-01T23:59:59.000Z

    Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The best predictor designed...

  4. Fuel Cell Technologies Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel Cell Technologies

  5. Fuel Cell Technologies Program Overview: 2012 IEA HIA Hydrogen Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel CellStakeholder

  6. Fuel Cell and Battery Electric Vehicles Compared | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel CellStakeholderand

  7. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel

  8. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells

  9. Fuel Cells at Supermarkets: NYSERDA's Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsat NASCAR

  10. Fuel Cells for Critical Communications Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsat NASCARfor

  11. Fuel Cells in the States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsatin the States

  12. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCellsatin the

  13. RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel

    SciTech Connect (OSTI)

    Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-02-01T23:59:59.000Z

    This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

  14. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  15. Coal based fuels, fuel systems and alternative fuels

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R.

    1998-07-01T23:59:59.000Z

    The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

  16. Coal based fuels, fuel systems and alternative fuels

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

    1998-04-01T23:59:59.000Z

    The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

  17. Development of models for the sodium version of the two-phase three-dimensional thermal hydraulics code THERMIT. [LMFBR

    SciTech Connect (OSTI)

    Wilson, G.J.; Kazimi, M.S.

    1980-05-01T23:59:59.000Z

    Several different models and correlations were developed and incorporated in the sodium version of THERMIT, a thermal-hydraulics code written at MIT for the purpose of analyzing transients under LMFBR conditions. This includes: a mechanism for the inclusion of radial heat conduction in the sodium coolant as well as radial heat loss to the structure surrounding the test section. The fuel rod conduction scheme was modified to allow for more flexibility in modelling the gas plenum regions and fuel restructuring. The formulas for mass and momentum exchange between the liquid and vapor phases were improved. The single phase and two phase friction factors were replaced by correlations more appropriate to LMFBR assembly geometry.

  18. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  19. Matlab-Kinect Interface Code

    E-Print Network [OSTI]

    Kowalski, Kevin

    2012-06-01T23:59:59.000Z

    This .zip file contains code and installation instructions for acquiring 3d arm movements in Matlab using the Microsoft Kinect 3d camera. The provided code has been validated in 32-bit and 64-bit Matlab with 32-bit and ...

  20. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code (Chapter 25-2) of the Austin City Code provides a height limitation exemption for solar installations. Solar installations may exceed the zoning district height limit by 15% or the...

  1. Code of Practice Research Degrees

    E-Print Network [OSTI]

    Evans, Paul

    ........................................................................ 15 Section Ten: FacilitiesCode of Practice For Research Degrees 2014/15 #12;2 Contents Section One: Preface ­ the purpose of the Code........................................................ 3 Section Two: Context

  2. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  3. What's coming in 2012 codes

    E-Print Network [OSTI]

    Lacey, E

    2011-01-01T23:59:59.000Z

    Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

  4. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09T23:59:59.000Z

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

  5. Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm

    SciTech Connect (OSTI)

    Soewono, C. N.; Takaki, N. [Dept. of Applied Science Engineering, Faculty Tokai Univ., Kanagawa-ken, Hiratsuka-shi Kitakaname 4-1-1 (Japan)

    2012-07-01T23:59:59.000Z

    In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

  6. Energy Codes and Standards: Facilities

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01T23:59:59.000Z

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  7. Design of proximity detecting codes

    E-Print Network [OSTI]

    Perisetty, Srinivas

    1997-01-01T23:59:59.000Z

    class of codes called Proximity Detecting Codes can be used to overcome this problem associated with asynchronous channels. A t-proximity detecting (t-PD) code can detect when a received word is within distance t from the transmitted codeword, when using...

