Sample records for factor total climate

  1. A new, lower value of total solar irradiance: Evidence and climate significance

    E-Print Network [OSTI]

    data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variationsA new, lower value of total solar irradiance: Evidence and climate significance Greg Kopp1 14 January 2011. [1] The most accurate value of total solar irradiance during the 2008 solar minimum

  2. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted mixture of gases and aerosols. Primary emissions include sig- nificant amounts of CH4 and aerosol (organic

  3. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity

    E-Print Network [OSTI]

    Troch, Peter

    Total water storage dynamics in response to climate variability and extremes: Inference from long; published 27 April 2012. [1] Terrestrial water storage is a basic element of the hydrological cycle and a key state variable for land surface-atmosphere interaction. However, measuring water storage

  4. The effect of climatic factors on the toxicity of certain organic insecticides

    E-Print Network [OSTI]

    Mistric, Walter Joseph

    1954-01-01T23:59:59.000Z

    THE EFFECT OF CLIMATIC FACTORS ON THE TOXICITY OF CERTAIN ORGANIC INSECTICIDES A Dissertation By MILTER JOSEPH MISTRIC, JR, Approved as to style and content by: (Chairman of Committee) ?7*(Head Df Department) May THEF L IB R A R Y A & M... COLLEGE OF TEXAS. THE EFFECT OF CLIMATIC FACTORS ON THE TOXICITY OF CERTAIN ORGANIC INSECTICIDES By HALTER JOSEPH MISTRIC, JR A Dissertation Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment...

  5. The effect of climatic factors on the toxicity of certain organic insecticides 

    E-Print Network [OSTI]

    Mistric, Walter Joseph

    1954-01-01T23:59:59.000Z

    THE EFFECT OF CLIMATIC FACTORS ON THE TOXICITY OF CERTAIN ORGANIC INSECTICIDES A Dissertation By MILTER JOSEPH MISTRIC, JR, Approved as to style and content by: (Chairman of Committee) ?7*(Head Df Department) May THEF L IB R A R Y A & M... COLLEGE OF TEXAS. THE EFFECT OF CLIMATIC FACTORS ON THE TOXICITY OF CERTAIN ORGANIC INSECTICIDES By HALTER JOSEPH MISTRIC, JR A Dissertation Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment...

  6. Cyclical adjustment, capital-labor substitution and total factor productivity convergence East Germany after unification

    E-Print Network [OSTI]

    Pfeifer, Holger

    Cyclical adjustment, capital-labor substitution and total factor productivity convergence ­ East integration and massive help from the Federal Government East German productivity catching up faded out in the nineties. This paper presents panel-data estimates of the productivity adjustment based on a production

  7. Factors affecting total alkaloid and nitrate levels in pearl millet (Pennisetum americanum (L.) Leeke)

    E-Print Network [OSTI]

    Krejsa, Beverly Blohowiak

    1981-01-01T23:59:59.000Z

    ('gM University Co-Chairmen of Advisory Committee: Dr. Ethan C. Holt Dr. F. M. Roulette, Jr. P l 'lit (P ' t ' (L. )L k)g 'gt d drought stress in the summer of 1978 in East Texas became unpalat- able to grazing cattle. The unpalatable forage contained... as much as 460 ppm total alkaloid and. potentially toxic levels of nitrate (NO ). Several factors which may play a role in the accumula. tion of alkaloids and NO in pearl millet were investigated in these studies. The effect of drought stress, nitrogen...

  8. ORIGINAL PAPER Climatic variability and other site factor influences

    E-Print Network [OSTI]

    Boyer, Edmond

    . Rodriguez-Garcia :F. Bravo Sustainable Forest Management Research Institute UVA-INIA, Avenida de Madrid, 44-site factors (e.g., soil and overstory structure in harvested stands, cone bank in burnt stands) make the stand Puettmann and Ammer 2007). Research in this area can be used for sustainable and multiple-objective stand

  9. First Climate formerly Factor Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island,Factor Consulting Jump to:

  10. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    SciTech Connect (OSTI)

    Winterhalter, Wade

    2011-09-01T23:59:59.000Z

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I found that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.

  11. Temperature-averaged and total free-free Gaunt factors for $\\kappa$ and Maxwellian distributions of electrons

    E-Print Network [OSTI]

    de Avillez, Miguel A

    2015-01-01T23:59:59.000Z

    Aims. Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by $\\kappa$-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods. We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than $10^{-10}$ in units of $z^2Ry$. We used double and quadruple precisions. The temperature- averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results. The temperature-av...

  12. Genotypic and environmental factors influencing flesh color, carotene content, total carotenoids, total phenolics and antioxidant activity in potato (Solanum tuberosum L.)

    E-Print Network [OSTI]

    Al-Saikhan, Mohamed Salem

    1994-01-01T23:59:59.000Z

    The influence of variety and location on flesh color, pigment content and total carotenoid content was studied using Texas and Colorado grown tubers from ten yellow flesh and two white flesh potato varieties. Antioxidant activity and total phenolics...

  13. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    SciTech Connect (OSTI)

    Maurakis, Eugene G

    2010-10-01T23:59:59.000Z

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  14. Solar magnetic fields and terrestrial climate

    E-Print Network [OSTI]

    Georgieva, Katya; Kirov, Boian

    2014-01-01T23:59:59.000Z

    Solar irradiance is considered one of the main natural factors affecting terrestrial climate, and its variations are included in most numerical models estimating the effects of natural versus anthropogenic factors for climate change. Solar wind causing geomagnetic disturbances is another solar activity agent whose role in climate change is not yet fully estimated but is a subject of intense research. For the purposes of climate modeling, it is essential to evaluate both the past and the future variations of solar irradiance and geomagnetic activity which are ultimately due to the variations of solar magnetic fields. Direct measurements of solar magnetic fields are available for a limited period, but can be reconstructed from geomagnetic activity records. Here we present a reconstruction of total solar irradiance based on geomagnetic data, and a forecast of the future irradiance and geomagnetic activity relevant for the expected climate change.

  15. Study Of The Fundamental Physical Principles in Atmospheric Modeling Based On Identification Of Atmosphere - Climate Control Factors: Bromine Explosion At The Polar Arctic Sunrise

    E-Print Network [OSTI]

    M. Iudin

    2010-07-09T23:59:59.000Z

    We attempt is to provide accumulated evidence and qualitative understanding of the associated atmospheric phenomena of the Arctic bromine explosion and their role in the functioning of the biotic Earth. We rationalize the empirical expression of the bromine influx into atmospheric boundary layer and calculate total amounts of the tropospheric BrO and Bry of the Arctic origin. Based on the quantities and partitioning of the reactive bromine species, we estimate the biogeochemical parametric constraint on the surface ozone field of the springtime NH. The constraint expresses strong relationship between atmosphere-climate control factors of the Earth's life and of external energy source. Physical atmosphere can be seen as a complex network of maximum complexity. Henceforth, we analyze the network context of the Arctic bromine pollution. We suggest that demonstrated attitudinal approach to the distributed surface flux would be successfully used in the innovative atmospheric modeling. The analysis is illustrated by GEM model results which stay in a good agreement with the observational data and support the original idea of the global NH effect of bromine chemistry.

  16. Total Gross Tumor Volume Is an Independent Prognostic Factor in Patients Treated With Selective Nodal Irradiation for Stage I to III Small Cell Lung Cancer

    SciTech Connect (OSTI)

    Reymen, Bart, E-mail: bart.reymen@maastro.nl [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands)] [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Van Loon, Judith; Baardwijk, Angela van; Wanders, Rinus; Borger, Jacques [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands)] [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Dingemans, Anne-Marie C. [Department of Pulmonology, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands)] [Department of Pulmonology, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Bootsma, Gerben [Department of Pulmonology, Atrium Medical Centre, Heerlen (Netherlands)] [Department of Pulmonology, Atrium Medical Centre, Heerlen (Netherlands); Pitz, Cordula [Department of Pulmonology, Laurentius Hospital, Roermond (Netherlands)] [Department of Pulmonology, Laurentius Hospital, Roermond (Netherlands); Lunde, Ragnar [Department of Pulmonology, St Jansgasthuis, Weert (Netherlands)] [Department of Pulmonology, St Jansgasthuis, Weert (Netherlands); Geraedts, Wiel [Department of Pulmonology, Orbis Medical Centre, Sittard (Netherlands)] [Department of Pulmonology, Orbis Medical Centre, Sittard (Netherlands); Lambin, Philippe [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands)] [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); De Ruysscher, Dirk [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands) [Department of Radiation Oncology (MAASTRO clinic), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht (Netherlands); University Hospital Leuven/ KU Leuven, Leuven (Belgium)

    2013-04-01T23:59:59.000Z

    Purpose: In non-small cell lung cancer, gross tumor volume (GTV) influences survival more than other risk factors. This could also apply to small cell lung cancer. Methods and Materials: Analysis of our prospective database with stage I to III SCLC patients referred for concurrent chemo radiation therapy. Standard treatment was 45 Gy in 1.5-Gy fractions twice daily concurrently with carboplatin-etoposide, followed by prophylactic cranial irradiation (PCI) in case of non-progression. Only fluorodeoxyglucose (FDG)-positron emission tomography (PET)-positive or pathologically proven nodal sites were included in the target volume. Total GTV consisted of post chemotherapy tumor volume and pre chemotherapy nodal volume. Survival was calculated from diagnosis (Kaplan-Meier ). Results: A total of 119 patients were included between May 2004 and June 2009. Median total GTV was 93 ± 152 cc (7.5-895 cc). Isolated elective nodal failure occurred in 2 patients (1.7%). Median follow-up was 38 months, median overall survival 20 months (95% confidence interval = 17.8-22.1 months), and 2-year survival 38.4%. In multivariate analysis, only total GTV (P=.026) and performance status (P=.016) significantly influenced survival. Conclusions: In this series of stage I to III small cell lung cancer patients treated with FDG-PET-based selective nodal irradiation total GTV is an independent risk factor for survival.

  17. Climate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects Hydrology and Earth System Sciences, 5(3), 477486 (2001) EGS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    canopy at KIM catchment excluded about 80% of ambient acid deposition; clean rain was sprinkled under on the south coast in the zone of maximum acid deposition for Norway. The RAIN project used a 1200 m2 roofClimate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects

  18. Characteristics RSE Column Factor: Total

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1. Introduction4.. U.S.

  19. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body ?-Irradiation

    SciTech Connect (OSTI)

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Ngudiankama, Barbara F. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland (United States); Christensen, Christine [Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Olsen, Cara H. [Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Owens, Rossitsa [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Lombardini, Eric D. [Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok (Thailand); Holt, Rebecca K. [Veterinary Science Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Whitnall, Mark H. [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)

    2013-08-01T23:59:59.000Z

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 ?g/kg/day for 17 days), at the estimated LD70/30 total-body ?-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  20. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01T23:59:59.000Z

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  1. Cool Farming: Climate impacts

    E-Print Network [OSTI]

    Levi, Ran

    Cool Farming: Climate impacts of agriculture and mitigation potential greenpeace.org Campaigningfor meat categories as well as milk and selected plant products for comparison. 36 Figure 1: Total global

  2. NIH Portfolio Analysis on Climate Change and Health

    E-Print Network [OSTI]

    Madey, Gregory R.

    NIH Portfolio Analysis on Climate Change and Health Total studies that in some way relate to climate change 1,357 > Directly relate to climate change 7 > Examine the climate variables on health 85 response to climate change By David Taylor Climate change and its relationship to health research

  3. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL; Classen, Aimee T [ORNL; Norby, Richard J [ORNL

    2009-01-01T23:59:59.000Z

    Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.

  4. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01T23:59:59.000Z

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  5. A study of physiological responses of lactating dairy cows to summer climatic factors under shaded and non-shaded conditions

    E-Print Network [OSTI]

    Harris, Dewey Lynn

    1958-01-01T23:59:59.000Z

    &ISltAgy "'NN ? INXAS A STUDI OF P'rZSIOLOQICAL 'KSPONSSS OF LACTATINQ DAIRI CONS TO SUIP'R CL14PIC FACTORS Ull3NR YIAD:. D A. '&9 NO r'-SNADZ) CONDITIONS A Thesis D~ &EI LZU; RARRI'3 Submitted to the Gradaate School of tbe A~ice terai a=d I.... p -. '8 . a, r) -s, u see ', l. Bees 3 lU. A, :. . l Bls; '8 B. d d. ' ' '8;el-Bs -. ; S. r;. p . ;e . - 8 Br p~, ccc 4. Bl sis acle":8 c d, . . . ". i: 8 pslse csee -eep;. BBB . . 8 . . Sl&'Bli 8 vl . '. ; 'c-8 ~8 "se, ;s 1&. AQB-?8-8 8 . "8...

  6. TOTAL M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total M F Total Spring 2010

    E-Print Network [OSTI]

    Hayes, Jane E.

    202 51 *total new freshmen 684: 636 Lexington campus, 48 Paducah campus MS Total 216 12 5 17 2 0 2 40 248 247 648 45 210 14 *total new freshmen 647: 595 Lexington campus, 52 Paducah campus MS Total 192 14

  7. Essays on the Effect of Climate Change over Agriculture and Forestry

    E-Print Network [OSTI]

    Villavicencio Cordova, Xavier A.

    2010-07-14T23:59:59.000Z

    was done using a panel model of Agricultural Total Factor Productivity (TFP) for the forty-eight contiguous states over 1970?1999. Climatic variables such as temperature and amount and intensity of precipitation were added into the model. The main results...

  8. Essays on the Effect of Climate Change over Agriculture and Forestry 

    E-Print Network [OSTI]

    Villavicencio Cordova, Xavier A.

    2010-07-14T23:59:59.000Z

    was done using a panel model of Agricultural Total Factor Productivity (TFP) for the forty-eight contiguous states over 1970?1999. Climatic variables such as temperature and amount and intensity of precipitation were added into the model. The main results...

