Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Applicability ranges for offshore oil and gas production facilities  

Science Journals Connector (OSTI)

In the early stages of the selection process for the hardware to exploit an offshore petroleum reservoir, it is important to be able to identify rapidly which production facility type(s) are likely to deliver the greatest value. This paper explores key features and constraints of the ten common fixed, floating and subsea facility options. Both shallow and deepwater are considered, along with regional variations. It is shown that facility applications may be categorised in a very simple matrix form, with the water depth and well count being particularly important drivers of facility choice.

Beverley F. Ronalds

2005-01-01T23:59:59.000Z

2

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

3

Robust Offshore Networks for Oil and Gas Facilities :.  

E-Print Network (OSTI)

??Offshore Communication Networks utilize multiple of communication technologies to eradicate any possibilities of failures, when the network is operational. Offshore Oil and Gas platforms and… (more)

Maheshwari, D.

2010-01-01T23:59:59.000Z

4

The role of redundancy in jacket-type offshore platforms  

E-Print Network (OSTI)

THE ROLE OF REDUNDANCY IN L7ACKET-TYPE OFFSHORE PLATFORMS A Thesis by J ' NINA ELAINE WOMB LE Submitted to the Office of Graduate Studies of Texas AiIM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1988 Major Subject: Civil Engineering THE ROLE OF REDUNDANCY IN JACKET-TYPE OFFSHORE PLATFORMS A Thesis by J'NINA ELAINE WOMDLE Approved as to sty1e and content by: James K. on, Jr. (Chair o ommittee) erry L, Kohutek (Member) arry A...

Womble, J'nina Elaine

2012-06-07T23:59:59.000Z

5

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities  

Science Journals Connector (OSTI)

Simulation-Based Optimization of Multistage Separation Process in Offshore Oil and Gas Production Facilities ... As the demand for offshore oil platforms and eco-friendly oil production has increased, it is necessary to determine the optimal conditions of offshore oil production platforms to increase profits and reduce costs as well as to prevent environmental pollution. ... To achieve a practical design for an offshore platform, it is necessary to consider environmental specifications based on an integrated model describing all units concerned with oil and gas production. ...

Ik Hyun Kim; Seungkyu Dan; Hosoo Kim; Hung Rae Rim; Jong Min Lee; En Sup Yoon

2014-05-05T23:59:59.000Z

6

Brazoria Offshore | Open Energy Information  

Open Energy Info (EERE)

Brazoria Offshore Brazoria Offshore Jump to: navigation, search Name Brazoria Offshore Facility Brazoria Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 28.764°, -95.33° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.764,"lon":-95.33,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Tillamook Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Principle Power Developer Principle Power Location Offshore from Tillamook OR Coordinates 45.527°, -124.179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.527,"lon":-124.179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Galveston Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Wind Energy Systems Technology Developer Wind Energy Systems Technology Location Offshore from Galveston TX Coordinates 29.161°, -94.797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.161,"lon":-94.797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

10

Jefferson Offshore | Open Energy Information  

Open Energy Info (EERE)

Jefferson Offshore Jefferson Offshore Facility Jefferson Offshore Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.568°, -93.957° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.568,"lon":-93.957,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Brigantine OffshoreMW Phase 1 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 1 Brigantine OffshoreMW Phase 1 Jump to: navigation, search Name Brigantine OffshoreMW Phase 1 Facility Brigantine OffshoreMW Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer Offshore MW Location Atlantic Ocean NJ Coordinates 39.584°, -73.77° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.584,"lon":-73.77,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Garden State Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Farm Offshore Wind Farm Jump to: navigation, search Name Garden State Offshore Wind Farm Facility Garden State Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Garden State Offshore Energy Location Offshore from Avalon NJ Coordinates 39.08°, -74.310556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.08,"lon":-74.310556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Property:FacilityType | Open Energy Information  

Open Energy Info (EERE)

FacilityType FacilityType Jump to: navigation, search This is a property of type Page. Pages using the property "FacilityType" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Small Scale Wind + A AB Tehachapi Wind Farm + Commercial Scale Wind + AFCEE MMR Turbines + Commercial Scale Wind + AG Land 1 + Community Wind + AG Land 2 + Community Wind + AG Land 3 + Community Wind + AG Land 4 + Community Wind + AG Land 5 + Community Wind + AG Land 6 + Community Wind + AV Solar Ranch I Solar Power Plant + Photovoltaics + AVTEC + Small Scale Wind + Acme Landfill Biomass Facility + Landfill Gas + Adair Wind Farm I + Commercial Scale Wind + Adair Wind Farm II + Commercial Scale Wind + Adams Wind Project + Commercial Scale Wind + Adrian Energy Associates LLC Biomass Facility + Landfill Gas +

14

Brigantine OffshoreMW Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Brigantine OffshoreMW Phase 2 Brigantine OffshoreMW Phase 2 Facility Brigantine OffshoreMW Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner OffshoreMW Developer OffshoreMW Location Atlantic Ocean NJ Coordinates 39.348°, -73.969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.348,"lon":-73.969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Test on muddy soil reinforcement by negative pressure and electro-osmosis inside cover-bearing-type bucket foundation for offshore wind turbines  

Science Journals Connector (OSTI)

Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention...

Puyang Zhang ???; Hongyan Ding ???; Shaohua Zhai ???…

2013-02-01T23:59:59.000Z

18

Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery  

E-Print Network (OSTI)

facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

Schilling, Anne

19

Towers for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings for better efficiency turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore turbines build father offshore will be able to capture more wind energy. Currently two types of towers are considered. Cylindrical tubular structures and truss type structures. But truss type structures have less weight and flexibility in design. The construction of the offshore towers to harness the wind energy is also presented. The results will include the calculation of wind and wave forces on the tower and the design details for the tower.