  8. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  9. PERFORMANCE EVALUATION OF TURBO CODES

    E-Print Network [OSTI]

    Alajaji, Fady

    PERFORMANCE EVALUATION OF TURBO CODES by Guangchong Zhu A project submitted to the Department named ``Turbo codes'' which claims an extraordinary performance with reasonable decoding complexity. In this project, we begin with a study on the structure and principle of Turbo codes. We then investigate

  10. Travel Codes Traveler Is Employee

    E-Print Network [OSTI]

    Arnold, Jonathan

    Travel Codes Traveler Is Employee: 64100-Domestic Travel 64150-Mileage 64200-International Travel Supplies & Expense Codes 71410-Office Supplies 71430-Lab/Research Supplies (dollar value of each item less Charges Equipment Codes 84320-Equipment (non-computer & peripherals) with a cost of $5,000.00 or more per

  11. Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCI combustion

    SciTech Connect (OSTI)

    Barths, H. [HFV6 Performance and Emissions, GM Powertrain, MC: 480-712-140, 30003 Van Dyke Ave, Warren, MI 48090 (United States); Felsch, C.; Peters, N. [Institut fuer Technische Verbrennung, RWTH Aachen University, Templergraben 64, 52056 Aachen (Germany)

    2008-11-15T23:59:59.000Z

    The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)

  12. Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCI combustion

    SciTech Connect (OSTI)

    Barths, H. [HFV6 Performance and Emissions, GM Powertrain, MC: 480-712-140, 30003 Van Dyke Ave, Warren, MI 48090 (United States); Felsch, C.; Peters, N. [Institut fuer Technische Verbrennung, RWTH Aachen University, Templergraben 64, 52056 Aachen (Germany)

    2009-01-15T23:59:59.000Z

    The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)

  13. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    SciTech Connect (OSTI)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01T23:59:59.000Z

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INLs fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  14. DIESEL FUEL TANK FOUNDATIONS

    SciTech Connect (OSTI)

    M. Gomez

    1995-01-18T23:59:59.000Z

    The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-EfficientAlternative Fuel

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV)Fuel

  17. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo alternative

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual Electric

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel Vehicle

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternative Fueling

  5. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  6. 2013 Reporting Unit Codes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 Reporting Unit Codes 2013 Reporting Unit Codes CFC Reporting Unit Codes 2013.pdf More Documents & Publications EA-0372: Final Environmental Assessment Alignment: Achieving...

  7. HOTSPOT Health Physics codes for the PC

    SciTech Connect (OSTI)

    Homann, S.G.

    1994-03-01T23:59:59.000Z

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).

  8. Cost effectiveness of the 1995 model energy code in Massachusetts

    SciTech Connect (OSTI)

    Lucas, R.G.

    1996-02-01T23:59:59.000Z

    This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.

  9. Error Floors of LDPC Codes and Related Topics

    E-Print Network [OSTI]

    Butler, Brian K.

    Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 LDPC Codes . . . . . . . .2.1 Binary Linear Block Codes . . . . . . .

  10. Correlated errors can lead to better performance of quantum codes

    E-Print Network [OSTI]

    A. Shabani

    2008-03-06T23:59:59.000Z

    A formulation for evaluating the performance of quantum error correcting codes for a general error model is presented. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. We classify correlated errors using the system-bath interaction: local versus nonlocal and two-body versus many-body interactions. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery. We also find this timing to be an important factor in the design of a coding system for achieving higher fidelities.

  11. CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS

    E-Print Network [OSTI]

    Steckl, Andrew J.

    CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS A. Fraiwan1 , S. Sundermier1 Microbial Fuel Cells, Micro-sized, Power Density, Limiting Factors INTRODUCTION Microbial fuel cells (MFCs fuel cells (MFCs) have been a major focus for renewable energy production. With the successful

  12. Irradiation behavior of metallic fast reactor fuels

    SciTech Connect (OSTI)

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01T23:59:59.000Z

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985.

  13. Energy Codes at a Glance

    SciTech Connect (OSTI)

    Cole, Pamala C.; Richman, Eric E.

    2008-09-01T23:59:59.000Z

    Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energys Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation Code and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

  14. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    for hydrogen refueling and storage, by 2006; · Complete and adopt the revised NFPA 55 standard for hydrogen storage of hydrogen, by 2008; · Complete U.S. adoption of a Global Technical Regulation (GTR) for hydrogen, storage, and use of hydrogen incorporate project safety requirements into the procurements, by 2005

  15. Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding

    E-Print Network [OSTI]

    Yang, Yang

    2005-11-01T23:59:59.000Z

    to approach the Wyner-Ziv distortion limit D??W Z(R), the trellis coded quantization (TCQ) technique is employed to quantize the source X, and irregular LDPC code is used to implement Slepian-Wolf coding of the quantized source input Q(X) given the side...