  9. Increasing Climate Extremes and the New Climate Dice 10 August 2012

    E-Print Network [OSTI]

    Hansen, James E.

    1 Increasing Climate Extremes and the New Climate Dice 10 August 2012 James Hansen, Makiko Sato, and Reto Ruedy Abstract. We address questions raised about our study "The New Climate Dice" by using longer of weather extremes depends on many factors and to a large degree is a matter of chance. Changing climate can

  10. As was hypothesized, annual ET water losses appears to be driven by seasonal variations in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were significant climatic drivers of ET. However, unlike

    E-Print Network [OSTI]

    Hall, Sharon J.

    in the total aboveground biomass of the treatment wetland. We found that only air temperature and PAR were budget of an aridland" urban wastewater treatment wetland" Experimental Design and Field Sampling! · 10.T.A. 2003. Water and mass budgets of a vertical=-flow constructed wetland used for wastewater treatment

  11. Changing Climates 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    and a wide range of academic areas are investigating the different compo- nents. More recently, they are taking information gleaned from the global climate models and applying them to research questions pertaining to Texas. Dr. Bruce Mc...Carl, Regents Professor of agricultural economics at Texas A&M University, has researched the economics of climate change for the last 20 years. McCarl, as a lead CHANGING CLIMATES tx H2O | pg. McCarl ] tx H2O | pg. 4 Changing Climates author...

  12. 2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)

    E-Print Network [OSTI]

    , emissions factors have only been provided for CO2. The 2009 update provides emissions factors for the non-CO to landfill) into kilograms of carbon dioxide equivalent (CO2eq). Carbon dioxide equivalent is a universal and refrigeration have been added. v. International electricity emission factors have been added Major changes

  13. Climate forcing Climate forcing

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    parameters (solar distance factors) solar luminosity moon orbit volcanoes and other geothermal sources,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols forcings are shown on the right hand axes of the large panels. {Figure 6.4} !"#$#%&'(!&#)$&*$+#$,-.$/0

  14. Climate Change and National Security

    SciTech Connect (OSTI)

    Malone, Elizabeth L.

    2013-02-01T23:59:59.000Z

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  15. Essays on Agricultural Adaptation to Climate Change and Ethanol Market Integration in the U.S. 

    E-Print Network [OSTI]

    Aisabokhae, Ruth 1980-

    2012-12-05T23:59:59.000Z

    Climate factors like precipitation and temperature, being closely intertwined with agriculture, make a changing climate a big concern for the entire human race and its basic survival. Adaptation to climate is a long-running characteristic...

  16. Climate Systems and Climate Change Is Climate Change Real?

    E-Print Network [OSTI]

    Pan, Feifei

    Chapter 10 Climate Systems and Climate Change #12;Is Climate Change Real? 1980 1898 2005 2003 #12;Arctic Sea Ice Changes #12;Observed Global Surface Air Temperature #12;! Current climate: weather station data, remote sensing data, numerical modeling using General Circulation Models (GCM) ! Past climate

  17. Total Sustainability Humber College

    E-Print Network [OSTI]

    Thompson, Michael

    An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot and ventilation Exclusively e-book based curriculum 2. Ethics of Care: "Care For" v. "Care About": "without

  18. Climate Change: The Sun's Role

    E-Print Network [OSTI]

    Gerald E. Marsh

    2007-06-23T23:59:59.000Z

    The sun's role in the earth's recent warming remains controversial even though there is a good deal of evidence to support the thesis that solar variations are a very significant factor in driving climate change both currently and in the past. This precis lays out the background and data needed to understand the basic scientific argument behind the contention that variations in solar output have a significant impact on current changes in climate. It also offers a simple, phenomenological approach for estimating the actual-as opposed to model dependent-magnitude of the sun's influence on climate.

  19. Climate Engineering Responses to Climate Emergencies

    E-Print Network [OSTI]

    Battisti, David

    Novim Climate Engineering Responses to Climate Emergencies Jason J. Blackstock David S. Battisti Santa Barbara, California #12;Climate Engineering Responses to Climate Emergencies This report should, A. A. N. Patrinos, D. P. Schrag, R. H. Socolow and S. E. Koonin, Climate Engineering Responses

  20. 2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)

    E-Print Network [OSTI]

    that allows the global warming potential of different GHGs to be compared. Values for CH4 and N2O are presented as CO2 equivalents (CO2e) using Global Warming Potential (GWP) factors*, consistent with reporting resulting from electricity supplied to the consumer that are counted in both Scope 2 (electricity GENERATED

  1. "Managing Department Climate Change"

    E-Print Network [OSTI]

    Sheridan, Jennifer

    "Managing Department Climate Change" #12;Presenters · Ronda Callister Professor, Department Department Climate? · Assesment is essential for determining strategies for initiating change · In a research climate · Each panelist will describe an intervention designed to improve department climate ­ Ronda

  2. Changing Climates

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    these data with predictions from the IPCC. Professor of geography at Texas State University, Dr. David Butler, does climate change research mainly in the Rocky Moun- tains with U.S. Geological Survey funding. He has also done research on how climate...://wiid.twdb.state.tx.us Detailed information about individual water wells. This system uses a geographic information system-based tool to show locations of water wells and download data on water levels and water quality. Reports that were developed about on-site conditions...

  3. Location Specific Summarization of Climatic and Agricultural Trends

    E-Print Network [OSTI]

    Subramanian, Lakshminarayanan

    @cs.nyu.edu, lakshmi@cs.nyu.edu ABSTRACT Climate change can directly impact agriculture. Failure in different aspects of agriculture due to climate change and other influencing factors, are extremely rampant in several agrarian) identify target topics of interest within climate and agriculture (such as soil, water) and construct

  4. Total Light Management

    Broader source: Energy.gov [DOE]

    Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  7. Climate Change, Adaptation, and Development

    E-Print Network [OSTI]

    Cole, Daniel H.

    2008-01-01T23:59:59.000Z

    Climate Change, Adaptation, and Development Daniel H. Cole*THE COSTS OF CLIMATE CHANGE . ADAPTATIONCONVENTION ON CLIMATE CHANGE . IV. A.

  8. Sandia National Laboratories: Climate Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MonitoringClimate Security Climate Security Climate Security Global reductions in greenhouse gases will eventually be motivated by an international climate treaty and will entail...

  9. A High-Resolution Global Climate Simulation

    SciTech Connect (OSTI)

    Duffy, P B

    2001-01-23T23:59:59.000Z

    A major factor limiting the quality and usefulness of global climate models is the coarse spatial resolution of these models. Global climate models today are typically run at resolutions of {approx}300 km (or even coarser) meaning that the smallest features represented are 300 km across. As Figure 1 shows, this resolution does not allow adequate representation of small or even large topographic features (e.g. the Sierra Nevada mountains). As a result of this and other problems, coarse-resolution global models do not come close to accurately simulating climate on regional spatial scales (e.g. within California). Results on continental and larger sales are much more realistic. An important consequence of this inability to simulate regional climate is that global climate model results cannot be used as the basis of assessments of potential societal impacts of climate change (e.g. effects on agriculture in the Central Valley, on management of water resources, etc.).

  10. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20T23:59:59.000Z

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  11. Climate Change Scoping Plan

    E-Print Network [OSTI]

    Climate Change Scoping Plan a amework for change Prepared by the California Air Resources BoardBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

  12. Climate Change Scoping Plan

    E-Print Network [OSTI]

    Climate Change Scoping Plan a amework for change as approved Prepared by the California AirBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

  13. Climate change action plan

    E-Print Network [OSTI]

    Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

  14. Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations

    SciTech Connect (OSTI)

    Forster, P M A F; Taylor, K E

    2006-07-25T23:59:59.000Z

    A simple technique is proposed for calculating global mean climate forcing from transient integrations of coupled Atmosphere Ocean General Circulation Models (AOGCMs). This 'climate forcing' differs from the conventionally defined radiative forcing as it includes semi-direct effects that account for certain short timescale responses in the troposphere. Firstly, we calculate a climate feedback term from reported values of 2 x CO{sub 2} radiative forcing and surface temperature time series from 70-year simulations by twenty AOGCMs. In these simulations carbon dioxide is increased by 1%/year. The derived climate feedback agrees well with values that we diagnose from equilibrium climate change experiments of slab-ocean versions of the same models. These climate feedback terms are associated with the fast, quasi-linear response of lapse rate, clouds, water vapor and albedo to global surface temperature changes. The importance of the feedbacks is gauged by their impact on the radiative fluxes at the top of the atmosphere. We find partial compensation between longwave and shortwave feedback terms that lessens the inter-model differences in the equilibrium climate sensitivity. There is also some indication that the AOGCMs overestimate the strength of the positive longwave feedback. These feedback terms are then used to infer the shortwave and longwave time series of climate forcing in 20th and 21st Century simulations in the AOGCMs. We validate the technique using conventionally calculated forcing time series from four AOGCMs. In these AOGCMs the shortwave and longwave climate forcings we diagnose agree with the conventional forcing time series within {approx}10%. The shortwave forcing time series exhibit order of magnitude variations between the AOGCMs, differences likely related to how both natural forcings and/or anthropogenic aerosol effects are included. There are also factor of two differences in the longwave climate forcing time series, which may indicate problems with the modeling of well-mixed-greenhouse-gas changes. The simple diagnoses we present provide an important and useful first step for understanding differences in AOGCM integrations, indicating that some of the differences in model projections can be attributed to different prescribed climate forcing, even for so-called standard climate change scenarios.

  15. Climate Past, Climate Present, Climate Future Douglas Nychka,

    E-Print Network [OSTI]

    Nychka, Douglas

    series and an energy balance model. 1000 1200 1400 1600 1800 2000 -1.5-1.0-0.50.00.5 Year Degree. Supported by US NSF 7th World Congress Prob. and Stat., Singapore July 2008 #12;What is climate? Climate will use statistics to talk about the "known un- knowns" for the Earth's climate Statistics uses

  16. Total Synthesis of (?)-Himandrine

    E-Print Network [OSTI]

    Movassaghi, Mohammad

    We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

  17. Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid

    E-Print Network [OSTI]

    Radeloff, Volker C.

    : burning; arid ecosystems; livestock; climate; broad-scale climate; Southern Russia; socio-economic change by decreasing livestock numbers, vegetation changes, climate change, or interactions of these factors. OurClimate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern

  18. Climate Action Plan (Delaware)

    Broader source: Energy.gov [DOE]

    To better understand the current and future vulnerabilities and risks to climate change, DNREC Secretary Collin O’Mara directed the Division of Energy and Climate to conduct a statewide climate...

  19. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression,...

  20. Protecting climate with forests.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Changing feedbacks in the climate–biosphere system Front.313–32 Bonan G B 2008 Forests and climate change: forcings,feedbacks, and the climate benefits of forests Science

  1. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05T23:59:59.000Z

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  2. Climate VISION: Contact Us

    Office of Scientific and Technical Information (OSTI)

    of Energy Office of Climate Change Policy and Technology (PI-50) 202-586-8339 Mining - Contacts Association Climate VISION Lead Constance Holmes Senior Economist, Director...

  3. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  4. Climate Action Plan (Montana)

    Broader source: Energy.gov [DOE]

    Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in Montana, the Climate Change Advisory Committee (CCAC)...

  5. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  6. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  7. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural...

  8. Precipitation extremes under climate change

    E-Print Network [OSTI]

    O'Gorman, Paul A

    2015-01-01T23:59:59.000Z

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  9. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  10. Detection of greenhouse-gas-induced climatic change

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1992-07-15T23:59:59.000Z

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO[sub 2] and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

  11. Total Precipitable Water

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  12. Tropical Cyclogenesis Factors in a Warming Climate

    E-Print Network [OSTI]

    Cathey, Stephen Christopher

    2012-02-14T23:59:59.000Z

    (TC) development (Emanuel et al., 2008). The conditions favorable for TC formation and development have been known for more than forty years (Gray 1968), and, although it is crucial to understanding how and why these conditions are important for TC... TC frequency (Emanuel 2005; Webster et al. 2005), but there is also model evidence that the number of cyclones may simultaneously decline (Knutson et al. 2007; Knutson et al. 2010). Maximum potential intensity (MPI) theory predicts that intensity...

  13. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    Hosted and organized by the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, the three-day conference will showcase how new business opportunities, current policies, technologies, climate solutions and energy transformation will drive our low-carbon future.

  14. programs in climate change

    E-Print Network [OSTI]

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change

  15. Formulating Climate Change Scenarios to Inform Climate - Resilient...

    Open Energy Info (EERE)

    Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

  16. Total Solar Irradiance Calibration Transfer Experiment/TIM Frequently Asked Questions

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    (TIM) measures the Sun's net energy output, or total solar irradiance (TSI). TSI is the spatially NASA/NOAA mission that will measure total solar irradiance to monitor changes in incident solar energy measurements of total solar irradiance to monitor changes in solar energy driving Earth's climate system

  17. Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate EngineeringImplications for Climate Engineering

    E-Print Network [OSTI]

    Polz, Martin

    Global Climate Change Impacts:Global Climate Change Impacts: Implications for Climate Engineering Center Global Climate Change Impacts in the United States October 29, 2009 #12;2Global Climate Change Impacts in the United States 2 Response Strategies to ClimateResponse Strategies to Climate ChangeChange

  18. Public Health FAT FACTORS

    E-Print Network [OSTI]

    Qian, Ning

    : THE UNITED STATES SPENDS MORE ON HEALTH CARE THAN ANY OTHER COUNTRY. YET WE CONTINUE TO FALL FAR BEHIND States spends an astonishing percent of our gross domestic product on health care--significantly moreColumbia Public Health HOT TOPIC Climate Change FAT FACTORS Obesity Prevention BOOK SMART

  19. TotalView Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » Top InnovativeTopoisomeraseTotalView

  20. Climate change risk and response

    E-Print Network [OSTI]

    Kahrl, Fredrich; Roland-Holst, David

    2008-01-01T23:59:59.000Z

    the Potential Consequences of Climate Variability and Changeand Kate Scow. 2006. “Climate Change: Page 117 ChallengesLandscapes. ” California Climate Change Center White Paper.

