National Library of Energy BETA

Sample records for facility type photovoltaic

  1. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine.

  2. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  3. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final ...

  4. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  5. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy

  6. EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA

    Energy Savers [EERE]

    | Department of Energy 8: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA EA-1638: Solyndra, Inc. Photovoltaic Manufacturing Facility in Fremont, CA March 2, 2009 EA-1638: Final Environmental Assessment Loan Guarantee to Solyndra, Inc. for Construction of A Photovoltaic Manufacturing Facility and Leasing of an Existing Commercial Facility in Fremont, California March 31, 2009 EA-1638: Finding of No Significant Impact Loan Guarantee to Solyndra, Inc. for Construction of a

  7. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  8. NREL: Photovoltaics Research - Science and Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Facility Photo of the Science and Technology Facility (S&TF) at NREL. NREL's Science and Technology Facility (S&TF) has a sustainable and energy efficient design and will support solar cell, thin film, and nanostructure research. Solar cell, thin film, and nanostructure research are conducted in our Science and Technology Facility (S&TF) with the benefits of a forty percent reduction in energy use compared to standard laboratory buildings; energy recovery for

  9. Kammerer Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  10. Bruceville Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Bruceville Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  11. Dillard Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Dillard Road Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  12. Photovoltaics

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  13. Photovoltaics

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  14. McKenzie Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Facility Facility McKenzie Solar Plant Sector Solar Facility Type Photovoltaic Facility Status In Service Owner Recurrent Energy Developer Recurrent Energy Energy...

  15. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  16. Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  17. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOE Patents [OSTI]

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  18. Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Campbell, C.; Clark, N.

    2012-12-01

    To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories.

  19. Property:FacilityType | Open Energy Information

    Open Energy Info (EERE)

    Beach Wind Farm + Commercial Scale Wind + Agriwind Wind Farm + Commercial Scale Wind + Agua Caliente Solar Power Plant + Photovoltaic + Agua Caliente Solar Project + Utility scale...

  20. NREL: Photovoltaics Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and e-mail address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Photovoltaics Research Home Polycrystalline Thin Films Multijunctions New Materials, Devices, & Processes Testing & Analysis Facilities National Center for Photovoltaics

  1. New N-Type Polymers for Organic Photovoltaics: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    This CRADA will develop improved thin film organic solar cells using a new n-type ... Organic PV technology has the potential to overcome this problem through the use of ...

  2. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect (OSTI)

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100?nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33?mA/cm{sup 2}, an open circuit voltage of 0.72?V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  3. Energy efficiency in California laboratory-type facilities

    SciTech Connect (OSTI)

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  4. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  5. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  6. Solution Processable n-Type Perylene Diimide Copolymers for Organic Photovoltaics

    SciTech Connect (OSTI)

    Liang, Z.; Cormier, R. A.; Nardes, A. M.; Gregg, B. A.

    2011-01-01

    Perylene diimides are known as promising n-type semiconductor building blocks. Here we report the synthesis and characterization of a set of three soluble poly(perylene diimide)s and their preliminary characterization in organic photovoltaic cells. These polymers are made through the polycondensation of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) with a variety of poly(ethylene glycol) (PEG)- or poly(propylene glycol) (PPG)-based diamine comonomers. The flexible spacer offers increased solubility in organic solvents and allows the perylene core to assume a conformation that promotes favorable cofacial {pi}-{pi} interactions. Mixtures of these polymers with the hole-transporting polymer, poly(3-hexylthiophene) (P3HT) result in significant fluorescence quenching. However, the phase separation occurs on a scale too large for a bulk heterojunction solar cell. The PPGylated poly(perylene diimide) shows an unusually low free electron concentration ({approx}1.0 x 10{sup 12} cm{sup -3}) and therefore makes an excellent model system for future doping studies. These new polymers may have promise as stable electron-conductive layers with large light-absorptivities in solution-processable applications of organic electronics.

  7. Photovoltaic Cell Material Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Basics Photovoltaic Cell Material Basics August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, ...

  8. Sandia Energy - Sandians Win 'Best Paper' Award at Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Win 'Best Paper' Award at Photovoltaic Conference in Japan Home Renewable Energy Energy Facilities News SunShot News & Events Photovoltaic Solar Systems Analysis Computational...

  9. Table 10.8 Photovoltaic Cell and Module Shipments by Type, Trade, and Prices, 1982-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Photovoltaic Cell and Module Shipments by Type, Trade, and Prices, 1982-2010 Year U.S. Companies Reporting Shipments Shipments Trade Prices 1 Crystalline Silicon Thin-Film Total 2 Imports Exports Cells Modules Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Cells and Modules Modules Only Number Peak Kilowatts 3 Dollars 4 per Peak Watt 3 1982 19 NA NA NA NA 6,897 NA NA NA NA NA NA NA 1983 18 NA NA NA NA 12,620 NA NA NA

  10. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect (OSTI)

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  11. Visualizing the photovoltaic behavior of a type-II p-n heterojunction superstructure

    SciTech Connect (OSTI)

    Xing, Juanjuan; Takeguchi, Masaki; Hashimoto, Ayako; Cao, Junyu; Ye, Jinhua

    2014-04-21

    Photovoltaic behavior of a CaFe{sub 2}O{sub 4}/ZnFe{sub 2}O{sub 4} p-n multi-junction was investigated with electron holography combined with an in situ light irradiation system. Potential profiles of the samples with and without light irradiation were extracted to measure the open circuit photovoltage generated either by the whole heterojunction superstructure or from each p-n junction. Investigation on the variation in the energy band configuration under light irradiation revealed the mechanism involved in the photoelectric effect, with respect to the properties of the heterojunction and its periodic quantum structure.

  12. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  13. Photovoltaic Solar Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic Solar Projects Photovoltaic ...

  14. Amonix Photovoltaic System

    Broader source: Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  15. Property:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft...

  16. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT

  17. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  18. Band offsets of n-type electron-selective contacts on cuprous oxide (Cu{sub 2}O) for photovoltaics

    SciTech Connect (OSTI)

    Brandt, Riley E. E-mail: buonassisi@mit.edu; Lee, Yun Seog; Buonassisi, Tonio E-mail: buonassisi@mit.edu; Young, Matthew; Dameron, Arrelaine; Teeter, Glenn; Park, Helen Hejin; Chua, Danny; Gordon, Roy G.

    2014-12-29

    The development of cuprous oxide (Cu{sub 2}O) photovoltaics (PVs) is limited by low device open-circuit voltages. A strong contributing factor to this underperformance is the conduction-band offset between Cu{sub 2}O and its n-type heterojunction partner or electron-selective contact. In the present work, a broad range of possible n-type materials is surveyed, including ZnO, ZnS, Zn(O,S), (Mg,Zn)O, TiO{sub 2}, CdS, and Ga{sub 2}O{sub 3}. Band offsets are determined through X-ray photoelectron spectroscopy and optical bandgap measurements. A majority of these materials is identified as having a negative conduction-band offset with respect to Cu{sub 2}O; the detrimental impact of this on open-circuit voltage (V{sub OC}) is evaluated through 1-D device simulation. These results suggest that doping density of the n-type material is important as well, and that a poorly optimized heterojunction can easily mask changes in bulk minority carrier lifetime. Promising heterojunction candidates identified here include Zn(O,S) with [S]/[Zn] ratios >70%, and Ga{sub 2}O{sub 3}, which both demonstrate slightly positive conduction-band offsets and high V{sub OC} potential. This experimental protocol and modeling may be generalized to evaluate the efficiency potential of candidate heterojunction partners for other PV absorbers, and the materials identified herein may be promising for other absorbers with low electron affinities.

  19. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  20. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  1. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels...

  2. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic...

  3. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  4. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  5. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  6. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  8. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  9. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called photovoltaic (PV)...

  10. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called...

  11. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future MissionFacilities FacilitiesTara Camacho-Lopez2016-04-06T18:06:13+00:00 National Solar Thermal ... experimental engineering data for the design, ...

  12. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  13. Photovoltaics at DOE's National Renewable Energy Laboratory License

    Broader source: Energy.gov [DOE]

    Document describes a sample land use agreement surrounding the National Renewable Energy Laboratory Science and Technology Facility roof-top photovoltaic (PV) power purchase agreement (PPA).

  14. Leading By Example Solar Photovoltaic Canopy Grant Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers a state grant program for solar photovoltaic canopies installed at state facilities, including executive agencies, state institutions of higher education, and other quasi...

  15. Photovoltaics at DOE's National Renewable Energy Laboratory License...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Document describes a sample land use agreement surrounding the National Renewable Energy Laboratory Science and Technology Facility roof-top photovoltaic (PV) power purchase ...

