Powered by Deep Web Technologies
Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total atmospheric emissivities for a tropical climate  

SciTech Connect

The total atmospheric flux emissivities as a function of water vapor optical depth are reported for meteorological condtions in Thailand. The water vapor optical depth was first calculated as a function of height up to 12 km from the annual average upper air pressures, temperature, and dew points at Bangkok. The flux emissivity was then computed using tabulated data for the flux emissivities of water vapor, carbon dioxide, and ozone at 20/sup 0/C. (SPH)

Exell, R.H.B.

1978-01-01T23:59:59.000Z

2

politics factors into climate bill, too  

Science Conference Proceedings (OSTI)

06/2 - POLITICS FACTORS INTO CLIMATE BILL, TOO. In A 987-page bill, six committees with jurisdiction, a mammoth oil spill to consider, no bipartisan support,...

3

Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate simulation map Climate Global climate change processes and impacts research in EETD is aimed at understanding the factors-and the feedbacks among these factors-driving...

4

Factors Governing the Total Rainfall Yield from Continental Convective Clouds  

Science Conference Proceedings (OSTI)

Several important factors that govern the total rainfall from continental convective clouds were investigated by tracking thousands of convective cells in Israel and South Africa. The rainfall volume yield (Rvol) of the individual cells that ...

Daniel Rosenfeld; Abraham Gagin

1989-10-01T23:59:59.000Z

5

Tropical Cyclogenesis Factors in a Warming Climate  

E-Print Network (OSTI)

Understanding the underlying causes of tropical cyclone formation is crucial to predicting tropical cyclone behavior in a warming environment, given the Earth's current warming trend. This study examines two sets of simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 3.1 (CAM3): one with aerosol forcings and one without. We looked at how four factors known to be important to tropical cyclone formation vary as carbon dioxde and the ensuing temperature changes increase to very high levels. These factors include Maximum Potential Intensity (MPI), mid-tropospheric moisture content, 200-850 mb vertical wind shear, and 850 mb absolute vorticity. We considered different representations of mid-tropospheric moisture by examining both relative humidity and chi, a non-dimensional measure of the saturation entropy deficit at 600 mb. We also looked at different combinations of these factors, including several variations of a Genesis Potential Index (GPI) and an incubation parameter, gamma, that is related to the length of time required to saturate the middle troposphere and aid tropical cyclogenesis. Higher MPI, lower saturation deficits and higher relative humidity, lower wind shear, and higher absolute vorticity all act to enhance the GPI and lower the incubation time, meaning larger environmental support for tropical cyclone development and intensification. In areas where tropical cyclone development is prevalent today, we found that shear generally decreased, but MPI decreased, absolute vorticity decreased, and the saturation deficit increases. Thus, in today's prevalent tropical cyclone regions, conditions become less favorable for development and intensification as the climate warms. On the other hand, genesis regions tend to push northward into the subtropics, as conditions become much more favorable for development up to ~40 degrees North due to both decreased wind shear and much higher MPI values.

Cathey, Stephen Christopher

2011-12-01T23:59:59.000Z

6

Artificial neural networks for electricity consumption forecasting considering climatic factors  

Science Conference Proceedings (OSTI)

This work develops Artificial Neural Networks (ANN) models applied to predict the consumption forecasting considering climatic factors. It is intended to verify the influence of climatic factors on the electricity consumption forecasting through the ... Keywords: artificial neural networks, electricity consumption forecasting

Francisco David Moya Chaves

2010-06-01T23:59:59.000Z

7

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network (OSTI)

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

8

Total factor productivity growth in Uganda's telecommunications industry  

Science Conference Proceedings (OSTI)

The telecommunication sector is usually thought to be characterized by high productivity growth rates arising from increasing returns to scale. The actual productivity patterns in the sector, however, need to be empirically determined. A panel data set ... Keywords: Data envelopment analysis, Malmquist, Telecommunications, Total factor productivity

Eria Hisali; Bruno Yawe

2011-02-01T23:59:59.000Z

9

Influence of Long-Period Variations of Total Ozone Content on Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Influence of Long-Period Variations of Total Ozone Content on Climate Influence of Long-Period Variations of Total Ozone Content on Climate Change in Twentieth Century Zuev, V Institute of Atmospheric Optics Zueva, N. Institute of Atmospheric Optics Bondarenko, S Institute of Atmospheric Optics Category: Atmospheric State and Surface It is shown that during long-term total ozone decrease everywhere at middle and high latitudes there takes place the destruction of balance in global carbon cycle first of all due to reduction of photosynthetical СО2 sink in consequence of UV-B radiation stress of vegetable biota. As a result, СО2 concentrations in the atmosphere considerably increase, enhancing the "greenhouse effect." Based on reconstruction of behavior of stratospheric ozone between 1600 and 2000 from dendrochronologic data, it is shown that

10

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

11

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

12

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

13

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

14

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

15

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

16

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

17

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

18

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

19

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

20

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

22

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

24

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

25

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

26

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

27

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

28

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

29

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

30

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

31

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

32

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

33

Research on Factors Relating to Density and Climate Change | Open Energy  

Open Energy Info (EERE)

Research on Factors Relating to Density and Climate Change Research on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency/Company /Organization: National Association of Home Builders Focus Area: Multi-sector Impact Evaluation Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nahb.org/fileUpload_details.aspx?contentID=139993 This document talks about the increase residential density, primarily on the grounds that it will reduce vehicle miles traveled,a measure that is closely related to the GHG emissions from driving. References Retrieved from "http://en.openei.org/w/index.php?title=Research_on_Factors_Relating_to_Density_and_Climate_Change&oldid=515031"

34

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

35

Table HC1-1a. Housing Unit Characteristics by Climate Zone ...  

U.S. Energy Information Administration (EIA)

Table HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone1

36

Severe Pulmonary Toxicity After Myeloablative Conditioning Using Total Body Irradiation: An Assessment of Risk Factors  

SciTech Connect

Purpose: To assess factors associated with severe pulmonary toxicity after myeloablative conditioning using total body irradiation (TBI) followed by allogeneic stem cell transplantation. Methods and Materials: A total of 101 adult patients who underwent TBI-based myeloablative conditioning for hematologic malignancies at Duke University between 1998 and 2008 were reviewed. TBI was combined with high-dose cyclophosphamide, melphalan, fludarabine, or etoposide, depending on the underlying disease. Acute pulmonary toxicity, occurring within 90 days of transplantation, was scored using Common Terminology Criteria for Adverse Events version 3.0. Actuarial overall survival and the cumulative incidence of acute pulmonary toxicity were calculated via the Kaplan-Meier method and compared using a log-rank test. A binary logistic regression analysis was performed to assess factors independently associated with acute severe pulmonary toxicity. Results: The 90-day actuarial risk of developing severe (Grade 3-5) pulmonary toxicity was 33%. Actuarial survival at 90 days was 49% in patients with severe pulmonary toxicity vs. 94% in patients without (p < 0.001). On multivariate analysis, the number of prior chemotherapy regimens was the only factor independently associated with development of severe pulmonary toxicity (odds ratio, 2.7 per regimen). Conclusions: Severe acute pulmonary toxicity is prevalent after TBI-based myeloablative conditioning regimens, occurring in approximately 33% of patients. The number of prior chemotherapy regimens appears to be an important risk factor.

Kelsey, Chris R., E-mail: kelse003@mc.duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Horwitz, Mitchell E. [Department of Medicine, Division of Cellular Therapy, Duke University Medical Center, Durham, NC (United States); Chino, Junzo P.; Craciunescu, Oana; Steffey, Beverly [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Folz, Rodney J. [Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, University of Louisville Health Sciences Center, Louisville, KY (United States); Chao, Nelson J.; Rizzieri, David A. [Department of Medicine, Division of Cellular Therapy, Duke University Medical Center, Durham, NC (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States)

2011-11-01T23:59:59.000Z

37

Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration  

E-Print Network (OSTI)

this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion. They have not undergone formal peer review or the editorial treatment accorded RFF books and other publications. CLIMATE CHANGE AND FOREST SINKS: FACTORS AFFECTING THE COSTS OF CARBON SEQUESTRATION

Richard G. Newell; Richard G. Newell; Robert N. Stavins; Robert N. Stavins

1999-01-01T23:59:59.000Z

38

The responses of net primary production (NPP) and total carbon storage for the continental United States to changes in atmospheric CO{sub 2}, climate, and vegetation  

Science Conference Proceedings (OSTI)

We extrapolated 3 biogeochemistry models (BIOME-BGC, CENTURY, and TEM) across the continental US with the vegetation distributions of 3 biogeography models (BIOME2, DOLY, and MAPSS) for contemporary climate at 355 ppmv CO{sub 2} and each of 3 GCM climate scenarios at 710 ppmv. For contemporary conditions, continental NPP ranges from 3132 to 3854 TgC/yr and total carbon storage ranges from 109 to 125 PgC. The responses of NPP range from no response (BIOME-BGC with DOLY or MAPSS vegetations for UKMO climate) to increases of 53% and 56% (TEM with BIOME2 vegetations for GFDL and OSU climates). The responses of total carbon storage vary from a decrease of 39% (BIOME-BGC with MAPSS vegetation for UKMO climate) to increases of 52% and 56% (TEM with BIOME2 vegetations for OSU and GFDL climates). The UKMO responses of BIOME-BGC with MAPSS vegetation are caused by both decreased forest area (from 44% to 38%) and photosynthetic water stress. The OSU and GFDL responses of TEM with BIOME2 vegetations are caused by forest expansion (from 46% to 67% for OSU and to 75% for GFDL) and increased nitrogen cycling.

McGuire, D.A. [Marine Biological Lab., Woods Hole, MA (United States)

1995-06-01T23:59:59.000Z

39

Genotypic and environmental factors influencing flesh color, carotene content, total carotenoids, total phenolics and antioxidant activity in potato (Solanum tuberosum L.)  

E-Print Network (OSTI)

The influence of variety and location on flesh color, pigment content and total carotenoid content was studied using Texas and Colorado grown tubers from ten yellow flesh and two white flesh potato varieties. Antioxidant activity and total phenolics of two yellow flesh and two white flesh potato varieties were also determined. Flesh color was determined using a Hunter Colorimeter. Significant differences were found between the same variety grown in both locations for L* value, chroma, and hue. Texas grown tubers were lighter and redder than Colorado grown tubers, which were more yellow. Colorado tubers were lighter in the center than Texas tubers. Carotene and total carotenoid content of the same potato varieties grown in Texas and Colorado were determined, using BPLC and spectrophotometric techniques. Significant differences were found between the same variety grown in both locations for lutein, zeaxanthin, and total carotenoid content. Lutein and total carotenoids were greater in Colorado grown tubers, while zeaxanthin was greater in tubers grown in Texas. Data from the Hunter calorimeter, BPLC, and spectrophotometer were highly correlated, indicating that either of the three instruments can be used to determine flesh color, carotene and total carotenoid content. Varieties differed in antioxidant activity and total phenolic content. Granola had the highest antioxidant activity and Russet Norkotah the highest total phenolic content, while Yukon Gold had the lowest antioxidant activity and total phenolic content. Differences were slight among tuber parts in antioxidant activity, but they were significantly different in total phenolic content. Skin tissue had the highest antioxidant activity and total phenolic content. These differences in flesh color, carotene content, and total carotenoids were controlled genetically but were influenced by environment.

Al-Saikhan, Mohamed Salem

1994-01-01T23:59:59.000Z

40

Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry.  

Science Conference Proceedings (OSTI)

Climate change (altered CO{sub 2}, warming, and precipitation) may affect plant-microbial interactions, such as the Lolium arundinaceum-Neotyphodium coenophialum symbiosis, to alter future ecosystem structure and function. To assess this possibility, tall fescue tillers were collected from an existing climate manipulation experiment in a constructed old-field community in Tennessee (USA). Endophyte infection frequency (EIF) was determined, and infected (E+) and uninfected (E-) tillers were analysed for tissue chemistry. The EIF of tall fescue was higher under elevated CO{sub 2} (91% infected) than with ambient CO{sub 2} (81%) but was not affected by warming or precipitation treatments. Within E+ tillers, elevated CO{sub 2} decreased alkaloid concentrations of both ergovaline and loline, by c. 30%; whereas warming increased loline concentrations 28% but had no effect on ergovaline. Independent of endophyte infection, elevated CO{sub 2} reduced concentrations of nitrogen, cellulose, hemicellulose, and lignin. These results suggest that elevated CO{sub 2}, more than changes in temperature or precipitation, may promote this grass-fungal symbiosis, leading to higher EIF in tall fescue in old-field communities. However, as all three climate factors are likely to change in the future, predicting the symbiotic response and resulting ecological consequences may be difficult and dependent on the specific atmospheric and climatic conditions encountered.

Brosi, Glade [University of Kentucky; McCulley, Rebecca L [University of Kentucky; Bush, L P [University of Kentucky; Nelson, Jim A [University of Kentucky; Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A New Parameterization of an Asymmetry Factor of Cirrus Clouds for Climate Models  

Science Conference Proceedings (OSTI)

The aspect ratio (AR) of a nonspherical ice particle is identified as the key microphysical parameter to determine its asymmetry factor for solar radiation. The mean effective AR is defined for cirrus clouds containing various nonspherical ice ...

Qiang Fu

2007-11-01T23:59:59.000Z

42

Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors  

Science Conference Proceedings (OSTI)

Making daylight more available in buildings is highly desirable, not only for reasons of energy-efficiency, but also for improvement of occupants' health and well-being. Core-daylighting, that is daylight provision in areas situated at considerable distances from facades and windows, is currently one of the main challenges in sustainable building design. Anidolic Daylighting Systems (ADSs) are one very promising technology in the field of core-daylighting, but commercial solutions that are not only well-performing but also financially competitive are not yet widely available. This article presents results of parametric studies on Anidolic Integrated Ceilings (AICs), a special type of ADS, for identification of main influencing factors. The article describes a reliable method for simulating ADS and AIC performance under given sky conditions. Various simulation results for the example location Singapore are discussed in detail, it is concluded that the main influencing factors are coating material, system dimensions and external obstruction, and those influencing factors' potential impacts are quantified. It is shown that AIC overall efficiencies can reach up to almost 50% in Singapore. The essentially new results presented in this article can be of great help to architects, engineers and scientists in the future, when it comes to precisely dimensioning ADS for various buildings and daylight conditions. (author)

Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne (Switzerland); Wittkopf, Stephen K. [School of Design and Environment, Department of Architecture, National University of Singapore, 4 Architecture Drive, Singapore 117566 (Singapore)

2010-07-15T23:59:59.000Z

43

The Role of Sea Ice in 2CO2 Climate Model Sensitivity. Part I: The Total Influence of Sea Ice Thickness and Extent  

Science Conference Proceedings (OSTI)

As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. ...

D. Rind; R. Healy; C. Parkinson; D. Martinson

1995-03-01T23:59:59.000Z

44

Statistical and Realistic Numerical Model Investigations of Anthropogenic and Climatic Factors that Influence Hypoxic Area Variability in the Gulf of Mexico  

E-Print Network (OSTI)

The hypoxic area in the Gulf of Mexico is the second largest in the world, which has received extensive scientific study and management interest. Previous modeling studies have concluded that the increased hypoxic area in the Gulf of Mexico was caused by the increased anthropogenic nitrogen loading of the Mississippi River; however, the nitrogen-area relationship is complicated by many other factors, such as wind, river discharge, and the ratio of Mississippi to Atchafalaya River flow. These factors are related to large-scale climate variability, and thus will not be affected by regional nitrogen reduction efforts. In the research presented here, both statistical (regression) and numerical models are used to study the influence of anthropogenic and climate factors on the hypoxic area variability in the Gulf of Mexico. The numerical model is a three-dimensional, coupled hydrological-biogeochemical model (ROMS-Fennel). Results include: (1) the west wind duration during the summer explain 55% of the hypoxic area variability since 1993. Combined wind duration and nitrogen loading explain over 70% of the variability, and combined wind duration and river discharge explain over 85% of the variability. (2) The numerical model captures the temporal variability, but overestimates the bottom oxygen concentrations. The model shows that the simulated hypoxic area is in agreement with the observations from the year 1991, as long as hypoxia is defined as oxygen concentrations below 3 mg/L rather than below 2 mg/L. (3) The first three modes from an Empirical Orthogonal Function (EOF) analysis of the numerical model output results explain 62%, 8.1% and 4.9% of the variability of the hypoxic area. The Principle Component time series is cross-correlated with wind, dissolved inorganic nitrogen concentration and river discharge. (4) Scenario experiments with the same nitrogen loading, but different duration of upwelling favorable wind, indicate that the upwelling favorable wind is important for hypoxic area development. However, a long duration of upwelling wind decreases the area. (5) Scenario experiments with the same nitrogen loading, but different discharges, indicate that increasing river discharge by 50% increases the area by 42%. Additionally, scenario experiments with the same river discharge, but different nitrogen concentrations, indicate that reducing the nitrogen concentration by 50% decreases the area by 75%. (6) Scenario experiments with the same nitrogen loading, but different flow diver- sions, indicate that if the Atchafalaya River discharges increased to 66.7%, the total hypoxic area increases the hypoxic area by 30%, and most of the hypoxic area moved from east to west Louisiana shelf. Additionally, if the Atchafalaya River discharge decreased to zero, the total hypoxic area increases by 13%. (7) Scenario experiments with the same nitrogen loading, but different nitrogen forms, indicate that if all the nitrogen was in the inorganic forms, the hypoxic area increases by 15%. These results have multiple implications for understanding the mechanisms that control the oxygen dynamics, reevaluating management strategies, and improving the observational methods.