V. J. Kurian; S. P. Narayanan; C. Ganapathy

2010-01-01T23:59:59.000Z

20

Texas Offshore Pilot Research Project | Open Energy Information  

Open Energy Info (EERE)

Texas Offshore Pilot Research Project Texas Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Gulf of Mexico TX Coordinates 26.186°, -97.077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.186,"lon":-97.077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Galveston Offshore Wind Phase 2 | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Phase 2 Offshore Wind Phase 2 Jump to: navigation, search Name Galveston Offshore Wind Phase 2 Facility Galveston Offshore Wind Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Coastal Point Energy LLC Developer Coastal Point Energy LLC Location Gulf of Mexico TX Coordinates 29.16°, -94.747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.16,"lon":-94.747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Michigan Offshore Wind Pilot Project | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Pilot Project Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Mighigan Alternative and Renewable Energy Center Developer Mighigan Alternative and Renewable Energy Center Location Muskegon Lake MI Coordinates 43.231°, -86.307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.231,"lon":-86.307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Property:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facility Type Hydrodynamic Testing Facility Type Jump to: navigation, search Property Name Hydrodynamic Testing Facility Type Property Type Page Pages using the property "Hydrodynamic Testing Facility Type" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + Flume + 10-ft Wave Flume Facility + Flume + 11-ft Wave Flume Facility + Flume + 2 2-ft Flume Facility + Flume + 3 3-ft Wave Flume Facility + Flume + 5 5-ft Wave Flume Facility + Flume + 6 6-ft Wave Flume Facility + Flume + A Alden Large Flume + Flume + Alden Small Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + Tunnel +

24

New Facility to Shed Light on Offshore Wind Resource (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

As a pre-existing structure in a location with As a pre-existing structure in a location with excellent offshore wind resources, the Chesapeake Light Tower provides a cost-effective alternative to building a new platform large enough to support an 80- to 100-meter-tall meteorological tower. Photo by Rick Driscoll, NREL 25660 Chesapeake Light Tower facility will gather key data for unlocking the nation's vast offshore wind resource. According to the National Offshore Wind Strategy published by the U.S. Department of Energy (DOE) in 2011, the nation's offshore wind resource could supply 54 gigawatts of generat- ing capacity by 2030. However, to tap into that potential, more data on the nature of offshore wind resources and the ocean environment is needed. An opportunity to address this need was cre-

25

Apex Offshore Phase 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 Facility Apex Offshore Phase 1 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -77.12° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-77.12,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Apex Offshore Phase 2 | Open Energy Information  

Open Energy Info (EERE)

2 2 Facility Apex Offshore Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Apex Wind Energy Developer Apex Offshore Wind / Outer Banks Ocean Energy Corp / Maersk Line Limited Location Atlantic Ocean NC Coordinates 34.169°, -76.91° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.169,"lon":-76.91,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Experimental study of improved modal strain energy method for damage localisation in jacket-type offshore wind turbines  

Science Journals Connector (OSTI)

Abstract An improved modal strain energy method is proposed for damage localisation in jacket-type offshore wind turbines by defining a series of stiffness-correction factors that can be employed to calculate the modal strain energy (MSE) of the measured model without utilising the stiffness matrix of the finite element model (FEM) as an approximation. The theoretical contribution of this article is that the MSE of the measured model could be estimated with better accuracy, and the advantage of the proposed indicator is that it is more sensitive to damage locations than the traditional MSE method. Numerical studies on a tripod offshore jacket wind turbine reveal that the proposed method could locate the damage positions for jacket-type offshore wind turbines when limited number of lower-order modes is available, even when these modes are spatially incomplete. The performance of the proposed method is also investigated using real measurements from a steel jacket-type offshore wind turbine experiment conducted in a water tank of Ocean University of China. The experimental results demonstrated that the proposed method outperforms the traditional MSE method, and damages in jacket-type offshore wind turbines could be properly located utilising the first two measured modes excited by environmental loadings, such as waves, currents, or the vibration of the wind turbine.

Fushun Liu; Huajun Li; Wei Li; Bin Wang

2014-01-01T23:59:59.000Z

28

Potential for CO2 storage in depleted fields on the Dutch Continental Shelf–Cost estimate for offshore facilities  

Science Journals Connector (OSTI)

A study was performed on capital and operational costs for offshore injection of CO2 into depleted fields. The main focus was on the design and costs of process requirements for injection, required conservation (hibernation) and modification of existing platforms between end of gas/oil production and start of CO2 injection. Also cost estimates for new platforms are provided. The study is ‘high level’ and generic in nature as no specific target for CO2 storage has been selected. For the purpose of this study a simplified approach is used for determination of the required injection facilities and platform modifications. Nevertheless, the study provides a good indication on the level of expenditures that can be expected.

Floor Jansen; Rob Steinz; Boudewijn van Gelder

2011-01-01T23:59:59.000Z

29

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material  

E-Print Network (OSTI)

and local winds had once again become orientated to favour development of backdoor sea breezes on the southIdealized WRF model sensitivity simulations of sea breeze types and their effects on offshore. Daytime temperatures were sufficiently high to trigger convection over land and the geostrophic wind

Meskhidze, Nicholas

30

Model test and simulation of modified spar type floating offshore wind turbine with three catenary mooring lines  

Science Journals Connector (OSTI)

Korea is a peninsula which is surrounded by the Yellow Sea (shallow sea) the southern sea and the East Sea (deep sea). These circumstances always make us consider that a platform could have good motion performances in both shallow and deep seas. In this paper the typical spar type platform of the Offshore Code Comparison Collaboration Hywind Floating Offshore Wind Turbine (FOWT) has been modified and a new concept FOWT platform is suggested for both seas. Its motion performances are evaluated by both 1:80 scale model tests and full scale numerical simulations.

2014-01-01T23:59:59.000Z

31

Chapter 3 - Safety Offshore  

Science Journals Connector (OSTI)

This chapter focuses on specific issues to do with managing safety in offshore oil and gas facilities. The distinctions between drilling, pipelines and production are described. Offshore special issues include congestion, the number of people onboard, hurricanes/cyclones and dropped objects.