  16. Sandia Energy - Sandia Participation in the 39th IEEE Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Participation in the 39th IEEE Photovoltaic Specialists (PVSC) Conference Home Renewable Energy Energy DETL Facilities Grid Integration News Distribution Grid Integration News &...

  17. Facilities-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Glove box photo UMass Amherst PHaSE EFRC participants and collaborators have access to the main Photovoltaic & Optical Spectroscopy Facility in Conte B523524 and its...

  18. Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open...

    Open Energy Info (EERE)

    Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name: Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place: Kunming, Yunnan Province,...

  19. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  20. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  1. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  2. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  3. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.

  4. Type B investigation report of curium-244 exposure at the ORNL TRU Facility, January 15, 1986

    SciTech Connect (OSTI)

    Love, G.L.; Butler, H.M.; Duncan, D.T.; Oakes, T.W.

    1986-04-01

    This Type B Investigative Report provides an evaluation of relevant events and activities that led to, were a part of, or resulted from the release of curium-244 in the Building 7920 facility at ORNL in January 1986. Impacts have been evaluated with respect to employee exposures and the costs and loss of productivity resulting from increased bioassay analyses and activities of investigative committees. Management systems evaluated include (1) training of employees performing lab analyses, (2) adherence to procedures, and (3) response to unusual circumstances.

  5. NREL: Photovoltaics Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success. The following events and meetings are of interest to partners of NREL Photovoltaics (PV) Research and the National Center for Photovoltaics (NCPV). Printable Version...

  6. Superior Valley photovoltaic power processing and system controller evaluation

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  7. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  8. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  9. Perovskite LaRhO{sub 3} as a p-type active layer in oxide photovoltaics

    SciTech Connect (OSTI)

    Nakamura, Masao Krockenberger, Yoshiharu; Fujioka, Jun; Kawasaki, Masashi; Tokura, Yoshinori

    2015-02-16

    Perovskite-type transition-metal oxides have a wide variety of physical properties and triggered intensive research on functional devices in the form of heteroepitaxial junctions. However, there is a missing component that is a p-type conventional band semiconductor. LaRhO{sub 3} (LRO) is one of very few promising candidates having its bandgap between filled t{sub 2g} and empty e{sub g} of Rh in low-spin state, but there has been no report on the synthesis of large-size single crystals or thin films. Here, we report on the junction properties of single-crystalline thin films of LRO grown on (110) oriented Nb-doped SrTiO{sub 3} substrates. The external quantum efficiency of the photo-electron conversion exceeds 1% in the visible-light region due to the wide depletion layer and long diffusion length of minority carriers in LRO. Clear indication of p-type band semiconducting character in a perovskite oxide of LRO will pave a way to explore oxide electronics of perovskite heterostructures.

  10. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  11. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  12. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  13. American Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Logo: American Photovoltaics Name: American Photovoltaics Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Solar Product: Will...

  14. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  15. Headquarters Facilities Master Security Plan- Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas

    Broader source: Energy.gov [DOE]

    2016 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas Describes DOE Headquarters procedures for establishing, maintaining, and deactivating Limited Areas and Vault-Type Rooms and protecting the classified information handled within those Areas.

  16. NREL Photovoltaic Program FY 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  17. NREL: Photovoltaics Research - Concentrator Photovoltaic (CPV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrator Photovoltaic (CPV) Report - Fraunhofer ISE and NREL Analyze Status of Market and Technology February 4, 2015 The German Fraunhofer Institute for Solar Energy Systems...

  18. Photovoltaic Cell And Manufacturing Process

    DOE Patents [OSTI]

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  19. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  20. Sandia Energy Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandian Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model Validation Guideline http:energy.sandia.gov...

  1. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  2. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  3. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  4. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  5. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  6. High density photovoltaic

    SciTech Connect (OSTI)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  7. Property:Types of Co-located facilities | Open Energy Information

    Open Energy Info (EERE)

    25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Co-located fish holding facility is ideal for evaluating the impacts of generation devices on fish...

  8. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  9. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  10. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  11. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  12. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  13. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  14. NREL: Photovoltaics Research - Steve Rummel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriarty, Carl Osterwald, Larry Ottoson, Steve Rummel, and Rafell Williams, "Rating Photovoltaics" 39th IEEE Photovoltaic Specialist Conference, Tampa Bay, Florida, June 16-21,...

  15. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Name: Integrated Photovoltaics Place: Sunnyvale, California Product: California-based stealth mode PV startup. Coordinates: 32.780338,...

  16. Ligitek Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Jump to: navigation, search Name: Ligitek Photovoltaic Place: Taiwan Sector: Solar Product: Ligitek solar is a fully owned subsidiary of Ligitek Electronics, that will...

  17. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  18. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  19. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  20. Microsystems Enabled Photovoltaics

    SciTech Connect (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  1. Photovoltaic manufacturing technology, Phase 1. Final technical report, 1 May 1991--10 May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS ``Eureka`` facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the ``Eureka`` facility to Chronar`s ``batch`` plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  2. Multijunction photovoltaic device and fabrication method

    DOE Patents [OSTI]

    Arya, Rajeewa R.; Catalano, Anthony W.

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  3. NREL Seeks Proposals for Photovoltaic Technology Incubator Program - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Seeks Proposals for Photovoltaic Technology Incubator Program August 3, 2010 The U. S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is seeking project proposals as part of recently announced DOE funding to accelerate commercialization of solar energy technologies. The Photovoltaic (PV) Technology Incubator project fosters collaboration between U.S. small businesses and NREL and other DOE laboratories and facilities. Funding is intended to focus

  4. Detailed Photovoltaic Analysis Simulation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software calculates photovoltaic system energy and financial performance via the utilization of very detailed parameters.

  5. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  6. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  7. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  8. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  10. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Technology Basics Photovoltaic Technology Basics August 16, 2013 - 4:47pm Addthis Text Version Photovoltaic (PV) materials and devices convert sunlight into ...

  11. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Patent: Photovoltaic module with removable wind deflector Citation Details In-Document Search Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module ...

  12. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Reducing Photovoltaic Costs Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. The development of more ...

  13. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material ...

  14. Category:Photovoltaic Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Incentives Jump to: navigation, search Category for Photovoltaic Incentives. Pages in category "Photovoltaic Incentives" The following 107 pages are in this category,...

  15. Category:Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Jump to: navigation, search This is the Photovoltaic category. Pages in category "Photovoltaic" The following 7 pages are in this category, out of 7 total. A American...

  16. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic module with removable wind deflector Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module assembly including a PV module, a deflector, ...

  17. Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Photovoltaics The SunShot Initiative supports the research and development of photovoltaic (PV) technologies to improve efficiency and reliability and to lower manufacturing costs in order to make solar electricity cost-competitive with other sources of energy by 2020. As of November 2015, four years into the decade-long SunShot Initiative, the solar industry is about 70% of the way to achieving SunShot's cost target of $0.06 per kilowatt-hour for utility-scale PV (based on 2010

  18. NREL: Photovoltaics Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us At the National Renewable Energy Laboratory (NREL), our photovoltaic (PV) expertise can be leveraged by industry, university, and government agencies through a variety of opportunities. Find out more about working with us based on what you want to do. Partner with Us A wide angle photo from the ceiling of a laboratory. A man is adjusting something on a circular machine. You can work with our experts and take advantage of NREL's outstanding facilities and technical capabilities to

  19. Photonic Design for Photovoltaics

    SciTech Connect (OSTI)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  20. Photovoltaics: Separating Multiple Excitons

    SciTech Connect (OSTI)

    Nozik, A. J.