Feng, Yang

2012-05-01T23:59:59.000Z

45

A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: The case of the CyberKnife  

SciTech Connect

Purpose: Small-field dosimetry is challenging, and the main limitations of most dosimeters are insufficient spatial resolution, water nonequivalence, and energy dependence. The purpose of this study was to compare plastic scintillation detectors (PSDs) to several commercial stereotactic dosimeters by measuring total scatter factors and dose profiles on a CyberKnife system. Methods: Two PSDs were developed, having sensitive volumes of 0.196 and 0.785 mm{sup 3}, and compared with other detectors. The spectral discrimination method was applied to subtract Cerenkov light from the signal. Both PSDs were compared to four commercial stereotactic dosimeters by measuring total scatter factors, namely, an IBA dosimetry stereotactic field diode (SFD), a PTW 60008 silicon diode, a PTW 60012 silicon diode, and a microLion. The measured total scatter factors were further compared with those of two independent Monte Carlo studies. For the dose profiles, two commercial detectors were used for the comparison, i.e., a PTW 60012 silicon diode and Gafchromics EBT2. Total scatter factors for a CyberKnife system were measured in circular fields with diameters from 5 to 60 mm. Dose profiles were measured for the 5- and 60-mm cones. The measurements were performed in a water tank at a 1.5-cm depth and an 80-cm source-axis distance. Results: The total scatter factors measured using all the detectors agreed within 1% with the Monte Carlo values for cones of 20 mm or greater in diameter. For cones of 10-20 mm in diameter, the PTW 60008 silicon diode was the only dosimeter whose measurements did not agree within 1% with the Monte Carlo values. For smaller fields (<10 mm), each dosimeter type showed different behaviors. The silicon diodes over-responded because of their water nonequivalence; the microLion and 1.0-mm PSD under-responded because of a volume-averaging effect; and the 0.5-mm PSD was the only detector within the uncertainties of the Monte Carlo simulations for all the cones. The PSDs, the PTW 60012 silicon diode, and the Gafchromics EBT2 agreed within 2% and 0.2 mm (gamma evaluation) for the measured dose profiles except in the tail of the 60-mm cone. Conclusions: Silicon diodes can be used to accurately measure small-field dose profiles but not to measure total scatter factors, whereas PSDs can be used to accurately measure both. The authors' measurements show that the use of a 1.0-mm PSD resulted in a negligible volume-averaging effect (under-response of Almost-Equal-To 1%) down to a field size of 5 mm. Therefore, PSDs are strong candidates to become reference radiosurgery detectors for beam characterization and quality assurance measurements.

Morin, J.; Beliveau-Nadeau, D.; Chung, E.; Seuntjens, J.; Theriault, D.; Archambault, L.; Beddar, S.; Beaulieu, L. [Departement de Physique, Universite Laval, Quebec (Canada)

2013-01-15T23:59:59.000Z

46

Statistical Descriptors of Climate  

Science Conference Proceedings (OSTI)

An adequate description of climate is required to meet the informational needs of planners and policy-makers who use climate as a factor in their decision-making processes. Because normals have become firmly entrenched as a descriptor of climate, ...

Nathaniel B. Guttman

1989-06-01T23:59:59.000Z

47

Factors that Influence the Use of Climate Forecasts: Evidence from the 1997/98 El Nio Event in Peru  

Science Conference Proceedings (OSTI)

This article analyzes the use of climate forecasts among members of the Peruvian fishing sector during the 1997/98 El Nio event. It focuses on the effect of the time of hearing a forecast on the socioeconomic responses to the forecast. Findings ...

Benjamin S. Orlove; Kenneth Broad; Aaron M. Petty

2004-11-01T23:59:59.000Z

48

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

49

Category:ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The following 30 pages are in this category, out of 30 total. C Climate Zone 1A Climate Zone 1B Climate Zone 2A Climate Zone 2B Climate Zone 3A Climate Zone 3B Climate Zone 3C Climate Zone 4A Climate Zone 4B Climate Zone 4C C cont. Climate Zone 5A Climate Zone 5B Climate Zone 5C Climate Zone 6A Climate Zone 6B Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Climate Zone Number 1 C cont. Climate Zone Number 2 Climate Zone Number 3 Climate Zone Number 4 Climate Zone Number 5 Climate Zone Number 6 Climate Zone Number 7 Climate Zone Number 8 Climate Zone Subtype A Climate Zone Subtype B Climate Zone Subtype C Retrieved from

50

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

51

Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment  

SciTech Connect

Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

2009-01-01T23:59:59.000Z

52

Impact of Climatic Factors on Early Life Stages of Atlantic Mackerel, Scomber Scombrus, L.: An Application of Meteorological Data to a Fishery Problem  

Science Conference Proceedings (OSTI)

Climate influences the abundance of Atlantic mackerel, Scomberscombrus, in several ways. In the southerncontingent, the timing of the spawning migration is functionally related to sea surface temperature. Wefound this climatic linkage is also ...

Talbot Murray; Sharon Leduc; Merton Ingham

1983-01-01T23:59:59.000Z

53

Climatic Change  

E-Print Network (OSTI)

Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase.

Klaus Keller; David Mcinerney; David F. Bradford

2007-01-01T23:59:59.000Z

54

climate | OpenEI  

Open Energy Info (EERE)

climate climate Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, cooling degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Source NOAA Date Released Unknown Date Updated June 24th, 2005 (9 years ago) Keywords climate cooling degree days NOAA Data application/vnd.ms-excel icon hcs_51_avg_cdd.xls (xls, 215.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

55

Climate Collections  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional/Global > Climate Collections Regional/Global > Climate Collections Climate Collections Overview Climate encompasses the statistics of temperature, humidity, atmospheric pressure, wind, rainfall, atmospheric particle count, and numerous other meteorological elements in a given region over long periods of time. Climate can be contrasted to weather, which is the present condition of these same elements over periods up to two weeks. The climate collections project includes data sets containing measured and modeled values for variables such as temperature, precipitation, humidity, radiation, wind velocity, and cloud cover and include station measurements as well as gridded mean values. The ORNL DAAC Climate Collections Data archive includes 10 data products from the following categories:

56

Assessing Snow Albedo Feedback in Simulated Climate Change  

Science Conference Proceedings (OSTI)

In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate ...

Xin Qu; Alex Hall

2006-06-01T23:59:59.000Z

57

African Climate Change: Taking the Shorter Route  

Science Conference Proceedings (OSTI)

Numerous factors are associated with poverty and underdevelopment in Africa, including climate variability. Rainfall, and climate more generally, are implicated directly in the United Nations Millennium Development Goals to eradicate extreme ...

Richard Washington; Gillian Kay; Mike Harrison; Declan Conway; Emily Black; Andrew Challinor; David Grimes; Richard Jones; Andy Morse; Martin Todd

2006-10-01T23:59:59.000Z

58

Total Building Air Management: When Dehumidification Counts  

E-Print Network (OSTI)

Industry trends toward stringent indoor air quality codes, spearheaded by ASHRAE 62-89: Ventilation for Acceptable Indoor Air Quality, present four challenges to the building industry in hot and humid climates: 1. Infusion of large quantities of make-up air to code based on zone requirements 2. Maintenance of tight wet bulb and dry bulb temperature tolerances within zones based on use 3. Energy management and cost containment 4. Control of mold and mildew and the damage they cause Historically, total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform specific, independent functions in the total control of the indoor air environment. Composite systems have a high up-front cost, are difficult to maintain and are costly to operate. Today, emerging technologies allow the implementation of fully integrated system for total building air management. These systems provide a single-vendor solution that is cost effective to purchase, maintain and operate. Operating saving of 23% and ROIs of 2.3 years have been shown. Equipment specification is no longer based primarily on total building load. Maximum benefits of these dynamic systems are realized when systems are designed with a total operating strategy in mind. This strategy takes into consideration every factor of building air management including: 1. Control of sensible heat 2. Balance management of heat rejection 3. Latent heat management 4. Control of process hot water 5. Indoor air quality management 6. Containment of energy consumption 7. Load shedding

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

59

Climate Science Overview  

Science Conference Proceedings (OSTI)

NIST Home > Climate Science Overview. NIST Greenhouse Gas Measurements and Climate Research Program Overview. Earth's climate is ...

2010-07-06T23:59:59.000Z

60

Climate Indices  

NLE Websites -- All DOE Office Websites (Extended Search)

Indices Indices Climate Indices Climate indices are diagnostic tools used to describe the state of the climate system and monitor climate. They are most often represented with a time series, where each point in time corresponds to one index value. An index can be constructed to describe almost any atmospheric event; as such, they are myriad. Therefore, CDIAC provides these links to other web sites to help guide users to the most widely used climate indices, which in many cases are updated monthly. Data Set Website/Name NOAA's Climate Prediction Center, Monitoring and Data Index Page NOAA's Earth Systems Research Laboratory, Monthly Atmospheric and Ocean Time Series Page (plot, analyze, and compare time series) The Monthly Teleconnection Indices Page from NOAA's National

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Category:County Climate Zones | Open Energy Information  

Open Energy Info (EERE)

County Climate Zones County Climate Zones Jump to: navigation, search This category contains county climate zone information in the United States of America. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "County Climate Zones" The following 200 pages are in this category, out of 3,141 total. (previous 200) (next 200) A Abbeville County, South Carolina ASHRAE 169-2006 Climate Zone Acadia Parish, Louisiana ASHRAE 169-2006 Climate Zone Accomack County, Virginia ASHRAE 169-2006 Climate Zone Ada County, Idaho ASHRAE 169-2006 Climate Zone Adair County, Iowa ASHRAE 169-2006 Climate Zone Adair County, Kentucky ASHRAE 169-2006 Climate Zone Adair County, Missouri ASHRAE 169-2006 Climate Zone Adair County, Oklahoma ASHRAE 169-2006 Climate Zone

62

Habitable Climates  

E-Print Network (OSTI)

According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.

David S. Spiegel; Kristen Menou; Caleb A. Scharf

2007-11-30T23:59:59.000Z

63

Climate Change: The Sun's Role  

E-Print Network (OSTI)

The sun's role in the earth's recent warming remains controversial even though there is a good deal of evidence to support the thesis that solar variations are a very significant factor in driving climate change both currently and in the past. This precis lays out the background and data needed to understand the basic scientific argument behind the contention that variations in solar output have a significant impact on current changes in climate. It also offers a simple, phenomenological approach for estimating the actual-as opposed to model dependent-magnitude of the sun's influence on climate.

Marsh, Gerald E

2007-01-01T23:59:59.000Z

64

Climate Change: The Sun's Role  

E-Print Network (OSTI)

The sun's role in the earth's recent warming remains controversial even though there is a good deal of evidence to support the thesis that solar variations are a very significant factor in driving climate change both currently and in the past. This precis lays out the background and data needed to understand the basic scientific argument behind the contention that variations in solar output have a significant impact on current changes in climate. It also offers a simple, phenomenological approach for estimating the actual-as opposed to model dependent-magnitude of the sun's influence on climate.

Gerald E. Marsh

2007-06-23T23:59:59.000Z

65

Why Analyze Mental Models of Local Climate Change? A Case from Southern Mozambique  

Science Conference Proceedings (OSTI)

People construct mental models of local climate change based on their observations and experiences of past climate events and changes. These mental models offer critical insight into locally important factors that trigger responses to new climate ...

L. Jen Shaffer; Leocadia Naiene

2011-10-01T23:59:59.000Z

66

Climate Impacts of Land-Cover and Land-Use Changes in Tropical Islands under Conditions of Global Climate Change  

Science Conference Proceedings (OSTI)

Land-cover and land-use (LCLU) changes have significant climate impacts in tropical coastal regions with the added complexity of occurring within the context of a warming climate. The individual and combined effects of these two factors in ...

Daniel E. Comarazamy; Jorge E. Gonzlez; Jeffrey C. Luvall; Douglas L. Rickman; Robert D. Bornstein

2013-03-01T23:59:59.000Z

67

ClimateWorks-China Climate Change Research Center | Open Energy Information  

Open Energy Info (EERE)

ClimateWorks-China Climate Change Research Center ClimateWorks-China Climate Change Research Center Jump to: navigation, search Name ClimateWorks-China Climate Change Research Center Agency/Company /Organization ClimateWorks, Energy Foundation Sector Climate, Energy Focus Area Renewable Energy Topics Low emission development planning Website http://www.climateworks.org/ Program Start 2011 Program End 2013 Country China Eastern Asia References http://www.climateworks.org/[1] "Provision of technical support to low-carbon growth planning in low-carbon pilots in five provinces and eight cities. These 13 low carbon pilot regions, which cover 27% of the population, 36% of energy consumption, have the potential of contributing one third of China's total carbon mitigation. The outcomes of these demonstration efforts will serve as

68

Climate VISION: News - Bush Administration Launches "Climate...  

Office of Scientific and Technical Information (OSTI)

Will Address Challenge of Climate Change WASHINGTON, D.C., - Today, the Department of Energy, on behalf of the Administration, launched the President's "Climate VISION"...

69

Application: Cold Climate  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Application: Cold Climate. Fire Suppression in Cold Climates: A Technical Review.. Catchpole, DV; 2000. ...

2011-12-22T23:59:59.000Z

70

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

71

Basic science of climate change  

SciTech Connect

Anthropogenic emissions of greenhouse gases are enhancing the natural greenhouse effect. There is almost universal agreement in the scientific community that this will lead to a warming of the lower atmosphere and of the earth's surface. However, the exact timing, magnitude, and regional distribution of this future warming are very uncertain. Merely taking account of changes in the global mean climate is not enough, especially when considering the impacts of climate change. Man also have to consider the rate and regional distribution of climate change and changes in the frequency of events. An increase in the frequency of extremes, such as droughts and storms, and rapid climate change are two factors which could have dramatic effects on human society and natural ecosystems. However, systems already under stress or close to their climate limits are likely to experience the greatest difficulty in adapting to change. Although human activity has been increasing greenhouse gas concentrations for a hundred years, man cannot yet detect unequivocally a greenhouse gas induced signal in climate records. However, increases in greenhouse gas concentrations are almost bound to continue and are likely to emerge as the dominant perturbation of the earth's climate in the coming decades.

Maskell, K.; Callander, B.A. (Hadley Centre, Bracknell (United Kingdom)); Mintzer, I.M. (Univ. of Maryland, College Park, MD (United States))

1993-10-23T23:59:59.000Z

72

Climate control of terrestrial carbon exchange across biomes and continents  

Science Conference Proceedings (OSTI)

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

Ricciuto, Daniel M [ORNL; Gu, Lianhong [ORNL

2010-07-01T23:59:59.000Z

73

Oregon Climate Assessment Report December 2010  

E-Print Network (OSTI)

of Washington and the California Climate Action Team. In this report, we also identify knowledge gaps, where we created using a utility at the Office of Washington State Climatologist, climate.washington.edu. #12 will be the primary factor in agricultural production in the future. Both California and Washington projected negative

Pierce, Stephen

74

Cite as: Lavergne, E., Zajonz, U. & Sellin, L. (2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskl, 1775) from the wider Gulf of Aden including  

E-Print Network (OSTI)

effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf-0426.2012.02018.x Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor. This region displays a monsoon climate, with wide seasonal variation affecting estuarine habitats. A total

Paris-Sud XI, Université de

75

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

76

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

77

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

78

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

79

Climate Variability and Sugarcane Yield in Louisiana  

Science Conference Proceedings (OSTI)

This paper seeks to understand the role that climate variability has on annual yield of sugarcane in Louisiana. Unique features of sugarcane growth in Louisiana and nonclimatic, yield-influencing factors make this goal an interesting and ...