  16. Codes and Standards Gap Analysis Helps DOE Define Research Priorities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in analyzing gaps in codes and standards for alternative vehicle fuels, including hydrogen. Work was performed by the Hydrogen Technologies and Systems Center.

  17. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

  18. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

  19. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvancedDepartment

  20. Light-water-reactor safety fuel systems research programs. Quarterly progress report, January-March 1984. [Fuel and cladding problems

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    This progress report summarizes work performed by the Materials Science and Technology Division of Argonne National Laboratory during January, February, and March 1984 on water reactor safety problems related to fuel and cladding. The research and development areas covered are Transient Fuel Response and Fission Product Release and Clad Properties for Code Verification.

  1. SAS4A LMFBR whole core accident analysis code

    SciTech Connect (OSTI)

    Weber, D.P.; Birgersson, G.; Bordner, G.L.; Briggs, L.L.; Cahalan, J.E.; Dunn, F.E.; Kalimullah; Miles, K.J.; Prohammer, F.G.; Tentner, A.M.

    1985-01-01T23:59:59.000Z

    To ensure that public health and safety are protected even under accident conditions in an LMFBR, many accidents are analyzed for their potential consequences. Extremely unlikely accidents that might lead to melting of reactor fuel and release of radioactive fission products are referred to as hypothetical core disruptive accidents (HCDAs). The evaluation of such accidents involves the simultaneous evaluation of thermal, mechanical, hydraulic and neutronic processes and their interactions. The complexity of this analysis requires the use of large, integrated computer codes which address the response of the reactor core and several important systems. The SAS family of codes, developed at Argonne National Laboratory, provides such an analysis capability. The SAS4A code, the latest generation of this series of codes, has recently been completed and released for use to the LMFBR safety community. This paper will summarize the important new capabilitites of this analysis tool and illustrate an application of the integrated capability, while highlighting the importance of specific phenomenological models.

  2. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell Partnership -

  3. Alternative Fuels Data Center: Ethanol Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone byEthanolFueling

  4. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogenFueling

  5. Alternative Fuels Data Center: Propane Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:Basics toFueling

  6. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect (OSTI)

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01T23:59:59.000Z

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  7. LMFBR fuel component costs

    SciTech Connect (OSTI)

    Epperson, E.M.; Borisch, R.R.; Rice, L.H.

    1981-10-29T23:59:59.000Z

    A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient Vehicle

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut joined

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticutNew

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailerVoluntaryElectricNatural Gas Fueling

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirement All AFVs,HybridAlternative Fuel

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirement AllFleet UserAlternative Fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient Vehicle Tax

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient Vehicle

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient VehicleProvision

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-EfficientAlternative

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test RequirementandAnnualEthanolAlternative Fuel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use The Missouri

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use The

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel UseTax

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel UseTaxand

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTax Rates

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTax

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTaxLicense

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestStateBiofuels Tax Deduction AAlternative Fuel

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestStateBiofuelsProduction TaxAlternative Fuel

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV) and

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV)

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunity for

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunity

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunityRetail

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition Biodiesel is

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition Biodiesel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinitionRenewable

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneState EnergyIdle ReductionFuel Exclusivity

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneState EnergyIdle ReductionFuel

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneStateLow-Speedand Methanol Tax EthylFuel

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The Hawaii Department ofAlternative Fuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel Cell

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and FuelClean

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel and

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative FuelBiodiesel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels Mandate One

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels Mandate

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable FuelsAlternative

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublicSchool BusInfrastructureBiofuelandFuel

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy FeedstockAuthorization forCompressed NaturalAlternative Fuel

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy FeedstockAuthorizationExcisePlug-InSchoolBiodieselIdleFuel

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for Plug-InHeavy-DutyAftermarketAlternative Fuel

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in Electric Vehicle

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in Electric

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-inIncentives

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-inIncentivesElectric

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and Propane Tax

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and Propane

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas andZero

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV) and

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV)