  1. Climate change risk and response

    E-Print Network [OSTI]

    Kahrl, Fredrich; Roland-Holst, David

    2008-01-01T23:59:59.000Z

    and Kate Scow. 2006. “Climate Change: Page 117 ChallengesLandscapes. ” California Climate Change Center White Paper.Sea Level. ” California Climate Change Center White Paper.

  2. Climate Change and National Security

    E-Print Network [OSTI]

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01T23:59:59.000Z

    CLIMATE CHANGE Multiplying Threats to National Securityfor the impacts of climate change on national security. Pagea warming world. Page 11 “Climate change acts as a threat

  3. Climate change risk and response

    E-Print Network [OSTI]

    Kahrl, Fredrich; Roland-Holst, David

    2008-01-01T23:59:59.000Z

    net impact of climate change on agriculture in California,of Climate Change on California Agriculture. ” PresentationEffects of Climate Change on California Agriculture Positive

  4. Climate Change and Agriculture Reconsidered

    E-Print Network [OSTI]

    Fisher, Anthony

    2009-01-01T23:59:59.000Z

    2009 Paper 1080 Climate Change and Agriculture Reconsideredby author(s). Climate Change and Agriculture Reconsideredimpact of climate change on agriculture, there still exists

  5. 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars

    E-Print Network [OSTI]

    Godolt, M; Hamann-Reinus, A; Kitzmann, D; Kunze, M; Langematz, U; von Paris, P; Patzer, A B C; Rauer, H; Stracke, B

    2015-01-01T23:59:59.000Z

    The potential habitability of a terrestrial planet is usually defined by the possible existence of liquid water on its surface. The potential presence of liquid water depends on many factors such as, most importantly, surface temperatures. The properties of the planetary atmosphere and its interaction with the radiative energy provided by the planet's host star are thereby of decisive importance. In this study we investigate the influence of different main-sequence stars upon the climate of Earth-like extrasolar planets and their potential habitability by applying a 3D Earth climate model accounting for local and dynamical processes. The calculations have been performed for planets with Earth-like atmospheres at orbital distances where the total amount of energy received from the various host stars equals the solar constant. In contrast to previous 3D modeling studies, we include the effect of ozone radiative heating upon the vertical temperature structure of the atmospheres. The global orbital mean results o...

  6. Climate change and land use in Florida: Interdependencies and opportunities

    E-Print Network [OSTI]

    Watson, Craig A.

    a comprehensive greenhouse gas (GHG) inventory, which the Florida Department of Environmental Protection will develop over the next year. In addition to a GHG inventory and mitigation tools, a state climate action to increasingly dominate urban climate. · Florida ranks sixth in the US for total GHG emissions. The agricultural

  7. Achieving Economic Results Through the Climate Wise Energy Management Program

    E-Print Network [OSTI]

    Kraly, K. F.

    Cosmair's Clark Manufacturing Facility joined the Climate Wise program, a voluntary industrial energy efficiency program sponsored by the US EPA, to support its commitment to energy conservation excellence and total environmental awareness, while...

  8. Climate ChangeClimate Change and Runoff Managementand Runoff Management

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Climate ChangeClimate Change and Runoff Managementand Runoff Management in Wisconsinin Wisconsin NASECA February 3, 2011 David S. Liebl #12;Overview · Understanding climate change · Wisconsin's changing climate · Expected impacts · Adaptation strategies #12;Visible Light Energy in = Energy out Absorbed

  9. Climate WorkshopsClimate Workshops for Department Chairsp

    E-Print Network [OSTI]

    Tilbury, Dawn

    Climate WorkshopsClimate Workshops for Department Chairsp University of Wisconsin ADVANCE-IT Slides) #12;Why focus on departmental climate? Individuals experience climate in their immediate workplace negative climate than male faculty Improving department climate is critical for retention and advancement

  10. Climate Leadership Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Climate Leadership Conference is your annual exchange for addressing global climate change through policy, innovation, and business solutions. Forward-thinking lead­ers from busi­ness, gov­ern...

  11. The Climate Policy Dilemma

    E-Print Network [OSTI]

    Pindyck, Robert S.

    Climate policy poses a dilemma for environmental economists. The economic argument for stringent GHG abatement is far from clear. There is disagreement among both climate scientists and economists over the likelihood of ...

  12. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

  13. The Climate Policy Dilemma

    E-Print Network [OSTI]

    Pindyck, Robert S.

    Climate policy poses a dilemma for environmental economists. The economic argument for stringent greenhouse gas (GHG) abatement is far from clear. There is disagreement among both climate scientists and economists concerning ...

  14. Old-field Community, Climate and Atmospheric Manipulation

    SciTech Connect (OSTI)

    Aimee Classen

    2009-11-01T23:59:59.000Z

    We are in the process of finishing a number of laboratory, growth chamber and greenhouse projects, analyzing data, and writing papers. The projects reported addressed these subjects: How do climate and atmospheric changes alter aboveground plant biomass and community structure; Effects of multiple climate changes factors on plant community composition and diversity: what did we learn from a 5-year open-top chamber experiment using constructed old-field communities; Do atmospheric and climatic change factors interact to alter woody seedling emergence, establishment and productivity; Soil moisture surpasses elevated CO{sub 2} and temperature in importance as a control on soil carbon dynamics; How do climate and atmospheric changes alter belowground root and fungal biomass; How do climate and atmospheric changes alter soil microarthropod and microbial communities; How do climate and atmospheric changes alter belowground microbial function; Linking root litter diversity and microbial functioning at a micro scale under current and projected CO{sub 2} concentrations; Multifactor climate change effects on soil ecosystem functioning depend on concurrent changes in plant community composition; How do climate and atmospheric changes alter aboveground insect populations; How do climate and atmospheric changes alter festuca endophyte infection; How do climate and atmospheric changes soil carbon stabilization.

  15. Climate Change Economics and Policy

    E-Print Network [OSTI]

    Romano, Daniela

    AFRICA COLLEGE Centre for Climate Change Economics and Policy Adapting to Climate Change 3 CLIMATE...Furthermore, there is strong scientific evidence that climate change will disrupt the global economy, environment and society a growing population in a changing climate is, therefore, a major global challenge. Changes in climate

  16. Campus Conversations: CLIMATE CHANGE

    E-Print Network [OSTI]

    Attari, Shahzeen Z.

    booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994 that will address climate change. Scientists tell us that the climate of the earth is warming, and that the warming into the foundation of the world economy and into the everyday things we do (driving) and use (electricity). Thus

  17. METEOROLOGICAL Journal of Climate

    E-Print Network [OSTI]

    Feng, Ming

    AMERICAN METEOROLOGICAL SOCIETY Journal of Climate EARLY ONLINE RELEASE This is a preliminary PDF it is available. © 201 American Meteorological Society1 #12;Sun et al. climate downscaling of the Australian currents 1 Marine downscaling of a future climate scenario for Australian boundary currents Chaojiao Sun

  18. Campus Climate Camden Campus

    E-Print Network [OSTI]

    Hanson, Stephen José

    Campus Climate Report Camden Campus New Brunswick/Piscataway Campus Newark Campus Student Survey #12;I. INTRODUCTION Executive Summary The Rutgers Campus Climate Survey was designed to determine how University, the campus climate surveys revealed strong areas of satisfaction with the Rutgers University

  19. Forest Research: Climate Change

    E-Print Network [OSTI]

    Forest Research: Climate Change projects Forest Research is part of the Forestry Commission of climate change-related research is wide-ranging, covering impact assessment and monitoring, adaptation around a quarter of its research budget with Forest Research on climate change and related programmes

  20. Climate Change Workshop 2007

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 Climate Change Workshop 2007 Adaptive Management and Resilience Relevant for the Platte River, UNL Climate Change Workshop 2007 · Resilience ·Why it matters · Adaptive Management ·How it helps ·Adaptive Capacity · What it is Overview Climate Change Workshop 2007 "A public Domain, once a velvet carpet

  1. Climate Change Risks and Conservation Implications for a Threatened Small-Range Mammal Species

    E-Print Network [OSTI]

    Schierup, Mikkel Heide

    and human impact using two species distribution modeling algorithms to test hypotheses on the factors of global warming. Conclusions/Significance: Climate change clearly poses a severe threat

  2. Climate Variability and Climate Change: The New Climate Dice 10 November 2011

    E-Print Network [OSTI]

    Hansen, James E.

    1 Climate Variability and Climate Change: The New Climate Dice 10 November 2011 J. Hansen, M. Sato, coincident with increased global warming. The most dramatic and important change of the climate dice change is the natural variability of climate. How can a person discern long-term climate change, given

  3. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12T23:59:59.000Z

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  4. Developing Models for Predictive Climate Science

    SciTech Connect (OSTI)

    Drake, John B [ORNL; Jones, Philip W [Los Alamos National Laboratory (LANL)

    2007-01-01T23:59:59.000Z

    The Community Climate System Model results from a multi-agency collaboration designed to construct cutting-edge climate science simulation models for a broad research community. Predictive climate simulations are currently being prepared for the petascale computers of the near future. Modeling capabilities are continuously being improved in order to provide better answers to critical questions about Earth's climate. Climate change and its implications are front page news in today's world. Could global warming be responsible for the July 2006 heat waves in Europe and the United States? Should more resources be devoted to preparing for an increase in the frequency of strong tropical storms and hurricanes like Katrina? Will coastal cities be flooded due to a rise in sea level? The National Climatic Data Center (NCDC), which archives all weather data for the nation, reports that global surface temperatures have increased over the last century, and that the rate of increase is three times greater since 1976. Will temperatures continue to climb at this rate, will they decline again, or will the rate of increase become even steeper? To address such a flurry of questions, scientists must adopt a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the DOE is dedicated to advancing climate research in order to elucidate the causes of climate change, including the role of carbon loading from fossil fuel use. Thus, climate science--which by nature involves advanced computing technology and methods--has been the focus of a number of DOE's SciDAC research projects. Dr. John Drake (ORNL) and Dr. Philip Jones (LANL) served as principal investigators on the SciDAC project, 'Collaborative Design and Development of the Community Climate System Model for Terascale Computers.' The Community Climate System Model (CCSM) is a fully-coupled global system that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. The collaborative SciDAC team--including over a dozen researchers at institutions around the country--developed, validated, documented, and optimized the performance of CCSM using the latest software engineering approaches, computational technology, and scientific knowledge. Many of the factors that must be accounted for in a comprehensive model of the climate system are illustrated in figure 1.

  5. Impacts of climate change on plant diseases--opinions Marco Pautasso & Thomas F. Dring &

    E-Print Network [OSTI]

    California at Berkeley, University of

    - tain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenariosImpacts of climate change on plant diseases--opinions and trends Marco Pautasso & Thomas F. Döring There has been a remarkable scientific output on the topic of how climate change is likely to affect plant

  6. MUJERES TOTAL BIOLOGIA 16 27

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , PLASTICA Y VISUAL 2 2 EDUCACION FISICA, DEPORTE Y MOTRICIDAD HUMANA 1 1 6 11 TOTAL CIENCIAS Nº DE TESIS

  7. MUJERES ( * ) TOTAL BIOLOGA 16 22

    E-Print Network [OSTI]

    Autonoma de Madrid, Universidad

    , DEPORTE Y MOTRICIDAD HUMANA 0 4 TOTAL FORMACIÓN DE PROFESORADO Y EDUCACIÓN 0 6 ANATOMÍA PATOLÓGICA 2 5

  8. The Total RNA Story Introduction

    E-Print Network [OSTI]

    Goldman, Steven A.

    The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

  9. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index Journal Cited Half-Life 2012 JCR Science Edition Journal: CZECHOSLOVAK MATHEMATICAL JOURNAL Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items

  10. Detection of CO sub 2 -Induced climatic change

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1989-08-15T23:59:59.000Z

    We will assemble and analyse instrumental climate data and to develop simple climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models. In addition to variations in greenhouse gas concentrations, climate responds to a number of other forcing factors, changes in ocean circulation, volcanic activity, solar irradiance, etc. To detect the greenhouse effect, its signal must be isolated from the noise'' of natural climatic variability, a significant part of which is due to these other factors. A high quality, spatially extensive data base is required to define the noise and its spatial characteristics. Available land and marine data bases will updated and expanded, and differences between different data sets will be reconciled where possible. The data will be analysed to determine the potential effects on climate of greenhouse gas concentration changes and other factors. Analyses will be guided by simple energy balance climate models. These analyses are oriented toward obtaining early evidence of greenhouse-gas-induced climatic change that would lead either to confirmation, rejection or modification of model projections, and toward the statistical validation of General Circulation Model control runs. 23 refs., 4 figs.