David Greenland

2005-11-01T23:59:59.000Z

80

Climate Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Employee Operations Employee Climate Survey March 2009 Acknowledgements The Berkeley Lab Survey Team consisted of the following: Jim Krupnick, Sponsor Vera Potapenko, Project Lead Karen Ramorino, Project Manager Chris Paquette, MOR Associates Alexis Bywater, MOR Associates MOR Associates, an external consulting firm, acted as project manager for this effort, analyzing the data and preparing this report. MOR Associates specializes in continuous improve- ment, strategic thinking and leadership development. MOR Associates has conducted a number of large-scale surveys for organizations in higher education, including MIT, Stanford, the University of Chicago, and others. MOR Associates, Inc. 462 Main Street, Suite 300 Watertown, MA 02472 tel: 617.924.4501

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Seasonal Differences in the Trend of Total Ozone and Contributions from Tropospheric and Stratospheric Layers  

Science Conference Proceedings (OSTI)

Based on an average of the total-ozone changes determined by means of linear regression at individual Dobson stations within climatic zones, trends of total ozone for each of the four seasons have been evaluated for five climatic zones, and the ...

J. K. Angell

1987-04-01T23:59:59.000Z

82

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

83

A Hierarchical Evaluation of Regional Climate Simulations  

SciTech Connect

Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

2013-08-20T23:59:59.000Z

84

Philosophy of Climate Science  

Science Conference Proceedings (OSTI)

The use of climate simulations in scientific assessments of climate change and in the formulation of climatechange scenarios has been contested for, among others, methodological reasons. The "philosophy of climate science"encompasses discussions ...

Arthur C. Petersen

2000-02-01T23:59:59.000Z

85

Several Computational Opportunities and Challenges Associated with Climate Change Modeling  

SciTech Connect

One of the key factors in the improved understanding of climate science is the development and improvement of high fidelity climate models. These models are critical for projections of future climate scenarios, as well as for highlighting the areas where further measurement and experimentation are needed for knowledge improvement. In this paper, we focus on several computing issues associated with climate change modeling. First, we review a fully coupled global simulation and a nested regional climate model to demonstrate key design components, and then we explain the underlying restrictions associated with the temporal and spatial scale for climate change modeling. We then discuss the role of high-end computers in climate change sciences. Finally, we explain the importance of fostering regional, integrated climate impact analysis. Although we discuss the computational challenges associated with climate change modeling, and we hope those considerations can also be beneficial to many other modeling research programs involving multiscale system dynamics.

Wang, Dali [ORNL; Post, Wilfred M [ORNL; Wilson, Bruce E [ORNL

2010-01-01T23:59:59.000Z

86

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

87

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

88

SEAB Climate Action Plan  

Energy.gov (U.S. Department of Energy (DOE))

A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy.

89

Climate Action Plan (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

The Commonwealth of Kentucky established the Kentucky Climate Action Plan Council (KCAPC) process to identify opportunities for Kentucky to respond to the challenge of global climate change while...

90

Changing climate  

SciTech Connect

This article reviews a book written by a committee of the National Research Council. The book discussed the Greenhouse Effect which is a warming of the earth's atmosphere caused by the doubling of the atmospheric carbon dioxide concentration. The excess carbon dioxide is pollution derived from the burning of fossil fuels. The report suggested that the warming of the atmosphere would cause thawing of the polar regions which in turn would cause a rise in sea levels and flooding of the coastal lowlands. In addition to the flooding, the report predicted climate changes that would effect the productivity of croplands in the west. The authors of the report stressed that there was no way to avoid this warming of the earth. They suggested that people should start preparing for the inevitable.

1983-01-01T23:59:59.000Z

91

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

92

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

93

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

94

All Electric Houses in Cold Climates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Houses Electric Houses in Cold Climates Duncan Prahl, RA IBACOS BA Tech Update, April 29, 2013 Denver CO All Electric Houses in Cold Climates Caveats About Me: * I'm an Architect * I love math and science, but I'm not going to marry it * My engineering skills are primarily based on osmosis and graphics * "Close enough is good enough" All Electric Houses in Cold Climates Utility Unbundling * True costs becoming "transparent" * Allows for next level of analysis * Cash flow, Total Cost of Ownership All Electric Houses in Cold Climates Martha's Vineyard Community Images courtesy South Mountain Company All Electric Houses in Cold Climates Specifications Building System Specification Below Slab R-20 extruded polystyrene (XPS) foam Foundation Walls R-20 poly iso foam

95

Total Environment Assessment Model  

E-Print Network (OSTI)

that factors other than molyb- denum concentrations in the macroenvironment may be im- portant in determining in the macroenvironment (4, 36). As such, we were able to isolate strains with Mo-independent nitroge- nases using in macroenvironments that have suf- ficient Mo concentrations for Mo-dependent nitrogen fixation. The fact

Vellend, Mark

96

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

97

Detection of greenhouse-gas-induced climatic change  

SciTech Connect

The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO[sub 2] and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

98

Formulating Climate Change Scenarios to Inform Climate - Resilient...  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to...

99

Implications of surface seepage on the effectiveness of geologic storage of carbon dioxide as a climate change mitigation strategy  

E-Print Network (OSTI)

carbon dioxide (CO 2 ) will become an important climate change mitigation strategy will depend on a number of factors,

Hepple, Robert P.; Benson, Sally M.

2002-01-01T23:59:59.000Z

100

Table HC1-1a. Housing Unit Characteristics by Climate Zone,  

U.S. Energy Information Administration (EIA) Indexed Site

a. Housing Unit Characteristics by Climate Zone, a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast ...................................... 20.3 1.9 10.0 8.4 Q Q 6.8 New England .............................. 5.4 1.4 4.0 Q Q Q 18.4 Middle Atlantic ............................ 14.8 0.5 6.0 8.4 Q Q 4.6 Midwest ......................................... 24.5 5.4 14.8 4.3 Q Q 19.0 East North Central ...................... 17.1

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

102

Mixed-mode simulations for climate feasibility  

E-Print Network (OSTI)

across all 16 California climate zones. Quantify the largerspan all 16 official CA climate zones with system sizing andClimate analysis For each climate zone: Quantitative climate

Borgeson, Sam; Brager, Gail; Coffey, Brian; Haves, Phil

2009-01-01T23:59:59.000Z

103

CDIAC Climate Reconstruction Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Reconstructions CDIAC Climate Holdings Containing Climate Reconstruction Data Data Set Name Investigators Data TypeFormat Period of Record Historic isotopic temperature...

104

Eos Climate | Open Energy Information  

Open Energy Info (EERE)

Eos Climate Jump to: navigation, search Name Eos Climate Place South San Francisco, California Zip 94080 Product California-based firm focused on developing climate change...

105

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Climate Change Climate Change Learn about the effects climate change can have on our energy supplies and infrastructure and explore a...

106

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

107

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

108

Climate Impacts of Ice Nucleation  

SciTech Connect

Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

2012-10-19T23:59:59.000Z

109

ORISE: U.S. Climate Reference Network (USCRN)  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Reference Network (USCRN) Climate Reference Network (USCRN) U.S. Climate Reference Network (USCRN) Map courtesy of the National Climatic Data Center The U.S. Climate Reference Network (USCRN), a network of climate stations, records real-time temperature, precipitation, wind speed, and solar radiation trends across the rural United States and in some parts of Canada. A National Oceanic and Atmospheric Administration (NOAA) initiative, the USCRN consists of a total of 121 stations throughout the continental U.S., Alaska, Hawaii and Canada. With an unparalleled 99.9 percent reporting accuracy, the USCRN provides the most accurate and reliable environmental climate data that the U.S. has ever collected. Its primary purpose is to provide consistent, long-term (50 to 100 years) observations of temperature

110

Linking Weather and Climate  

Science Conference Proceedings (OSTI)

Historically, the atmospheric sciences have tended to treat problems of weather and climate separately. The real physical system, however, is a continuum, with short-term (minutes to days) weather fluctuations influencing climate variations and ...

Randall M. Dole

2008-11-01T23:59:59.000Z

111

Climate Action Plan (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Climate Change Action Plan (DCCAP) was prepared with funding from the Delaware State Energy Office and the U.S. Environmental Protection Agencys State and Local Climate Change Program...

112

The Climate Policy Dilemma  

E-Print Network (OSTI)

Climate policy poses a dilemma for environmental economists. The economic argument for stringent GHG abatement is far from clear. There is disagreement among both climate scientists and economists over the likelihood of ...

Pindyck, Robert S.

113

Climate Science Measurements Portal  

Science Conference Proceedings (OSTI)

... comparability and for international acceptance of measurement results and insights concerning climatic ... Global Warming and Greenhouse Gases ...

2012-12-27T23:59:59.000Z

114

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

115

International Governance of Climate Engineering  

E-Print Network (OSTI)

Solar Radiation Management Governance Initiative conference); Daniel Bodansky, Governing Climate Engineering: Scenarios for Analysis (Harvard Project on Climate Agreements,

Parson, Edward; Ernst, Lia

2012-01-01T23:59:59.000Z

116

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

117

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

118

A New Homogenized Climate Division Precipitation Dataset for Analysis of Climate Variability and Climate Change  

Science Conference Proceedings (OSTI)

A new homogeneous climate division monthly precipitation dataset [based on full network estimated precipitation (FNEP)] was created as an alternative to the National Climatic Data Center (NCDC) climate division dataset. These alternative climate ...

D. Brent McRoberts; John W. Nielsen-Gammon

2011-06-01T23:59:59.000Z

119

Vegetation Feedbacks to Climate in the Global Monsoon Regions  

Science Conference Proceedings (OSTI)

Vegetation feedbacks on climate, on the subannual time scale, are examined across six monsoon regions with a fully coupled atmosphereoceaniceland model with dynamic vegetation. Initial value ensemble experiments are run in which the total ...

Michael Notaro; Guangshan Chen; Zhengyu Liu

2011-11-01T23:59:59.000Z

120

Optimizing Input Data for Gridding Climate Normals for Canada  

Science Conference Proceedings (OSTI)

Spatial models of 19712000 monthly climate normals for daily maximum and minimum temperature and total precipitation are required for many applications. The World Meteorological Organizations recommended standard for the calculation of a normal ...

Ron F. Hopkinson; Michael F. Hutchinson; Daniel W. McKenney; Ewa J. Milewska; Pia Papadopol

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Formulating Climate Change Scenarios to Inform Climate - Resilient  

Open Energy Info (EERE)

Formulating Climate Change Scenarios to Inform Climate - Resilient Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary Name: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Agency/Company /Organization: United Nations Development Programme (UNDP) Topics: Low emission development planning Resource Type: Guide/manual Website: www.climatefinanceoptions.org/cfo/node/256 Language: English Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Screenshot References: Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies[1] Tool Overview "This guidebook is part of a series of manuals, guidebooks, and toolkits that draw upon the experience and information generated by UNDP's support

122

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

123

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

124

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

125

Climate Literacy Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Literacy Framework Print E-mail Climate Literacy Framework Print E-mail A Guide for Individuals and Communities The Essential Principles of Climate Science presents important information for individuals and communities to understand Earth's climate, impacts of climate change, and approaches for adapting and mitigating change. Principles in the guide can serve as discussion starters or launching points for scientific inquiry. The guide can also serve educators who teach climate science as part of their science curricula. Development of the guide began at a workshop sponsored by the National Oceanic and Atmospheric Administration (NOAA) and the American Association for the Advancement of Science (AAAS). Multiple science agencies, non-governmental organizations, and numerous individuals also contributed through extensive review and comment periods. Discussion at the National Science Foundation (NSF) and NOAA-sponsored Atmospheric Sciences and Climate Literacy workshop contributed substantially to the refinement of the document.

126

Little Climates -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

Part One Part One Nature Bulletin No. 478-A January 27, 1973 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Part One: Weather in the Soi. Climate vitally affects our lives. Wherever we live, climate has largely determined the plant and animal life in that region, the development of civilization there and what people do. The climate of any region represents its overall weather picture: the sum of its weather today, tomorrow, and during past centuries. We are accustomed to think of climate as a set of conditions occurring entirely in the atmosphere above the earth's surface, and it may sound silly when we say that there are climates underground -- little climates just as real as those above -- but it's true, There are special kinds of weather in the soil.

127

Detecting atmospheric rivers in large climate datasets  

Science Conference Proceedings (OSTI)

Extreme precipitation events on the western coast of North America are often traced to an unusual weather phenomenon known as atmospheric rivers. Although these storms may provide a significant fraction of the total water to the highly managed western ... Keywords: atmospheric rivers, automatic detection of atmospheric rivers, connected component labeling, extreme climate events

Surendra Byna; Prabhat; Michael F. Wehner; Kesheng John Wu

2011-11-01T23:59:59.000Z

128

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

129

Old-field Community, Climate and Atmospheric Manipulation  

SciTech Connect

We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

Aimee Classen

2009-11-01T23:59:59.000Z

130

Climate Change Science Program Issues Report on Climate Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of the report "Climate Models: An Assessment of Strengths and Limitations," the 10th in a series of 21 Synthesis and Assessment Products (SAPs) managed by U.S. federal agencies. Developed under the leadership of the U.S. Department of Energy (DOE), this report, SAP 3.1, describes computer models of the Earth's climate and their ability to simulate current climate change. "Complex climate models are tools that provide insights and knowledge into how future climate may evolve. To assure that future climate projections

131

MCA4Climate - Guidance for scientifically sound climate change planning |  

Open Energy Info (EERE)

MCA4Climate - Guidance for scientifically sound climate change planning MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate) Agency/Company /Organization: United Nations Environment Programme (UNEP), World Bank Climate Smart Planning Platform Sector: Climate, Energy, Land Topics: Co-benefits assessment, Low emission development planning, Policies/deployment programs Resource Type: Guide/manual Complexity/Ease of Use: Moderate Website: www.mca4climate.info/ Program Start: 2011 Cost: Free Multicriteria Analysis for Climate (MCA4climate) Screenshot References: MCA4Climate - Guidance for scientifically sound climate change planning[1]

132

Is this climate porn? How does climate change communication  

E-Print Network (OSTI)

Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

Watson, Andrew

133

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

134

Philippines-Support for the National Climate Commission | Open Energy  

Open Energy Info (EERE)

Philippines-Support for the National Climate Commission Philippines-Support for the National Climate Commission Jump to: navigation, search Name GIZ-Philippines-Support for the National Climate Commission Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Topics Background analysis, Low emission development planning, Pathways analysis Website http://www.giz.de/en/home.html Program Start 2012 Program End 2015 Country Philippines UN Region South-Eastern Asia References GIZ-Philippines-Support for the National Climate Commission[1] Philippine Climate Initiatives to get €3-Million Aid from German government[2] Program Overview "The German government will provide the Philippine government a total of €3-million, which will come in the form of a grant. Project partners

135

Additional Climate Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Additional Climate Reports Print E-mail Additional Climate Reports Print E-mail Intergovernmental Panel on Climate Change (IPCC) Reports Internationally, many assessments have been produced to address important questions related to environmental issues such as ozone depletion, climate change, and the loss of biodiversity. Many of these assessments have provided the scientific basis for the elaboration of international agreements, including the Assessment Report Series from the Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations Environment Programme (UNEP). IPCC assesses the scientific, technical and socio-economic information relevant for the understanding of the risk of human-induced climate change. Because of its intergovernmental nature, the IPCC is able to provide scientific technical and socio-economic information in a policy-relevant but policy neutral way to decision makers.

136

National Climate Assessment: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Team Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Overview Print E-mail What is the National Climate Assessment (NCA)? The NCA is an important resource for understanding and communicating climate change science and impacts in the United States. It informs the nation about already observed changes, the current status of the climate, and anticipated trends for the future. The NCA report process integrates scientific information from multiple sources and sectors to highlight key findings and significant gaps in our knowledge. The NCA also establishes consistent methods for evaluating climate impacts in the U.S. in the context of broader global change. Finally, findings from the NCA provide input to Federal science priorities and are used by U.S. citizens, communities, and businesses as they create more sustainable and environmentally sound plans for the nation's future.

137

Global Climate Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data The climate data at the ORNL DAAC are used primarily as driving variables in terrestrial biogeochemistry models. These models typically use data on temperature (min,max), precipitation, humidity (relative humidity, vapor pressure deficit, dew point), radiation (PFD in PAR, shortwave, direct/diffuse, and UV radiation, daylength), and wind velocity. Climate / meteorology data are required at hourly to monthly time scales, either point or gridded, at spatial scales ranging from regional to continental to global. The ORNL DAAC currently distributes climate data from several related projects: VEMAP-1 Hydroclimatology, and Global Historical Climatology Network. We are also now distributing climate data developed at the East Anglia Climate Research Unit and the Potsdam Institute for Climate Research.