Ian Sutton

2014-01-01T23:59:59.000Z

32

Bisulfite reductase and nitrogenase genes retrieved from biocorrosive bacteria in saline produced waters of offshore oil recovery facilities  

Science Journals Connector (OSTI)

Water-flooding is a common strategy to enhance oil recovery in reservoirs. Maintaining quality and standards of produced water avoids oil biodegradation, biogenic souring and biocorrosion during operations, which are influenced by sulfate-reducing (SRB) and Fe (III) reducing bacteria. The aim of this work was to increase our knowledge of corrosive bacterial communities inhabiting saline produced waters of offshore oil exploitation facilities through retrieving sequences of functional genes, for instance, dsrAB and nifD of Desulfovibrionales, Desulfobacterales and Desulfuromonadales taxonomical orders. Five clone libraries were generated with retrieved sequences acquired from different saline produced waters, with and without biocide dosing. The dsrAB phylogenetic analyses showed Desulfomicrobium, Desulfovibrio, and Desulfohalobium as well as Desulfococcus, Desulfosarcina, Desulfobacter, Desulfobacterium and Desulfobulbus. The retrieved nifD genes displayed the Fe (III) reducing bacteria (Desulfuromonadales) such as Desulfuromusa, Pelobacter, Malonomonas, and Desulfuromonas. The relative abundance in all waters was: the Desulfovibrionales were represented by 55.28% of analyzed clones; the Desulfobacterales by 26.83% and 17.89% for the Desulfuromonadales. Diversity measures were calculated by the Shannon index (H?), which showed that there was a high degree of diversity between all produced waters; however, dominance in produced water with biocide was detected by a Desulfovibrio taxon.

I. Zapata-Peñasco; L. Salazar-Coria; M. Saucedo-García; L. Villa-Tanaka; C. Hernández-Rodríguez

2013-01-01T23:59:59.000Z

33

Energy efficiency in California laboratory-type facilities  

SciTech Connect

The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

Mills, E.; Bell, G.; Sartor, D. [and others

1996-07-31T23:59:59.000Z

34

NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140  

SciTech Connect

The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

Musial, W.

2014-08-01T23:59:59.000Z

35

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

36

Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report  

SciTech Connect

The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

Not Available

1993-10-15T23:59:59.000Z

37

Long Island New York City Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island New York City Offshore Wind Farm Island New York City Offshore Wind Farm Jump to: navigation, search Name Long Island New York City Offshore Wind Farm Facility Long Island New York City Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Long Island-New York City Offshore Wind Collaborative Developer Long Island Power Authority (LIPA) / ConEdison (now part of LINYCOffshore Wind C Energy Purchaser New York Power Authority Location Offshore from the Rockaway Peninsula NY Coordinates 40.41°, -73.72° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.41,"lon":-73.72,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

The wind-wave tunnel test of a tension-leg platform type floating offshore wind turbine  

Science Journals Connector (OSTI)

In this work a tension-leg platform (TLP) type floating offshore wind turbine (FOWT) system was proposed which was based on the National Renewable Energy Laboratory 5?MW offshore wind turbinemodel. Taking the coupled effect of dynamic response of the top wind turbine support tower structure and lower mooring system into consideration the 1/60 scale model test for investigating the coupled wind-wave effect on performance of the floating wind turbine system was done in Harbin Institute of Technology's wind tunnel and wave flume joint laboratory. In addition numerical simulations corresponding to the scale model tests have been performed by advanced numerical tools. The results of model tests and numerical simulations have a good agreement so the availability of the numerical model has been verified. Furthermore to improve the performance of the TLP system one tentative strategy adding mooring lines to the TLP system was proposed and the model test results of the two TLP systems were compared with each other. As a result the motion responses of the floating platform and the force levels of tension legs were effectively reduced by the additional mooring chains. The new TLP FOWT system might play an active and instructive role in the development of future FOWT system.

Nianxin Ren; Yugang Li; Jinping Ou

2012-01-01T23:59:59.000Z

39

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

40

The qualification of advanced composite pipe for use in fire water deluge systems on open type offshore oil platforms  

SciTech Connect

Different types of FIBERBOND{reg_sign} pipe in the dry condition and with a butt and strap joint were subjected to a controlled fire for fire endurance evaluation. Testing adheres to a modification of the ASTM 1173-95 guideline, which simulates the development of an actual hydrocarbon fire. For a fire water deluge system, the pipe is in the dry condition approximately one to three minutes during an actual hydrocarbon fire. Preliminary testing shows that composite pipe is able to withstand this exposure to fire for the five minute duration of the test. This is achieved with modifying the chemical composition of the composite pipe and in some cases, adding an additional structural component to the overall pipe. Therefore, composite pipe could be used for the deluge fire system of an offshore oil platform.

Lea, R.H. [Specialty Plastics, Inc., Baton Rouge, LA (United States); Stubblefield, M.A.; Pang, S.S. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Calibration and Validation of a Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool Preprint J.R. Browning University of Colorado-Boulder J. Jonkman and A. Robertson National Renewable Energy Laboratory A.J. Goupee University of Maine Presented at the Science of Making Torque from Wind Oldenburg, Germany October 9-11, 2012 Conference Paper NREL/CP-5000-56138 November 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

42

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

9 pages are in this category, out of 9 total. C Channel F Flow Table Flume O Offshore Berth R Reverberant Tank T Tow Tank T cont. Tow Vessel Tunnel W Wave Basin Retrieved...