  11. Is this climate porn? How does climate change communication

    E-Print Network [OSTI]

    Watson, Andrew

    Is this climate porn? How does climate change communication affect our perceptions and behaviour;1 Is this climate porn? How does climate change communication affect our perceptions and behaviour? Thomas D. Lowe 1 these kinds of messages (which have recently been dubbed `climate porn' (Ereaut and Segnit, 2006)), can

  12. Climate history and paleoclimate -HS 2011 Climate proxies

    E-Print Network [OSTI]

    Gilli, Adrian

    Climate history and paleoclimate - HS 2011 Climate proxies 18O Climate History & Paleoclimate ­ September 30, 2011 #12;How do we know about the past? Instrumental Historical Through proxies Climate proxies Climate history and paleoclimate - HS 2011 #12;What is a `proxy'? "Proxy, as used here

  13. Ensemble climate predictions using climate models and observational constraints

    E-Print Network [OSTI]

    REVIEW Ensemble climate predictions using climate models and observational constraints BY PETER A. STOTT 1,* AND CHRIS E. FOREST 2 1 Hadley Centre for Climate Change (Reading Unit), Meteorology Building for constraining climate predictions based on observations of past climate change. The first uses large ensembles

  14. Climate history and paleoclimate -HS 2011 Future climate

    E-Print Network [OSTI]

    Gilli, Adrian

    Climate history and paleoclimate - HS 2011 Future climate Climate History & Paleoclimate - December 9, 2011 1 #12;Climate history and paleoclimate - HS 2011 IPCC 2007 4th Assessment report (AR4) More information can be found: http://www.ipcc.ch/ Remark: 5th assessment report is due in 2013/2014 2 #12;Climate

  15. Climate Change: Conflict, Security and Vulnerability Professor of Climate Change

    E-Print Network [OSTI]

    Hulme, Mike

    Climate Change: Conflict, Security and Vulnerability Mike Hulme Professor of Climate Change Science, Society and Sustainability Group School of Environmental Sciences Rethinking Climate Change, Conflict security" "increase risk of conflicts among and within nations" #12;· from `climatic change' to `climate-change

  16. Sandia National Laboratories: Accelerated Climate Modeling for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Climate Modeling for Energy New Project Is the ACME of Computer Science to Address Climate Change On December 3, 2014, in Analysis, Climate, Global Climate & Energy,...

  17. Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1

    E-Print Network [OSTI]

    Attribution of the presentday total greenhouse effect Gavin A. Schmidt,1 Reto A. Ruedy,1 Ron L to the presentday global greenhouse effect are among the most misquoted statistics in public discussions of climate though the magnitude of the total greenhouse effect is significantly larger than the initial radiative

  18. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    SciTech Connect (OSTI)

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; O'Donnell, D.; Schurgers, G.; Sein, Dmitry; Zhang, Kai

    2015-01-01T23:59:59.000Z

    Mineral dust cycle responds to insolation-induced climate change and plays an important role in the climate system by affecting the radiative balance of the atmosphere. Polar ice cores provide unique information about deposition of aeolian dust particles in the past which indicates climate variability. In the current study the dust cycle in different climate conditions simulated by ECHAM5-HAM is analyzed. The study is focused on the Southern Hemisphere with emphasis on the Antarctic region. The investigated periods include four interglacial time-slices: the pre-industrial control (CTRL), mid-Holocene (6,000 years BP), Eemian (126,000 years BP), last glacial inception (115,000 years BP) and one glacial time interval: Last Glacial Maximum (LGM) (21,000 years BP). This study is a first attempt to simulate past interglacial dust cycles and to understand the quantitative contribution of different processes, such as emission, atmospheric transport and precipitation to the total dust deposition in Antarctica. Results suggest increased deposition of mineral dust globally and in Antarctica in the past interglacial periods relative to the preindustrial CTRL simulation. Maximum dust deposition in Antarctica was simulated for the glacial period. One of the major factors responsible for the increase of dust deposition in the mid-Holocene and Eemian is enhanced Southern Hemisphere dust emissions. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. In the LGM simulation, dust deposition over Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climate. However more records are needed to validate simulated dust deposition for the past interglacial time-slices.

  19. The Climate Impacts LINK Project

    E-Print Network [OSTI]

    Feigon, Brooke

    The Climate Impacts LINK Project The Climatic Research Unit, University of East Anglia Funded by the UK Department of the Environment, Transport and the Regions, Contract Ref EPG 1/1/68 The Climate Impacts LINK Project: Applying Results from the Hadley Centre's Climate Change Experiments for Climate

  20. Abrupt Climate Change Inevitable Surprises

    E-Print Network [OSTI]

    Abrupt Climate Change Inevitable Surprises Committee on Abrupt Climate Change Ocean Studies Board of Congress Cataloging-in-Publication Data Abrupt climate change : inevitable surprises / Committee on Abrupt Climate Change, Ocean Studies Board, Polar Research Board, Board on Atmospheric Sciences and Climate

  1. Climate Change Proposed Scoping Plan

    E-Print Network [OSTI]

    Climate Change Proposed Scoping Plan a amework for change Prepared by the California Air ResourcesBackgroundBackgroundBackground ............................................................................................................................................................................................................................................................................................................................................................................................................ 4444 1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California1. Climate Change Policy in California

  2. Conservation and Global Climate Change

    E-Print Network [OSTI]

    Landweber, Laura

    V.6 Conservation and Global Climate Change Diane M. Debinski and Molly S. Cross OUTLINE 1. Introduction 2. How climate is changing 3. Environmental responses to climate change 4. Consequences of climate the coming decades will be preserving biodiversity in the face of climate change. It has become increasingly

  3. Global climatic catastrophes

    SciTech Connect (OSTI)

    Budyko, M.I.; Golitsyn, G.S.; Izrael, A

    1988-01-01T23:59:59.000Z

    This work inquires into global climatic catastrophes of the past, presenting data not easily available outside of the Socialist Countries, and applies these results to the study of future climatic developments, especially as they threaten in case of Nuclear Warfare - Nuclear Winter. The authors discuss probable after effects from the Soviet point of view on the basis of research, stressing the need to avoid all conflict which might lead to the next and final Global Climatic Catastrophy.

  4. Climate Action Plan (Virginia)

    Broader source: Energy.gov [DOE]

    Governor Timothy M. Kaine established the Governor's Commission on Climate Change in December 2007. The commission prepared a plan for Virginia that identified ways to reduce greenhouse gas...

  5. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... NASA Award for Marginal...

  6. Climate Change, Drought & Environment

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Climate Change, Drought, and Environment—Michael Champ, Executive Director, The Sustainable Water Challenge

  7. Climate Vision: Presidential Statements

    Office of Scientific and Technical Information (OSTI)

    Remarks by the President at Major Economies Meeting on Energy Security and Climate Change September 28, 2007 THE PRESIDENT: Good morning. Thank you. Welcome to the State...

  8. Protecting climate with forests.

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    much more than carbon sequestration does, and often in abiophysics, carbon sequestration, climate change, climatethe accompanying carbon sequestration does—and sometimes in

  9. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Management On January 27, 2011, in A growing consensus exists among climate scientists, economists, and policy makers that the link between man-made emissions of greenhouse...

  10. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protected: White House Water Roundtable: Question 4 On September 20, 2011, in Climate, Water There is no excerpt because this is a protected post. Protected: White House Water...

  11. Welcome to Climate VISION

    Office of Scientific and Technical Information (OSTI)

    Program Mission Private Sector Initiatives Asia Pacific Partnership ClimateTechnology.gov Resources and Links 1605(b) Site Map Technology Pathways Contact Us News and Events How...

  12. A climatic thermostat making Earth habitable

    E-Print Network [OSTI]

    Peter D. Ditlevsen

    2005-05-12T23:59:59.000Z

    The mean surface temperature on Earth and other planets with atmospheres is determined by the radiative balance between the non-reflected incoming solar radiation and the outgoing long-wave black-body radiation from the atmosphere. The surface temperature is higher than the black-body temperature due to the greenhouse warming. Balancing the ice-albedo cooling and the greenhouse warming gives rise to two stable climate states. A cold climate state with a completelyice-covered planet, called Snowball Earth, and a warm state similar to our present climate where greenhouse warming prevents the total glacition. The warm state has dominated Earth in most of its geological history despite a 30 % fainter young Sun. The warming could have been controlled by a greenhouse thermostat operating by temperature control of the weathering process depleting the atmosphere from $CO_2$. This temperature control has permitted life to evolve as early as the end of the heavy bombartment 4 billion years ago.

  13. ClimateChangeLIVE Webcast: Join the Climate Conversation

    Broader source: Energy.gov [DOE]

    Join ClimateChangeLIVE's webcast, bringing together students and climate experts for a discussion about climate change and what students and classes around the country are doing to be part of the climate solution. Students will be able to interact with climate scientists and experts online through Facebook and Twitter. A GreenWorks! grant will be offered to help schools with climate action projects.

  14. 1DANGEROUS CLIMATE CHANGE IN BRAZIL Dangerous Climate

    E-Print Network [OSTI]

    1DANGEROUS CLIMATE CHANGE IN BRAZIL Dangerous Climate A BrAzil-UK AnAlysis of ClimAte ChAnge And deforestAtion impACts in the AmAzon Change in Brazil #12;3DANGEROUS CLIMATE CHANGE IN BRAZIL April 2011Alysis of ClimAte ChAnge And deforestAtion impACts in the AmAzon Change in Brazil #12;4 DANGEROUS CLIMATE CHANGE

  15. Global air quality and climate

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Evaluation of Chemistry- Climate Models 5, 2010. 320 S. Wu,and R. Van Dorland, in Climate Change 2007: The PhysicalInter- governmental Panel on Climate Change, ed. D. Qin, M.

  16. Climate Change at Annual Timescales

    E-Print Network [OSTI]

    Stine, Alexander Robin

    2010-01-01T23:59:59.000Z

    1900–93, Journal of Climate, 10 (5), 1004–1020, 1997. Zhou,University of East Anglia’s Climate Research Unit (Jones etand those from WCRP “Climate of the Twentieth Century”

  17. MAPPING CLIMATE CHANGE EXPOSURES, VULNERABILITIES,

    E-Print Network [OSTI]

    MAPPING CLIMATE CHANGE EXPOSURES, VULNERABILITIES, AND ADAPTATION TO PUBLIC HEALTH RISKS's California Climate Change Center JULY 2012 CEC5002012041 Prepared for: California Energy Commission of California. #12; ii ABSTRACT This study reviewed first available frameworks for climate change adaptation

  18. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.4 3 or More Units... 5.4 0.3 Q Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 1.9 1.1 Q Q 0.3 Q Do Not Use Central Air-Conditioning... 45.2 24.6 3.6 5.0 8.8 3.2 Use a Programmable...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q 0.6 3 or More Units... 5.4 3.8 2.9 0.4 Q N 0.2 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.3 Q 3 or More Units... 5.4 1.6 0.8 Q 0.3 0.3 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  2. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.4 1.4 0.7 0.9 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  3. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 1.7 0.6 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.1 0.9 0.2 1.0 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3 3 or More Units... 5.4 0.7 0.5 Q Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  8. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 or More Units... 5.4 2.3 0.7 2.1 0.3 Central Air-Conditioning Usage Air-Conditioned Floorspace (Square Feet)...

  9. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......

  10. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

  11. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

  12. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

  13. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

  14. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

  15. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

  16. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 0.8 0.5 Once a Day... 19.2 4.6 3.0 1.6 Between Once a Day and Once a Week... 32.0 8.9 6.3 2.6 Once a...

  17. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or Spa......

  18. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or Spa......

  19. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Tools... 56.2 27.2 10.6 9.3 9.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q 0.4 Hot Tub or Spa......

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

  1. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 80,000...

  2. Total..............................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720

  3. Total................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  4. Total........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6 2,720..

  5. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6

  6. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q Table

  7. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q TableQ

  8. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q

  9. Total...........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1 86.6Q26.7

  10. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  11. Total............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.1

  12. Total.............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8 20.6

  13. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8

  14. Total..............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7 28.8,171

  15. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.7

  16. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7 21.7

  17. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.7

  18. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1

  19. Total...............................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  20. Total................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline. 111.126.70.747.1Do

  1. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.

  2. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5 12.5

  3. Total.................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.5

  4. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4 12.578.1

  5. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4

  6. Total..................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1 14.7

  7. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.1

  8. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4. 111.115.2

  9. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7 7.4.

  10. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.7

  11. Total...................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,618

  12. Total....................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033 1,61814.7

  13. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,033

  14. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.7

  15. Total.......................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6 17.74.2

  16. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.6

  17. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1 5.5

  18. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.1

  19. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II: AnPipeline.14.72,0335.615.10.7

  20. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:

  1. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have

  2. Total........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not Have7.1

  3. Total.........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not

  4. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6 40.7

  5. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.6

  6. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do Not25.65.6

  7. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do

  8. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6 16.6

  9. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.6

  10. Total..........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.1

  11. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2 7.67.10.6

  12. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.2

  13. Total...........................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2 7.6

  14. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2

  15. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1 Do4.24.2Cooking

  16. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1

  17. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not Have

  18. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDo

  19. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not HaveDoDo

  20. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do Not

  1. Total.............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  2. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not

  3. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo Not20.6

  4. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo

  5. Total..............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1 19.0

  6. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1

  7. Total.................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do NotDo7.1...

  8. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1Do

  9. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking

  10. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.6

  11. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0 12.1DoCooking25.65.6

  12. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.0

  13. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  14. Total....................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6 Personal

  15. Total.........................................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopo II:7.1 7.0 8.04.2 7.6 16.6

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,

  17. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)July 23,Product:

  18. Total..............................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 1,970

  19. Total................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  20. Total........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720 111.1

  1. Total..........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720

  2. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q Table

  3. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q

  4. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6 2,720Q14.7

  5. Total...........................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1 86.6

  6. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  7. Total............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.1

  8. Total.............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6

  9. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8 20.6,171

  10. Total..............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.8

  11. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6 25.6

  12. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.6

  13. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7 28.820.626.7

  14. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.7

  15. Total...............................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  16. Total................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0 22.7

  17. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.0

  18. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1 19.014.7

  19. Total.................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.1

  20. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1 64.1

  1. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1

  2. Total..................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770 111.126.747.178.1.

  3. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,770

  4. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3 1.9

  5. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3

  6. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2 3.3Type

  7. Total...................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.2

  8. Total....................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7 7.4

  9. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.7

  10. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0 1.214.75.6

  11. Total.......................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.0

  12. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6 40.7

  13. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.6

  14. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6 17.7

  15. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.6

  16. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8 1.025.65.64.2

  17. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.8

  18. Total........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0 22.7

  19. Total.........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.0

  20. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6

  1. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.