138

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

139

Turks and Caicos Islands climate and its impacts  

Science Conference Proceedings (OSTI)

The Turks and Caicos Island (TCI) climate is described using mesoscale ocean and atmosphere datasets with a focus on thermodynamic vs kinematic controls, the influence of nearby Hispaniola island, and factors affecting early colonization and ...

Mark R. Jury

140

Studies of Urban Climates and Air Pollution in Switzerland  

Science Conference Proceedings (OSTI)

In addition to an assessment of the factors that are responsible for urban climate change, this paper describes climatological studies and peculiarities of some Swiss cities. Although these cities are small, urban air pollution presents a real ...

Heinz Wanner; Jacques-Andr Hertig

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Turks and Caicos Islands Climate and Its Impacts  

Science Conference Proceedings (OSTI)

The Turks and Caicos Islands (TCI) climate is described using mesoscale ocean and atmosphere datasets with a focus on thermodynamic versus kinematic controls, the influence of the nearby island of Hispaniola, and factors affecting early ...

Mark R. Jury

2013-09-01T23:59:59.000Z

142

The changing climate  

SciTech Connect

The earth owes its hospitable climate to the greenhouse effect, but now the effect threatens to intensify, rapidly warming the planet. Rising concentrations of carbon dioxide and other gases are the cause. The danger of warming is serious enough to warrant prompt action. The paper examines data on atmospheric warming and attempts to project effects into the future using atmospheric models. Three kinds of response to the threat are described: technical measures to counteract climatic change; adaptation to the changing climate; and prevention.

Schneider, S.H.

1989-09-01T23:59:59.000Z

143

Environment/Climate Portal  

Science Conference Proceedings (OSTI)

... exercises for environmental contaminants in marine specimens were administered in 2007/2008 by the more. >> see all Environment/Climate ...

2013-10-23T23:59:59.000Z

144

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

145

Regional Climate Information & Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Information & Modeling Print E-mail The specific impacts and vulnerabilities posed by climate change are largely defined by regional differences 9in things like geography,...

146

Energy and Climate  

Science Conference Proceedings (OSTI)

Implementation of renewable energy and climate change related policies around the ... These will be critical for both policy-making purposes ...

2013-12-05T23:59:59.000Z

147

Climate Suitability Tool Description  

Science Conference Proceedings (OSTI)

... The Climate Suitability Tool implements the method outlined in the following publications ... The analysis is based on a single-zone model of natural ...

148

Climate and Architecture: The TVA Climatic Data Base  

Science Conference Proceedings (OSTI)

The TVA Climatic Data Base (Finsen, 1980) is a graphic portrayal and analysis of the climatic elements and influences important to the building professions toward the resolution of climate responsive architectural design. The data base, including ...

Peter I. Finsen; Charles L. Bach; Robert C. Beebe

1981-12-01T23:59:59.000Z

149

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

150

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

151

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

152

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

153

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

154

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

155

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

156

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

157

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

158

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

159

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

160

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

162

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

163

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

164

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

165

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

166

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

167

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

168

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

169

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

170

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

171

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

172

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

173

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

174

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

175

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

176

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

177

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

178

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

179

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

180

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

182

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

183

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

184

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

185

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

186

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

187

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

188

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

189

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

190

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

191

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

192

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

193

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

194

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

195

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

196

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

197

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

198

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

199

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

200

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

202

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

203

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

204

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

205

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

206

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

207

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

208

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

209

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

210

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

211

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

212

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

213

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

214

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

215

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

216

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

217

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

218

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

219

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

220

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

222

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

223

Primary productivity control of simulated carbon cycle-climate feedbacks. Geophys  

E-Print Network (OSTI)

[1] Positive feedbacks between the terrestrial carbon cycle and climate represent an outstanding area of uncertainty in simulations of future climate change. Coupled climatecarbon cycle models have simulated widely divergent feedback magnitudes, and attempts to explain model differences have had only limited success. In this study, we demonstrate that the response of vegetation primary productivity to climate changes is a critical controlling factor in determining the strength of simulated carbon cycle-climate feedbacks. This conclusion sheds new light on coupled climate-carbon cycle model results, and highlights the need for improved model representation of photosynthesis processes so as to better constrain future projections of climate change. Citation: Matthews, H. D.,

H. Damon Matthews; Michael Eby; Andrew J. Weaver; Barbara J. Hawkins; M. Eby; A. J. Weaver; B. J. Hawkins

2005-01-01T23:59:59.000Z

224

Customization of RegCM3 Regional Climate Model for Eastern Africa and a Tropical Indian Ocean Domain  

Science Conference Proceedings (OSTI)

Rainfall is a driving factor of climate in the tropics and needs to be properly represented within a climate model. This study customizes the precipitation processes over the tropical regions of eastern Africa and the Indian Ocean using the ...

Neil Davis; Jared Bowden; Fredrick Semazzi; Lian Xie; Bari? nol

2009-07-01T23:59:59.000Z

225

Climate-Science Computational Development Team: The Climate End...  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Robert Jacob, Argonne National Laboratory Climate-Science Computational Development Team: The Climate End Station II PI Name: Warren Washington...

226

Climate change risk and response  

E-Print Network (OSTI)

Climate Change Center White Paper. Cayan, Dan, PeterClimate Change Center White Paper. Cayan, Daniel R. , EdwinClimate Change Center White Paper. duVair, Pierre, Douglas

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

227

Climate Change and National Security  

Science Conference Proceedings (OSTI)

Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communitieswith resultant advantages and differences. Climate change research has ...

Elizabeth L. Malone

2013-01-01T23:59:59.000Z

228

The Atlantic Climate Change Program  

Science Conference Proceedings (OSTI)

The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and ...

Robert L. Molinari; David Battisti; Kirk Bryan; John Walsh

1994-07-01T23:59:59.000Z

229

Climate Modeling with Spectral Elements  

Science Conference Proceedings (OSTI)

As an effort toward improving climate modelcomponent performance and accuracy, an atmospheric-component climate model has been developed, entitled the Spectral Element Atmospheric Climate Model and denoted as CAM_SEM. CAM_SEM includes a unique ...

Ferdinand Baer; Houjun Wang; Joseph J. Tribbia; Aim Fournier

2006-12-01T23:59:59.000Z

230

CLIMATE PROTECTION UPDATE  

E-Print Network (OSTI)

Climate disruption is an urgent threat to the environmental and economic health of our communities. With less than 5 % of the worlds population, the United States produces more than 25 % of the global greenhouse gas emissions, and those emissions are continuing to grow. On February 16, 2005 the Kyoto Protocol, the international agreement to address climate disruption, became law for the 163

unknown authors

2006-01-01T23:59:59.000Z

231

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

232

Climate VISION: News Archive  

Office of Scientific and Technical Information (OSTI)

News Archive News Archive Collapse all | Expand all 2007 November 30, 2007 USTR Schwab to Announce New Climate Initiatives for WTO, Including a New Environmental Goods and Services Agreement November 28, 2007 U.S. Energy Information Administration Anounces U.S. Greenhouse Gas Emissions Declined 1.5 Percent in 2006 November 20, 2007 Nobel Peace Prize for Research on Climate Change Awarded to U.S. Forest Service Scientists November 16, 2007 Our Changing Planet: The U.S. Climate Change Science Program for Fiscal Year 2008 Report Released October 18, 2007 U.S. DOE Issues Third U.S. Climate Change Science Program Report October 15, 2007 The Government of India Hosts the Second Asia-Pacific Partnership on Clean Development and Climate Ministerial Meeting Fall 2007 EPA's 2nd measurement campaign to evaluate the performance of installed PFC

233

Climate VISION: News  

Office of Scientific and Technical Information (OSTI)

News Climate Vison RSS Recent News Feed News Climate Vison RSS Recent News Feed July 20, 2010 Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial Read the Press Release and Download Fact Sheet (PDF 76 KB) July 20, 2010 Government and corporate leaders announced a new public-private partnership, Global Superior Energy Performancecm at the Clean Energy Ministerial in Washington D.C. Read More and Download Fact Sheet (PDF 124 KB) June 20, 2010 Seventh Meeting of the Leaders' Representatives of the Major Economies Forum on Energy and Climate Read the Co-Chair's Summary June 1, 2010 Department of State releases Fifth U.S. Climate Action Report Read the Press Release December 18, 2009 Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference

234

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

235

Climate Action Planning Tool Formulas and Assumptions  

NLE Websites -- All DOE Office Websites (Extended Search)

CLIMATE ACTION PLANNING TOOL FORMULAS AND ASSUMPTIONS Climate Action Planning Tool Formulas and Assumptions The Climate Action Planning Tool calculations use the following formulas and assumptions to generate the business-as-usual scenario and the greenhouse gas emissions reduction goals for the technology options. Business-as-Usual Scenario All Scope 1 (gas, oil, coal, fleet, and electricity) and Scope 2 calculations increase at a rate equal to the building growth rate. Scope 3 calculations (commuters and business travel) increase at a rate equal to the population growth rate. Assumptions New buildings will consume energy at the same rate (energy use intensity) as existing campus buildings. Fleet operations will be proportional to total building area.

236

A climatic thermostat making Earth habitable  

E-Print Network (OSTI)

The mean surface temperature on Earth and other planets with atmospheres is determined by the radiative balance between the non-reflected incoming solar radiation and the outgoing long-wave black-body radiation from the atmosphere. The surface temperature is higher than the black-body temperature due to the greenhouse warming. Balancing the ice-albedo cooling and the greenhouse warming gives rise to two stable climate states. A cold climate state with a completelyice-covered planet, called Snowball Earth, and a warm state similar to our present climate where greenhouse warming prevents the total glacition. The warm state has dominated Earth in most of its geological history despite a 30 % fainter young Sun. The warming could have been controlled by a greenhouse thermostat operating by temperature control of the weathering process depleting the atmosphere from $CO_2$. This temperature control has permitted life to evolve as early as the end of the heavy bombartment 4 billion years ago.

Peter D. Ditlevsen

2005-05-12T23:59:59.000Z

237

National Climate Assessment: Production Team  

NLE Websites -- All DOE Office Websites (Extended Search)

NCA & Development Advisory Committee NCA & Development Advisory Committee Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Production Team Print E-mail National Climate Assessment Staff (USGCRP National Coordination Office) Current NCA Staff Dr. Fabien Laurier, Director, Third National Climate Assessment Dr. Glynis Lough, Chief of Staff for the National Climate Assessment Emily Therese Cloyd, Engagement Coordinator for the National Climate Assessment Bryce Golden-Chen, Program Coordinator for the National Climate Assessment Alison Delgado, Scientist Dr. Ilya Fischhoffkri, Scientist Melissa Kenney, Indicators Coordinator Dr. Fred Lipschultz, Regional Coordinator for the National Climate Assessment

238

Climate Advisers | Open Energy Information  

Open Energy Info (EERE)

strategies, and investments. In short, the firm is working with others to actively shape the low carbon economy. Climate Advisers believes climate change poses serious...

239

Climate change risk and response  

E-Print Network (OSTI)

Climate Change and Electricity Demand: Applying the NewClimate Change and Electricity Demand in California. Extreme Heat, and Electricity Demand in California.

Kahrl, Fredrich; Roland-Holst, David

2008-01-01T23:59:59.000Z

240

National Climate Assessment: Previous Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Second National Climate Assessment (2009)  

NLE Websites -- All DOE Office Websites (Extended Search)

Print E-mail alt What is the Second National Climate Assessment? The Second National Climate Assessment, entitled Global Change Impacts in the United States, was published in...

242

Climate change 2007 - mitigation of climate change  

SciTech Connect

This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L. (eds.)

2007-07-01T23:59:59.000Z

243

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

244

Climate Zone 5C | Open Energy Information  

Open Energy Info (EERE)

Climate Zone 5C Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 5 and Climate Zone Subtype C. Climate Zone...

245

Climate VISION: Program Mission  

Office of Scientific and Technical Information (OSTI)

PROGRAM MISSION PROGRAM MISSION Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a voluntary public-private partnership initiative to improve energy efficiency and greenhouse gas intensity in energy-intensive industrial sectors. Climate VISION - Voluntary Innovative Sector Initiatives: Opportunities Now - is a public-private partnership initiative launched by the Department of Energy on February 12, 2003. Its primary goal is to identify and pursue cost-effective options to improve the energy or GHG intensity of industry operations by accelerating the transition to technologies, practices, and processes that are cleaner, more efficient, and capable of reducing, capturing or sequestering GHGs. Climate VISION links these objectives with technology development,

246

Climate Change and Runoff Management  

E-Print Network (OSTI)

· Adaptation strategies #12;What is climate? "Climate is properly the long average of weather in a single place UV radiation Solar radiation Reflected by atmosphere (34% ) Radiated by atmosphere as heat (66%) Heat climate concerns us? Humans experience climate as weather #12;High water impacts June 1-15, 2008 38 River

Sheridan, Jennifer

247

NIST Testimony on Climate Change  

Science Conference Proceedings (OSTI)

NIST Testimony on Climate Change. 2009. Monitoring, Measurement and Verification of Greenhouse Gas Emissions II: The ...

2010-10-05T23:59:59.000Z

248

The Polar Marine Climate Revisited  

Science Conference Proceedings (OSTI)

As an additional classification to Kppens climate classification for polar (E) climates, the Polar Marine (EM) climate was presented nearly five decades ago and is revisited in this paper. The EM climate was traced to the North Atlantic, North ...

Thomas J. Ballinger; Thomas W. Schmidlin; Daniel F. Steinhoff

2013-06-01T23:59:59.000Z

249

Related Federal Climate Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Federal Climate Efforts Print E-mail Related Federal Climate Efforts Print E-mail Interagency Task Force on Carbon Capture and Storage The Interagency Task Force on Carbon Capture and Storage (CCS) is a group of technologies for capturing, compressing, transporting and permanently storing power plant and industrial source emissions of carbon dioxide. Rapid development and deployment of clean coal technologies, particularly CCS, will help position the United States as a leader in the global clean energy race. Climate Change Adaptation Task Force The Task Force's work has been guided by a strategic vision of a resilient, healthy, and prosperous Nation in the face of a changing climate. To achieve this vision, the Task Force identified a set of guiding principles that public and private decision-makers should consider in designing and implementing adaptation strategies.

250

G-Climate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 67 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY'S GLOBAL CLIMATE CHANGE ACTIVITIES U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES APRIL 2000 April 6, 2000 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "The U.S. Department of Energy's Global Climate Change Activities" BACKGROUND The President's Climate Change Proposal of October 1997 and the United Nation's Framework Convention on Climate Change (FCCC), were intended to identify methods of reducing greenhouse gas emissions. The FCCC was ratified by the U.S. Senate in 1992 and put into force in July 1994. The purpose of the Kyoto

251

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at the Morning Plenary Session of the United Remarks by the President at the Morning Plenary Session of the United Nations Climate Change Conference Bella Center Copenhagen, Denmark December 18, 2009 (Read the White House Press page.) THE PRESIDENT: Good morning. It is an honor for me to join this distinguished group of leaders from nations around the world. We come here in Copenhagen because climate change poses a grave and growing danger to our people. All of you would not be here unless you -- like me -- were convinced that this danger is real. This is not fiction, it is science. Unchecked, climate change will pose unacceptable risks to our security, our economies, and our planet. This much we know. The question, then, before us is no longer the nature of the challenge -- the question is our capacity to meet it. For while the reality of climate

252

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

President-Elect Obama's Address to the Global Climate Summit President-Elect Obama's Address to the Global Climate Summit November 18, 2008 THE PRESIDENT: Let me begin by thanking the bipartisan group of U.S. governors who convened this meeting. Few challenges facing America - and the world - are more urgent than combating climate change. The science is beyond dispute and the facts are clear. Sea levels are rising. Coastlines are shrinking. We've seen record drought, spreading famine, and storms that are growing stronger with each passing hurricane season. Climate change and our dependence on foreign oil, if left unaddressed, will continue to weaken our economy and threaten our national security. I know many of you are working to confront this challenge. In particular, I want to commend Governor Sebelius, Governor Doyle, Governor Crist, Governor

253

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1670P Thermal thermal environments different from regulatory standards. Packaging, Transport, Storage & Security

254

Climate Assessment for 1999  

Science Conference Proceedings (OSTI)

The global climate during 1999 was impacted by Pacific cold episode (La Nia) conditions throughout the year, which resulted in regional precipitation and atmospheric circulation patterns across the Pacific Ocean and the Americas that are ...