    2012-05-01

    Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

  1. NREL: Photovoltaics Research - Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Engineering Photovoltaic (PV) Engineering at NREL supports commercial and emerging PV technology development. Our support covers the following three areas: Engineering Testing and Evaluation. We provide engineering testing and evaluation of PV products developed by companies during work sponsored by the U.S. Department of Energy (DOE). We determine if products meet performance criteria established by DOE for a company's contractual obligations. Standards Development. We support the

  2. NREL: Photovoltaics Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News The U.S. Department of Energy's National Renewable Energy Laboratory Photovoltaic (PV) Research Program provides links to a variety of solar news sources to keep you apprised of PV Research subprogram and solar industry activities. NREL PV News Keep current on all the latest news releases and news stories about NREL PV research. See also PV events. Printable Version Photovoltaics Research Home Polycrystalline Thin Films Multijunctions New Materials, Devices, & Processes Testing &

  3. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  4. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  5. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  6. Photovoltaics Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mesa Verde National Park in Colorado is the home of this PV array, where it provides energy for the visitor center. Photo Courtesy: Department of Energy Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot

  7. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  8. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  9. NREL: Photovoltaics Research - Accomplishments in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Accomplishments in Photovoltaic Manufacturing R&D Successful efforts within the PV Manufacturing R&D Project were recognized by the solar industry. Key highlights from the project are summarized below. Overall, the project resulted in a more than 50% reduction in manufacturing costs and a substantial return on investment for both the U.S. government and the industries involved. A number of companies participating in the project were able to make technological

  10. NREL: Photovoltaics Research - Company Partners in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices

  11. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  12. NREL: Photovoltaics Research -Kent Terwilliger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: Troubleshooting and repairing environmental test chambers. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  13. NREL: Photovoltaics Research - Greg Perrin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maintenance, and repair; machining and other lab support. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  14. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  15. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  16. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  17. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, H.M.; Crandall, R.S.; Tracy, C.E.

    1994-12-27

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer. 5 figures.

  18. Electrochromic-photovoltaic film for light-sensitive control of optical transmittance

    DOE Patents [OSTI]

    Branz, Howard M.; Crandall, Richard S.; Tracy, C. Edwin

    1994-01-01

    A variable transmittance optical component includes an electrochromic material and a photovoltaic device-type thin film solar cell deposited in a tandem type, monolithic single coating over the component. A bleed resistor of a predetermined value is connected in series across the electrochromic material and photovoltaic device controlling the activation and deactivation of the electrochromic material. The electrical conductivity between the electrochromic material and the photovoltaic device is enhanced by interposing a transparent electrically conductive layer.

  19. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  20. Asphaltene based photovoltaic devices

    DOE Patents [OSTI]

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  1. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  2. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  3. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  4. Biodyne Pontiac Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  5. San Marcos Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  6. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  7. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  8. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  9. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  10. Otay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  11. Wheelabrator Saugus Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  12. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  13. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  14. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  15. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  16. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  17. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  18. Formed photovoltaic module busbars

    SciTech Connect (OSTI)

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  19. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  20. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  1. Reticulated Organic Photovoltaics

    SciTech Connect (OSTI)

    Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

    2012-03-21

    This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

  2. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  3. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  4. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  5. Multijunction photovoltaic device and method of manufacture

    DOE Patents [OSTI]

    Arya, Rejeewa R.; Catalano, Anthony W.; Bennett, Murray

    1995-04-04

    A multijunction photovoltaic device includes first, second, and third amorphous silicon p-i-n photovoltaic cells in a stacked arrangement. The intrinsic layers of the second and third cells are formed of a-SiGe alloys with differing ratios of Ge such that the bandgap of the intrinsic layers respectively decrease from the first uppermost cell to the third lowermost cell. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one of the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers.

  6. Lincoln Wind Energy Facility I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lincoln Wind Energy Facility I Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  7. Lincoln Wind Energy Facility II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lincoln Wind Energy Facility II Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  8. Department of Energy: Photovoltaics program - FY 1996

    SciTech Connect (OSTI)

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  9. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  10. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  11. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  12. Photovoltaics in the Classroom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics (PV) in the Classroom Workshop National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 National Renewable Energy Laboratory 2 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy National Laboratory Operated by Midwest Research Institute * Battelle * Bechtel NREL/PublicationCode June 1999 NOTICE This report was prepared as an account of work sponsored by an agency of the United States

  13. Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabled Photovoltaics (MEPV) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  15. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  16. Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Photovoltaic System Basics August 20, 2013 - 4:00pm Addthis A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An ...

  17. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL’s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  18. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  19. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR...

  20. Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Photovoltaics Inc Place: Ft. Pierce, Florida Zip: 34981 Product: Makes nano crystalline silicon particles and collides, and has over 22...

  1. NREL: Photovoltaics Research - Bill Sekulic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon Modules to Qualify Their Resistance to System Voltage Stress." Progress in Photovoltaics: Research and Applications, 22(7): 775-83; Golden, CO: National Renewable Energy...

  2. NREL: Photovoltaics Research - Bill Marion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Publications View NREL publications for this staff member. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  3. NREL: Photovoltaics Research - NCPV Hotline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | April-June | July-September | October-December Annual Index Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  4. NREL: Photovoltaics Research - Standards Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Development NREL's Photovoltaic (PV) Engineering group supports the development of national and international standards for PV engineering. Current standards lack...

  5. NREL: Photovoltaics Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) research and development (R&D) at the National Renewable Energy Laboratory (NREL) focuses on (1) boosting solar cell conversion efficiencies, (2) lowering the ...

  6. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  7. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Southwest Photovoltaic Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Southwest Photovoltaic Systems Inc Jump to: navigation, search Name: Southwest Photovoltaic Systems Inc Place: Tomball, Texas Zip: 77375 Product: Distributor of small scale PV...

  9. Sandia Energy Photovoltaic Systems Evaluation Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan http:energy.sandia.govsandians-win-best-paper-award-at-photovoltaic-conference-in-j...

  10. Photovoltaics Value Clearinghouse | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Value Clearinghouse Jump to: navigation, search The Photovoltaics Value Clearinghouse was developed by NREL and Clean Power Research.1 The PV Value Clearinghouse is...

  11. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  12. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  13. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  14. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  15. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot ...

  16. PROJECT PROFILE: Support of International Photovoltaic Module...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support of International Photovoltaic Module Quality Assurance Task Force (PVQAT) PROJECT PROFILE: Support of International Photovoltaic Module Quality Assurance Task Force (PVQAT) ...

  17. Funding Opportunity Announcement: Photovoltaic Research & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: 20,000,000 ...

  18. Photovoltaic Crystalline Silicon Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, ... To create an electric field within a crystalline silicon photovoltaic (PV) cell, two ...

  19. Photovoltaic array mounting apparatus, systems, and methods ...

    Office of Scientific and Technical Information (OSTI)

    Patent: Photovoltaic array mounting apparatus, systems, and methods Citation Details In-Document Search Title: Photovoltaic array mounting apparatus, systems, and methods An ...

  20. Energy 101: Solar Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert ... What are the key facts? The literal translation of the word photovoltaic is ...

  1. Jiaxing Winsaint Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Winsaint Photovoltaic Jump to: navigation, search Name: Jiaxing Winsaint Photovoltaic Place: Jiashan Town, Zhejiang Province, China Zip: 314100 Product: China-based manufacturer of...

  2. Dazhan Photovoltaic Co | Open Energy Information

    Open Energy Info (EERE)

    Dazhan Photovoltaic Co Jump to: navigation, search Name: Dazhan Photovoltaic Co Place: Wenzhou City, Zhejiang Province, China Sector: Solar Product: China-based solar energy cell...

  3. Shaanxi Photovoltaic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Shaanxi Photovoltaic Co Ltd Place: Shaanxi Province, China Product: Shaanxi-based intergrated PV company. References: Shaanxi Photovoltaic...

  4. Institute of Concentration Photovoltaic Systems ISFOC | Open...

    Open Energy Info (EERE)

    Photovoltaic Systems ISFOC Jump to: navigation, search Name: Institute of Concentration Photovoltaic Systems (ISFOC) Place: Puertallano, Spain Zip: 13500 Product: Part of the R&D...

  5. British Photovoltaic Association | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Association Jump to: navigation, search Name: British Photovoltaic Association Place: Milton Keynes, United Kingdom Zip: MK5 8NG Product: Trade body for the PV...

  6. Jinzhou Jinmao Photovoltaic Technology | Open Energy Information

    Open Energy Info (EERE)

    Jinmao Photovoltaic Technology Jump to: navigation, search Name: Jinzhou Jinmao Photovoltaic Technology Place: Jinzhou, Liaoning Province, China Product: China-based manufacturer...

  7. American Photovoltaics LP | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics LP Place: Houston, Texas Product: Manufactures and markets thin-film photovoltaic modules. Coordinates: 29.76045, -95.369784 Show Map Loading map......

  8. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  9. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  10. Monitoring SERC Technologies - Solar Photovoltaics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Monitoring SERC Technologies - Solar Photovoltaics On Oct. 20, 2011, Peter McNutt, an electrical engineer with the Market Transformation Center at NREL, presented a ...

  11. Life Cycle Nitrogen Trifluoride Emissions from Photovoltaics

    SciTech Connect (OSTI)

    Fthenakis, V.

    2010-10-25

    Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF{sub 3}, a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the life-cycle emissions of NF{sub 3} in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF{sub 3} and of a manufacturer of PV end-use equipment. From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF{sub 3} at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF{sub 3} in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO{sub 2eq}/kWh, which can be displaced within the first 1-4 months of the PV system life.