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV)Loans

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000 hisAlternative Fuel and

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000 hisAlternative Fuel

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon Fuels Standard

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon Fuels

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon FuelsLow

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuel School

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuel

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuelNatural

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1,Plug-InAlternative Fuel School

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1,Plug-InAlternative Fuel

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation NovemberU.S.Commercial Alternative Fuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License Beginning January

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License Beginning

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupply Equipment

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupply

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupplyKentucky

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico joined

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico3,

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,AlternativeVehicle

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric Vehicle (PEV)

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric Vehicle

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In ElectricAlternative

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-Speed Vehicle

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-Speed

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-SpeedIllinois

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York Vehicle Inspection ProgramIn ElectricHighFuel

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and Refund State

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and Refund

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption andEthanol

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionState Energy

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionState

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionStateAlternative

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternative

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternativeSustainable

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternativeSustainableTax

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol Infrastructure Grants

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol Infrastructure

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol InfrastructureHybrid

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric Vehicle Supply

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric Vehicle

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodiesel and

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodiesel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodieselHigh

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodieselHighand

  17. Benchmark analysis of high temperature engineering test reactor core using McCARD code

    SciTech Connect (OSTI)

    Jeong, Chang Joon; Jo, Chang Keun; Lee, Hyun Chul; Noh, Jae Man [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    A benchmark calculation has been performed for a startup core physics test of Japan's High Temperature Engineering Test Reactor (HTTR). The calculation is carried out by the McCARD code, which adopts the Monte Carlo method. The cross section library is ENDF-B/VII.0. The fuel cell is modeled by the reactivity-equivalent physical transform (RPT) method. Effective multiplication factors with different numbers of fuel columns have been analyzed. The calculation shows that the HTTR becomes critical with 19 fuel columns with an excess reactivity of 0.84% ?k/k. The discrepancies between the measurements and Monte Carlo calculations are 2.2 and 1.4 % ?k/k for 24 and 30 columns, respectively. The reasons for the discrepancy are thought to be the current version of cross section library and the impurity in the graphite which is represented by the boron concentration. In the future, the depletion results will be proposed for further benchmark calculations. (authors)

  18. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 Nuclear Physics and Bio (Indonesia); Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA), 2-4 Shirane, Shirakata, Tokai Mura, Naka-gun, Ibaraki 319-1195 (Japan); Nuclear Physics and Bio Physics Research Group, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2012-06-06T23:59:59.000Z

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  19. Quantum serial turbo-codes

    E-Print Network [OSTI]

    David Poulin; Jean-Pierre Tillich; Harold Ollivier

    2009-06-10T23:59:59.000Z

    We present a theory of quantum serial turbo-codes, describe their iterative decoding algorithm, and study their performances numerically on a depolarization channel. Our construction offers several advantages over quantum LDPC codes. First, the Tanner graph used for decoding is free of 4-cycles that deteriorate the performances of iterative decoding. Secondly, the iterative decoder makes explicit use of the code's degeneracy. Finally, there is complete freedom in the code design in terms of length, rate, memory size, and interleaver choice. We define a quantum analogue of a state diagram that provides an efficient way to verify the properties of a quantum convolutional code, and in particular its recursiveness and the presence of catastrophic error propagation. We prove that all recursive quantum convolutional encoder have catastrophic error propagation. In our constructions, the convolutional codes have thus been chosen to be non-catastrophic and non-recursive. While the resulting families of turbo-codes have bounded minimum distance, from a pragmatic point of view the effective minimum distances of the codes that we have simulated are large enough not to degrade the iterative decoding performance up to reasonable word error rates and block sizes. With well chosen constituent convolutional codes, we observe an important reduction of the word error rate as the code length increases.

  20. Impact of PWR spent fuel variations on TRU-fueled VHTRS

    E-Print Network [OSTI]

    Alajo, Ayodeji Babatunde

    2009-05-15T23:59:59.000Z

    of legacy spent fuel that is given in the Yucca Mountain Safety Assessment Report. Chapter III discusses the details of the study. The concluding study was accomplished through the use of ORNL SCALE5.1 code system. The detailed whole-core 3-D models were...