Gerald D. Bell; Michael S. Halpert; Russell C. Schnell; R. Wayne Higgins; Jay Lawrimore; Vernon E. Kousky; Richard Tinker; Wasila Thiaw; Muthuvel Chelliah; Anthony Artusa

2000-06-01T23:59:59.000Z

255

Regional Climate Research  

Science Conference Proceedings (OSTI)

The Workshop on Regional Climate Research: Needs and Opportunities was held 24 April 2001 at the National Center for Atmospheric Research, Boulder, Colorado. The workshop was cosponsored by the National Science Foundation and the Department of ...

L. Ruby Leung; Linda O. Mearns; Filippo Giorgi; Robert L. Wilby

2003-01-01T23:59:59.000Z

256

DOE Climate Change Researchers  

Office of Scientific and Technical Information (OSTI)

Mike (LLNL) Structure of the Tropical Lower Stratosphere as Revealed by Three Reanalysis Data Sets An Appraisal of Coupled Climate Model Simulations A B C D E F G H J K L M P R S...

257

Detecting Climate Change  

Science Conference Proceedings (OSTI)

The likelihood ratio of the data for a hypothesis of some change, relative to the hypothesis of no change, is a suitable statistical measure for the detection of climate change. Likelihood ratios calculated on the basis of Angell and Korshover's (...

Edward S. Epstein

1982-08-01T23:59:59.000Z

258

Global Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

When President Bush announced his Global Climate Change Initiative in February 2002, he committed the United States to a new strategy to cut greenhouse gas emissions over the next...

259

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman August 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

260

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Climate: The Elements  

Science Conference Proceedings (OSTI)

The authors present an analytical climate model, which has the features that (i) the atmosphere is a simple oscillator for all periods ?1 year, (ii) the ocean stores heat, (iii) the ocean exchanges momentum with the atmosphere, and (iv) random ...

John A. T. Bye; Roland A. D. Byron-Scott; Adrian H. Gordon

1996-07-01T23:59:59.000Z

262

Climate Action Plan (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

On July 12 and 13, 2007, Governor Charlie Crist hosted Serve to Preserve: A Florida Summit on Global Climate Change. The summit brought together leaders of business, government, science and...

263

Climate Action Plan (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earths climate. Recognizing the...

264

Climate Action Plan (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

On April 20, 2007, Governor Martin OMalley signed Executive Order 01.01.2007.07 establishing the Maryland Climate Change Commission (MCCC) charged with collectively developing an action plan to...

265

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman May 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

266

Bayesian Climate Change Assessment  

Science Conference Proceedings (OSTI)

A Bayesian fingerprinting methodology for assessing anthropogenic impacts on climate was developed. This analysis considers the effect of increased CO2 on near-surface temperatures. A spatial CO2 fingerprint based on control and forced model ...

L. Mark Berliner; Richard A. Levine; Dennis J. Shea

2000-11-01T23:59:59.000Z

267

Valuing Climate Forecast Information  

Science Conference Proceedings (OSTI)

The article describes research opportunities associated with evaluating the characteristics of climate forecasts in settings where sequential decisions are made. Illustrative results are provided for corn production in east central Illinois. ...

Steven T. Sonka; James W. Mjelde; Peter J. Lamb; Steven E. Hollinger; Bruce L. Dixon

1987-09-01T23:59:59.000Z

268

Climate Action Plan (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Recognizing the implications that global climate change may have on the economy, environment and quality of life in Minnesota, Governor Tim Pawlenty signed into law the 2007 Next Generation Energy...

269

Achieving Climate Sustainability  

Science Conference Proceedings (OSTI)

It is often assumed that climate change policies, including the Kyoto Protocol and the follow-on Copenhagen agreement now being negotiated, align well with sustainability's tenets. A closer look reveals this is not the case. First, they treat ...

William B. Gail

2010-02-01T23:59:59.000Z

270

OpenEI - climate  

Open Energy Info (EERE)

617 at http:en.openei.orgdatasets Climate: monthly and annual average relative humidity GIS data at one-degree resolution of the World from NASASSE http:en.openei.org...

271

Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Climate Change Links Global Climate Change Links This page provides links to web pages that we at CDIAC feel do a responsible job of presenting information and discussion pertinent to the science behind the global climate change ("global warming") debate. These sites include those on both sides of the debate; some asserting that global warming is a clear and present danger, and others that might be labeled global warming "skeptics." Some of these sites don't take a position per se; they exist to offer the public objective scientific information and results on our present understanding of the climate system. The list is not intended to be comprehensive, by any means. We hope it will be especially helpful for those who may be just beginning their research into global

272

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

273

The land use climate change energy nexus  

SciTech Connect

Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered both by changing human resource-management practices and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource extraction and land management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies and sustainability of alternative energy sources. Thus climate change, energy choices, and land-use change are linked, and any analysis in landscape ecology that considers one of these factors should consider them all. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Kline, Keith L [ORNL

2011-01-01T23:59:59.000Z

274

Global Climate Change Alliance Training Workshops on Mainstreaming Climate  

Open Energy Info (EERE)

Global Climate Change Alliance Training Workshops on Mainstreaming Climate Global Climate Change Alliance Training Workshops on Mainstreaming Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Climate Change Alliance Training Workshop on Mainstreaming Climate Change Agency/Company /Organization: Global Climate Change Alliance (GCCA) Sector: Climate Topics: Low emission development planning, -LEDS Resource Type: Training materials, Workshop Website: www.gcca.eu/pages/75_2-OCT-Workshop.html Cost: Free References: GCCA Countries Training Workshop[1] A GCCA workshop for OCT countries took place 27-28 January 2012 immediately following the OCT-EU Forum meeting in Brussels, Belgium. The workshop aimed at sharing views, knowledge, tools and experiences on climate change mitigation and adaptation and at raising awareness on the benefits and

275

Climate VISION: Greenhouse Gases Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Greenhouse Gases, Global Climate Change, and Energy Emissions of Greenhouse Gases in the United States 2001 [1605(a)] This report, required by Section 1605(a) of the Energy Policy Act of 1992, provides estimates of U.S. emissions of greenhouse gases, as well as information on the methods used to develop the estimates. The estimates are based on activity data and applied emissions factors, not on measured or metered emissions monitoring. Available Energy Footprints Industry NAICS* All Manufacturing Alumina & Aluminum 3313 Cement 327310 Chemicals 325 Fabricated Metals 332 Food and Beverages 311, 312 Forest Products 321, 322 Foundries 3315 Glass & Glass Products, Fiber Glass 3272, 3296 Iron & Steel Mills 331111 Machinery & Equipment 333, 334, 335, 336

276

Building Technologies Office: Climate Zones  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Zones to Climate Zones to someone by E-mail Share Building Technologies Office: Climate Zones on Facebook Tweet about Building Technologies Office: Climate Zones on Twitter Bookmark Building Technologies Office: Climate Zones on Google Bookmark Building Technologies Office: Climate Zones on Delicious Rank Building Technologies Office: Climate Zones on Digg Find More places to share Building Technologies Office: Climate Zones on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

277

Climate Data Operators (CDO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 3/4, GRIB including SZIP compression, EXTRA, SERVICE and IEG are supported as IO-formats. Apart from that cdo can be used to analyse any kind gridded data not related to climate science. CDO has very small memory requirements and can process files larger than the physical memory. How to Use CDO module load cdo cdo [Options] Operators ... Further Information CDO Online Documentation Availability Package Platform Category Version Module Install Date Date Made Default cdo carver libraries/ I/O 1.4.1 cdo/1.4.1 2012-01-13 2012-01-13 cdo carver libraries/ I/O 1.4.6 cdo/1.4.6 2012-05-24 2012-05-25 cdo carver libraries/ I/O 1.6.1 cdo/1.6.1 2013-07-02

278

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

279

SEAB Climate Action Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy. Climate Action Plan (pdf) More Documents...

280

Mobile Climate Observatory on the Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Observatory on the Pacific The AMF2 mobile climate observatory is traveling the Pacific ocean between Los Angeles and Honolulu to improve the way global climate models...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chicago Climate Exchange CCX | Open Energy Information  

Open Energy Info (EERE)

Chicago Climate Exchange CCX Jump to: navigation, search Name Chicago Climate Exchange (CCX) Place Chicago, Illinois Zip 60604 Product Chicago Climate Exchange (CCX) is aiming at...

282

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

283

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

284

TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION  

SciTech Connect

For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the root zone. More significantly, water movement throughout the soil profile is treated according to the bucket model, in which the amount of water that moves down from one layer to the next is equal to the mass of water in excess of field capacity in the upper layer. The development of a numerical model of infiltration involves a number of abstractions and simplifications to represent the complexity of environmental conditions at Yucca Mountain, such as the arid climate, mountain-type topography, heterogeneous soils and fractured rock, and irregular soil-rock interface.

NA

2004-05-01T23:59:59.000Z

285

ORISE: Climate and Atmospheric Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate and Atmospheric Research Climate and Atmospheric Research Capabilities Overview U.S. Climate Reference Network U.S. Historical Climate Network Contact Us Oak Ridge Institute for Science Education Climate and Atmospheric Research The Oak Ridge Institute for Science and Education (ORISE) partners with the National Oceanic and Atmospheric Administration's Atmospheric Turbulence and Diffusion Division (ATDD) to conduct climate research focused on issues of national and global importance. Research is performed with personnel support from ORISE's Independent Environmental Assessment and Verification (IEAV) programs, as well as in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL), and numerous other organizations, government agencies, universities and private research institutions.

286

BNL | Climate, Environment and Bisoscience  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate, Environment, and Biosciences Climate, Environment, and Biosciences bioscience research Revealing Nature-from Microscopic to Atmospheric Scales With recognized expertise in plant sciences, imaging, and climate studies, Brookhaven Lab advances some of the most promising scientific methods of achieving a sustainable future. This cross-disciplinary research seeks to understand the relationships between climate change, sustainable energy initiatives, and the planet's natural ecosystems. As environmental and economic issues mount, this research will provide increasingly important guidance and opportunities for climate change management strategies, approaches to adaptation, and policy decisions. Building a Sustainable Future Major goals include: Significantly improving climate models based on high-quality data

287

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate change cripples forests Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

288

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

289

Climate change cripples forests  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Cripples Forests Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "There will still be wet winters, but they will more often be followed by warm summers, putting stress on trees and limiting their ability to respond

290

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

Remarks by the President at Major Economies Meeting on Energy Security and Remarks by the President at Major Economies Meeting on Energy Security and Climate Change September 28, 2007 THE PRESIDENT: Good morning. Thank you. Welcome to the State Department. I'm honored to address this historic meeting on energy security and climate change. And I appreciate you all being here. Energy security and climate change are two of the great challenges of our time. The United States takes these challenges seriously. The world's response will help shape the future of the global economy and the condition of our environment for future generations. The nations in this room have special responsibilities. We represent the world's major economies, we are major users of energy, and we have the resources and knowledge base to develop clean energy technologies.

291

Reduce Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Climate Change Reduce Climate Change Highway vehicles release about 1.5 billion metric tons of greenhouse gases (GHGs) into the atmosphere each year-mostly in the form of carbon dioxide (CO2)-contributing to global climate change. Each gallon of gasoline you burn creates 20 pounds of CO2. That's roughly 5 to 9 tons of CO2 each year for a typical vehicle. more... How can a gallon of gasoline create 20 pounds of carbon dioxide? It seems impossible that a gallon of gasoline, which weighs about 6.3 pounds, could produce 20 pounds of carbon dioxide (CO2) when burned. However, most of the weight of the CO2 doesn't come from the gasoline itself, but the oxygen in the air. When gasoline burns, the carbon and hydrogen separate. The hydrogen combines with oxygen to form water (H2O), and carbon combines with oxygen

292

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

at United Nations Secretary General Ban Ki-Moon's at United Nations Secretary General Ban Ki-Moon's Climate Change Summit United Nations Headquarters New York, New York September 22, 2009 (Read the White House Press page.) PRESIDENT OBAMA: Thank you very much. Good morning. I want to thank the Secretary General for organizing this summit, and all the leaders who are participating. That so many of us are here today is a recognition that the threat from climate change is serious, it is urgent, and it is growing. Our generation's response to this challenge will be judged by history, for if we fail to meet it -- boldly, swiftly, and together -- we risk consigning future generations to an irreversible catastrophe. No nation, however large or small, wealthy or poor, can escape the impact of climate change. Rising sea levels threaten every coastline. More

293

Cattle and Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Cattle and Climate Cattle and Climate Name: Peter Location: N/A Country: N/A Date: N/A Question: Is there any link bteween global warming / climate change and the increased population of cattle worldwide. If so can it be estimated what proportion of the potential problem arises from this source. Replies: Some scientist speculate that when cows expel intestinal gas (to put it politely!) they contribute to global warming by increasing the amount of methane in the atmosphere. They certainly aren't the only source-a study was done on termites also that showed that methane was expelled as they broke down cellulose-but if they are increasing in number they probably are one of many sources. I'm sorry I can't steer you towards actual studies, but I think they were done in the 1970's

294

Climate VISION: Contact Us  

Office of Scientific and Technical Information (OSTI)

CONTACT US CONTACT US General Contact Information Please contact the individuals below for all general questions about information found on this website. Department of Energy Contact Russell Conklin Policy Analyst U.S. Climate Change Technology Program U.S. Department of Energy Office of Climate Change Policy and Technology (PI-50) 202-586-8339 Web Site Contacts Matt Antes 410-953-6218 Energetics, Incorporated Or Rebecca Gordon 202-406-4138 Energetics, Incorporated Private Sector Initiatives Contact Information Please contact the individuals below for questions about information found on this website regarding the private sector initiatives. Collapse all | Expand all Aluminum - Contacts Association Climate VISION Lead Bob Streiter Aluminum Association 900 19th Street, NW Washington, D.C. 20006

295

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Impacts By Region Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be more...

296

Second National Climate Assessment: Climate Change Impacts By...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment: Climate Change Impacts By Sector Print E-mail alt An affiliated website was created specifically for the 2009 National Climate Assessment so that the report would be...

297

Climate System Response to External Forcings and Climate Change...  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate System Response to External Forcings and Climate Change Projections in CCSM4 Submitted by mkaczmar on March 8, 2012 - 11:03 Authors: Meehl, G.A., Washington, WM, Arblaster,...

298

Constraints on Climate Sensitivity from Radiation Patterns in Climate Models  

Science Conference Proceedings (OSTI)

The estimated range of climate sensitivity, the equilibrium warming resulting from a doubling of the atmospheric carbon dioxide concentration, has not decreased substantially in past decades. New statistical methods for estimating the climate ...

Markus Huber; Irina Mahlstein; Martin Wild; John Fasullo; Reto Knutti

2011-02-01T23:59:59.000Z

299

Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties  

DOE Green Energy (OSTI)

Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

Lobell, D; Field, C; Cahill, K; Bonfils, C

2006-01-10T23:59:59.000Z

300

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

302

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

303

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

304

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

305

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

306

Climate Change | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Change Climate Change Climate Change The Office of Climate Change Policy and Technology (PI-50), located within the Office of Policy and International Affairs (PI), serves as the focal point within the U.S. Department of Energy (DOE) for the development, coordination, and implementation of DOE-related aspects of climate change technical programs, policies, and initiatives. The mission of the Office of Climate Change Policy and Technology is to accelerate the development and deployment of advanced technologies and best practices to mitigate climate change. To the extent delegated by the Secretary, the Office provides planning, analysis, and technical advisory services to other Federal agencies, and to Cabinet and sub-Cabinet-level interagency committees, working on climate

307

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change November 19, 2013 Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul, Turkey U.S. Secretary of Energy Ernest Moniz will travel to...

308

Storm Tracks and Climate Change  

Science Conference Proceedings (OSTI)

Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by ...

Lennart Bengtsson; Kevin I. Hodges; Erich Roeckner

2006-08-01T23:59:59.000Z

309

Climate Action Plan (New Orleans)  

Energy.gov (U.S. Department of Energy (DOE))

New Orleans' Climate Action Plan will provide a road map to reach the City's greenhouse gas (GHG) reduction goal by 2030 while orchestrating its adaptation to climate change. The CAP will outline...

310

Testing Climate Models: An Approach  

Science Conference Proceedings (OSTI)

The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the ...

Richard Goody; James Anderson; Gerald North

1998-11-01T23:59:59.000Z

311

Climate Action Plan (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

29 members of Governor John Lynchs Climate Change Policy Task Force developed a Climate Action Plan in 2009. It is aimed at achieving the greatest feasible reductions in greenhouse gas emissions...