  12. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  13. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  14. Type B Investigation Board Report on the April 2, 2002, Worker Fall from Shoring/Scaffolding Structure at the Savannah River Site Tritium Extraction Facility Construction Site

    Broader source: Energy.gov [DOE]

    On April 2, 2002, a carpenter helping to erect shoring/scaffolding fell about 52” and struck his head. He sustained head injuries requiring hospitalization that exceeded the threshold for a Type B investigation in accordance with Department of Energy (DOE) Order 225.1A, Accident Investigation. The accident occurred at the DOE’s Savannah River Site (SRS) at the Tritium Extraction Facility (TEF) construction site.

  15. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  16. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  17. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  18. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  19. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect (OSTI)

    Lonergan, Mark

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  20. Department of Energy Offers $90.6 Million Conditional Commitment Loan Guarantee to Support Colorado Solar Generating Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project is One of the First Utility Scale, High Concentration Photovoltaic Energy Generation Facilities in the U.S. and the Largest of its Kind in the World

  1. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  2. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  3. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  4. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  5. Two-for-One Deal for Photovoltaics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two-for-One Deal for Photovoltaics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.14 Two-for-One Deal for Photovoltaics Process doubles

  6. Match-Heads Boost Photovoltaic Efficiency | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Match-Heads Boost Photovoltaic Efficiency Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.15 Match-Heads Boost Photovoltaic Efficiency Tiny

  7. Renewable Energy Ready Home Solar Photovoltaic Specifications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency.

  8. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOE Patents [OSTI]

    Wernsman, Bernard R.

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  9. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Sputtered Thin Film Photovoltaics Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication SputteringThinFilmPhotovoltaics (81 KB) Technology Marketing SummaryThe Naval Research Laboratory (NRL) has developed a suite of processes for the fabrication of bulk and sputtered thin film copper indium gallium diselenide (CIGS) and related materials for photovoltaic (PV)

  10. Photovoltaic Online Training Course for Code Officials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Online Training Course for Code Officials Photovoltaic Online Training Course for Code Officials The Photovoltaic Online Training Course for Code Officials is a free ...

  11. Powering New Markets: Utility-scale Photovoltaic Solar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar Powering New Markets: Utility-scale Photovoltaic Solar PDF icon ...

  12. EA-341 Photovoltaic Technologies, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico PDF icon EA- 341 ...

  13. SunShot Photovoltaic Manufacturing Initiative | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests ...

  14. Photovoltaic power generation system free of bypass diodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic power generation system free of bypass diodes Title: Photovoltaic power generation system free of bypass diodes A photovoltaic power generation system that includes a ...

  15. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  16. Plasmonic Backscattering Enhanced Inverted Photovoltaics

    SciTech Connect (OSTI)

    Dissanayake, D. M. N. M.; Roberts, B.; Ku, P.C.

    2011-01-01

    A plasmonic nanoparticle incorporated inverted organic photovoltaic structure was demonstrated where a monolayer of Ag nanoparticles acted as a wavelength selective reflector. Enhanced light harvesting via plasmonic backscattering into the photovoltaic absorber was observed, resulting in a two-fold improvement in the photocurrent and increased open-circuit voltage. Further, utilizing an optical spacer, the plasmonic backscattering was spectrally controlled, thereby modulating the external quantum efficiency and the photocurrent. Unlike a regular thin-film metallic back reflector, excellent off-resonance optical transmission in excess of 80% was observed from the Ag nanoparticles, making this structure highly suitable for semi-transparent and multi-junction photovoltaic applications.

  17. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  18. Oceanridge Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Oceanridge Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  19. Arrowhead Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Arrowhead Fisheries Sector Geothermal energy Type Aquaculture Location Susanville, California Coordinates...

  20. Dashun Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Dashun Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  1. Pacific Aquafarms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Pacific Aquafarms Sector Geothermal energy Type Aquaculture Location Niland, California Coordinates 33.2400366,...

  2. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  3. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  4. SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  5. SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Aquaculture Location Las Cruces, New Mexico Coordinates 32.3123157,...

  6. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  7. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  9. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  10. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  11. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  12. A review of current anti-islanding methods for photovoltaic power system

    SciTech Connect (OSTI)

    Yu, Byunggyu; Yu, Gwonjong; Matsui, Mikihiko

    2010-05-15

    Islanding phenomenon is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Until now, various anti-islanding methods (AIMs) for detecting and preventing islanding of photovoltaic and other distributed generations (DGs) have been proposed. This paper presents an overview of recent anti-islanding method developments for grid-connected photovoltaic (PV) power generation, focusing on the concept and operating principle, mainly based on single phase system. For the performance comparison, the experimental results of the various AIMs with 3 kW PV inverter are provided based on the islanding detection capability and power quality. As a result, the active AIMs have better islanding detection capability rather than the passive one. However, the active AIMs have power quality degradation on harmonic distortion or displacement power factor based on the injected active signal type. In addition to the evaluation and comparison of the main anti-islanding methods, this paper also summarizes the related anti-islanding standards to evaluate anti-islanding capability for PV system. This paper can be used as a useful anti-islanding reference for future work in DG like PV, and wind turbine. (author)

  13. Photovoltaic System Performance

    Energy Science and Technology Software Center (OSTI)

    1989-09-25

    PVFORM4.0 is used to design a photovoltaic (PV) system using a set of design parameters which optimize the system's economic potential for the proposed location and the expected operating conditions. PVFORM3.3 has been used to determine PV system size and optimum mounting configuration. The anticipated electrical load determines the system size and the weather and the mounting configuration affect the system output. PVFORM4.0 uses program-supplied default values or their user-supplied equivalents for each of amore » large number of parameters describing the system and time-series data describing the environment to perform a series of hourly calculations to simulate the physical (photovoltaic) performance of a PV system for a one-year period. These iterative calculations sample the performance of the PV system throughout a simulated 365-day year of system operation. Within any simulated day on which system performance is sampled, the calculations are done hourly. The number of days sampled and the interval between them is determined by an input parameter. The results of these calculations are summarized on a monthly basis in output tables and an optional plot file. The program is applicable to grid interactive or stand-alone flat-plate systems. The grid interactive system is assumed to use power purchased from a local utility to supply that portion of the load not met by the simulated PV array. If the array produces more energy than can be consumed by the load, the excess energy is assumed to be sold back to the utility at a constant energy sellback price. If a stand-alone system is being modeled, the program assumes that all energy produced by the simulated PV array is first applied to the external load, and any excess is then used to charge the battery bank. Energy not consumed by the load or the batteries is considered to be wasted.« less

  14. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  15. Photovoltaic as | Open Energy Information

    Open Energy Info (EERE)

    as Jump to: navigation, search Name: Photovoltaic as Place: Zl-n, Czech Republic Zip: 760 01 Product: Czech developer operating a 1.4MW plant in the Czech Republic. Coordinates:...

  16. Plug-and-Play Photovoltaics

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  17. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  18. Denver International Airport Photovoltaic System

    Broader source: Energy.gov [DOE]

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  19. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  20. Photovoltaic Manufacturing Technology report, Phase 1

    SciTech Connect (OSTI)

    Mason, A.V.; Lillington, D.R.

    1992-10-01

    This report describes subcontracted research by Spectrolab, Inc., to address tasks outlined in the National Renewable Energy Laboratory's (NREL) Letter of solicitation RC-0-10057. These tasks include the potential of making photovoltaics (PV) a more affordable energy source, as set forth in the goal of the PVMaT project. Spectrolab believes that the DOE cost goals can be met using three different types of cells: (1) silicon concentrator cells, (2) high efficiency GaAs concentrator cells, and (3) mechanically stacked multijunction cells.

  1. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  2. Type B Accident Investigation of the July 14, 2005, Americium Contamination Accident at the Sigma Facility, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Edwin L. Wilmot, Manager of the Los Alamos Site Office of the National Nuclear Security Administration, U.S. Department of Energy.

  3. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  4. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  6. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  7. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  8. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  10. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  11. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  12. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  13. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...

  14. Newby Island I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Newby Island I Biomass Facility Jump to: navigation, search Name Newby Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa...

  15. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  16. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  17. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  18. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  19. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  20. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  1. Covanta Hennepin Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal...

  2. Covanta Babylon Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal...

  3. Covanta Bristol Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal...

  4. Covanta Fairfax Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type Municipal...

  5. Covanta Stanislaus Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type...

  6. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  7. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  8. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  9. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  10. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  11. Montenay Montgomery LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Montenay Montgomery LP Biomass Facility Jump to: navigation, search Name Montenay Montgomery LP Biomass Facility Facility Montenay Montgomery LP Sector Biomass Facility Type...