  2. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1 19.025.6.5.6

  3. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.1

  4. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6 16.6

  5. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.6

  6. Total..........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.1

  7. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2 7.67.10.6

  8. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.2

  9. Total...........................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6

  10. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2 7.6Do

  11. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2

  12. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2 7.87.14.24.2Cooking

  13. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2

  14. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have Cooling

  15. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not Have

  16. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo Not

  17. Total.............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo NotDo

  18. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo

  19. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  20. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.7

  1. Total..............................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not HaveDo0.77.1

  2. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not

  3. Total.................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0 8.0

  4. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.0

  5. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1 7.05.6

  6. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1

  7. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal

  8. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do Not7.1Personal4.2

  9. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do

  10. Total....................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1 19.0

  11. Total.........................................................................................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17questionnairesU.S. Weekly70516,2,730,77015.2Do 111.1 47.1

  12. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  13. Dealing in Doubt: The Climate Denial Industry and Climate Science

    E-Print Network [OSTI]

    Fairchild, Mark D.

    Dealing in Doubt: The Climate Denial Industry and Climate Science A Brief History of Attacks action on climate change has become more likely. This time, though, there is a difference. In recent, despite its lack of evidence or scientific support. The last peak in the climate denial campaign

  14. Climate simulators and climate projections Jonathan Rougier1

    E-Print Network [OSTI]

    Dixon, Peter

    Climate simulators and climate projections Jonathan Rougier1 Department of Mathematics University;Abstract We provide a statistical interpretation of current practice in climate mod- elling. This includes: definitions for weather and climate; clarifying the relationship between simulator output and simulator

  15. The role of solar absorption in climate and climate change

    E-Print Network [OSTI]

    1 The role of solar absorption in climate and climate change William Collins UC Berkeley Research Boulder, Colorado, USA #12;2 Prior Research on Absorption and Climate Field Experiments: · Central · Climate with enhanced cloud absorption Synthesis of models and aerosol observations: · Development

  16. Final Report for DOE Project: Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies

    SciTech Connect (OSTI)

    Bridgham, Scott D. [University of Oregon; Johnson, Bart [University of Oregon

    2013-09-26T23:59:59.000Z

    Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate change in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation effects were minimal for all measured responses indicating the importance of increased temperature

  17. The land use climate change energy nexus

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; Kline, Keith L [ORNL

    2011-01-01T23:59:59.000Z

    Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered both by changing human resource-management practices and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource extraction and land management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies and sustainability of alternative energy sources. Thus climate change, energy choices, and land-use change are linked, and any analysis in landscape ecology that considers one of these factors should consider them all. This analysis explores the implications of those linkages and points out ecological patterns and processes that may be affected by these interactions.

  18. Global climatic change

    SciTech Connect (OSTI)

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01T23:59:59.000Z

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  19. 2007 Radiation & Climate GRC ( July 29-August 3, 2007)

    SciTech Connect (OSTI)

    William Collins

    2008-06-01T23:59:59.000Z

    The theme of the fifth Gordon Research Conference on Radiation and Climate is 'Integrating multiscale measurements and models for key climate questions'. The meeting will feature lectures, posters, and discussion regarding these issues. The meeting will focus on insights from new types of satellite and in situ data and from new approaches to modeling processes in the climate system. The program on measurements will highlight syntheses of new satellite data on cloud, aerosols, and chemistry and syntheses of satellite and sub-orbital observations from field programs. The program on modeling will address both the evaluation of cloud-resolving and regional aerosol models using new types of measurements and the evidence for processes and physics missing from global models. The Conference will focus on two key climate questions. First, what factors govern the radiative interactions of clouds and aerosols with regional and global climate? Second, how well do we understand the interaction of radiation with land surfaces and with the cryosphere?

  20. Biological Impacts of Climate Change

    E-Print Network [OSTI]

    McCarty, John P.

    Biological Impacts of Climate Change John P McCarty, University of Nebraska at Omaha, Omaha, NE and reproduction depend on how well adapted individuals are to local climate patterns. Climate change can disrupt subsequent impacts on populations or species' distributions across geographic regions. Climate change may

  1. Climatic Change An Interdisciplinary, International

    E-Print Network [OSTI]

    Gvirtzman, Haim

    climate and cultural changes are observed in the Eastern Mediterranean and the Near East [e.g., Bookman et1 23 Climatic Change An Interdisciplinary, International Journal Devoted to the Description, Causes and Implications of Climatic Change ISSN 0165-0009 Volume 112 Combined 3-4 Climatic Change (2012) 112:769-789 DOI

  2. Multi-sensor Fusion to Determine Agricultural Sensitivity to Climate Variability in South Asia Last Updated: March 2014

    E-Print Network [OSTI]

    DeFries, Ruth S.

    on agriculture. Photo: M. Jain #12;Multi-sensor Fusion to Determine Agricultural Sensitivity to ClimateMulti-sensor Fusion to Determine Agricultural Sensitivity to Climate Variability in South Asia Last of the factors associated with climate sensitivity of Indian agriculture. #12;Multi-sensor Fusion to Determine

  3. Climate Change Adaptation Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    This course provides an introduction to planning for climate change impacts, with examples of tribes that have been going through the adaptation planning process. The course is intended for tribal...

  4. Climate Action Plan (Vermont)

    Broader source: Energy.gov [DOE]

    There is a growing scientific consensus that increasing emissions of greenhouse gases to the atmosphere are affecting the temperature and variability of the Earth’s climate. Recognizing the...

  5. Climate Action Plan (Michigan)

    Broader source: Energy.gov [DOE]

    On November 14, 2007, Governor Jennifer M. Granholm issued Executive Order No. 2007-42 establishing the Michigan Climate Action Council (MCAC). The Council is comprised of members representing...

  6. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26T23:59:59.000Z

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  7. Climate Action Plan (Minnesota)

    Broader source: Energy.gov [DOE]

    Recognizing the implications that global climate change may have on the economy, environment and quality of life in Minnesota, Governor Tim Pawlenty signed into law the 2007 Next Generation Energy...

  8. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31T23:59:59.000Z

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  9. Climate VISION: Events

    Office of Scientific and Technical Information (OSTI)

    Efficiency and CO2 Intensity Improvement (PDF 24 KB) October 24-26, 2005 12th Annual EPA Natural Gas STAR Workshop September 28-30, 2005 Climate RESOLVE GHG Management Workshop...

  10. Climate Science and Drought

    E-Print Network [OSTI]

    Gordon, W.

    2011-01-01T23:59:59.000Z

    Texas Climate Change and Drought Wendy Gordon, Ph.D. The University of Texas ? Austin Environmental Science Institute Texas Wildfires 2011 From the beginning of the fire season on November 15, 2010 to October 31, 2011 nearly 28,000 fires had... have been particularly severe due to the ongoing 2011 Southern US drought, and exacerbating the problem is land management practices, the unusual convergence of strong winds, unseasonably warm temperatures, and low humidity. Climate...

  11. Contrasting response of South Greenland glaciers to recent climatic change

    SciTech Connect (OSTI)

    Warren, C.R.; Glasser, N.F. (Univ. of Edinburgh, Scotland (United Kingdom))

    1992-05-01T23:59:59.000Z

    A unique geographical configuration of glaciers exists in the Narsarsuaq district of South Greenland. Two large outlet glaciers divide into seven distributaries, such that each glacier system has land-terminating, tidewater-calving, and fresh-water-calving termini. Despite a similar climatic regime, these seven glaciers have exhibited strongly contrasting terminal behavior in historical time, as shown by historical records, aerial photographs, and fieldwork in 1989. The behavior of the calving glaciers cannot be accounted for with reference solely to climatic parameters. The combination of iceberg calving dynamics and topographic control has partially decoupled them from climatic forcing such that their oscillations relate more closely to glaciodynamic than glacioclimatic factors.

  12. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  13. Advances in total scattering analysis

    SciTech Connect (OSTI)

    Proffen, Thomas E [Los Alamos National Laboratory; Kim, Hyunjeong [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In recent years the analysis of the total scattering pattern has become an invaluable tool to study disordered crystalline and nanocrystalline materials. Traditional crystallographic structure determination is based on Bragg intensities and yields the long range average atomic structure. By including diffuse scattering into the analysis, the local and medium range atomic structure can be unravelled. Here we give an overview of recent experimental advances, using X-rays as well as neutron scattering as well as current trends in modelling of total scattering data.

  14. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry:

  15. Sandia National Laboratories: Climate/Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateEnvironment ClimateEnvironment On January 27, 2011, in ClimateEnvironment Sensing and Monitoring Modeling and Analysis Carbon Management Water & Environment Publications...

  16. Climate Change Science Institute | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Science Institute SHARE Climate Change Science Institute To advance understanding of the Earth system, describe the consequences of climate change, and evaluate and...

  17. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas intensity by 18% over the 2002 to 2012 time frame. For the purposes of the initiative, greenhouse gas intensity is defined as the ratio of total U.S. greenhouse gas emissions to economic output.

  18. U.S. Greenhouse Gas Intensity and the Global Climate Change Initiative (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    On February 14, 2002, President Bush announced the Administrations Global Climate Change Initiative. A key goal of the Climate Change Initiative is to reduce U.S. greenhouse gas (GHG) intensity-defined as the ratio of total U.S. GHG emissions to economic output-by 18% over the 2002 to 2012 time frame.

  19. Contribution potential of glaciers to water availability in different climate regimes

    E-Print Network [OSTI]

    Marzeion, Ben

    Contribution potential of glaciers to water availability in different climate regimes Georg Kaser availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river

  20. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01T23:59:59.000Z

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  1. Page (Total 3) Philadelphia University

    E-Print Network [OSTI]

    Page (Total 3) Philadelphia University Faculty of Science Department of Biotechnology and Genetic be used in animals or plants. It can be also used in environmental monitoring, food processing ...etc are developed and marketed in kit format by biotechnology companies. The main source of information is web sites

  2. NEW WORK AND STUDY OPPORTUNITIES IN CLIMATE CHANGE Climate System Analysis Group (CSAG)

    E-Print Network [OSTI]

    Cohen, Ronald C.

    . - Postdoc: Climate modeling - Postdoc: Climate change information communication and dissemination - Research Associate: Climate change information communication and dissemination - PhD: Climate change information communication and dissemination - MSc/PhD: Physical science of climate change What to expect: Successful

  3. Debating Climate Change

    SciTech Connect (OSTI)

    Malone, Elizabeth L.

    2009-11-01T23:59:59.000Z

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  4. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    SciTech Connect (OSTI)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06T23:59:59.000Z

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second most important individual climate-forcing agent in the industrial era, following carbon dioxide. Sources that emit black carbon also emit other short- lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of co- emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil-fuel and biofuel) have a net climate forcing of +0.004 (-0.62 to +0.57) W m-2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all black- carbon-rich sources becomes slightly negative (-0.08 W m-2 with 90% uncertainty bounds of -1.23 to +0.81 W m-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

  5. The effects of ethical climate and faculty-student relationships on graduate student stress

    E-Print Network [OSTI]

    Kempner, Kimberly Pruitt

    2009-05-15T23:59:59.000Z

    department?s (or program?s) climate. A useful definition of this factor is predominantly derived from the work of Anderson, Louis, and Earle 13 (1994) and Victor and Cullen (1988). Anderson et al. (1994) defined departmental climate as the perceptions... of the psychologically important aspects of a department?s environment as shared among organizational participants over time. Victor and Cullen (1988) described the ethical work climate as the ?prevailing perceptions of typical organizational practices and procedures...

  6. UK Climate Change Risk Assessment and National

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    UK Climate Change Risk Assessment and National Adaptation Programme Meg Patel Defra #12 change #12;Weather & climate impacts - economic, societal, environmental Water consumption per capita;Legislative Framework Climate Change Act 2008 Adaptation Reporting Power 2011 Climate Change Risk Assessment

  7. COPENHAGEN CONSENSUS ON CLIMATE A Perspective Paper on Climate

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of Carbon Capture as a Response to Climate Change Roger Pielke, Jr. #12;COPENHAGEN CONSENSUS ON CLIMATE Engineering, Including an Analysis of Carbon Capture as a Response to Climate Change #12;AbstrAct PReface but not accurate. Second, it summarizes an analysis of the potential role for air capture technologies to play

  8. Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    E-Print Network [OSTI]

    Climate Extremes, Uncertainty and Impacts Climate Change Challenge: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4) has resulted in a wider acceptance of global climate change climate extremes and change impacts. Uncertainties in process studies, climate models, and associated

  9. Status of Climate Change

    E-Print Network [OSTI]

    North, G.

    2013-01-01T23:59:59.000Z

    Status of Climate Change 2013 CaTee Conference San Antonio 2013 ESL-KT-13-12-56 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Menu for Today • IPCC 2013: Assessment Report #5 • Facts about Climate Change... • Who will Win, Who will Lose • What Needs to be Done ESL-KT-13-12-56 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 IPCC #5 • No great surprises - Sharper language • Uncertainties are still large • Essentially...

  10. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean0ClimateClimate Change

  11. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean0ClimateClimate

  12. Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores

    E-Print Network [OSTI]

    Stocker, Thomas

    Continuous Flow Analysis of Total Organic Carbon in Polar Ice Cores U R S F E D E R E R , * , , P, University of Bern, Bern, Switzerland, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland, and British Antarctic Survey, Cambridge, United Kingdom Received May 6, 2008. Revised manuscript

  13. Total football in innovation policy Discussion paper on the evaluation of innovation policy

    E-Print Network [OSTI]

    innovation policy can be derived. Effective innovation policy addresses the issues within the technology1 Total football in innovation policy Discussion paper on the evaluation of innovation policy Koen Schoots, Bert Daniëls, Rodrigo Rivera ECN Policy Studies The innovation climate in the Netherlands

  14. Climate Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Climate Change Climate Change September 16, 2014 C3E Spotlights Women Leaders in Clean Energy Careers Women clean energy leaders convene in Boston for the Women in Clean Energy...