43

4C Offshore Limited | Open Energy Information  

Open Energy Info (EERE)

4C Offshore Limited 4C Offshore Limited Jump to: navigation, search Name 4C Offshore Limited Place Suffolk, United Kingdom Country United Kingdom Product Project planning, consulting for offshore industries (wind, oil, gas) Year founded 2009 Company Type For Profit Company Ownership Private Small Business No Affiliated Companies 4C Offshore Limited Technology Offshore Wind Phone number +44 (0)1502 509260 Website http://www.4coffshore.com/ References 4C Offshore website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 4C Offshore Limited is a company based in Suffolk, United Kingdom. 4C Offshore is an independent marine consulting firm, that provides advice and consulting services in offshore development, particularly renewables and

44

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

5-MW Reference Wind Turbine for Offshore System Development.for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-a Spar-type Floating Offshore Wind Turbine. Thesis. TU Delft

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

45

Tribology offshore  

SciTech Connect

The papers presented in this book deal with the performance and reliability of plant and materials in offshore engineering operations. The rigours of the North Sea environment have proved to be particularly strenuous for offshore equipment. The lessons learned in the last few years of exploration are relevant to offshore sites throughout the world. The topics covered include lifting gear, compressors, pumps, valves and seals, lubricants and lubrication, underwater equipment, friction and wear associated with the anchorage of rigs and platforms, sliding contract and condition monitoring offshore.

Not Available

1985-01-01T23:59:59.000Z

46

Offshore Wind Power USA  

Energy.gov (U.S. Department of Energy (DOE))

The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

47

Dynamic characteristics of a jacket type offshore structure considering non-linear behavior of pile foundations  

SciTech Connect

Dynamic characteristics of a typical six legged jacket type platform in Persian Gulf have been studied. An equivalent linearized pile stub has been used to model the pile-soil system. The properties of pile stub have been calculated for different levels of the pile-head deformations resulting from the action of different waves. Natural frequencies and mode shapes of resulting linear models have been determined and compared to each other.

Aaghaakouchak, A.A.; Asgarian, B. [Tarbiat Modarress Univ., Tehran (Iran, Islamic Republic of). Dept. of Civil Engineering

1996-12-31T23:59:59.000Z

48

Will Offshore Energy Face “Fair Winds and Following Seas”?: Understanding the Factors Influencing Offshore Wind Acceptance  

Science Journals Connector (OSTI)

Most offshore energy studies have focused on measuring or ... the other surrounds a more general acceptance of offshore energy. Understanding what drives this second type ... s evaluations of the benefits and cos...

Mario F. Teisl; Shannon McCoy; Sarah Marrinan; Caroline L. Noblet…

2014-02-01T23:59:59.000Z

49

Property:Types of Co-located facilities | Open Energy Information  

Open Energy Info (EERE)

Types of Co-located facilities Types of Co-located facilities Jump to: navigation, search Property Name Types of Co-located facilities Property Type Text Pages using the property "Types of Co-located facilities" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Co-located fish holding facility is ideal for evaluating the impacts of generation devices on fish Alden Small Flume + Co-located fish holding facility is ideal for evaluating the impacts of generation devices on fish. B Bucknell Hydraulic Flume + Sediment-recirculating flume, 40-ft by 10-ft wide, exploration of sediment transport/deposition and river morphology impact. C Conte Large Flume + Physiology, ecology, behavior laboratories Conte Small Flume + Physiology, ecology, behavior laboratories

50

Offshore structures  

Science Journals Connector (OSTI)

... SIR,-We have had some experience with modelling offshore structures in the laboratory, and wish to call attention to the need for better ... have already occurred have been serious enough, but the failure of one of the giant rigs or platforms now being planned would be a catastrophe of unprecedented proportions.

CHESLEY J. POSEY; RICHARD SILVESTER

1975-11-20T23:59:59.000Z

51

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

52

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

53

TYPE OF OPERATION R Research & Development T& Facility Type  

Office of Legacy Management (LM)

--____ --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT CONTRACTOR Cot+ "ACTOR OWNED LEASED ----- -----_ w!ET) C_EtlSLE ~~s!_NE!?~~ z L ACZD -------- - LANDS a BUILDINGS 0 EQUIPMENT u ORE OR RAW MATL FINAL PRODUCT f i ; : ' 0 WASTE .% RESIDLIE q 0 G G &EC/NED INVOLVEtiE?4T AT SITE .--------_------___~~~~~~~-- ,I

54

Energy Star Building Upgrade Manual Facility Type: Hotels and Motels Chapter 12  

NLE Websites -- All DOE Office Websites (Extended Search)

2. Facility Type: 2. Facility Type: Hotels and Motels Revised December 2007 12.1 Challenges and Opportunities 2 12.2 Energy-Use Profile 3 12.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 8 Load Reduction 11 Air Distribution Systems 13 Heating and Cooling Systems 15 12.4 Financial and Implementation Issues 16 Bibliography 17 Glossary G-1 ENERGY STAR ® Building Manual 2 12. Facility Type: Hotels and Motels 12.1 Challenges and Opportunities The United States' 47,000 hotels and motels spend an average of $2,196 per available room each year on energy, an amount that represents about 6 percent of all hotel operating costs. The varied nature of the physical facilities and the activities that they host can make energy management especially challenging, whether the facility is a large convention hotel, part of

55

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

56

Energy Star Building Upgrade Manual Facility Type: Supermarkets and Grocery Stores Chapter 11  

NLE Websites -- All DOE Office Websites (Extended Search)

1. Facility Type: 1. Facility Type: Supermarkets and Grocery Stores Revised January 2008 11.1 Challenges and Opportunities 2 11.2 Energy Use Profiles 3 11.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 8 Load Reductions 11 Air Distribution Systems 15 Heating and Cooling Systems 16 11.4 Financial and Implementation Issues 17 Bibliography 17 Glossary G-1 ENERGY STAR ® Building Manual 2 11. Facility Type: Supermarkets and Grocery Stores 11.1 Challenges and Opportunities Energy is increasingly joining the ranks of top concerns for supermarket owners and facility managers. Supermarkets are the most electricity-intensive type of commercial building, using an average of about 50 kilowatt-hours (kWh) of electricity. They also use 50 cubic feet of natural gas per square foot (ft