312

The Community Climate System Model  

Science Conference Proceedings (OSTI)

The community Earth System Model (CESM) is a fully coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states.

Worley, Patrick H [ORNL

2011-01-01T23:59:59.000Z

313

book review: Climate change mapped  

E-Print Network (OSTI)

6596 newsandupdate bookreview Climatechangemappedatlasismorethanjustabookofmaps. By thatcriterionthan just a science book. It alsocoversclimate

Shanahan, Mike

2012-01-01T23:59:59.000Z

314

Contrails, Cirrus Trends, and Climate  

Science Conference Proceedings (OSTI)

Rising global air traffic and its associated contrails have the potential for affecting climate via radiative forcing. Current estimates of contrail climate effects are based on coverage by linear contrails that do not account for spreading and, ...

Patrick Minnis; J. Kirk Ayers; Rabindra Palikonda; Dung Phan

2004-04-01T23:59:59.000Z

315

Some thoughts about the Climatic  

E-Print Network (OSTI)

& variance) ­ probability #12;Afforestation has been proposed as a climate mitigation strategy #12;Vegetation and grasslands in mid-latitude with deciduous trees · Equilibrium calculations with the NCAR carbon-climate model

Kammen, Daniel M.

316

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Climate Change Climate Change View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. View our interactive climate vulnerability map to learn more about how climate change could impact energy supplies and delivery near your home. | Map by Daniel Wood, Energy Department. Addressing the effects of climate change is a top priority of the Energy Department. As global temperature rise, wildfires, drought and high electricity demand put stress on the nation's energy infrastructure. And severe weather -- the leading cause of power outages and fuel supply disruption in the United States -- is projected to worsen,

317

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

318

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

319

On Climate Prediction in the Tropics  

Science Conference Proceedings (OSTI)

Climatic disasters are common in many tropical regions, and rainfall anomalies in particular have a severe human impact. Accordingly, both the World Climate Programme and the U.S. National Climate Program have identified climate prediction as a ...

Stefan Hastenrath

1986-06-01T23:59:59.000Z

320

Climate Zone 1B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 1 and Climate Zone Subtype B. Climate Zone 1B is defined as Dry with...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Climate Zone 8B | Open Energy Information  

Open Energy Info (EERE)

search A type of climate defined in the ASHRAE 169-2006 standard consisting of Climate Zone Number 8 and Climate Zone Subtype B. Climate Zone 8B is defined as Subarctic...

322

ASHRAE Climate Zones | Open Energy Information  

Open Energy Info (EERE)

ASHRAE Climate Zones Jump to: navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone...

323

Documenting Climate Models and Their Simulations  

Science Conference Proceedings (OSTI)

The results of climate models are of increasing and widespread importance. No longer is climate model output of sole interest to climate scientists and researchers in the climate change impacts and adaptation fields. Now nonspecialists such as government ...

Eric Guilyardi; V. Balaji; Bryan Lawrence; Sarah Callaghan; Cecelia Deluca; Sbastien Denvil; Michael Lautenschlager; Mark Morgan; Sylvia Murphy; Karl E. Taylor

2013-05-01T23:59:59.000Z

324

Expectations of Indoor Climate Control  

E-Print Network (OSTI)

humid climate, ASHRAE Trans.. 100(2) (1994). [7] A . Lovins,isothermal environments, ASHRAE Trans. , 100 (2) (1994) 14.

Fountain, M.; Brager, G.; de Dear, Richard

1996-01-01T23:59:59.000Z

325

Environment and Climate in MML  

Science Conference Proceedings (OSTI)

... Laboratory's work in the areas of environment and climate ... soil, atmosphere, marine and aquatic environments, and environmental threats, and ...

2012-06-12T23:59:59.000Z

326

Climate Change and Aluminum - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Softcover book: Carbon Dioxide Reduction Metallurgy. Knowledge Product: Sustainability, Climate Change, and Greenhouse Gas Emissions...

327

Climate Action Plan (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

328

Climatic Aspects of Droughts  

Science Conference Proceedings (OSTI)

Drought is an inevitable part of climate, even in regions of usually ample rainfall. Because of the effects of drought on food supply, long time series of occurrence exist in many parts of the world. Incidence is dominated by the long wave ...

H. E. Landsberg

1982-06-01T23:59:59.000Z

329

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

330

Energy, Climate & Infrastructure Security  

E-Print Network (OSTI)

Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-0987P Transportation of the safe and secure transport of radioactive and hazardous materials. AWaytoEnsureSafeTransport Sandia

331

Vermont Climate Change Indicators  

Science Conference Proceedings (OSTI)

Climate change indicators are developed for Vermont in recent decades based on the trends in freeze dates, the length of the growing season, the frozen period of small lakes, and the onset of spring. These trends, which show a consistent pattern ...

Alan K. Betts

2011-04-01T23:59:59.000Z

332

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a

333

U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)  

Reports and Publications (EIA)

On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative [80]. A key goal of the Climate Change Initiative is to reduce U.S. GHG intensitydefined as the ratio of total U.S. GHG emissions to economic outputby 18 percent over the 2002 to 2012 time frame.

Information Center

2006-02-01T23:59:59.000Z

334

Measurements and Standards for the Climate Change ...  

Science Conference Proceedings (OSTI)

Measurements and Standards for the Climate Change Science Program (+$5 million). ... Shutterstock. Challenge. The climate is changing. ...

2010-10-05T23:59:59.000Z

335

Aerosol climate effects and air quality impacts from 1980 to 2030  

SciTech Connect

We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggest that future climate projections warrant particular scrutiny.

Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

2007-11-26T23:59:59.000Z

336

Inferring Climate Change from Underground Temperatures: Apparent Climatic Stability and Apparent Climatic Warming  

Science Conference Proceedings (OSTI)

Data are used to demonstrate two effects apparent in ground surface temperature histories coming from inversions of borehole temperatures: apparent climatic warming and apparent climatic stability. Unrecognized local terrain effects, such as ...

Trevor Lewis; Walter Skinner

2003-09-01T23:59:59.000Z

337

Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations  

Science Conference Proceedings (OSTI)

A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled atmosphereocean general circulation models (AOGCMs). This climate forcing differs from the conventionally defined radiative ...

Piers Mde F. Forster; Karl E. Taylor

2006-12-01T23:59:59.000Z

338

Regional Climate Centers: New Institutions for Climate Services and Climate-Impact Research  

Science Conference Proceedings (OSTI)

In response to the need to improve climate services at the local, state, and regional levels, a national network of regional climate centers has developed. This paper provides the background to this development, and outlines the functions of the ...

Stanley A. Changnon; Peter J. Lamb; Kenneth G. Hubbard

1990-04-01T23:59:59.000Z

339

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

component of Chinas total energy consumption mix. However,China-specific factors were used to calculate the energy mix

Fridley, David G.

2008-01-01T23:59:59.000Z

340

Effects of the 18.6-yr Modulation of Tidal Mixing on the North Pacific Bidecadal Climate Variability in a Coupled Climate Model  

Science Conference Proceedings (OSTI)

Diapycnal mixing induced by tidetopography interaction, one of the essential factors maintaining the global ocean circulation and hence the global climate, is modulated by the 18.6-yr period oscillation of the lunar orbital inclination, and has ...

Yuki Tanaka; Ichiro Yasuda; Hiroyasu Hasumi; Hiroaki Tatebe; Satoshi Osafune

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Regional Climate Variability Impacts on the Annual Grape Yield in Mendoza, Argentina  

Science Conference Proceedings (OSTI)

Mendoza Province is the major Argentinian vitivinicultural region, and its grape production is fundamental for the national vintage. The 19792009 climateannual grape yield relationships are analyzed, and total grape yield is shown to depend ...

Eduardo Agosta; Pablo Canziani; Martn Cavagnaro

2012-06-01T23:59:59.000Z

342

Climate Variability and Residential Water Use in the City of Phoenix, Arizona  

Science Conference Proceedings (OSTI)

In this investigation, how annual water use in the city of Phoenix, Arizona, was influenced by climatic variables between 1980 and 2004 is examined. Simple correlation coefficients between water use and annual mean temperature, total annual ...

Robert C. Balling Jr.; Patricia Gober

2007-07-01T23:59:59.000Z

343

Explorations of AtmosphereOceanIce Climates on an Aquaplanet and Their Meridional Energy Transports  

Science Conference Proceedings (OSTI)

The degree to which total meridional heat transport is sensitive to the details of its atmospheric and oceanic components is explored. A coupled atmosphere, ocean, and sea ice model of an aquaplanet is employed to simulate very different climates...

Daniel Enderton; John Marshall

2009-06-01T23:59:59.000Z

344

Exploring Surface Biophysical-Climate Sensitivity to Tropical Deforestation Rates Using a GCM: A Feasibility Study  

Science Conference Proceedings (OSTI)

Deforestation perturbs both biophysical and carbon feedbacks on climate. However, biophysical feedbacks operate at temporally immediate and spatially focused scales and thus may be sensitive to the rate of deforestation rather than just to total ...

C. Kendra Gotangco Castillo; Kevin Robert Gurney

2012-02-01T23:59:59.000Z

345

Detecting Climate Change Concurrent with Deforestation in the Amazon Basin: Which Way Has It Gone?  

Science Conference Proceedings (OSTI)

To detect climate change in the Amazon Basin, as possibly induced by deforestation, time series of monthly mean outgoing longwave radiation (OLR), an index of tropical convection, and monthly rainfall totals at Belm Manaus for the past 15years ...

Pao-Shin Chu; Zhi-Ping Yu; Stefan Hastenrath

1994-04-01T23:59:59.000Z

346

A Multiyear Ensemble Simulation of the U.S. Climate with a Stretched-Grid GCM  

Science Conference Proceedings (OSTI)

Multiyear (198797) limited ensemble integrations using a stretched-grid GCM, previously developed and experimented with by the authors, are employed for U.S. regional climate simulations. The ensemble members (six in total) are produced at two ...

Michael S. Fox-Rabinovitz; Ernesto Hugo Berbery; Lawrence L. Takacs; Ravi C. Govindaraju

2005-09-01T23:59:59.000Z

347

On the Proper Use of Satellite-Derived Leaf Area Index in Climate Modeling  

Science Conference Proceedings (OSTI)

Satellite-observed leaf area index (LAI) is increasingly being used in climate modeling. In common land surface models, LAI is specified for the vegetated part only. In contrast, satellite LAI is defined for the total area including both ...

Jianjun Ge

2009-08-01T23:59:59.000Z

348

Convective Rain Rates and their Evolution during Storms in a Semiarid Climate  

Science Conference Proceedings (OSTI)

Rain rates and their evolution during summertime convective storms were analyzed for the semiarid climate of the northern High Plains. Radar data from a total of 750 radar echo clusters from the 1980 and 1981 summer cloud seeding operations of ...

AndrA. Doneaud; Stefano Ionescu-Niscov; James R. Miller Jr.

1984-08-01T23:59:59.000Z

349

Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment  

SciTech Connect

Black carbon aerosol plays a unique and important role in Earths climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second most important individual climate-forcing agent in the industrial era, following carbon dioxide. Sources that emit black carbon also emit other short- lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co- emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have a net climate forcing of +0.004 (-0.62 to +0.57) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black- carbon-rich sources becomes slightly negative (-0.08 W m-2 with 90% uncertainty bounds of -1.23 to +0.81 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

2013-06-06T23:59:59.000Z

350

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

351

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

352

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

353

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

354

Climate Zones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Climate Zones Residential Buildings » Building America » Climate Zones Climate Zones Building America determines building practices based on climate zones to achieve the most energy savings in a home. This page offers some general guidelines on the definitions of the various climate regions based on heating degree-days, average temperatures, and precipitation. You can also view the Guide to Determining Climate Regions by County. Hot-Humid A hot-humid climate is generally defined as a region that receives more than 20 in. (50 cm) of annual precipitation and where one or both of the following occur: A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the warmest 6 consecutive months of the year; or A 73°F (23°C) or higher wet bulb temperature for 1,500 or more

355

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

356

How Do Recent Population Trends Matter to Climate Change?  

E-Print Network (OSTI)

. By ensuring couples are able to determine the size of their families, poverty and the depletion of natural change, as one of the root causes of greenhouse gas emissions, how population dynamics affect climate of total population size, research shows that changes in population composition (i.e. age, urban

Colorado at Boulder, University of

357

Solar Energy in Cold Climates Adam Gladen, Shingo Kobayashi,  

E-Print Network (OSTI)

Solar Energy in Cold Climates Adam Gladen, Shingo Kobayashi, Josh Quinnell, Jane Davidson, Susan Mantell, and Marc Hillmyer #12;Residential Energy Use Space Htg Space Clg Water Htg Lighting Refrigeration and space heating represent 10% of total U.S. energy consumption. q Energy storage is critical for heating

Reich, Peter B.

358

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

359

Global Variation in Total Ozone and Layer-Mean Ozone: An Update Through 1981  

Science Conference Proceedings (OSTI)

Total-ozone variations have been updated through 1981 for four regions in north temperate latitudes, the five climatic zones, both hemispheres, and the world. Also updated through 1981 are ozone values in height layers 3248 km, 2432 km, 1624 ...

J. K. Angell; J. Korshover

1983-09-01T23:59:59.000Z

360

Welcome to Climate VISION  

Office of Scientific and Technical Information (OSTI)

Program Mission Program Mission Private Sector Initiatives Asia Pacific Partnership ClimateTechnology.gov Resources and Links 1605(b) Site Map Technology Pathways Contact Us News and Events How to Participate Voluntary Actions to Reduce Greenhouse Gas Emissions in the United States [ More News ] Recent News RSS Feed RECENT NEWS AND EVENTS July 20, 2010 Secretary Chu Announces Initiatives to Promote Clean Energy at First Clean Energy Ministerial Learn more Fact Sheet (PDF 76 KB) July 20, 2010 Government and corporate leaders announced a new public-private partnership, Global Superior Energy Performancecm at the Clean Energy Ministerial in Washington D.C. Learn more Fact Sheet (PDF 124 KB) June 20, 2010 Seventh Meeting of the Leaders' Representatives of the Major Economies Forum on Energy and Climate

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Climate Vision: Presidential Statements  

Office of Scientific and Technical Information (OSTI)

on Major Economies Forum Declaration on Major Economies Forum Declaration G-8 Press Conference Room L'Aquila, Italy July 9, 2009 (Read the White House Press page.) THE PRESIDENT: Buona sera, good afternoon. We have just finished a productive meeting of the Major Economies Forum on Energy and Climate Change, and I'd like to begin by recognizing Prime Minister Berlusconi for co-chairing this forum, as well as the extraordinary hospitality that he, his team, and the people of L'Aquila and the people of Italy have shown us during this stay. We are very grateful to all of you. I also want to thank the 17 other leaders who participated. We had a candid and open discussion about the growing threat of climate change and what our nations must do -- both individually and collectively -- to address it. And while we don't expect to solve this problem in one

362

Climate Funds Update | Open Energy Information  

Open Energy Info (EERE)

Funds Update Funds Update Jump to: navigation, search Name Climate Funds Update Agency/Company /Organization Overseas Development Institute, The Green Political Foundation Sector Climate Topics Finance Resource Type Training materials, Lessons learned/best practices Website http://www.climatefundsupdate. References Climate Funds Update[1] Abstract Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change. Climate Funds Update Screenshot "Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change."