  12. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type...

  13. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Energy Savers [EERE]

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR PDF icon SOLAR: UTILITY-SCALE PHOTOVOLTAIC SOLAR POSTER More Documents & Publications UTILITY-SCALE PHOTOVOLTAIC SOLAR Download LPO's Illustrated Poster Series ANTELOPE VALLEY SOLAR RANCH MESQUITE

  14. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  15. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect (OSTI)

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  16. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  17. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  18. PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies Funding ...

  19. Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Solar Photovoltaics Sustainable Energy Resources for Consumers (SERC) - Solar Photovoltaics This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) ...

  20. Photovoltaic Systems Evaluation Laboratory (PSEL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar ...

  1. Photovoltaics for municipal planners

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  2. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  3. Polar Photovoltaics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Polar Photovoltaics Co Ltd Jump to: navigation, search Name: Polar Photovoltaics Co Ltd Place: Bengbu, Anhui Province, China Zip: 233030 Product: A Chinese a-Si thin film PV cell...

  4. Canrom Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    Canrom Photovoltaics Inc Jump to: navigation, search Name: Canrom Photovoltaics Inc Place: Niagara Falls, New York Zip: 14305 Sector: Solar Product: Developer of a thin-film CdTe...

  5. Photovoltaic Cell Structure Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Structure Basics Photovoltaic Cell Structure Basics August 19, 2013 - 4:50pm Addthis The actual structural design of a photovoltaic (PV), or solar cell, depends on the ...

  6. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  7. Photovoltaic Silicon Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular ...

  8. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  9. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  10. Plug-and-Play Photovoltaics Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  11. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  12. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  13. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  14. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium

  15. PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photovoltaic Stakeholder Engagement Initiatives PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Lab, Albuquerque, NM SunShot Award Amount: $89,000 This project is focused on independent stakeholder engagement activities conducted by Sandia National Laboratory relating to photovoltaic (PV) outreach at the national and international level. APPROACH The International

  16. Funding Opportunity Announcement: Photovoltaic Research & Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PVRD) | Department of Energy Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: $20,000,000 The Photovoltaic Research & Development (PVRD) funding opportunity will fund approximately 30 to 35 projects that will advance the limits of photovoltaic cell and module performance toward and beyond the 2020 SunShot goals. Successful applicants will demonstrate a convincing

  17. Recording of SERC Monitoring Technologies - Solar Photovoltaics |

    Energy Savers [EERE]

    Department of Energy Recording of SERC Monitoring Technologies - Solar Photovoltaics Recording of SERC Monitoring Technologies - Solar Photovoltaics This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt. PDF icon serc_webinar_20111020_solar_pv_transcipt.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water SERC Photovoltaics for Residential Buildings

  18. Solar Photovoltaic Technology Basics | Department of Energy

    Office of Environmental Management (EM)

    Solar Photovoltaic System Design Basics Solar Photovoltaic System Design Basics August 20, 2013 - 4:00pm Addthis Solar photovoltaic modules are where the electricity gets generated, but are only one of the many parts in a complete photovoltaic (PV) system. In order for the generated electricity to be useful in a home or business, a number of other technologies must be in place. Mounting Structures PV arrays must be mounted on a stable, durable structure that can support the array and withstand

  19. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  20. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  1. General Services Administration Photovoltaics Project in Sacramento,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy General Services Administration Photovoltaics Project in Sacramento, California General Services Administration Photovoltaics Project in Sacramento, California Document describes a request for proposal issued for the General Services Administration photovoltaic (PV) project. PDF icon gsa_sacramento_pv_rfp.pdf More Documents & Publications NASA Enhanced Use Lease DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request for Proposal

  2. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  3. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  4. Photovoltaic water pumping for Bolivia

    SciTech Connect (OSTI)

    Post, H.N.; Garvison, P.

    1987-01-01

    This paper describes the design, installation and performance of photovoltaically-powered water pumping systems which provide potable water to residents of three villages in the Altiplano region of Bolivia. The installation of these systems during August 1986 was the culmination of a cooperative effort between The World Bank, US Department of Energy and the Bolivian government. This project was configured to demonstrate, through pilot systems, the many potential benefits of using photovoltaic water pumping in developing countries. The lessons learned through the procurement and installation of these systems are discussed and the resulting benefits of the project to international lending institutions, US industry, and the Bolivian participants are examined.

  5. Recycling Of Cis Photovoltaic Waste

    DOE Patents [OSTI]

    Drinkard, Jr., William F.; Long, Mark O.; Goozner; Robert E.

    1998-07-14

    A method for extracting and reclaiming metals from scrap CIS photovoltaic cells and associated photovoltaic manufacturing waste by leaching the waste with dilute nitric acid, skimming any plastic material from the top of the leaching solution, separating glass substrate from the leachate, electrolyzing the leachate to plate a copper and selenium metal mixture onto a first cathode, replacing the cathode with a second cathode, re-electrolyzing the leachate to plate cadmium onto the second cathode, separating the copper from selenium, and evaporating the depleted leachate to yield a zinc and indium containing solid.

  6. Aternating current photovoltaic building block

    DOE Patents [OSTI]

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  7. Photovoltaic cell and production thereof

    DOE Patents [OSTI]

    Narayanan, Srinivasamohan; Kumar, Bikash

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  8. Rapid screening buffer layers in photovoltaics

    DOE Patents [OSTI]

    List, III, Frederick Alyious; Tuncer, Enis

    2014-09-09

    An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.

  9. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1, 2015 [Facility News] BAMS Features Results of 21-Month ARM Deployment Bookmark and Share Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Featured in the March 2015 Bulletin of the American Meteorological Society (BAMS), the 21-month ARM mobile facility deployment in the Azores was the longest of its type in a non-tropical

  11. SAM Photovoltaic Model Technical Reference

    SciTech Connect (OSTI)

    Gilman, P.

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  12. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Photovoltaic cells employing zinc phosphide

    DOE Patents [OSTI]

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  14. Breakthrough: micro-electronic photovoltaics

    ScienceCinema (OSTI)

    Okandan, Murat; Gupta, Vipin

    2014-06-23

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  15. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  16. Photovoltaic Subcontract Program, FY 1990

    SciTech Connect (OSTI)

    Summers, K.A.

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  17. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect (OSTI)

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  18. Photovoltaic power generation system free of bypass diodes

    DOE Patents [OSTI]

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  19. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  20. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  1. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  2. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect (OSTI)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  3. High voltage photovoltaic power converter

    DOE Patents [OSTI]

    Haigh, Ronald E.; Wojtczuk, Steve; Jacobson, Gerard F.; Hagans, Karla G.

    2001-01-01

    An array of independently connected photovoltaic cells on a semi-insulating substrate contains reflective coatings between the cells to enhance efficiency. A uniform, flat top laser beam profile is illuminated upon the array to produce electrical current having high voltage. An essentially wireless system includes a laser energy source being fed through optic fiber and cast upon the photovoltaic cell array to prevent stray electrical signals prior to use of the current from the array. Direct bandgap, single crystal semiconductor materials, such as GaAs, are commonly used in the array. Useful applications of the system include locations where high voltages are provided to confined spaces such as in explosive detonation, accelerators, photo cathodes and medical appliances.

  4. Photovoltaic performance and reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  5. US photovoltaic patents: 1991--1993

    SciTech Connect (OSTI)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  6. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. March 28, 2016 NREL Research into Perovskites Yields New Findings Two recently published papers show the results of photoemission spectroscopy and time-resolved optical spectroscopy, which quantify the energetics and carrier dynamics that occur at interfaces between the perovskite

  7. Flat-Plate Photovoltaic Balance of System Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flat-Plate Photovoltaic Balance of System Basics Flat-Plate Photovoltaic Balance of System Basics August 20, 2013 - 4:29pm Addthis Complete photovoltaic (PV) energy systems are ...

  8. NREL: National Center for Photovoltaics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Center for Photovoltaics Research Cell Efficiency Records Chart image Download the latest chart on record cell efficiencies and check out explanatory notes. The National Center for Photovoltaics (NCPV) at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach. To help the U.S.