  15. Session Title Climate Smart Agriculture

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Session Title Climate Smart Agriculture Session Date Khosla (moderator) Professor, Soil and Crop Sciences College of Agricultural Climate Smart Agriculture is a multi-disciplinary approach to practice agriculture

  16. Climate Change and National Security

    E-Print Network [OSTI]

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01T23:59:59.000Z

    of climate change, energy security and economic stability.DoD is improving U.S. energy security and national security.www.greenpacks.org • Energy Security & Climate Change:

  17. Climate Action Plan (New Orleans)

    Broader source: Energy.gov [DOE]

    New Orleans' Climate Action Plan will provide a road map to reach the City's greenhouse gas (GHG) reduction goal by 2030 while orchestrating its adaptation to climate change. The CAP will outline...

  18. Climate Action Plan (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    Climate Ready, Ontario's Adaptation Strategy and Action Plan, outlines the problems, goals, and key strategies for the province's approach to climate change and the problems it poses. The Plan...

  19. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 | Tags:...

  20. Climate shocks: Natural and anthropogenic

    SciTech Connect (OSTI)

    Kondratyev, K.Ya.

    1988-01-01T23:59:59.000Z

    Much recent climate research has focused on the effects of CO{sub 2} and radiatively important trace species, volcanic eruptions, and nuclear exchanges on our future climate. These studies suggest that anthropogenic influence will alter our present climate. The reliability of the climate models are a subject of debate, yet valid information derived from climate models is critical for policy-makers and politicians to make decisions regarding energy use and development and defense strategies. K.Ya. Kondratyev, a leading Soviet climate scientist, addresses the role of the greenhouse effect, nuclear winter, and volcanic eruptions on our climate in a recently published book entitled Climate Shocks: Natural and Anthropogenic. The book provides a detailed survey of the literature on these fields, including the pertinent Soviet literature that is often not surveyed by Western scientists.

  1. REVIEW ARTICLE Legumes for mitigation of climate change

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    activity, and meeting the increasing demand for energy in the face of dwindling reserves of fossil energy to the mitigation of climate change by reducing fossil fuel use or by providing feedstock for the emerging biobased from fossil fuels. Experimental measures of total N2O fluxes from legumes and N-fertilized systems were

  2. 1, 231253, 2005 Synoptic climate

    E-Print Network [OSTI]

    Boyer, Edmond

    CPD 1, 231­253, 2005 Synoptic climate change as driver of New Zealand glaciation H. Rother and J / Esc Print Version Interactive Discussion EGU Climate of the Past Discussions, 1, 231­253, 2005 www.climate-of-the-past.net/cpd/1/231/ SRef-ID: 1814-9359/cpd/2005-1-231 European Geosciences Union Climate of the Past Discussions

  3. Climate Action Plan (Manitoba, Canada)

    Broader source: Energy.gov [DOE]

    Manitoba's Climate Action Plan centers around energy efficiency, although it includes mandates and initiatives for renewable sources of energy.

  4. VISUAL ANALYTICS FOR CLIMATE ANDTEXT ANALYSIS

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    . Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12 #12;CLIMATE DATA DELUGE Wednesday, April 11, 12

  5. Oregon Climate Assessment Report December 2010

    E-Print Network [OSTI]

    Pierce, Stephen

    - Climate change and agriculture in Oregon"" " " " " 151 Chapter 5 - The potential effects of climate changeOregon Climate Assessment Report December 2010 Oregon Climate Change Research Institute #12;Oregon Climate Assessment Report December 2010 Oregon Climate Change Research Institute Recommended citation

  6. BC Agriculture Climate Change Adaptation

    E-Print Network [OSTI]

    Pedersen, Tom

    BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report executive summary #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

  7. BC Agriculture Climate Change Adaptation

    E-Print Network [OSTI]

    Pedersen, Tom

    BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

  8. Climate Change Major information sources

    E-Print Network [OSTI]

    ://www.ipcc.ch/ Vital Climate Graphics, at http://www.grida.no/climate/vital/ Climate Change Impacts on US, at http://www.gcrio.org/NationalAssessment/ Greenhouse Warming Prediction #12;Energy Predictions 2 Sources: Energy Information Administration (EIA); International Energy Agency (IEA) 2% growth per year, or doubling in 35 years (shortcut: 70/%=doubling) Fossil

  9. Climate Change Action Plan Report

    E-Print Network [OSTI]

    Hansen, Andrew J.

    Climate Change Action Plan Report Intermountain Region 2013 National Park Service Resource Stewardship and Science Landscape Conservation and Climate Change Division #12;About this Report Each National Park Service is responding to the challenge of climate change; and (2) raise awareness among NPS

  10. 4, 28752899, 2007 Climate change

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 4, 2875­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page are under open-access review for the journal Hydrology and Earth System Sciences Climate change impact­2899, 2007 Climate change impact and model inaccuracy P. Droogers et al. Title Page Abstract Introduction

  11. CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND

    E-Print Network [OSTI]

    CLIMATE CHANGE IMPACTS, VULNERABILITIES, AND ADAPTATION IN THE SAN FRANCISCO BAY AREA Commission's California Climate Change Center JULY 2012 CEC5002012071 Prepared for: California Energy, as well as projections of future changes in climate based on modeling studies using various plausible

  12. Climate Change Proposed Scoping Plan

    E-Print Network [OSTI]

    Climate Change Proposed Scoping Plan a amework for change Prepared by the California Air Resources #12;CLIMATE CHANGE SCOPING PLAN State of California Air Resources Board Resolution 08-47 December 11 greenhouse gas (GHG) emissions that cause global warming; WHEREAS, the adverse impacts of climate change

  13. Detection of greenhouse-gas-induced climatic change. Progress report, 1 December 1991--30 June 1992

    SciTech Connect (OSTI)

    Wigley, T.M.L.; Jones, P.D.

    1992-07-15T23:59:59.000Z

    The aims of the US Department of Energy`s Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO{sub 2} and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs).

  14. The Science of Climate Change From the Globe to the Pacific Northwest

    E-Print Network [OSTI]

    Kurapov, Alexander

    University 27 October 2004, WESTCARB, Portland Oregon #12;Climate System ComponentsClimate System Components #12;Greenhouse Effect #12;Cooling Factors #12;Feedback Summary Anomalies and uncertainties, Global IPCC (2003) Best fit model combines natural and anthropogenic forcing #12;Future Global Predictions

  15. Residential Slab-On-Grade Heat Transfer in Hot Humid Climates

    E-Print Network [OSTI]

    Clark, E.; Ascolese, M.; Collins, W.

    1989-01-01T23:59:59.000Z

    resistances, thermostat setting and soil properties. Factors affecting Tm are discussed. For a typical carpeted residence in the hottest U.S. climates, the cooling load due to the slab is about 5 million Btu per cooling season. In some climates heat transfer...

  16. CLIMATE POLICY The Planet's

    E-Print Network [OSTI]

    Falge, Eva

    CLIMATE POLICY The Planet's Laundromat The Planet's Laundromat ANTHROPOLOGY Rukina's Remarkable Planck Society's Science Express last fall as it began its trip through India. India's Prime Minister Man). As a mem- ber of the German delegation, the visit afford- ed me the opportunity to learn more about India

  17. ENERGY, CLIMATE AND SUSTAINABLE

    E-Print Network [OSTI]

    ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT NAMAs and the Carbon Market Nationally Appropriate Mitigation Actions of developing countries PersPectives series 2009 #12;NAMAs and the Carbon MarketPPrOPriate MitigatiON actiONs: china's experience and Perspective . . . . . . . . . . . 11 Fei

  18. Energy, Climate & Infrastructure Security

    E-Print Network [OSTI]

    Energy, Climate & Infrastructure Security EXCEPTIONAL SERVICE IN THE NATIONAL INTEREST Sandia Security Administration under contract DE-AC04-94AL85000. SAND 2012-1846P CustomTraining Sandia providesPRAsandhowtheycanbemanaged to increase levels of safety and security. Like othertrainings,Sandiaexpertsdesigncoursesto beasbroadorin

  19. COLORADO CLIMATE Basic Climatology

    E-Print Network [OSTI]

    or cold, wetness or dryness, calm or storm, clearness or cloudiness Climate - the statistical collection;The Earth's Energy Balance Incoming energy from the sun (solar radiation) heats the Earth Some by the Earth and re-emitted Incoming solar radiation is shorter wavelengths (higher energy) than what

  20. aerosols and climate : uncertainties

    E-Print Network [OSTI]

    contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

  1. Global Climate & Catastrophic Risk

    E-Print Network [OSTI]

    de Lijser, Peter

    Global Climate & Catastrophic Risk Forum 2012 A Joint Program with LA RIMS Education Day Rethinking Catastrophic Risk in Risk Management: Earthquake-Related Challenges Featuring: Keynote Speaker Dr. Frank Beuthin, Willis Group Holdings Plc. Yohei Miyamoto, Aon Risk Solutions Curtis deVera, Marsh

  2. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May(MillionFeet)JulyEnd Use: Total

  3. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion

  4. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814 136,932

  5. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814

  6. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion120,814Pipeline

  7. U.S. Total Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009Feet)

  8. Total Operators and Inhomogeneous Proper Values Equations

    E-Print Network [OSTI]

    Jose G. Vargas

    2015-03-27T23:59:59.000Z

    Kaehler's two-sided angular momentum operator, K + 1, is neither vector-valued nor bivector-valued. It is total in the sense that it involves terms for all three dimensions. Constant idempotents that are "proper functions" of K+1's components are not proper functions of K+1. They rather satisfy "inhomogeneous proper-value equations", i.e. of the form (K + 1)U = {\\mu}U + {\\pi}, where {\\pi} is a scalar. We consider an equation of that type with K+1 replaced with operators T that comprise K + 1 as a factor, but also containing factors for both space and spacetime translations. We study the action of those T's on linear combinations of constant idempotents, so that only the algebraic (spin) part of K +1 has to be considered. {\\pi} is now, in general, a non-scalar member of a Kaehler algebra. We develop the system of equations to be satisfied by the combinations of those idempotents for which {\\pi} becomes a scalar. We solve for its solutions with {\\mu} = 0, which actually also makes {\\pi} = 0: The solutions with {\\mu} = {\\pi} = 0 all have three constituent parts, 36 of them being different in the ensemble of all such solutions. That set of different constituents is structured in such a way that we might as well be speaking of an algebraic representation of quarks. In this paper, however, we refrain from pursuing this identification in order to emphasize the purely mathematical nature of the argument.

  9. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01T23:59:59.000Z

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  10. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index 2012 JCR Science Edition Journal: Applications of Mathematics Mark Journal Title ISSN Total- life APPL MATH-CZECH 0862-7940 240 0.222 0.549 0.054 37 7.3 >10.0 Cited Journal Citing Journal Source

  11. Impacts of Climate Conditions and Adaptations on Agricultural Output and Household Income in Inner Mongolia, China

    E-Print Network [OSTI]

    Chen, Wenjuan

    2014-07-31T23:59:59.000Z

    between rural agricultural production/income generation, climate factors and adaptive activities in the dryland system. Two respective multiple regression models on grain and livestock production were built with secondary panel data in Inner Mongolia from...

  12. Variation in the sensitivity of organismal body temperature to climate change over local

    E-Print Network [OSTI]

    Gilman, Sarah

    climatic factors, including air temperature (Ta), surface temper- ature (Ts), solar radiation, cloud cover and communities (3­6). Accurately fore- casting the direct physiological effects of temperature change

  13. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    E-Print Network [OSTI]

    Shonkoff, Seth Berrin

    2012-01-01T23:59:59.000Z

    2008). "Accountability of networked climate governance: Therise of transnational climate partnerships." GlobalBoard. CARB (2008d). Climate change proposed scoping plan: a

  14. Climate Change in the South American Monsoon System: Present Climate and CMIP5 Projections

    E-Print Network [OSTI]

    Jones, Charles; Carvalho, Leila M. V

    2013-01-01T23:59:59.000Z

    Lau, 1998: Does a monsoon climate exist over South America?J. Climate, 11, 1020–1040.America monsoon system. Climate Dyn. , 36, 1865–1880, doi:

  15. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    E-Print Network [OSTI]

    Shonkoff, Seth Berrin

    2012-01-01T23:59:59.000Z

    Board. CARB (2008d). Climate change proposed scoping plan: aJ. (2009). "Cities, Climate Change and Urban Heat Islandet al. (2006). Climate change in California: health,

  16. Bringing climate change down to earth : science and participation in Canadian and Australian climate change campaigns

    E-Print Network [OSTI]

    Padolsky, Miriam Elana

    2006-01-01T23:59:59.000Z

    about Global Climate Change. Public Understanding of ScienceFoundation. 2005a. Climate Change: A Matter of SurvivalFoundation. 2005b. Climate Change > Actions 2005 [cited 10

  17. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    E-Print Network [OSTI]

    Shonkoff, Seth Berrin

    2012-01-01T23:59:59.000Z

    impacts of climate change on California agriculture. Climateby climate change in California, such as agriculture areas agriculture. Without proactive climate change mitigation

  18. Climate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original Template The Chair of the Department of DEPT NAME, NAME, is dedicated to improving workplace climate in your office. As part

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Climate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original TemplateClimate Survey Original Template The Chair of the Department of DEPT NAME, NAME, is dedicated to improving Survey Original TemplateClimate Survey Original TemplateClimate Survey Original TemplateClimate Survey

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  3. Climate-Energy Nexus

    SciTech Connect (OSTI)

    Gary Sayler; Randall Gentry; Jie Zhuang

    2010-07-01T23:59:59.000Z

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology for assessment of the sustainable production of biofuels (such as life-cycle analysis, sustainability metrics, and land-use policy). Establishment of two US-China scientific research networks in the area of bioenergy and environmental science is a significant result of the workshop.