363

Climate Change Science Institute | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate & Environment Climate & Environment Climate Change Science Institute Earth and Aquatic Sciences Ecosystem Science Environmental Data Science and Systems Energy, Water and Ecosystem Engineering Human Health Risk and Environmental Analysis Renewable Energy Systems Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Climate & Environment | Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and inform policy on the outcomes of climate change responses. The Climate Change Science Institute is an inter-disciplinary, cross-directorate research organization created in 2009 to advance climate change science research. More than 100 researchers from the Computing and

364

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

365

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

366

TA Orientation 1999 Activity #16a. Classroom Climate, Scholastic Dishonesty, and Diversity  

E-Print Network (OSTI)

TA Orientation 1999 Activity #16a. Classroom Climate, Scholastic Dishonesty, and Diversity Page 171. Brainstorm factors that contributed to the positive/negative classroom climate #12;TA Orientation 2004;TA Orientation 1999 Activity #16b (3 points) Page 173 Case Studies: Diversity and Gender Issues GROUP

Minnesota, University of

367

NREL: Climate Neutral Research Campuses - Implementing the Climate Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Implementing the Climate Action Plan Implementing the Climate Action Plan When implementing climate action plans on research campuses, two important and related questions must be answered. How do we pay for climate actions? And, who will manage and oversee implementation of the plan? The answer to each question will be specific to your campus. Narrow climate action plans focus on incremental savings through low-cost and voluntary measures. This approach begs the question about what should be done after the short-term, incremental improvements are completed. In contrast, a portfolio approach can help achieve deep reductions in energy consumption and move toward campus-wide climate neutrality. Build a Portfolio After considering a wide array of individual measures, a single portfolio is created for implementation. This approach allows research campuses to

368

The role of solar absorption in climate and climate change  

NLE Websites -- All DOE Office Websites (Extended Search)

role of solar absorption in climate and role of solar absorption in climate and climate change William Collins UC Berkeley and Lawrence Berkeley Lab with Andrew Conley, David Fillmore, and Phil Rasch National Center for Atmospheric Research Boulder, Colorado, USA 2 Prior Research on Absorption and Climate Field Experiments: * Central Equatorial Pacific Experiment * Indian Ocean Experiment Modeling studies of clouds: * The color of the planet * Climate with enhanced cloud absorption Synthesis of models and aerosol observations: * Development of aerosol assimilation * Application to aerosol/climate interactions 3 Natural and anthropogenic aerosols India, March 2000 California, October 2003 Africa, March 2003 4 Historical and projected sulfate emissions * Emissions from India have tripled in last 20 years of 20 th century..

369

Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1992  

SciTech Connect

The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO{sub 2} and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

Wigley, T.M.L.; Jones, P.D.

1992-07-15T23:59:59.000Z

370

The role of solar absorption in climate and climate change  

E-Print Network (OSTI)

1 The role of solar absorption in climate and climate change William Collins UC Berkeley alter the radiative energy budget of the climate. · We will focus on solar reflection, absorption.43 -0.84 CO2 0.31 0.04 -0.31 (CH4) 0.22 0.40 -0.53 Change in Shortwave Absorption (2000-1860) Solar CH4

371

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

372

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

373

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

374

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

375

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

376

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

377

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

378

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

379

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

380

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

382

Climate VISION: News - DOE Releases Climate Change Technology...  

Office of Scientific and Technical Information (OSTI)

and Climate, Methane to Markets Partnership, and the International Partnership for a Hydrogen Economy. The Plan sets six complementary goals: (1) reducing emissions from energy...

383

GIZ-Philippines-Support for the National Climate Commission | Open Energy  

Open Energy Info (EERE)

Support for the National Climate Commission Support for the National Climate Commission Jump to: navigation, search Name GIZ-Philippines-Support for the National Climate Commission Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Topics Background analysis, Low emission development planning, Pathways analysis Website http://www.giz.de/en/home.html Program Start 2012 Program End 2015 Country Philippines UN Region South-Eastern Asia References GIZ-Philippines-Support for the National Climate Commission[1] Philippine Climate Initiatives to get €3-Million Aid from German government[2] Program Overview "The German government will provide the Philippine government a total of €3-million, which will come in the form of a grant. Project partners

384

National Climate Assessment: Indicators System  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators System Print E-mail Indicators System Print E-mail What are the goals for the NCA indicators? The vision for the National Climate Assessment (NCA) is to create a system of indicators that will help inform policy-makers and citizens understand key aspects of our changing climate. Scientific information about physical climate conditions, climate impacts, vulnerabilities, and preparedness will be tracked and compiled. These measures are called indicators. The goals of the Indicators System are to: Provide meaningful, authoritative climate-relevant measures about the status, rates, and trends of key physical, ecological, and societal variables and values Inform decisions on management, research, and education at regional to national scales Identify climate-related conditions and impacts to help develop effective mitigation and adaptation measures

385

Development of a Humid Climate Definition  

E-Print Network (OSTI)

The role of humidity in indoor air quality has become of increasing concern in recent years. High indoor humidities can result in microbial growth on building surfaces, resulting in poor indoor air quality, as well as damage to the building and its contents. In addition to the IAQ impacts, high indoor humidity can cause occupant discomfort. The public review draft of ASHRAE Standard 62-1989R included requirements for installation of dehumidification controls in buildings with mechanical cooling located in humid climates. The draft standard included a definition of humid climate: where, during the warmest six consecutive months of a typical year, the wetbulb temperature is 19C (67F) or higher for 3500 hours or more, or 23C (73F) or higher for 1750 hours or more. This definition is that used in the 1993 ASHRAE Handbook of Fundamentals to define the humid climate region. The only areas in the continental United States which meet these criteria are close to the Gulf coast, all of Florida, and along the Atlantic coast as far north as southern North Carolina While it is clear that buildings in this humid climate region need to be carefully designed with regard to humidity control, it is also clear that buildings in other areas have an equal need for humidity control. The work described in this paper examines a number of potential indicators of "humid climate" and correlates them with the prevalence of indoor humidity problems in three building types. The FSEC 2.3 energy simulation computer program (Kerestecioglu et al. 1989) was used to simulate the three building types, using weather from 10 cities in the southeastern U.S. The FSEC software was selected because it is capable of accurately modeling moisture transfer within the building space and the dehumidification performance of cooling coils at part-load conditions, and predicting resulting humidity levels. The buildings modeled were a retail store (similar to a K-Mart or Wal-Mart), a large office building, and a fast food restaurant. Existing building models were employed for this study with ventilation rates in accordance with ASHRAE Standard 62-1989. The HVAC systems used were typical for these building types, without any special humidity control measures. The selected indicators of humidity problems are the number of hours per year with space humidity above 60% RH and the number of occupied hours with space humidity above 60% RH. TMY2 weather data (NREL 1995) for 10 cities was used for the annual building energy simulations. TMY2 data was also used to calculate a number of potential humid climate parameters for the same 10 cities. These included: the number of hours and the wetbulb-degree hours above 3 different wetbulb temperatures, the number of hours and grain-hours above 4 different humidity ratios, and the sensible, latent and total Ventilation Load Index (VLI). The VLI is the load (latent, sensible or total) generated by bringing one cfm of outdoor air to space neutral conditions over the course of one year (Hamman, et al. 1997). The ability of each climate parameter to predict indoor humidity problems was analyzed and compared. Implications of using the selected parameters to define a humid climate will be discussed

Hedrick, R. L.; Shirey, D. B.

1998-01-01T23:59:59.000Z

386

Design and Analysis of Climate Model Experiments for the Efficient Estimation of Anthropogenic Signals  

Science Conference Proceedings (OSTI)

Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The ...

David M. H. Sexton; Howard Grubb; Keith P. Shine; Chris K. Folland

2003-05-01T23:59:59.000Z

387

Benton County, Tennessee ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

388

Benton County, Minnesota ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

389

Benton County, Washington ASHRAE 169-2006 Climate Zone | Open...  

Open Energy Info (EERE)

Washington ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Benton County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate...

390

Climate Registry Information System | Open Energy Information  

Open Energy Info (EERE)

Climate Registry Information System Climate Registry Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Registry Information System Agency/Company /Organization: The Climate Registry Sector: Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Online calculator User Interface: Website Website: www.theclimateregistry.org/climate-registry-information-system-cris/ Web Application Link: www.theclimateregistry.org/climate-registry-information-systhttps://ww Cost: Free References: General Reporting Protocol[1] The Climate Registry Information System (CRIS) is the official online greenhouse gas calculation, reporting, and verifcation tool for The Climate Registry, a North American registry through which members voluntarily

391

Earthwatch: The climate from space  

SciTech Connect

This concise textbook shows how observations from satellites can be used to derive variables important to the monitoring of the climate system. The aim of this book is not to provide a rigorous treatment of climate or of remote sensing and instrumentation, but to attempt to integrate the different disciplines at a level appropriate for undergraduate students of meteorology. The general topics covered are as follows: components of the climate system, basic physical laws (radiations and radiative transfer), current climate issues (greenhouse effect, ozone depletion, Southern Oscillations), remote sensing techniques, and operational principles of sensors aboard space platforms.

Harries, J.E.

1990-01-01T23:59:59.000Z

392

Renewable Energy and Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy and Climate Change Symposium in Honor of 2009 and 2010 ACS Fellows in the Industrial and Engineering Chemistry Division Helena Chum, NREL Research Fellow August...

393

First National Climate Assessment (2000)  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally First National...

394

CDIAC Climate Data: Available Variables  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Variables Available in CDIAC Data Products Temperature Precipitation Cloudiness Sunshine Duration Snowfall and Snow Depth Atmospheric Pressure Atmospheric Moisture Surface...

395

Climate Action Plan (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Governor Sanford issued Executive Order 2007-04 on February 16, 2007, establishing the South Carolina Climate, Energy & Commerce Advisory Committee (CECAC).

396

Climate Action Plan (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in the Southwest, New Mexico Governor Bill Richardson...

397

Climate Strategy | Open Energy Information  

Open Energy Info (EERE)

firm specialising in projects in clean energy, energy efficiency, environment and sustainability. References Climate Strategy1 LinkedIn Connections CrunchBase Profile No...

398

Expectations of Indoor Climate Control  

E-Print Network (OSTI)

a hot-humid climate, ASHRAE Trans.. 100(2) (1994). [7] A .isothermal environments, ASHRAE Trans. , 100 (2) (1994) 14.

Fountain, M.; Brager, G.; de Dear, Richard

1996-01-01T23:59:59.000Z

399

Radiation Measurement (ARM) Climate Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve...

400

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman October 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

402

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

403

Comments on climate change scenario development  

Science Conference Proceedings (OSTI)

A short review is presented of progress in climate change scenario development. Sources of uncertainty are discussed. Critical assessment of climate models for their veracity in describing the present climate is considered essential. Methods of deriving ... Keywords: Climate change, Global climate models, Greenhouse effect, Scenarios

A. B. Pittock

1995-05-01T23:59:59.000Z

404

Alternatives to compressor cooling in California climates  

SciTech Connect

This review and discussion has been prepared for the California Institute for Energy Efficiency (CIEE) to examine research on alternatives to compressor cooling. The report focuses on strategies for eliminating compressors in California's transition climates -- moderately warm areas located between the cool coastal regions and the hot central regions. Many of these strategies could also help reduce compressor use in hotter climates. Compressor-driven cooling of residences in California's transition climate regions is an undesirable load for California's electric utilities because load factor is poor and usage is typically high during periods of system peak demand. We review a number of alternatives to compressors, including low-energy strategies: evaporative cooling, natural and induced ventilation, reflective coatings, shading with vegetation and improved glazing, thermal storage, and radiative cooling. Also included are two energy-intensive strategies: absorption cooling and desiccant cooling. Our literature survey leads us to conclude that many of these strategies, used either singly or in combination, are technically and economically feasible alternatives to compressor-driven cooling. 78 refs., 8 figs.

Feustel, H. (Lawrence Berkeley Lab., CA (United States)); de Almeida, A. (Coimbra Univ. (Portugal). Dept. of Electrical Engineering); Blumstein, C. (California Univ., Berkeley, CA (United States). Universitywide Energy Research Group)

1991-01-01T23:59:59.000Z

405

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

406

Gravity Recovery And Climate Experiment Hydrology, Earth Science and Climate  

E-Print Network (OSTI)

GRACE Gravity Recovery And Climate Experiment Hydrology, Earth Science and Climate Ole Baltazar of blood cell Delivers 10-Day / Monthly gravity field From 2002 Onwards Study gravity field changes | side 6 Range responds to Gravity #12;GRACE science results | 28. November 2007 | OA | side 7 Variations

Mosegaard, Klaus

407

Climate Sensitivity of the Community Climate System Model, Version 4  

Science Conference Proceedings (OSTI)

Equilibrium climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.20C for 1 horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient ...

C. M. Bitz; K. M. Shell; P. R. Gent; D. A. Bailey; G. Danabasoglu; K. C. Armour; M. M. Holland; J. T. Kiehl

2012-05-01T23:59:59.000Z

408

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

409

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

410

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

411

Real-Time Sky-View Factor Calculation and Approximation  

Science Conference Proceedings (OSTI)

Previously, the acquisition of sky-view factor data for climate studies has been time consuming and dependent on postprocessing. However, advances in technology now mean that techniques using fish-eye imagery can be algorithmically processed in ...

L. Chapman; J. E. Thornes

2004-05-01T23:59:59.000Z

412

Factors for the Simulation of Convectively Coupled Kelvin Waves  

Science Conference Proceedings (OSTI)

This study investigates the major factors for the realistic simulation of convectively coupled Kelvin waves (CCKWs) using the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) models. CFS simulations employing ...

Kyong-Hwan Seo; Jin-Ho Choi; Sang-Dae Han

2012-05-01T23:59:59.000Z

413

Evaluating climate models: Should we use weather or climate observations?  

Science Conference Proceedings (OSTI)

Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

Oglesby, Robert J [ORNL; Erickson III, David J [ORNL

2009-12-01T23:59:59.000Z

414

Statistical Principles for Climate Change Studies  

Science Conference Proceedings (OSTI)

Statistical principles underlying fingerprint methods for detecting a climate change signal above natural climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate change problem is ...

Richard A. Levine; L. Mark Berliner

1999-02-01T23:59:59.000Z

415

The Dynamics of Warm and Cold Climates  

Science Conference Proceedings (OSTI)

The atmospheric dynamics of five different climate simulations with the GISS GCM are compared to investigate the changes that occur as climate warms or cools. There are two ice age simulations, the current and doubled CO2 climates, and a ...

D. Rind

1986-01-01T23:59:59.000Z

416

Toward a Policy for Climate Impacts  

Science Conference Proceedings (OSTI)

Current increases in the understanding of climatic processes, the availability of climate predictions, and the assessment of climatic impacts indicate that development of public policy to mitigate adverse impacts and enhance beneficial ones is ...

Peter J. Robinson; Howard L. Hill

1987-07-01T23:59:59.000Z

417

The Climate Analysis Center's User Information Service  

Science Conference Proceedings (OSTI)

A wide variety of current climate products are being developed, produced, and disseminated to a diverse group of users by the Climate Analysis Center (CAC). The Climate Assessment Data Base (CADB), a major resource used to generate many of these ...

Frederick G. Finger; James D. Laver; Kenneth H. Bergman; Vernon L. Patterson

1985-04-01T23:59:59.000Z

418

State of the Climate in 2005  

Science Conference Proceedings (OSTI)

The State of the Climate 2005 report summarizes global and regional climate conditions and places them, where possible, into the context of historical records. Descriptions and analyses of notable climatic anomalies, both global and regional, ...

K. A. Shein

2006-06-01T23:59:59.000Z

419

Methods and Resources for Climate Impacts Research  

Science Conference Proceedings (OSTI)

The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are ...

Andrew Juan Challinor; Tom Osborne; Len Shaffrey; Hilary Weller; Andy Morse; Tim Wheeler; Pier Luigi Vidale

2009-06-01T23:59:59.000Z

420

Climate Effects on Corn Yield in Missouri  

Science Conference Proceedings (OSTI)

Understanding climate effects on crop yield has been a continuous endeavor aiming at improving farming technology and management strategy, minimizing negative climate effects, and maximizing positive climate effects on yield. Many studies have ...

Qi Hu; Gregory Buyanovsky

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Second National Climate Assessment: Companion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Groups Budget Strategic Plan Related Federal Climate Efforts What We Do Study Climate & Global Change Prepare The Nation For Change Assess the U.S. Climate Make Our...

422

Second National Climate Assessment: Production Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Groups Budget Strategic Plan Related Federal Climate Efforts What We Do Study Climate & Global Change Prepare The Nation For Change Assess the U.S. Climate Make Our...

423

Why We Should Monitor the Climate  

Science Conference Proceedings (OSTI)

A successful global climate monitoring system must fulfill clear societal objectives. For some aspects of climate monitoring, the societal goals are understood and are clearly stated, but long-term, decadal/centennial climate predictions have, in ...

Richard Goody; James Anderson; Thomas Karl; Roberta Balstad Miller; Gerald North; Joanne Simpson; Graeme Stephens; Warren Washington

2002-06-01T23:59:59.000Z

424

Achieving Climate Change Absolute Accuracy in Orbit  

Science Conference Proceedings (OSTI)

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change ...