  9. Lab Breakthrough: Microelectronic Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. View the entire YouTube Lab Breakthroughs playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are MEMS? MEMS are

  10. Photovoltaic Energy Program Overview Fiscal Year 1996

    SciTech Connect (OSTI)

    1997-05-01

    Significant activities in the National Photovoltaic Program are reported for each of the three main program elements. In Research and Development, advances in thin-film materials and crystalline silicon materials are described. The Technology Development report describes activities in photovoltaic manufacturing technology, industrial expansion, module and array development, and testing photovoltaic system components. Systems Engineering and Applications projects described include projects with government agencies, projects with utilities, documentation of performance for international applications, and product certification.

  11. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  12. Organic Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organic Photovoltaics Research Organic Photovoltaics Research Graphic showing the seven layers of an organic PV cell: electrode, donor, acceptor, active layer, PEDOT:PSS, transparent conductive oxide, and glass. DOE funds research and development projects related to organic photovoltaics (OPV) due to the unique benefits of the technology. Below is a list of the projects, summary of the benefits, and discussion on the production and manufacturing of this solar technology. Background Organic

  13. PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mechanically Stacked Hybrid Photovoltaic Tandems PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $999,999 Tandem cell architectures present a path toward higher module efficiencies over single junction designs. This project will develop a gallium indium phosphide (GaInP) on silicon mechanically stacked voltage-matched

  14. Crystalline Silicon Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovoltaics Research Crystalline Silicon Photovoltaics Research DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion on the production and manufacturing of this solar technology. Background Crystalline silicon PV cells are the most common solar cells used in commercially available solar panels, representing 87% of world PV cell

  15. Fact Sheet: Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Fact Sheet: Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering

  16. Technology Transitions Facilities Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transitions Facilities Database Technology Transitions Facilities Database Type* Laboratory Name Facilities DataBase The DOE National Laboratories maintain cutting-edge experimental and computational capabilities that can provide unique opportunities for partners from the commercial sector to develop and test new technologies. The data base below lists DOE facilities and can be searched by the Laboratory at which the facility is located and by the type of R&D facility (TYPE) it

  17. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  18. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  19. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual...

  20. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  1. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  2. NREL: Photovoltaics Research - Matthew O. Reese

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors. From 2006-2009 he worked as a postdoctoral researcher, studying organic photovoltaics processing, energy level alignment, doping, and interfaces; degradation...

  3. Computational Design of Interfaces for Photovoltaics | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Design of Interfaces for Photovoltaics PI Name: Noa Marom PI Email: nmarom@tulane.edu Institution: Tulane University Allocation Program: ALCC Allocation Hours at...

  4. NREL: Photovoltaics Research - NCPV Partnering Opportunities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities for Industry The National Center for Photovoltaics (NCPV) provides several non-proprietary and proprietary partnering opportunities for industry researchers. We are...

  5. NREL: Photovoltaics Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Photovoltaics at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). Raffaelle most recently has been Academic Director for the Golisano...

  6. Photovoltaics Value Analysis | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: Photovoltaics Value Analysis Focus Area: Renewable Energy Topics: Environmental Website: www.nrel.govanalysispdfs42303.pdf Equivalent URI:...

  7. Mesa Top Photovoltaic Array (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

  8. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  9. Photovoltaic cell with thin CS layer

    DOE Patents [OSTI]

    Jordan, John F.; Albright, Scot P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  10. General Services Administration Photovoltaics Project in Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Document describes a request for proposal issued for the General Services Administration photovoltaic (PV) project. PDF icon gsasacramentopvrfp.pdf More Documents & Publications ...

  11. Photovoltaics for Residential Buildings Webinar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Otto VanGeet's Jan. 25, 2011, presentation about using solar photovoltaic (PV) systems to provide ...

  12. Exploring Photovoltaics (9 investigations) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards are listed at the beginning of the curriculum guide. Owner The NEED Project Lesson PlansActivity Exploring Photovoltaics (9 investigations): Teacher Guide Exploring...

  13. NREL: Photovoltaics Research - Keith A. Emery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responsivity Measurements," Proc. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Joint Research Center report EUR 18656, p. 2298, 1998. T. Moriarty...

  14. Cost Competitive Electricity from Photovoltaic Concentrators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, ... solar cells will reduce the cost of electricity from sunlight to competitive levels ...

  15. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  16. Phoenix Photovoltaic Technology Co | Open Energy Information

    Open Energy Info (EERE)

    Technology Co Jump to: navigation, search Name: Phoenix Photovoltaic Technology Co Place: Anyang City, Henan Province, China Zip: 456400 Product: Henan Province-based mono- and...

  17. Sandia Energy - Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About MEPV Researchers at Sandia National Laboratories are pioneering solar photovoltaic (PV) technologies that are cheaper to produce and easier to install than...

  18. Photovoltaic Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy Focus...

  19. Ashland Electric Utility - Photovoltaic Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either 0.50 per watt (residential) or 0.75 per watt...

  20. Photovoltaic Geographical Information System | Open Energy Information

    Open Energy Info (EERE)

    Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity...

  1. Inverted, semitransparent small molecule photovoltaic cells ...

    Office of Scientific and Technical Information (OSTI)

    small molecule photovoltaic cells Authors: Xiao, Xin 1 ; Lee, Kyusang 1 ; Forrest, Stephen R. 2 + Show Author Affiliations Department of Electrical Engineering and Computer...

  2. Sandia National Laboratory Photovoltaic Design Resources | Open...

    Open Energy Info (EERE)

    are included, along with additional sources of information and major U.S. PV system suppliers. References Sandia Photovoltaic Research and Development Retrieved from "http:...

  3. Multiband semiconductor compositions for photovoltaic devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%. Inventors: Walukiewicz; Wladyslaw...

  4. SERC Photovoltaics for Residential Buildings Webinar Transcript

    Broader source: Energy.gov [DOE]

    A presentation sponsored by the U.S. Department of Energy about using solar photovoltaics (PV) systems to provide electricity for homes.

  5. Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same

    DOE Patents [OSTI]

    Williams, George M.; Schut, David M.; Stonas, Andreas

    2011-08-09

    A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

  6. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect (OSTI)

    Goodman, Jr, F R

    1980-03-01

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  7. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  8. Wheelabrator North Andover Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Wheelabrator North Andover Sector Biomass Facility Type Municipal Solid Waste Location Essex County, Massachusetts Coordinates 42.7051144, -70.9071236...

  9. SEMASS Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility SEMASS Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Plymouth County, Massachusetts Coordinates 41.9120406, -70.7168469...

  10. Wheelabrator South Broward Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Wheelabrator South Broward Sector Biomass Facility Type Municipal Solid Waste Location Broward County, Florida Coordinates 26.190096, -80.365865 Show Map...

  11. North County Regional Resource Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503, -80.2767327 Show...

  12. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  13. Ridgewood Providence Power Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Ridgewood Providence Power Biomass Facility Facility Ridgewood Providence Power Sector Biomass Facility Type Landfill Gas Location Providence County, Rhode Island...

  14. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  15. KMS Joliet Power Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search Name KMS Joliet Power Partners LP Biomass Facility Facility KMS Joliet Power Partners LP Sector Biomass Facility Type Landfill Gas Location Will County, Illinois...

  16. Marsh Road Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  17. Newby Island II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Newby Island II Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459 Show Map Loading...

  18. Woodlake Sanitary Services Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility Type Landfill Gas Location Hennepin County, Minnesota...

  19. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  20. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  1. The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

    SciTech Connect (OSTI)

    Fthenakis, V.M.

    1996-08-01

    OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.

  2. Property:Testing Facilities | Open Energy Information

    Open Energy Info (EERE)

    Name Testing Facilities Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:TestingFacilities&oldid595932" Feedback Contact needs updating...

  3. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  4. Americulture Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Americulture Sector Geothermal energy Type Aquaculture Location Animas, New Mexico Coordinates 31.9489799, -108.8072777...

  5. Sandia Energy Photovoltaic Regional Testing Center (PV RTC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan http:energy.sandia.govsandians-win-best-paper-award-at-photovoltaic-conference-in-j...

  6. Partial Shade Stress Test for Thin-Film Photovoltaic Modules...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partial Shade Stress Test for Thin-Film Photovoltaic Modules Preprint Timothy J. ... Partial shade stress test for thin-film photovoltaic modules Timothy J Silverman , ...

  7. Udhaya Energy Photovoltaics P Ltd UPV Solar | Open Energy Information

    Open Energy Info (EERE)

    Udhaya Energy Photovoltaics P Ltd UPV Solar Jump to: navigation, search Name: Udhaya Energy Photovoltaics (P) Ltd. (UPV Solar) Place: Coimbatore, Tamil Nadu, India Zip: 641 407...

  8. National Center for Photovoltaics NCPV | Open Energy Information

    Open Energy Info (EERE)

    Center for Photovoltaics NCPV Jump to: navigation, search Name: National Center for Photovoltaics (NCPV) Product: String representation "The National Ce ... ics community.'" is too...