  1. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  2. Turbo and LDPC Codes: Implementation, Simulation,

    E-Print Network [OSTI]

    Valenti, Matthew C.

    1 Turbo and LDPC Codes: Implementation, Simulation, and Standardization June 7, 2006 Matthew/7/2006 Turbo and LDPC Codes 2/133 Tutorial Overview Channel capacity Convolutional codes ­ the MAP algorithm Turbo codes ­ Standard binary turbo codes: UMTS and cdma2000 ­ Duobinary CRSC turbo codes: DVB

  3. Conjugate Codes and Applications to Cryptography

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-23T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes such that one contains the dual of the other. The conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is argued that conjugate code pairs are applicable to quantum cryptography in order to motivate studies on conjugate code pairs.

  4. Combustion & Fuels Waste Heat Recovery & Utilization Project | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment ofPressure Sampling for

  5. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2 DOE

  6. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project2

  7. Midwest Region Alternative Fuels Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwest Energy Codes Project20

  8. Spent nuclear fuel sampling strategy

    SciTech Connect (OSTI)

    Bergmann, D.W.

    1995-02-08T23:59:59.000Z

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation.

  9. Fuels options conference

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  10. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-03-31T23:59:59.000Z

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  11. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

  12. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    of fuel output. By definition, the energy consumption of theEnergy Accounting ..6 2.2 Definitioncycle. Definition of FFC Factors for Energy and Emissions

  13. MCWO - Linking MCNP And ORIGEN2 For Fuel Burnup Analysis

    SciTech Connect (OSTI)

    Gray S Chang

    2005-04-01T23:59:59.000Z

    The UNIX BASH (Bourne Again Shell) script MCWO has been developed at the Idaho National Engineering and Environment Laboratory (INEEL) to couple the Monte Carlo transport code MCNP with the depletion and buildup code ORIGEN2. MCWO is a fully automated tool that links the Monte Carlo transport code MCNP with the radioactive decay and burnup code ORIGEN2. MCWO can handle a large number of fuel burnup and material loading specifications, Advanced Test Reactor (ATR) powers, and irradiation time intervals. The program processes input from the user that specifies the system geometry, initial material compositions, feed/removal specifications, and other code-specific parameters. Calculated results from MCNP, ORIGEN2, and data process module calculations are then output successively as the code runs. The principal function of MCWO is to transfer one-group cross-section and flux values from MCNP to ORIGEN2, and then transfer the resulting material compositions (after irradiation and/or decay) from ORIGEN2 back to MCNP in a repeated, cyclic fashion. The basic requirement of the code is that the user have a working MCNP input file and other input parameters; all interaction with ORIGEN2 and other calculations are performed by UNIX BASH script MCWO. This paper presents the MCWO-calculated results of the RERTR-1 and -2 , and the Weapons-Grade Mixed Oxiide fuel (Wg-MOX) fuel experiments in ATR and compares the MCWO-calculated results with the measured data.

  14. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04T23:59:59.000Z

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  15. Alternative Fuels Data Center: Emerging Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCase StudiesElectricity

  16. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanol Printable Version Share

  17. Alternative Fuels Data Center: Fuel Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanol Printable VersionVehicles

  18. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles toasFuel Basics

  19. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles toasFuel

  20. Alternative Fuels Data Center: Electricity Fuel Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone by E-mail Share

  1. Alternative Fuels Data Center: Ethanol Fuel Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone byEthanol

  2. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  3. Nonbinary Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Xie Chen; Bei Zeng; Isaac L. Chuang

    2008-08-22T23:59:59.000Z

    The codeword stabilized (CWS) quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021 [quant-ph]), but only for binary states. Here we generalize the CWS framework to the nonbinary case (of both prime and nonprime dimension) and map the search for nonbinary quantum codes to a corresponding search problem for classical nonbinary codes with specific error patterns. We show that while the additivity properties of nonbinary CWS codes are similar to the binary case, the structural properties of the nonbinary codes differ substantially from the binary case, even for prime dimensions. In particular, we identify specific structure patterns of stabilizer groups, based on which efficient constructions might be possible for codes that encode more dimensions than any stabilizer codes of the same length and distance; similar methods cannot be applied in the binary case. Understanding of these structural properties can help prune the search space and facilitate the identification of good nonbinary CWS codes.