Bruce A. Wielicki; D. F. Young; M. G. Mlynczak; K. J. Thome; S. Leroy; J. Corliss; J. G. Anderson; C.O. Ao; R. Bantges; F. Best; K. Bowman; H. Brindley; J. J. Butler; W. Collins; J. A. Dykema; D. R. Doelling; D. R. Feldman; N. Fox; X. Huang; R. Holz; Y. Huang; Z. Jin; D. Jennings; D. G. Johnson; K. Jucks; S. Kato; D. B. Kirk-Davidoff; R. Knuteson; G. Kopp; D. P. Kratz; X. Liu; C. Lukashin; A. J. Mannucci; N. Phojanamongkolkij; P. Pilewskie; V. Ramaswamy; H. Revercomb; J. Rice; Y. Roberts; C. M. Roithmayr; F. Rose; S. Sandford; E. L. Shirley; W.L. Smith; Sr.; B. Soden; P. W. Speth; W. Sun; P.C. Taylor; D. Tobin; X. Xiong

425

A Nonlinear Dynamical Perspective on Climate Prediction  

Science Conference Proceedings (OSTI)

A nonlinear dynamical perspective on climate prediction is outlined, based on a treatment of climate as the attractor of a nonlinear dynamical system D with distinct quasi-stationary regimes. The main application is toward anthropogenic climate ...

T. N. Palmer

1999-02-01T23:59:59.000Z

426

Climate Drift in the CMIP3 Models  

Science Conference Proceedings (OSTI)

Even in the absence of external forcing, climate models often exhibit long-term trends that cannot be attributed to natural variability. This so-called climate drift arises for various reasons including the following: perturbations to the climate ...

Alexander Sen Gupta; Les C. Muir; Jaclyn N. Brown; Steven J. Phipps; Paul J. Durack; Didier Monselesan; Susan E. Wijffels

2012-07-01T23:59:59.000Z

427

climate change | OpenEI  

Open Energy Info (EERE)

climate change climate change Dataset Summary Description This dataset, made available by the UK Department of Energy and Climate Change (DECC), presents summer and winter precipitation for England and Wales, and the percent change from the baseline (1961 - 1990 average). The original source of the data is the Hadley Centre. Source UK Department of Energy and Climate Change (DECC) Date Released March 12th, 2010 (4 years ago) Date Updated Unknown Keywords climate change precipitation UK Data application/vnd.ms-excel icon 1 Excel file: Precipitation, 1874 - 2009 (xls, 68.1 KiB) Quality Metrics Level of Review Some Review Comment (Does not have "National Statistics" status) Temporal and Spatial Coverage Frequency Time Period 1874 - 2009 License License Other or unspecified, see optional comment below

428

Educational Global Climate Change Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Global Climate Change Links Educational Global Climate Change Links Evidence of the importance of global climate change to the future generation is reflected in the increasing number of queries CDIAC receives from students and educators, from a range of educational levels. We have compiled a listing of some sites that we hope will be of interest and of use to those looking for information, fun, ideas, and ways that they can make a difference. These links were chosen because we have found them useful in responding to those with inquiring minds. These links will take the user outside of CDIAC, and are by no means comprehensive. We are not responsible for the content or intent of these outside links. Tools you can use! NOAA's Global Climate Dashboard - The Global Climate Dashboard is

429

Abrupt Climate Change Scenario Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Abrupt Climate Change Scenario Technologies Abrupt Climate Change Scenario Technologies Speaker(s): Tina Kaarsberg Date: April 27, 2006 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jayant Sathaye This talk examines the potential for several types of technologies that hitherto have not been a focus of U.S. climate technology planning. It was inspired by the latest climate science data and modeling which suggest that an abrupt warming (+10oF in 10 years), is an increasingly plausible scenario. The technologies described in the session rapidly reduce the risk of climate change and increase our ability to respond quickly. All of the technologies also have other public benefits. (Summary follows): For more information about this seminar, please contact: JoAnne Lambert 510.486.4835, or send e-mail to JMLambert@lbl.gov

430

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" 4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

431

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch LPG to Alternative Energy Sources, 2002; " 2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","Coal","Breeze","Other(e)","Factors"

432

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " 8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

433

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" 2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total"," ","Not","Electricity","Distillate","Residual",,,"and",,"Row" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(e)","Factors"

434

NREL: Climate Neutral Research Campuses - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Neutral Research Campuses Home Determine Baseline Energy Consumption Analyze Technology Options Plan & Prioritize Implement the Climate Action Plan Measure & Evaluate...

435

President Obama Announces His Climate Action Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

steady, responsible action to cut carbon pollution, prepare the Nation for the impacts of climate change, and lead international efforts to address climate change as a global...

436

Mainstreaming Climate Change Adaptation into Development Planning...  

Open Energy Info (EERE)

Mainstreaming Climate Change Adaptation into Development Planning: A Guide for Practitioners Jump to: navigation, search Tool Summary Name: Mainstreaming Climate Change Adaptation...

437

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

1) migration, 2) adaptation to new climates, and 3) local to regional extinctions. Climate change impact studies have taken two general approaches: 1) statistically modeling...

438

Climate Compatible Development Tools | Open Energy Information  

Open Energy Info (EERE)

search Tool Summary Name: Climate Compatible Development Tools AgencyCompany Organization: Climate and Development Knowledge Network (CDKN), Ecofys, Institute of...

439

National Climate Assessment and Development Advisory Committee...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Climate Assessment and Development Advisory Committee (NCADAC) Print E-mail National Climate Assessment and Development Advisory Committee (NCADAC) pdf | html A Notice by...

440

Attribution of climate forcing to economic sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Attribution of climate forcing to economic sectors Title Attribution of climate forcing to economic sectors Publication Type Journal Article Year of Publication 2010 Authors Unger,...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

National Climate Assessment and Development Advisory Committee...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Climate Assessment and Development Advisory Committee (NCADAC); Notice of Open Meeting (6122013) Print E-mail National Climate Assessment and Development Advisory...

442

Confidence Intervals of a Climatic Signal  

Science Conference Proceedings (OSTI)

In order to interpret climate statistics correctly, the definitions of climate change, signal-to-noise ratio and statistical significance are clarified.

Yoshikazu Hayashi

1982-09-01T23:59:59.000Z

443

Climate Action Plan | OpenEI Community  

Open Energy Info (EERE)

economic costs of climate change. Obama's six Climate Action Initiatives: 1. Phasing out Fossil Fuels Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load)...

444

"Renewable Energy Transition and International Climate Cooperation  

E-Print Network (OSTI)

"Renewable Energy Transition and International Climate Cooperation: The German Experience" Jürgen at Urbana-Champaign. His research and teaching interests include: energy security, climate change

Sheridan, Jennifer

445

Big Tree Climate Fund | Open Energy Information  

Open Energy Info (EERE)

"Big Tree Climate Fund" Retrieved from "http:en.openei.orgwindex.php?titleBigTreeClimateFund&oldid342728" Categories: Clean Energy Organizations Companies...

446

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

447

Solar total energy systems final technical summary report. Volume I. Solar total energy systems market penetration  

SciTech Connect

The results of the market penetration analysis of Solar Total Energy Systems (STES) for the industrial sector are described. Performance data derived for STES commercial applications are included. The energy use and price forecasts used in the analysis are summarized. The STES Applications Model (SAM), has been used to develop data on STES development potential by state and industry as a function of time from 1985 through 2015. A second computer code, the Market Penetration Model (MPM), has been completed and used to develop forecasts of STES market penetration and national energy displacement by fuel type. This model was also used to generate sensitivity factors for incentives, and variations in assumptions of cost of STES competing fuel. Results for the STES performance analysis for commercial applications are presented. (MHR)

Bush, L.R.; Munjal, P.K.

1978-03-31T23:59:59.000Z

448

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman November 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

449

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman June 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

450

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act Learn about ARM's efforts. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world. [ Live Data Displays ] Featured Data 09.19.2013 New ARM Best Estimate Land Product Contains Critical Soil Quantities for Describing Land Properties 09.12.2013 Value-Added Product Estimates Planetary Boundary Layer Height from Radiosondes 08.29.2013 New Data Available for Precipitation Value-Added Product Feature12.30.2013 Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere For the first time, ARM ventures to Antarctica for one of several newly

451

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

452

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

453

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

454

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

455

Mississippi Climate & Hydrology Conference  

SciTech Connect

The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

Lawford, R.; Huang, J.

2002-05-01T23:59:59.000Z

456

Climate VISION: Events  

Office of Scientific and Technical Information (OSTI)

Events Events December 3-5, 2008 Global Forum on Flaring Reduction and Gas Utilisation This two-day Global Forum will bring together high-level representatives from governments, oil and gas companies, international financial organizations, and technology and service providers to discuss issues and options in flaring and venting reduction. The forum will be held December 3-5, 2008 at the Grand Hotel Kransapolsky, NH. For more information, please visit www.flaringreductionforum.org. December 4-5, 2006 API 4th Voluntary Actions Conference API held its 4th Conference on Voluntary Actions by the Oil and Gas Industry to Address Climate Change in Washington, DC from December 4-5, 2006. The event was co-sponsored by the U.S. Department of Energy. Speakers from industry, academia, and government presented papers on voluntary

457

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report S McFarlane K Gaustad C Long E Mlawer July 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

458

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

459

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

460

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

462

Fractionally total colouring Gn,p  

Science Conference Proceedings (OSTI)

We study the fractional total chromatic number of G"n","p as p varies from 0 to 1. We also present an algorithm that computes the fractional total chromatic number of a random graph in polynomial expected time. Keywords: Fractional total colouring, Graph colouring, Random graphs

Conor Meagher; Bruce Reed

2008-04-01T23:59:59.000Z

463

Douglas Factors  

Energy.gov (U.S. Department of Energy (DOE))

The Merit Systems Protection Board in its landmark decision, Douglas vs. Veterans Administration, 5 MSPR 280, established criteria that supervisors must consider in determining an appropriate penalty to impose for an act of employee misconduct. These twelve factors are commonly referred to as Douglas Factors and have been incorporated into the Federal Aviation Administration (FAA) Personnel Management System and various FAA Labor Agreements.

464

Extension of the Climate Prediction Center Long-Lead Temperature and Precipitation Outlooks to General Weather Statistics  

Science Conference Proceedings (OSTI)

The long-lead monthly and seasonal forecasts issued by the Climate Prediction Center literally pertain only to average temperature and total precipitation outcomes, but implicitly contain information regarding other quantities that are correlated ...

W. M. Briggs; D. S. Wilks

1996-12-01T23:59:59.000Z

465

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

466

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

467

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

468

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

469

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

470

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

471

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

472

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

473

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

474

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

475

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

476

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

477

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

478

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

479

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

480

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "factor total climate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

482

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

483

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

484

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

485

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

486

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

487

Climate VISION: Events - Climate VISION Partners Highlight Success Stories  

Office of Scientific and Technical Information (OSTI)

Climate VISION Partners Highlight Success Stories Climate VISION Partners Highlight Success Stories On February 14, 2006, the Climate VISION partners held a workshop to hear from industry sectors on activities they have undertaken to reduce energy usage and greenhouse gas emissions intensity. The purpose of the workshop was to provide an opportunity for current and prospective industry partners to share experiences and lessons learned through case studies and to explore new opportunities for collaboration. The one-day event was hosted by the Edison Electric Institute (EEI) and featured remarks by EEI President Thomas Kuhn and American Chemistry Council President Jack Gerard and a keynote by Department of Energy Under Secretary David Garman. Seven Climate VISION partners made presentations covering a range of activities

488

Climate ChangeClimate Change and Runoff Managementand Runoff Management  

E-Print Network (OSTI)

% ) Radiated by atmosphere as heat (66%) Heat radiated by the earth Heat Troposphere Lower Stratosphere (ozone · Result: a statistical range of probable climate change GCM grid Downscaled (8x8 km) grid D. Vimont, UW

Sheridan, Jennifer

489

Physical Climate Response to a Reduction of Anthropogenic Climate Forcing  

Science Conference Proceedings (OSTI)

Recent research indicates that the warming of the climate system resulting from increased greenhouse gas (GHG) emissions over the next century will persist for many centuries after the cessation of these emissions, principally because of the ...

Arindam Samanta; Bruce T. Anderson; Sangram Ganguly; Yuri Knyazikhin; Ramakrishna R. Nemani; Ranga B. Myneni

2010-06-01T23:59:59.000Z

490

Historical Climate Records in China and Reconstruction of Past Climates  

Science Conference Proceedings (OSTI)

The principal results of studies on historical climate change from A.D. 1000 to the present in China are reviewed. The studies are based on analysis of local annals and court records. After discussing the methodology of transferring descriptive ...

Jiacheng Zhang; Thomas J. Crowley

1989-08-01T23:59:59.000Z

491

A Global Portfolio Strategy for Climate Change Technology Development  

NLE Websites -- All DOE Office Websites (Extended Search)

A Global Portfolio Strategy for Climate Change Technology Development A Global Portfolio Strategy for Climate Change Technology Development Speaker(s): Geoffrey J. Blanford Date: July 21, 2005 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Afzal Siddiqui John Stoops In this study we propose a novel formulation of a decision problem in R&D strategy. The problem is motivated by and applied to the context of technologies relevant to global climate change, but is characterized in general by an aggregate R&D decision-maker with a social welfare objective, technology diffusion markets subject to externalities in which private costs are minimized, and uncertainty in both technological and environmental factors. A technology strategy is defined as the allocation of R&D investment across several broad research programs, and the

492

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

493

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

494

Department of Energy Announces $7 Million in Funding for Climate Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces $7 Million in Funding for Climate Department of Energy Announces $7 Million in Funding for Climate Research Field Studies Department of Energy Announces $7 Million in Funding for Climate Research Field Studies October 23, 2008 - 4:14pm Addthis -- A Cloud is a Cloud is a Cloud - or is it? -- WASHINGTON, DC -- The U.S. Department of Energy's (DOE) Office of Science has selected four proposals with a total funding of $7 million, to conduct climate research field studies in 2010. Together, these field studies will obtain data from various cloud types - cirrus, marine and mixed-phase (ice and water) - to help improve the computer models that simulate climate change. As atmospheric scientists will attest, not all clouds are created equal. Solar radiation interacts differently with various clouds depending

495

Department of Energy Announces $7 Million in Funding for Climate Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$7 Million in Funding for Climate $7 Million in Funding for Climate Research Field Studies Department of Energy Announces $7 Million in Funding for Climate Research Field Studies October 23, 2008 - 4:14pm Addthis -- A Cloud is a Cloud is a Cloud - or is it? -- WASHINGTON, DC -- The U.S. Department of Energy's (DOE) Office of Science has selected four proposals with a total funding of $7 million, to conduct climate research field studies in 2010. Together, these field studies will obtain data from various cloud types - cirrus, marine and mixed-phase (ice and water) - to help improve the computer models that simulate climate change. As atmospheric scientists will attest, not all clouds are created equal. Solar radiation interacts differently with various clouds depending on the clouds' thickness, water content and particle sizes and shapes.

496

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

497

NREL: Technology Transfer - President Obama Unveils Climate ...  

National Renewable Energy Laboratory Technology Transfer President Obama Unveils Climate Action Plan

498

Climate Consultant | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Climate Consultant Jump to: navigation, search Tool Summary Name: Climate Consultant Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Buildings, Energy Efficiency, Solar, Wind Resource Type: Dataset, Software/modeling tools User Interface: Desktop Application Website: www.energy-design-tools.aud.ucla.edu/ Cost: Free Language: English References: http://apps1.eere.energy.gov/buildings/tools_directory/software.cfm/ID=123/pagename=alpha_list Logo: Climate Consultant Free, easy-to-use, graphic-based computer program that displays climate

499

Study Climate and Global Change  

NLE Websites -- All DOE Office Websites (Extended Search)

What We Study How We Study Prepare The Nation For Change Assess the U.S. Climate Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally Study Climate and Global Change Print E-mail Deforestation What is global change? "Global change" refers to changes in the global environment that may alter the capacity of the Earth to sustain life. This includes alterations in: Climate Land productivity Oceans or other water resources Atmospheric chemistry Ecological systems Demographic and socioeconomic trends What is global change research? According to the Global Change Research Act of 1990, "Global change research" refers to the study, monitoring, assessment, prediction, and information management activities used to describe and understand the:

500

Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 30, 2013 July 30, 2013 Secretary Moniz Speaks on Future of Fossil Energy Watch the video of Secretary Moniz speaking to NETL employees about how the clean energy technologies developed by our National Labs are helping combat climate change. July 29, 2013 Excerpts of Energy Secretary Ernest Moniz's Remarks at National Energy Technology Laboratory in Morgantown On Monday, July 29, 2013, Secretary Moniz will visit the National Energy Technology Laboratory (NETL) in Morgantown, W. Va. July 10, 2013 Climate Vulnerabilities July 3, 2013 EERE Announces Next Steps on President's Climate Action Plan On Friday, June 28, the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy hosted a webinar on the energy efficiency aspects of the President's Climate Action Plan. Rick Duke, Associate