57

Geological Characterization of California's Offshore  

E-Print Network (OSTI)

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

58

OpenEI - offshore wind  

Open Energy Info (EERE)

/0 en Offshore Wind Resource /0 en Offshore Wind Resource http://en.openei.org/datasets/node/921 Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW)

License
59

Hydrodynamic Testing Facilities Database | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamic Testing Facilities Database Hydrodynamic Testing Facilities Database Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities in the list accompanying the map, one will be provided with data on a range of test capabilities and services available at commercial, academic, and government facilities and offshore berths within the United States. Click on a thumbnail in the adjacent map in order to view a testing facility operator's profile page. This page will include in depth information about the testing facilities that each operator oversees. Click on this link, CSV ,to download all of the information on all hydrodynamic testing facilities. Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":5000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

60

Sandia National Laboratories: Offshore Wind RD&D: Large Offshore...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Offshore Rotor Development Offshore Wind RD&D: Large Offshore Rotor Development Overview Sandia National Laboratories Wind Energy Technologies Department, creates and...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Managing Offshore Wind Energy Assets: On the Systematic Development of an Integrated Architecture  

Science Journals Connector (OSTI)

Offshore wind turbines are being used in a number ... and convert it to electricity. Commercial-scale offshore wind facilities are currently in operation in shallow ... outer continental shelf. However, this shif...

Idriss El-Thalji; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

62

Guideline to good practices for types of maintenance activities at DOE nuclear facilities  

SciTech Connect

The purpose of the Guideline to Good Practices for Types of Maintenance at DOE Nuclear Facilities is to provide contractor maintenance organizations with information that may be used for the development and implementation of a properly balanced corrective, preventive and predictive maintenance program at DOE nuclear facilities. This document is intended to be an example guideline for the implementation of DOE Order 4330.4A, Maintenance Management Program, Chapter II, Element 4. DOE contractors should not feel obligated to adopt all parts of this guide. Rather, they should use the information contained herein as a guide for developing maintenance programs that are applicable to their facility.

Not Available

1993-03-01T23:59:59.000Z

63

Energy Star Building Upgrade Manual Facility Type: KÂ…12 Schools Chapter 10  

NLE Websites -- All DOE Office Websites (Extended Search)

10. Facility Type: 10. Facility Type: K-12 Schools Revised November 2006 10.1 Challenges and Opportunities 2 10.2 Energy-Use Profile 3 10.3 Technical Recommendations 4 Retrocommissioning 5 Lighting 7 Load Reductions 9 Air Distribution Systems 11 Heating and Cooling Systems 13 10.4 Financial and Implementation Issues 14 Bibliography 16 Glossary G-1 ENERGY STAR ® Building Manual 2 10. Facility Type: K-12 Schools 10.1 Challenges and Opportunities America's schools spend more than $7.5 billion annually on energy-more than they spend on textbooks and computers combined. Energy costs are the largest operating expense for school districts after salaries and benefits, and in recent years those costs have increasingly strained their budgets. The good news is that energy is one of the few expenses that can be decreased

64

Assessment of Ports for Offshore Wind Development in the United States  

SciTech Connect

As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventiona

Elkinton, Chris [DNV GL] [DNV GL; Blatiak, Alicia; Ameen, Hafsa

2014-03-21T23:59:59.000Z

65

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

66

Sandia National Laboratories: Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyOffshore Wind Offshore Wind Sandia executes several projects in support of the DOE Offshore Wind program, which address unique R&D needs related to offshore siting and, in...

67

offshore wind farm  

Science Journals Connector (OSTI)

offshore wind farm, wind farm [‘Wind park’ which one may find on the ... engineers and should not be used. A wind farm consists of a network of wind turbines] ? Windkraftanlage f, Windpark m; Offshore

2014-08-01T23:59:59.000Z

68

Fixed Offshore Wind Turbines  

Science Journals Connector (OSTI)

In this chapter, a perspective of offshore wind farms, applied concepts for fixed offshore wind turbines, and related statistics are given. One example of a large wind farm, which is successfully operating, is st...

Madjid Karimirad

2014-01-01T23:59:59.000Z

69

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence ...

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo Østgren; Trond Friisø

2014-10-01T23:59:59.000Z

70

Offshore Wind Development 2011  

Science Journals Connector (OSTI)

Growth in the European offshore market will depend principally on the ability ... manufacturing capacity, and the development of specialized offshore wind turbines with their own manufacturing supply chain are...

Mark J. Kaiser; Brian F. Snyder

2012-01-01T23:59:59.000Z

71

Facilities at a Glance Undergraduate Room Type Standard Shared Standard Standard Catered  

E-Print Network (OSTI)

Facilities at a Glance ­ Undergraduate Room Type Standard Shared Standard Standard Catered Standard Communal area clean John Wood Building N/A 6 weekly bedroom clean Data/WIFI Flat screen monitor TV +TV Licence VOIP Telephony John Wood Building Freewire Service Recycling

Burton, Geoffrey R.

72

CONGRESSIONAL BRIEFING Offshore Wind  

E-Print Network (OSTI)

CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

Firestone, Jeremy

73

Offshore Wind Geoff Sharples  

E-Print Network (OSTI)

Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

Kammen, Daniel M.

74

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Energy.gov (U.S. Department of Energy (DOE))

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

75

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations  

Science Journals Connector (OSTI)

Optimal Planning and Scheduling of Offshore Oil Field Infrastructure Investment and Operations ... A multiperiod mixed-integer linear programming (MILP) model formulation is presented for the planning and scheduling of investment and operation in offshore oil field facilities. ... An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure ...