  9. PVM Lines and Services LLC aka PVML Photovoltaics | Open Energy...

    Open Energy Info (EERE)

    PVM Lines and Services LLC aka PVML Photovoltaics Jump to: navigation, search Name: PVM Lines and Services LLC (aka PVML Photovoltaics) Place: Princeton, New Jersey Zip: 8540...

  10. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  11. UPL USL Photovoltaics Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    UPL USL Photovoltaics Pvt Ltd Jump to: navigation, search Name: UPL (USL Photovoltaics Pvt) Ltd. Place: Coimbatore, Tamil Nadu, India Zip: 641 014 Product: Coimbatore-based...

  12. NREL: Photovoltaics Research - Sara MacAlpine, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the 39th IEEE Photovoltaic Specialists Conference (PVSC). Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  13. Renewable Energies and Photovoltaics Spain S L REPS | Open Energy...

    Open Energy Info (EERE)

    and Photovoltaics Spain S L REPS Jump to: navigation, search Name: Renewable Energies and Photovoltaics Spain S.L. (REPS) Place: Spain Sector: Solar Product: Spanish solar project...

  14. EPV Solar Inc formerly Energy Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    EPV Solar Inc formerly Energy Photovoltaics Jump to: navigation, search Name: EPV Solar Inc (formerly Energy Photovoltaics) Place: Robbinsville, New Jersey Zip: 8691 Product: US...

  15. Shanghai Hi Show Photovoltaic Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Hi Show Photovoltaic Science Technology Co Ltd Jump to: navigation, search Name: Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd Place: Shanghai Municipality, China...

  16. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 - ...

  17. Plug-and-Play Photovoltaics Funding Opportunity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product ... State University: Development of an Innovative Plug and Play Photovoltaic Electric System

  18. Retrospective Benefit-Cost Evaluation of DOE Investments in Photovolta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Investments in Photovoltaic Energy Systems Retrospective Benefit-Cost Evaluation of DOE Investments in Photovoltaic Energy Systems This study is a retrospective analysis of net ...

  19. Molecular origin of photovoltaic performance in donor-block-acceptor...

    Office of Scientific and Technical Information (OSTI)

    Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated block ... Title: Molecular origin of photovoltaic performance in donor-block-acceptor all-conjugated ...

  20. FEMP Offers New Training on Photovoltaic Operations and Maintenance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Training on Photovoltaic Operations and Maintenance Best Practices FEMP Offers New Training on Photovoltaic Operations and Maintenance Best Practices November 4, 2014 - 2:40pm ...

  1. Table 4. Average value of photovoltaic modules, 2003-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Average value of photovoltaic modules, 2003-2013" "(dollars per peak watt)" ... Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.' Note: ...

  2. Development of an Innovative Plug and Play Photovoltaic Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of an Innovative Plug and Play Photovoltaic Electric System Development of an Innovative Plug and Play Photovoltaic Electric System logofreedm.jpg North Carolina State ...

  3. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; ...

  4. Photovoltaic Supply Chain and Cross-Cutting Technologies Round...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market Photovoltaic Supply Chain and Cross-Cutting Technologies Round 2 Photovoltaic Supply Chain and Cross-Cutting Technologies Round 2 Four projects are working ...

  5. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone ...

  6. DARK CURRENT-VOLTAGE MEASUREMENTS ON PHOTOVOLTAIC MODULES AS...

    Office of Scientific and Technical Information (OSTI)

    DARK CURRENT-VOLTAGE MEASUREMENTS ON PHOTOVOLTAIC MODULES AS A DIAGNOSTIC OR MANUFACTURING ... saturation currents) that dictate the electrical performance of a photovoltaic device. ...

  7. Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's Solar Leadership Agua Caliente, World's Largest Solar Photovoltaic Plant, Helps Advance America's ...

  8. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polycrystalline Thin-Film Cell Basics Photovoltaic Polycrystalline Thin-Film Cell Basics ... Silicon Single-Crystalline Thin Films Addthis Related Articles Photovoltaic Cell Structure ...

  9. Table 6. Source and disposition of photovoltaic module shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Source and disposition of photovoltaic module shipments, 2013" "(peak kilowatts)" "Module ... Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report.'rounding. ...

  10. Study Guide for Photovoltaic System Installers and Sample Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Study Guide for Photovoltaic System Installers and Sample Examination Questions Study Guide for Photovoltaic System Installers and Sample Examination ...

  11. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, ...

  12. Table 2. Value and average value of photovoltaic module shipments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Value and average value of photovoltaic module shipments, 2013" "Module value, total ... Administration, Form EIA-63B, 'Annual Photovoltaic CellModule Shipments Report' Note: ...

  13. The Role of Advancements in Photovoltaic Efficiency, Reliability...

    Office of Environmental Management (EM)

    The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in Photovoltaic Efficiency, Reliability, and Costs The Role of Advancements in ...

  14. Jiangsu Shunfeng Photovoltaic Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shunfeng Photovoltaic Technology Co Ltd Jump to: navigation, search Name: Jiangsu Shunfeng Photovoltaic Technology Co Ltd Place: Changzhou, China Zip: 213169 Product: Manufacturer...

  15. Ningbo Zhousheng Solar Photovoltaic Manufactory Co Ltd | Open...

    Open Energy Info (EERE)

    Zhousheng Solar Photovoltaic Manufactory Co Ltd Jump to: navigation, search Name: Ningbo Zhousheng Solar Photovoltaic Manufactory Co Ltd Place: Ningbo, Zhejiang Province, China...

  16. Bengbu Sanxin Solar Photovoltaic Glass Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Jump to: navigation, search Name: Bengbu Sanxin Solar Photovoltaic Glass Co Ltd Place: Bengbu, Anhui Province, China Product: Glass...

  17. U.S. Photovoltaic Industry Roadmap | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Industry Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: U.S. Photovoltaic Industry Roadmap AgencyCompany Organization: United States...

  18. Sandia Energy - Sandia Tool Determines Value of Solar Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Determines Value of Solar Photovoltaic Power Systems Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Sandia Tool Determines Value of Solar...

  19. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  20. Cixi Renhe Photovoltaic Electrical Appliance Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Jump to: navigation, search Name: Cixi Renhe Photovoltaic Electrical Appliance Co Ltd Place: Cixi, Zhejiang Province, China Zip:...

  1. Zhejiang Sino Italian Photovoltaic Co Ltd SIPV | Open Energy...

    Open Energy Info (EERE)

    Italian Photovoltaic Co Ltd SIPV Jump to: navigation, search Name: Zhejiang Sino-Italian Photovoltaic Co Ltd (SIPV) Place: Ningbo, Zhejiang Province, China Zip: 315800 Product: A...

  2. Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar |...

    Open Energy Info (EERE)

    Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name: Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place: Shanghai Municipality,...

  3. Changzhou EGing Photovoltaic Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    EGing Photovoltaic Technology Co Ltd Jump to: navigation, search Name: Changzhou EGing Photovoltaic Technology Co Ltd Place: Jintan, Jiangsu Province, China Zip: 213213 Product:...

  4. Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers,...

  5. Dali Yuanchang Photovoltaic Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yuanchang Photovoltaic Energy Co Ltd Jump to: navigation, search Name: Dali Yuanchang Photovoltaic Energy Co Ltd Place: Dali, Yunnan Province, China Product: China-based PV project...

  6. Introduction to Small-Scale Photovoltaic Systems (Including RETScreen...

    Open Energy Info (EERE)

    Photovoltaic Systems (Including RETScreen Case Study) (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Small-Scale Photovoltaic Systems...

  7. New Tomorrow Photovoltaic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tomorrow Photovoltaic Co Ltd Jump to: navigation, search Name: New Tomorrow Photovoltaic Co Ltd Place: Shenzhen, Guangdong Province, China Zip: 518112 Sector: Solar Product:...

  8. Hebei Qindao Photovoltaic Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Qindao Photovoltaic Technology Co Ltd Jump to: navigation, search Name: Hebei Qindao Photovoltaic Technology Co Ltd Place: Handan, Hebei Province, China Product: Chinese producer...

  9. Xi an Huanghe Photovoltaic Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huanghe Photovoltaic Technology Co Ltd Jump to: navigation, search Name: Xi'an Huanghe Photovoltaic Technology Co Ltd Place: Xi'an, Shaanxi Province, China Sector: Solar Product:...