  4. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  5. Total termination of term rewriting is undecidable

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

  6. Total Petroleum Systems and Assessment Units (AU)

    E-Print Network [OSTI]

    Torgersen, Christian

    Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

  7. ``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team

    E-Print Network [OSTI]

    ``Climate Modelling & Global Change'' scientific report ``Climate Modelling & Global Change'' Team) : : : : : : : : : : : : : : : : : 6 2.2 Anthropogenic climate change studies: scenario experiments (96) : : : : : : : : : 7 2 following its creation, the ``Climate Modelling & Global Change'' team had to make its proofs in order

  8. ``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change'' Team

    E-Print Network [OSTI]

    ``Climate Modelling & Global Change'' scientific report 1 ``Climate Modelling & Global Change of the tropical climate : : : : : : : : : : : : : : : : : : : : : 6 2.2 Short­term variability studies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 Climate drift sensitivity studies

  9. ARM Climate Research Facility Annual Report 2004

    SciTech Connect (OSTI)

    Voyles, J.

    2004-12-31T23:59:59.000Z

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  10. Presented by Climate Extremes: The Science,

    E-Print Network [OSTI]

    of climate change and impacts · Feedback among climate, land use, and population distribution · Climate Severe storms projected to grow more intense and frequent with changing climate 1. Observed trends match climate patterns and changing likelihoods of severe events, may bridge the gap · The challenge in going

  11. 4, 173211, 2008 Climate and glacier

    E-Print Network [OSTI]

    Boyer, Edmond

    CPD 4, 173­211, 2008 Climate and glacier response to ENSO in subtropical Andes E. Dietze et al.0 License. Climate of the Past Discussions Climate of the Past Discussions is the access reviewed discussion forum of Climate of the Past Response of regional climate and glacier ice proxies to El Ni

  12. Climate Change Adaptation for Local Government

    E-Print Network [OSTI]

    Pedersen, Tom

    Climate Change Adaptation for Local Government A Resource Guide June 2011 Jenny Fraser, Adaptation to Climate Change Team, Simon Fraser University #12;Page 1 of 26 Climate Change Adaptation for Local: RESOURCES THAT SUPPORT CLIMATE CHANGE ASSESSMENT 3. Past and Future Climate Change and Its Impacts 4

  13. Climate Change and Tourism Dr David Viner

    E-Print Network [OSTI]

    Feigon, Brooke

    Climate Change and Tourism éCLAT Dr David Viner Climatic Research Unit University of East Anglia d.viner@uea.ac.uk Tourism has a strong international dimension and is sensitive to any changes of climate that alter to attract visitors are likely to be vulnerable to climate change and the implementation of climate change

  14. CLIMATE CHANGE: Past, Present and Future: Introduction

    E-Print Network [OSTI]

    Allan, Richard P.

    CLIMATE CHANGE: Past, Present and Future: Introduction Richard Allan, Department of Meteorology r.p.allan@reading.ac.uk #12;Text Books and References · Henson, B., Rough Guide to Climate Change http://www.amazon.co.uk/Climate-Change-Guides-Reference- Titles/dp/1858281059 · Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007, www

  15. Sandia National Laboratories: Climate Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limit economic development, impact interdependent infrastructure (such as energy and agriculture), and are a fundamental source of ... Climate Security On May 13, 2011, in...

  16. Climate Action Plan (South Carolina)

    Broader source: Energy.gov [DOE]

    Governor Sanford issued Executive Order 2007-04 on February 16, 2007, establishing the South Carolina Climate, Energy and Commerce Advisory Committee (CECAC).

  17. Climate VISION: How to Participate

    Office of Scientific and Technical Information (OSTI)

    companies on the Climate VISION website. Many of these resources - including case studies, training courses, and more - are available to any company. We encourage your...

  18. Climate change risk and response

    E-Print Network [OSTI]

    Kahrl, Fredrich; Roland-Holst, David

    2008-01-01T23:59:59.000Z

    Impacts on California’s Water Supply Source Medellin-AzuaraClimate Change on Yields and Water use of Major Californiawith Less: Agricultural Water Conservation and Efficiency in

  19. Climate Action Plan (New Mexico)

    Broader source: Energy.gov [DOE]

    Recognizing the profound implications that global warming and climate variation could have on the economy, environment and quality of life in the Southwest, New Mexico Governor Bill Richardson...

  20. Climate Change and National Security

    E-Print Network [OSTI]

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01T23:59:59.000Z

    seas, droughts and fresh water shortages. ? Risk Assessmentinse- curity, water and food shortages, and climate-drivenalso struggle with shortages in fresh water, food and other

  1. Massachusetts Takes On Climate Change

    E-Print Network [OSTI]

    Kimmell, Ken; Laurie, Burt

    2009-01-01T23:59:59.000Z

    consumers and business with their energy costs by removingintegrated energy and climate policies lead to real businessas for energy efficiency measures in homes, businesses and

  2. Climate Change, Adaptation, and Development

    E-Print Network [OSTI]

    Cole, Daniel H.

    2008-01-01T23:59:59.000Z

    climate change is coal gasification, which can make theworld leaders in coal gasification tech- nology, has beenexperimenting with "in situ" gasification, where the coal is

  3. Sandia National Laboratories: Climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research effort. Created to help resolve scientific uncertainties related to global climate change, ARM focuses on studying the role of clouds and aerosols in atmospheric and...

  4. Climate Change, Adaptation, and Development

    E-Print Network [OSTI]

    Cole, Daniel H.

    2008-01-01T23:59:59.000Z

    climate change is coal gasification, which can make thethe world leaders in coal gasification tech- nology, haswill not occur. If not coal gasification, then perhaps fuel

  5. Climate change and energy security: an analysis of policy research

    SciTech Connect (OSTI)

    King, Marcus Dubois [George Washington University] [George Washington University; Gulledge, Jay [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The literature on climate change's impacts on energy security is scattered across disparate fields of research and schools of thought. Much of this literature has been produced outside of the academy by scholars and practitioners working in "think tanks," government agencies, and international/multilateral institutions. Here we reviewed a selected set of 58 articles and reports primarily from such sources and performed textual analysis of the arguments. Our review of this literature identifies three potential mechanisms for linking climate change and energy security: Climate change may 1) create second-order effects that may exacerbate social instability and disrupt energy systems; 2) directly impact energy supply and/or systems or 3) influence energy security through the effects of climate-related policies. We identify emerging risks to energy security driven by climate mitigation tech-nology choices but find less evidence of climate change's direct physical impacts. We used both empirical and qualitative selection factors for choosing the grey literature sample. The sources we selected were published in the last 5 years, available through electronic media and were written in language accessible to general policy or academic readers. The organi-zations that published the literature had performed previous research in the general fields of energy and/or climate change with some analytical content and identified themselves as non-partisan. This literature is particularly valuable to scholars because identifies understudied relationships that can be rigorously assessed through academic tools and methodologies and informs a translational research agenda that will allow scholars to engage with practitioners to address challenges that lie at the nexus of climate change and energy security.

  6. Long-term climate variability and abrupt climate change Instructor: Dr. Igor Kamenkovich, associate professor

    E-Print Network [OSTI]

    Miami, University of

    Long-term climate variability and abrupt climate change Instructor: Dr. Igor Kamenkovich, associate students to learn about existing theories of abrupt climate changes and climate variability on time scales of long-term climate variability and abrupt climate change. This course compliments current MPO courses

  7. A Framework for Analysis of the Uncertainty of Socioeconomic Growth and Climate Change on the Risk of Water Stress: a Case Study in Asia

    E-Print Network [OSTI]

    Fant, C.

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in how these factors change in the future is the uncertainty of ...

  8. Gravity Recovery And Climate Experiment Hydrology, Earth Science and Climate

    E-Print Network [OSTI]

    Mosegaard, Klaus

    · GRACE and Geophysics ­ 2004 Sumatra Earthquake · GRACE and Climate Change ­ East Greenland Melting ­ Observe changes with unprecidented accuracy GRACE can not discriminate between sources/causes Water: Atmosphere (Transport of water, pressure) Climate (Glaciers, Ice mass melting -> Run off) Hydrology

  9. Sea Level Rise Adaptation: From Climate Chaos to Climate Resilience

    E-Print Network [OSTI]

    Rohs, Remo

    Sea Level Rise Adaptation: From Climate Chaos to Climate Resilience Human Dimensions and Ocean, 2013 #12;Main Discussion Points · How do we incorporate Sea-Level Rise into planning and regulatory actions? · What Does the new NRC Report on Sea- Level Rise mean to Decision-makers? · How does Sea-Level

  10. Climate Change Response

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT §CleantechClimate ChangeInterior

  11. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean0Climate Change: Effects

  12. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean0Climate

  13. Sandia Energy - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime of KeyCarbonSandiaClimate

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3 ARM

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate3

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate38

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities andPastWritten Records5 ARM Climate383

  20. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    SciTech Connect (OSTI)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01T23:59:59.000Z

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different climate models.

  1. Original article Effect of climatic factors during the development periods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    & Land Reclamation, 9 Gamaa St., Dokki 12619, Giza, Egypt b Central Laboratory for Design and Statistical Analysis Research, Agricultural Research Center, Ministry of Agriculture & Land Reclamation, 9 Gamaa St of Agriculture and Land Reclamation, 9 Gamaa St., Dokki 12619, Giza, Egypt (Received 22 September 1998; accepted

  2. Climate and Hydrological Factors Affecting Variation in Chlorophyll

    E-Print Network [OSTI]

    Collin, Rachel

    in the Bahia Almirante, Panama Rachel Collin, Luis D'Croz, Plinio Gondola, and Juan B. Del Rosario ABSTRACT moni- toring in Bocas del Toro, Panama. Chlorophyll a concentrations did not vary significantly among depths decreased with rainfall and wind speed but increased with solar radiation, supporting the idea

  3. Editors Kirsten Halsns & Amit Garg ENERGY, CLIMATE

    E-Print Network [OSTI]

    Editors Kirsten Halsnæs & Amit Garg ENERGY, CLIMATE Sustainable Development, Energy and Climate Development, Energy and Climate Exploring Synergies and Tradeoffs Methodological Issues and Case Studies from Brazil, China, India, South Africa, Bangladesh and Senegal Editors Kirsten Halsnæs & Amit Garg ENERGY

  4. POTENTIAL IMPACTS OF CLIMATE CHANGE ON

    E-Print Network [OSTI]

    Sheridan, Jennifer

    POTENTIAL IMPACTS OF CLIMATE CHANGE ON FLOODING IN WISCONSIN Ken Potter and Zach Schuster flood scenarios in Wisconsin · Potential impact of climate change on Wisconsin flooding · Ongoing #12;WISCONSIN INITIATIVE ON CLIMATE CHANGE IMPACTS · Partnership between the University of Wisconsin

  5. Climate Change and Place Roundtable Discussion

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of Urban Development and Climate Change,” 2007. The fullThink about what runaway climate change would mean where youWorld Changing Seattle, WA Climate change is global in scale

  6. CLIMATE VULNERABILITY AND ADAPTATION STUDY FOR

    E-Print Network [OSTI]

    CLIMATE VULNERABILITY AND ADAPTATION STUDY FOR CALIFORNIA Legal Analysis of Barriers's California Climate Change Center JULY 2012 CEC5002012019 Prepared for: California Energy Commission to that framework that would facilitate adaptation to climate change. Since such changes may be difficult

  7. Climate Workshops for Department Chairs Introduction

    E-Print Network [OSTI]

    Sheridan, Jennifer

    #12;Climate Workshops for Department Chairs Introduction Why focus on Department Chairs? Goals participating departments Evidence from Campus-wide Climate Surveys #12;Why focus on Department Chairs? Individuals experience climate in their immediate workplace ­ the department Chairs can significantly

  8. Climate policy and dependence on traded carbon

    E-Print Network [OSTI]

    Andrew, Robbie M; Davis, Steven J; Peters, Glen P

    2013-01-01T23:59:59.000Z

    Contact us My IOPscience Climate policy and dependence on10.1088/1748-9326/8/3/034011 Climate policy and dependenceCenter for International Climate and Environmental Research—

  9. CLIMATE CHANGE IMPACTS ON CALIFORNIA VEGETATION

    E-Print Network [OSTI]

    CLIMATE CHANGE IMPACTS ON CALIFORNIA VEGETATION: PHYSIOLOGY, LIFE HISTORY, AND ECOSYSTEM CHANGE A White Paper from the California Energy Commission's California Climate Change Center of the uncertainties with climate change effects on terrestrial ecosystems is understanding where transitions

  10. ATNI Tribal Leaders Summit on Climate Change

    Broader source: Energy.gov [DOE]

    The Affiliated Tribes of Northwest Indians is hosting the Tribal Leaders Summit on Climate Change. This two-day conference will discuss climate change impacts, policy on climate change, tribal needs, funding opportunities, and more.

  11. Influence of Long-Period Variations of Total Ozone Content on Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebookInfinibandVorticesChange in

  12. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  13. Hydrologic Response to Climate Variability, Climate Change, and Climate Extreme in the U.S.: Climate Model Evaluation and Projections

    SciTech Connect (OSTI)

    Leung, Lai R.; Qian, Yun

    2005-08-01T23:59:59.000Z

    Water resources are sensitive to climate variability and change; predictions of seasonal to interannual climate variations and projections of long-term climate trends can provide significant values in managing water resources. This study examines the control (1975–1995) and future (1995–2100) climate simulated by a global climate model (GCM) and a regional climate simulation driven by the GCM control simulation for the U.S. Comparison of the regional climate simulation with observations across 13 subregions showed that the simulation captured the seasonality and the distributions of precipitation rate quite well. The GCM control and climate change simulations showed that, as a result of a 1% increase in greenhouse gas concentrations per year, there will be a warming of 2–3°C across the U.S. from 2000 to 2100. Although precipitation is not projected to change during this century, the warming trend will increase evapotranspiration to reduce annual basin mean runoff over five subregions along the coastal and south-central U.S.