R. R. Iyer; I. E. Grossmann; S. Vasantharajan; A. S. Cullick

1998-03-13T23:59:59.000Z

76

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

77

Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals  

Science Journals Connector (OSTI)

Underwater noise was recorded from three different types of wind turbines in Denmark and Sweden (Middelgrunden Vindeby and Bockstigen-Valar) during normal operation. Wind turbinenoise was only measurable above ambient noise at frequencies below 500 Hz. Total sound pressure level was in the range 109–127 dB re 1 ? ? Pa rms measured at distances between 14 and 20 m from the foundations. The 1/3-octave noise levels were compared with audiograms of harbor seals and harbor porpoises. Maximum 1/3-octave levels were in the range 106–126 dB re 1 ? ? Pa rms. Maximum range of audibility was estimated under two extreme assumptions on transmission loss (3 and 9 dB per doubling of distance respectively). Audibility was low for harbor porpoises extending 20–70 m from the foundation whereas audibility for harbor seals ranged from less than 100 m to several kilometers. Behavioral reactions of porpoises to the noise appear unlikely except if they are very close to the foundations. However behavioral reactions from seals cannot be excluded up to distances of a few hundred meters. It is unlikely that the noise reaches dangerous levels at any distance from the turbines and the noise is considered incapable of masking acoustic communication by seals and porpoises.

Jakob Tougaard; Oluf Damsgaard Henriksen; Lee A. Miller

2009-01-01T23:59:59.000Z

78

Offshore Wind Projects | Department of Energy  

Office of Environmental Management (EM)

Offshore Wind Projects Offshore Wind Projects This report covers the Wind and Water Power Program's offshore wind energy projects from fiscal years 2006 to 2014. Offshore Wind...

79

WINDExchange Offshore Wind Webinar: Transmission Planning and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

80

CT Offshore | Open Energy Information  

Open Energy Info (EERE)

CT Offshore CT Offshore Place Otterup, Denmark Zip 5450 Sector Wind energy Product Denmark-based consultancy which provides assistance for project management, damage assessment and stabilization as well as other activities related to wind farms and subsea maintenance. Coordinates 55.543228°, 10.40294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.543228,"lon":10.40294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chapter 2 Offshore Wind Power Stations  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the historical background and development of offshore wind power stations. As early as 1890, windmills were put to work to produce electricity and more than 50,000 mills were in use in the United States alone in the twenties and thirties. Their decline was precipitated by the Rural Electrification Program. According to the San Francisco based Transaction Energy Projects Institute, offshore windmills could generate all the electrical power needed by northern California. Ocean winds have of course provided energy to windmills for centuries. In 1976, a study was commissioned by the (U.S.) Energy Research and Development Administration to ascertain and assess the economic value of offshore multi units aiming at identification and classification of area offshore types, assessing utility requirements for offshore power systems. It includes developing installation concepts including various floating and bottom-mounted designs, assessing current WECS (wind energy converter systems) for use in offshore environments, assessing various electric transmission and hydrogen delivery concepts, and performing an economic assessment, providing tradeoffs for variables such as distance offshore, climate, bottom and wave characteristics and average wave velocities. It is suggested that high wind velocity sites must be identified because the energy flow increases with the cube of the wind velocity; the kinetic energy of the wind passing through the area swept by the blades of a turbine is the energy available to that wind turbine. An average wind speed distribution is required.

1993-01-01T23:59:59.000Z

82

Offshore Rankine Cycles.  

E-Print Network (OSTI)

?? The title of the thesis - "Offshore Rankine Cycles" - is very general and cover a large range of engineering fields, e.g. thermodynamic cycles… (more)

Brandsar, Jo

2012-01-01T23:59:59.000Z

83

Offshore Structure Design and Development  

Science Journals Connector (OSTI)

...installation and operation of offshore structures for oil and gas exploration and production...service. The importance of offshore oil and gas may be judged by the...exploration investments will go to offshore prospects in future years...

1982-01-01T23:59:59.000Z

84

Foundations for offshore wind turbines  

Science Journals Connector (OSTI)

...T. Thompson Foundations for offshore wind turbines B. W. Byrne G. T...civil-engineering problems encountered for offshore wind turbines. A critical component...energy suppliers. Foundations|Offshore Wind Turbines|Renewable Energy...

2003-01-01T23:59:59.000Z

85

Lake Michigan Offshore Wind Feasibility Assessment  

SciTech Connect

The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

2014-06-30T23:59:59.000Z

86

Sandia National Laboratories: Offshore Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Offshore Publications Jason Magalen, Craig Jones, and Jesse Roberts, Offshore Wind Guidance Document: Oceanography and Sediment Stability, Development of a Conceptual...

87

Offshore Sulfur Comes In  

Science Journals Connector (OSTI)

Offshore Sulfur Comes In ... "The deposit is a major new source of sulfur," say Hines H. Baker, president of Humble Oil, and Langbourne M. Williams, president of Freeport Sulphur. ... Humble's deposit, known as Grand Isle (Block 18), was discovered in the course of offshore oil exploration and it ranks among the most important sulfur discoveries of recent years. ...

1956-10-01T23:59:59.000Z

88

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

89

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

90

Type B investigation report of curium-244 exposure at the ORNL TRU Facility, January 15, 1986  

SciTech Connect

This Type B Investigative Report provides an evaluation of relevant events and activities that led to, were a part of, or resulted from the release of curium-244 in the Building 7920 facility at ORNL in January 1986. Impacts have been evaluated with respect to employee exposures and the costs and loss of productivity resulting from increased bioassay analyses and activities of investigative committees. Management systems evaluated include (1) training of employees performing lab analyses, (2) adherence to procedures, and (3) response to unusual circumstances.

Love, G.L.; Butler, H.M.; Duncan, D.T.; Oakes, T.W.