  10. Jiangsu Jiasheng Photovoltaic Technology Co Ltd aka JS Solar...

    Open Energy Info (EERE)

    Jiasheng Photovoltaic Technology Co Ltd aka JS Solar Ltd Jump to: navigation, search Name: Jiangsu Jiasheng Photovoltaic Technology Co Ltd (aka JS Solar Ltd) Place: Jiangsu...

  11. Zhongke Photovoltaic Material Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongke Photovoltaic Material Technology Co Ltd Jump to: navigation, search Name: Zhongke Photovoltaic Material Technology Co Ltd Place: Pingxiang, Jiangxi Province, China Product:...

  12. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  13. Technology Advances Needed for Photovoltaics to Achieve Widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity Abstract: ...

  14. EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI EA-1827: Suniva, Inc.'s ARTisun Photovoltaic Manufacturing Project in Saginaw, MI February 1, 2010 ...

  15. Solar Photovoltaic Financing: Deployment on Public Property by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments Solar Photovoltaic Financing: Deployment on Public Property by State and Local ...

  16. Cost and Potential of Monolithic CIGS Photovoltaic Modules (Presentati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Potential of Monolithic CIGS Photovoltaic Modules IEEE Photovoltaic Specialists Conference, New Orleans Kelsey A. W. Horowitz and Michael Woodhouse June 17, 2015 NREL...

  17. PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics through the Optimization of Sub-Transmission Voltage Regulation (SuNLaMP) PROJECT PROFILE: Enabling High Penetration of Distributed Photovoltaics through ...

  18. Photo-voltaic power generating means and methods

    DOE Patents [OSTI]

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, Ramachandra M. P.; Knaster, Mark B.

    1984-01-10

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  19. Photo-voltaic power generating means and methods

    DOE Patents [OSTI]

    Kroger, Ferdinand A.; Rod, Robert L.; Panicker, M. P. Ramachandra

    1983-08-23

    A photo-voltaic power cell based on a photoelectric semiconductor compound and the method of using and making the same. The semiconductor compound in the photo-voltaic power cell of the present invention can be electrolytically formed at a cathode in an electrolytic solution by causing discharge or decomposition of ions or molecules of a non-metallic component with deposition of the non-metallic component on the cathode and simultaneously providing ions of a metal component which discharge and combine with the non-metallic component at the cathode thereby forming the semiconductor compound film material thereon. By stoichiometrically adjusting the amounts of the components, or otherwise by introducing dopants into the desired amounts, an N-type layer can be formed and thereafter a P-type layer can be formed with a junction therebetween. The invention is effective in producing homojunction semiconductor materials and heterojunction semiconductor materials. The present invention also provides a method of using three electrodes in order to form the semiconductor compound material on one of these electrodes. Various examples are given for manufacturing different photo-voltaic cells in accordance with the present invention.

  20. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  1. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  2. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  3. American Ref-Fuel of Niagara Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal...

  4. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  5. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  6. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  7. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  8. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect (OSTI)

    1998-02-01

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  9. Optimized microsystems-enabled photovoltaics

    SciTech Connect (OSTI)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.

    2015-09-22

    Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.

  10. Nanostructured Materials for Improved Photovoltaics

    SciTech Connect (OSTI)

    Morgan, Sarah E.; Cannon, Gordon C.; Heinhorst, Sabine; Rawlins, James W.

    2004-07-18

    This research addresses the fundamental issues of cell morphology and phase dimensions that determine conversion efficiency in polymeric organic photovoltaic devices. The approach will help explain the relationships between morphological control, domain size, and power conversion efficiency in OPV devices, with the goal of providing direction for development of OPV systems with greater efficiency. The program addresses the DOE Office of Energy Efficiency and Renewable Energy goals of providing economically sustainable clean energy technologies to reduce dependence on foreign oil. This research focused on synthesis, fabrication and analysis of both active and protective layers for improved organic and inorganic hybrid PV (PhotoVoltaic) materials. A systematic study of phase size, shape, and distance was conducted to determine the effects of morphology in each process. Four classes of nanostructured materials were studied: 1) functional block copolymers (AB, acceptor-donor blocks) that self-assemble into matched domain sizes 2) synthetic core-shell particles with separate acceptor and donor layers 3) bacterial micro-compartment (BMC) proteins as self-assembling shells for core-shell nanoparticle constructs and 4) polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals for enhanced efficiency and durability.

  11. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  12. NREL Research Support Facilities (RSF)

    High Performance Buildings Database

    Golden, CO NREL's Research Support Facilities building (RSF) will be a total of 218,000 sq. feet. It will have two parallel secured employee wings, one of which will be 4 stories and the other 3 stories. A connector building housing most of the public spaces will run perpendicular through both wings. The RSF will provide workspace for 742 employees. The RSF is designed to be a zero energy building through the use of innovative energy efficiency, daylighting, and renewable energy strategies, including photovoltaic solar electric systems to generate electricity.

  13. Alternating Current Photovoltaic Building Block - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Alternating Current Photovoltaic Building Block Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (891 KB) Technology Marketing Summary This technology provides a fully integrated and self-containing alternating current (AC) photovoltaic (PV) Building Block device and method that allows photovoltaic applications to become true plug-and-play devices. The

  14. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  15. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... monitoring of large quantities of data can be cumbersome for the individual analyst. ...

  18. Absorbing More of the Rainbow with Polymer-Based Organic Photovoltaics |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Office of Science (SC) Absorbing More of the Rainbow with Polymer-Based Organic Photovoltaics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  19. SOLAR PANELS ON HUDSON COUNTY FACILITIES

    SciTech Connect (OSTI)

    BARRY, KEVIN

    2014-06-06

    This project involved the installation of an 83 kW grid-connected photovoltaic system tied into the energy management system of Hudson County's new 60,000 square foot Emergency Operations and Command Center and staff offices. Other renewable energy features of the building include a 15 kW wind turbine, geothermal heating and cooling, natural daylighting, natural ventilation, gray water plumbing system and a green roof. The County intends to seek Silver LEED certification for the facility.

  20. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  1. Photovoltaic module and module arrays

    DOE Patents [OSTI]

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  2. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  3. Plant No 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    No 2 Biomass Facility Jump to: navigation, search Name Plant No 2 Biomass Facility Facility Plant No 2 Sector Biomass Facility Type Non-Fossil Waste Location Orange County,...

  4. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  5. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  8. PROJECT PROFILE: Enabling High Concentration Photovoltaics with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The efficiency and concentration of III-V multi-junction solar cells are essential to reduce the cost of high concentration photovoltaic systems (HCPV). This project will push the ...

  9. Photovoltaic Online Training Course for Code Officials

    Broader source: Energy.gov [DOE]

    The Photovoltaic Online Training Course for Code Officials is a free online training tool for those officials who conduct reviews and inspections of residential PV systems. Throughout the course's...

  10. Central Georgia EMC- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  11. Photovoltaics and Electricity - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...index.cfm?tg%20solar Photovoltaics video - http:www.youtube.comwatch?v0elhIcPVtKE&listSPACD8E92715335CB2&index5&featureplppvideo Last reviewed: October 26, 2015 ...

  12. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect (OSTI)

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  13. Hudson Light & Power- Photovoltaic Incentive Program

    Broader source: Energy.gov [DOE]

    Hudson Light & Power Department, the municipal utility for the Town of Hudson, offers a limited number of solar photovoltaic (PV) rebates for residential, commercial, industrial, and municipal...

  14. High-performance Si microwire photovoltaics

    SciTech Connect (OSTI)

    Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Boettcher, Shannon W.; Briggs, Ryan M.; Baek, Jae Y.; Lewis, Nathan S.; Atwater, Harry A.

    2011-01-07

    Crystalline Si wires, grown by the vaporliquidsolid (VLS) process, have emerged as promising candidate materials for low-cost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (Ln>> 30 m) and low surface recombination velocities (S << 70 cms-1). Single-wire radial pn junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics.

  15. GreyStone Power- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    GreyStone Power, an electricity cooperative in Georgia, offers a rebate for solar photovoltaic (PV) systems to members. The one-time rebate is offered for PV installations that are interconnected...

  16. Poudre Valley REA- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  17. Microsystem enabled photovoltaic modules and systems (Patent...

    Office of Scientific and Technical Information (OSTI)

    The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer ... the translatable optic layer into one of the PV elements such that it is quasi-collimated. ...

  18. Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

  19. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect (OSTI)

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  20. Improved Organic Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2768B (Organic PV) Marketing Summary_1.pdf (146 KB) Technology Marketing Summary Traditionally, photosensitive optoelectronic devices such as solar cells have been constructed of a number of inorganic semiconductors. Purity and crystalline grain size are a large