  4. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  5. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

  6. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    $ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$ Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  9. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

  10. Quantum Quasi-Cyclic LDPC Codes

    E-Print Network [OSTI]

    Manabu Hagiwara; Hideki Imai

    2010-08-28T23:59:59.000Z

    In this paper, a construction of a pair of "regular" quasi-cyclic LDPC codes as ingredient codes for a quantum error-correcting code is proposed. That is, we find quantum regular LDPC codes with various weight distributions. Furthermore our proposed codes have lots of variations for length, code rate. These codes are obtained by a descrete mathematical characterization for model matrices of quasi-cyclic LDPC codes. Our proposed codes achieve a bounded distance decoding (BDD) bound, or known as VG bound, and achieve a lower bound of the code length.

  11. Super Special Codes using Super Matrices

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; K. Ilanthenral

    2010-06-30T23:59:59.000Z

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  12. On the logical operators of quantum codes

    E-Print Network [OSTI]

    Mark M. Wilde

    2009-03-30T23:59:59.000Z

    I show how applying a symplectic Gram-Schmidt orthogonalization to the normalizer of a quantum code gives a different way of determining the code's logical operators. This approach may be more natural in the setting where we produce a quantum code from classical codes because the generator matrices of the classical codes form the normalizer of the resulting quantum code. This technique is particularly useful in determining the logical operators of an entanglement-assisted code produced from two classical binary codes or from one classical quaternary code. Finally, this approach gives additional formulas for computing the amount of entanglement that an entanglement-assisted code requires.

  13. A user's guide to the PLTEMP/ANL code.

    SciTech Connect (OSTI)

    Kalimullah, M. (Nuclear Engineering Division)

    2011-07-05T23:59:59.000Z

    PLTEMP/ANL V4.1 is a FORTRAN program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of ''PLTEMP'' codes in use at ANL for the past 20 years. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each with its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates/tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as Onset-of-Nucleate boiling (ONB), departure from nucleate boiling (DNB), and onset of flow instability (FI). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst's time.

  14. Rate-Adaptive Codes for Distributed Source Coding David Varodayan

    E-Print Network [OSTI]

    Girod, Bernd

    S with respect to a channel code C. Upon receipt of the syndrome, the distributed source decoder can narrow down- proach with their DISCUS framework [7]. The distributed source encoder compresses X into its syndrome is an at- tractive solution. The encoder transmits a short syndrome based on an aggressive code

  15. FOUNDATION REVENUE OBJECT CODES LSU Foundation Revenue Object Codes

    E-Print Network [OSTI]

    Harms, Kyle E.

    FOUNDATION REVENUE OBJECT CODES 4 page 1 LSU Foundation Revenue Object Codes 0F00 Foundation - Balance Forward 0F01 Foundation - Other Contributions 0F02 Foundation - State of Louisiana 0F03 Foundation - Corporate Contributions 0F04 Foundation - Corporate Match Contributions 0F05 Foundation - Individual

  16. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  17. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  18. Space time coded code division multiplexing on SC140 DSP

    E-Print Network [OSTI]

    Menon, Murali P

    2001-01-01T23:59:59.000Z

    The aim of this research is to design a high data rate wireless communication system for multi-path fading channels. Code-division multiplexing is proposed as a modulation scheme for a space-time coded multiple antenna system that would guarantee...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum Reduction Initiative The

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum Reduction Initiative

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum Reduction

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum ReductionCompressed Natural

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum ReductionCompressed

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum ReductionCompressedAgriculture

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleum

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublic Utility Definition An

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublic Utility Definition

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublic Utility

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublic UtilityFleet

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublic

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicand Infrastructure Rebate

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicand Infrastructure

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicand

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicandPlug-In Electric

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicandPlug-In

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana LawsPetroleumPublicandPlug-InEthanol

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer License Compressed natural gas,

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer License Compressed natural gas,Reports