1986-04-01T23:59:59.000Z

91

Developing Livestock Facility Type Information from USDA Agricultural Census Data for Use in Epidemiological and Economic Models  

SciTech Connect

The epidemiological and economic modeling of livestock diseases requires knowing the size, location, and operational type of each livestock facility within the US. At the present time, the only national database of livestock facilities that is available to the general public is the USDA's 2002 Agricultural Census data, published by the National Agricultural Statistics Service, herein referred to as the 'NASS data.' The NASS data provides facility data at the county level for various livestock types (i.e., beef cows, milk cows, cattle on feed, other cattle, total hogs and pigs, sheep and lambs, milk goats, and angora goats). However, the number and sizes of facilities for the various livestock types are not independent since some facilities have more than one type of livestock, and some livestock are of more than one type (e.g., 'other cattle' that are being fed for slaughter are also 'cattle on feed'). In addition, any data tabulated by NASS that could identify numbers of animals or other data reported by an individual respondent is suppressed by NASS and coded with a 'D.'. To be useful for epidemiological and economic modeling, the NASS data must be converted into a unique set of facility types (farms having similar operational characteristics). The unique set must not double count facilities or animals. At the same time, it must account for all the animals, including those for which the data has been suppressed. Therefore, several data processing steps are required to work back from the published NASS data to obtain a consistent database for individual livestock operations. This technical report documents data processing steps that were used to convert the NASS data into a national livestock facility database with twenty-eight facility types. The process involves two major steps. The first step defines the rules used to estimate the data that is suppressed within the NASS database. The second step converts the NASS livestock types into the operational facility types used by the epidemiological and economic model. Comparison of the resulting database with an independent survey of farms in central California shows excellent agreement between the numbers of farms for the various facility types. This suggests that the NASS data are well suited for providing a consistent set of county-level information on facility numbers and sizes that can be used in epidemiological and economic models.

Melius, C; Robertson, A; Hullinger, P

2006-10-24T23:59:59.000Z

92

Dynamic analysis of tension leg platform for offshore wind turbine support as fluid-structure interaction  

Science Journals Connector (OSTI)

Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization. The strong-interaction method is ... and the dynamic characteristics of the TLP for offshore wind turbine

Hu Huang ? ?; She-rong Zhang ???

2011-03-01T23:59:59.000Z

93

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network (OSTI)

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

Østensen, Marie

2005-01-01T23:59:59.000Z

94

Assessment of Offshore Wind Energy Potential in the United States (Poster)  

SciTech Connect

The development of an offshore wind resource database is one of the first steps necessary to understand the magnitude of the resource and to plan the distribution and development of future offshore wind power facilities. The U.S. Department of Energy supported the production of offshore wind resource maps and potential estimates for much of the United States. This presentation discusses NREL's 2010 offshore wind resources report; current U.S., regional, and state offshore maps; methodology for the wind mapping and validation; wind potential estimates; the Geographic Information Systems database; and future work and conclusions.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Musial, W.

2011-05-01T23:59:59.000Z

95

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

96

Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals  

E-Print Network (OSTI)

Visual Simulation of Offshore Liquefied Natural Gas (LNG) Terminals in a Decision-Making Context1, Berkeley. 3/ Liquified Natural Gas Act Stats, 1977, Chap. 855, Page 2506 (effective Sept. 17, 1977 potential offshore Liquified Natural Gas (LNG) sites and the types of terminals that might occupy those

Standiford, Richard B.

97

offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description GIS data for offshore wind speed (meters/second). Specified to Exclusive Economic Zones (EEZ).Wind resource based on NOAA blended sea winds and monthly wind speed at 30km resolution, using a 0.11 wind sheer to extrapolate 10m - 90m. Annual average >= 10 months of data, no nulls. Source National Renewable Energy Laboratory (NREL) Date Released Unknown Date Updated Unknown Keywords GIS global NOAA NREL offshore wind wind speed Data application/zip icon Download Shapefile (zip, 18.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Please cite NREL and NOAA Rate this dataset Usefulness of the metadata

98

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

99

Chapter 3 - Offshore Platforms  

Science Journals Connector (OSTI)

Abstract Modern offshore crude oil and natural gas exploration—the search for likely environments where crude oil and natural gas may exist in the rock formations that are beneath the surface of the waterways of the world. In addition, offshore operations include transporting crude oil and natural gas from their point of production offshore to refineries and plants on land. Very little refining of the crude oil and natural gas is carried out on the production platform. This chapter focuses on exploration, drilling, and production of crude oil and natural gas and the wide range of technologies involved as well as the additional technologies that relate to a marine environment necessary for offshore activities.

James G. Speight

2015-01-01T23:59:59.000Z

100

Magnolia Goes Offshore  

Science Journals Connector (OSTI)

Magnolia Goes Offshore ... It will be put to use in early 1956, when the company launches an attempt to locate oil in the Gulf of Mexico near the mouth of the Mississippi River. ...

1955-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

102

2014 Headquarters Facilities Master Security Plan- Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas  

Energy.gov (U.S. Department of Energy (DOE))

2014 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Valut-Type Rooms and Temporary Limited Areas Describes DOE Headquarters procedures for establishing, maintaining, and deactivating Limited Areas and Vault-Type Rooms and protecting the classified information handled within those Areas.

103

Wind Offshore Port Readiness | Department of Energy  

Office of Environmental Management (EM)

Wind Offshore Port Readiness Wind Offshore Port Readiness This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore...

104

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name: Blyth Offshore Wind Ltd Place: United Kingdom Sector: Renewable Energy, Wind energy Product: Blyth Offshore Wind Limited,...

105

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

106

GAOH Offshore | Open Energy Information  

Open Energy Info (EERE)

GAOH Offshore Jump to: navigation, search Name: GAOH Offshore Place: St Peter Port, United Kingdom Zip: GY1 4EE Sector: Wind energy Product: Intends to become the preferred...