  14. Climate Dynamics Observational, Theoretical and

    E-Print Network [OSTI]

    Dong, Xiquan

    1 23 Climate Dynamics Observational, Theoretical and Computational Research on the Climate System.6, and -22.5 Wm-2 , respectively, indicating a net cooling effect of clouds on the TOA radiation budget-2 , respectively, resulting in a larger net cooling effect of 2.9 Wm-2 in the model simu- lations

  15. Climatic Change An Interdisciplinary, International

    E-Print Network [OSTI]

    Alvarez, Nadir

    1 23 Climatic Change An Interdisciplinary, International Journal Devoted to the Description, Causes that the most genetically diverse populations are the ones most at risk from climate change, so that global warming will erode the species' genetic variability faster than it curtails the species' geographic

  16. Ecosystem Vulnerability Assessment - Patterns of Climate Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ecosystem Vulnerability Assessment - Patterns of Climate Change Vulnerability in the Southwest Ecosystem Vulnerability Assessment - Patterns of Climate Change Vulnerability in the...

  17. Climate VISION: Private Sector Initiatives: Electric Power

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power...

  18. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

  19. Training for Climate Adaptation in Conservation

    Broader source: Energy.gov [DOE]

    The Wildlife Conservation Society and the Northern Institute of Applied Climate Science are hosting this two-day training for climate adaptation.

  20. Climate VISION: Private Sector Initiatives: Forest Products:...

    Office of Scientific and Technical Information (OSTI)

    agencies, interacting with the legislative branch on climate change issues affecting agriculture and forestry, and representing USDA on U.S. delegations to international climate...

  1. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates of Second Key Atmospheric Component On May 1, 2013, in Analysis, Capabilities, Climate, CRF, Energy, Facilities, Global Climate & Energy, Modeling & Analysis, News, News &...

  2. BPA prepares for a changing climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both generally and as part of events such as El Nio. Evidence of global and regional climate change is mounting. The recently released National Climate Assessment confirmed...

  3. Climate VISION: Private Sector Initiatives: Forest Products

    Office of Scientific and Technical Information (OSTI)

    Forest & Paper Association (AF&PA) supports the Climate VISION initiative to address climate change through enhanced research in technology and science, incentives, and...

  4. 8, 31433162, 2008 Total ozone over

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 3143­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Chemistry and Physics Discussions Total column ozone variations over oceanic region around Indian sub­3162, 2008 Total ozone over oceanic regions M. C. R. Kalapureddy et al. Title Page Abstract Introduction

  5. 5, 1133111375, 2005 NH total ozone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract Introduction On the possible causes of recent increases in NH total ozone from a statistical analysis of satellite data from License. 11331 #12;ACPD 5, 11331­11375, 2005 NH total ozone increase S. Dhomse et al. Title Page Abstract

  6. 6, 39133943, 2006 Svalbard total ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 3913­3943, 2006 Svalbard total ozone C. Vogler et al. Title Page Abstract Introduction Discussions Re-evaluation of the 1950­1962 total ozone record from Longyearbyen, Svalbard C. Vogler 1 , S. Br total ozone C. Vogler et al. Title Page Abstract Introduction Conclusions References Tables Figures Back

  7. About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides

    E-Print Network [OSTI]

    Fisher, Kathleen

    New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

  8. Million U.S. Housing Units Total...............................

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    13.2 1.3 3.5 3.0 3.0 2.5 Table HC9.10 Home Appliances Usage Indicators by Climate Zone, 2005 Housing Units (millions) Greater than 7,000 HDD 5,500 to 7,000 HDD 4,000...

  9. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01T23:59:59.000Z

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  10. Accelerating development of a predictive science of climate.

    SciTech Connect (OSTI)

    Drake, John B [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2007-01-01T23:59:59.000Z

    Climate change and studies of its implications are front page news. Could the heat waves of July 2006 in Europe and the US be caused by global warming? Are increased incidences of strong tropical storms and hurricanes like Katrina to be expected? Will coastal cities be flooded due to sea level rise? The National Climatic Data Center (NCDC) which archives all weather data for the nation reports that global surface temperatures have increased at a rate near 0.6 C over the last century but that the trend is three times larger since 1976 [Easterling, 2006]. Will this rate continue or will climate change be even more abrupt? Stepping back from the flurry of questions, scientists must take a systematic approach and develop a predictive framework. With responsibility for advising on energy and technology strategies, the Department of Energy Office of Biological and Environmental Research has chosen to bolster the science of climate in order to get the story straight on the factors that cause climate change and the role of carbon loading from fossil fuel use.

  11. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  12. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  13. Forestry and ClimateForestry and Climate ChangeChange

    E-Print Network [OSTI]

    Sheridan, Jennifer

    and Forests:Climate Change and Forests: The GoodThe Good ·Forests as carbon sinks ·Longer growing season · CO2 · Reduced emissions ­ DNR too! · Enhanced sequestration · Bio-energy #12;What to Do?What to Do

  14. Climate Change and Forest Disturbances

    E-Print Network [OSTI]

    Dale, Virginia H.; Joyce, Linda A.; McNulty, Steve; Neilson, Ronald P.; Ayres, Matthew P.; Flannigan, Michael D.; Hanson, Paul J.; Irland, Lloyd C.; Lugo, Ariel E.; Peterson, Chris J.; Simberloff, Daniel; Swanson, Frederick J.; Stocks, Brian J.; Wotton, B. Michael; Peterson, A. Townsend

    2001-01-01T23:59:59.000Z

    of disturbances caused by climate change (e.g., Ojima et al. 1991).Yet modeling studies indicate the im- portance of climate effects on disturbance regimes (He et al. 1999). Local, regional, and global changes in temperature and precipitation can influence... circulation models (GCMs)—one de- veloped by the Hadley Center in the United Kingdom (HADCM2SUL) and one by the Canadian Climate Center (CGCM1)—have been selected for this national assessment (MacCracken et al. 2000). These transient GCMs simulate at...

  15. Dalhousie University Climate Change Plan 2010

    E-Print Network [OSTI]

    Brownstone, Rob

    University Climate Change Plan 2010 -- 4 Campus Energy Systems Green Buildings Sustainable TransportDalhousie University Climate Change Plan 2010 #12;Dalhousie University Climate Change Plan 2010 -- 2 The Climate Change Plan was prepared by The Dalhousie Office of Sustainability with advice from

  16. The Climate of the South Platte Basin

    E-Print Network [OSTI]

    The Climate of the South Platte Basin Colorado Climate Center http://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers #12;Precipitation Monthly Average Precipitation for Selected Sites in the South Platte Basin 0.00 0

  17. Stormwater, Climate Change and Wisconsin's Coastal Communities

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Stormwater, Climate Change and Wisconsin's Coastal Communities Johnson Foundation at Wingspread · Precipitation and high water · Adapting to our changing climate · Assisting coastal communities Photo: WDNR #12 source of risk from changing climate. City of Green Bay watershed - #12;Predicted climate includes

  18. 2, 11551186, 2006 Mid-Holocene climate

    E-Print Network [OSTI]

    Boyer, Edmond

    CPD 2, 1155­1186, 2006 Mid-Holocene climate change in Europe: a data-model comparison S. Brewer et.clim-past-discuss.net/2/1155/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Climate of the Past Discussions Climate of the Past Discussions is the access reviewed discussion forum of Climate

  19. Climate-development-energy policy related seminars

    E-Print Network [OSTI]

    Sussex, University of

    Paula Kivimaa (Finnish Environment Institute) From energy to climate policy in Finland Energy & climate Energy & Climate Tue 3rd Dec 18.00- 19.30 Large Jubilee Jeremy Leggett (SolarCentury) The EnergyClimate-development-energy policy related seminars Autumn term 2013 Date Time Location Speaker

  20. ProGreen 2014 Colorado Climate Update

    E-Print Network [OSTI]

    · Complex Mountain topography · Solar energy and seasonal cycles drive our climate #12;Colorado has" and we LOVE IT! #12;Monitoring our Climate · Elements: temperature, precipitation, snow, wind, solarProGreen 2014 Colorado Climate Update Nolan Doesken Colorado State Climatologist Colorado Climate

  1. Journal of Climate EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Hu, Yongyun

    investigate the climate dynamic feedbacks during a transition from the present climate7 to the extremely coldJournal of Climate EARLY ONLINE RELEASE This is a preliminary PDF of the author-produced manuscript. Hu, 2011: The initiation of modern "soft Snowball" and "hard Snowball" climates in CCSM3. Part II

  2. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  3. An iconic approach to representing climate change

    E-Print Network [OSTI]

    Feigon, Brooke

    1 An iconic approach to representing climate change Saffron Jessica O'Neill A thesis submitted-experts to be meaningfully engaged with the issue of climate change. This thesis investigates the value of engaging non-experts with climate change at the individual level. Research demonstrates that individuals perceive climate change

  4. Climatic Impact of Volcanic Emissions Alan Robock

    E-Print Network [OSTI]

    Robock, Alan

    and interannual climate forecasts following large eruptions, it provides support for nuclear winter theory

  5. Expanding Global Cooperation on Climate Justice

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in evaluating the financial architecture necessary to support just and sustainable climate interventions

  6. Climate Insights 101 Questions and Discussion Points: Module 1, Lesson 4: An Introduction to Climate Modelling

    E-Print Network [OSTI]

    Pedersen, Tom

    Climate Insights 101 Questions and Discussion Points: Module 1, Lesson 4: An Introduction to Climate Modelling 1 Climate Insights 101 Questions and Discussion Points Module 1, Lesson 4: An Introduction to Climate Modelling Available at http://pics.uvic.ca/education/climate-insights-101 Updated May

  7. Climate Sensitivity Estimated From Earth's Climate History James E. Hansen and Makiko Sato

    E-Print Network [OSTI]

    Hansen, James E.

    1 Climate Sensitivity Estimated From Earth's Climate History James E. Hansen and Makiko Sato NASA's climate history potentially can yield accurate assessment of climate sensitivity. Imprecise knowledge of the fast-feedback climate sensitivity, which is the sensitivity that most immediately affects humanity. Our

  8. Chicago Climate Exchange, Inc. 2010 Chicago Climate Exchange 1 The Role of Exchanges and Standardization

    E-Print Network [OSTI]

    Chicago Climate Exchange®, Inc.© 2010 Chicago Climate Exchange 1 The Role of Exchanges and Standardization in Reducing Emissions at Scale Michael J. Walsh, Ph.D. Executive Vice President Chicago Climate Exchange, Inc. #12;Chicago Climate Exchange®, Inc.© 2010 Chicago Climate Exchange Pacala-Socolow GHG

  9. Climate Mathematician Job Advertisement, September 2013 FACULTY POSITION IN CLIMATE MATHEMATICS

    E-Print Network [OSTI]

    Gallo, Linda C.

    1 Climate Mathematician Job Advertisement, September 2013 FACULTY POSITION IN CLIMATE MATHEMATICS in Climate Mathematics, beginning in August 2014. Exceptional candidates at the Associate Professor level an active interdisciplinary research program in climate mathematics with a focus on next generation climate

  10. "Climate change is sure to occur in some form." The study of climate impacts notes

    E-Print Network [OSTI]

    "Climate change is sure to occur in some form." 1 #12;The study of climate impacts notes how scientists generally agree that humans are changing the climate, and that if we continue pumping carbon we learn from past climate variations? How can we best adapt to climate change? This report attempts

  11. Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change, and

    E-Print Network [OSTI]

    1 Global Climate Change,Global Climate Change, Land Cover Change, andLand Cover Change Changes · Due to ­ Climate Change ­ Land Cover / Land Use Change ­ Interaction of Climate and Land Cover Change · Resolution ­ Space ­ Time Hydro-Climatic Change · Variability vs. Change (Trends) · Point data

  12. Assessing the effects of ocean diffusivity and climate sensitivity on the rate of global climate change

    E-Print Network [OSTI]

    Schmittner, Andreas

    sensitivity and ocean heat uptake on the rate of future climate change. We apply a range of values for climate a significant effect on the rate of transient climate change for high values of climate sensitivity, while values of climate sensitivity and low values of ocean diffusivity. Such high rates of change could

  13. Optimization Online - Total variation superiorization schemes in ...

    E-Print Network [OSTI]

    S.N. Penfold

    2010-10-08T23:59:59.000Z

    Oct 8, 2010 ... Total variation superiorization schemes in proton computed tomography ... check improved the image quality, in particular image noise, in the ...

  14. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  15. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  16. Natural Ventilation Applications in Hot-humid Climate: A Preliminary Design for the College of Design at NTUST 

    E-Print Network [OSTI]

    Lin, M. T.; Wei, H. Y.; Lin, Y. J.; Wu, H. F.; Liu, P. H.

    2010-01-01T23:59:59.000Z

    to create a comfortable architectural environment, especially in a hot, humid climate such as that of Taiwan. However, the air currents of urban wind fields are unpredictable and whimsical. The conventional architectural design process does not employ... the effectiveness of using natural ventilation for comfort, several factors have a strong impact on ventilation design schemes, namely objective analysis of the climatic profile, urban blocks and wind effects, and ventilation routes. These factors not only...

  17. Nature Climate Change features Los

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change features Los Alamos forest research February 27, 2013 New print edition of journal tags tree-stress project for cover story LOS ALAMOS, N.M., Feb. 27, 2013-The print...

  18. Climate Action Plan (New Jersey)

    Broader source: Energy.gov [DOE]

    The NJDEP Office of Sustainability and Green Energy coordinates programs that reduce greenhouse gas emissions that cause climate change, as well as programs designed to help New Jersey become...

  19. Electric Vehicles Global Climate Change

    E-Print Network [OSTI]

    Sóbester, András

    Hot Topics Electric Vehicles Global Climate Change Green Building Hydraulic Fracturing Nuclear to global warming. The UKgovernment has just announced it is investing $1 billion in their development Green Living Industry Regulation Remediation Research and Technology Sustainability Waste Water Products

  20. Climate sensitivity of marine energy 

    E-Print Network [OSTI]

    Harrison, Gareth P; Wallace, Robin

    2005-01-01T23:59:59.000Z

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change...