107

A review of combined wave and offshore wind energy  

Science Journals Connector (OSTI)

Abstract The sustainable development of the offshore wind and wave energy sectors requires optimising the exploitation of the resources, and it is in relation to this and the shared challenge for both industries to reduce their costs that the option of integrating offshore wind and wave energy arose during the past decade. The relevant aspects of this integration are addressed in this work: the synergies between offshore wind and wave energy, the different options for combining wave and offshore wind energy, and the technological aspects. Because of the novelty of combined wave and offshore wind systems, a comprehensive classification was lacking. This is presented in this work based on the degree of integration between the technologies, and the type of substructure. This classification forms the basis for the review of the different concepts. This review is complemented with specific sections on the state of the art of two particularly challenging aspects, namely the substructures and the wave energy conversion.

C. Pérez-Collazo; D. Greaves; G. Iglesias

2015-01-01T23:59:59.000Z

108

Baltic oil: Moving offshore  

Science Journals Connector (OSTI)

... the consortium of Soviet, Polish and East German oil interests, will sink its first offshore bore-hole in the Baltic. This move follows four years of intensive prospecting, which ... findings. For a time, plans were afort to buy or hire a Vexco drilling rig, but when these had to be abondoned for lack of hard currency, the shut ...

Vera Rich

1980-06-19T23:59:59.000Z

109

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (ms) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total...

110

Offshore blow-out accidents : an analysis of causes of vulnerability exposing technological systems to accidents.  

E-Print Network (OSTI)

??This thesis is about understanding causes of vulnerabilities leading to specific type of accidents on offshore oil and gas installations. Blow-out accidents have disastrous potential… (more)

Sætren, Thomas G.

2007-01-01T23:59:59.000Z

111

Control System Development and Technological Investigation for a Climbing Robot in Offshore platforms.  

E-Print Network (OSTI)

??Denne oppgaven går gjennom forskjellige type teknologier for å utvikle en mobil offshore klatre robot. To improve human safety and environmental concerns, oil and gas… (more)

Moghaddam, Akbar Faghihi

2012-01-01T23:59:59.000Z

112

CONTENTS Japan Completes First Offshore  

NLE Websites -- All DOE Office Websites (Extended Search)

Japan Completes First Offshore Japan Completes First Offshore Production Test .............................1 New Seismic Data Over Known Hydrate Occurrences in the Deepwater Gulf of Mexico .........3 Gas Hydrate Reservoirs in the Offshore Caribbean Region of Colombia ..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used to Characterize Hydrate- Bearing Sediments from The Nankai Trough ..............................19 Using Noble Gas Signatures to Fingerprint Gas Streams Derived from Dissociating Methane Hydrate .......................................... 23 Announcements ...................... 27 * North Slope Oil and Gas Lands Set Aside for Methane Hydrate Research * 2014 Offshore Technology Conference to Have Sessions on

113

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers (EERE)

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

114

Foundation for Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Energy Offshore Wind Energy Jump to: navigation, search Name Foundation for Offshore Wind Energy Place Varel, Germany Zip D-26316 Sector Wind energy Product Foundation established to operate the 60MW Borkum West Offshore Wind Farm. Coordinates 53.393773°, 8.13759° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.393773,"lon":8.13759,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Offshore Wind Research (Fact Sheet)  

SciTech Connect

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

Not Available

2011-10-01T23:59:59.000Z

116

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

117

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network (OSTI)

Press; 1968. [11] Offshore Staff. Deep sea drillingproject completes second leg. Offshore 1969:67–72. [12] Weeks LG. Offshore operations around the world. Offshore

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

118

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

119

Strategies and technologies in offshore farming  

Science Journals Connector (OSTI)

A more restrictive attitude to inshore farming, in addition to positive biological findings among offshore farmed fish, have increased the demand for suitable offshore fish farming cages/systems. To develop such a cage/system, the requirements of the fish, the fish farmer, the insurance companies, the authorities and the moorings must be considered. The existing offshore concepts can be classified into: (1) simple flexible one-net bag cages; (2) integrated stiff semi-submersible one-net bag constructions; (3) simple stiff poly-net bag cages; (4) integrated stiff poly-net bag constructions; (5) submersible and submerged cages. An example from each group is described. The Bridgestone cage and the Farmocean system, the only offshore concepts that have been in commercial use for some years, are compared with respect to strength and management. The other concepts are evaluated in various parts. A suitable offshore concept should, in general, consist of a stable, strong and safe platform that should be easy and safe to tow, moor and board. It should allow a proper attachment of the net bag (preferably round, ?15 m deep and 5000 m3 in volume), and guarantee its strength and shape during all weather conditions. The fish should be fed by means of a computer-controlled automatic feeder. Faster growth, lowered mortality and reduced visceral fat content are reported among offshore farmed fish compared with those farmed inshore. A lower degree of self-pollution will also be a consequence of moving larger and deeper cages/systems offshore. The tentative rules for the type approval of floating fish farming units that have been presented by “Det norske Veritas” (DnV) in Norway will be positive for the fish farming business if it starts to be valid and cover the rest of the fish farming countries. Despite the higher investment required for the offshore cages/systems, it has been indicated that there is a better economic result and that the cost of producing 1 kg of fish is lower than in conventional fish farms. As the single-net bag concept represents a lower risk for the fish farmer, insurance company and veterinary authority, it will probably be the preferred concept.

Tore Sveälv

1991-01-01T23:59:59.000Z

120

The Future of Offshore Wind Energy  

E-Print Network (OSTI)

1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

Firestone, Jeremy

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

122

Recordkeeping for Offshore Course Offerings Guideline  

E-Print Network (OSTI)

Guideline Recordkeeping for Offshore Course Offerings Guideline Policy Supported: Recordkeeping and operation of Offshore Courses. Contact Officer: Manager, Records Management Phone: 9360 2162 Printed copies outlines responsibilities for managing records in all formats associated with Offshore Courses

123

44 MArch 2006 Can offshore aquaculture  

E-Print Network (OSTI)

44 MArch 2006 Can offshore aquaculture of carnivorous fish be sustainable? Case studies from opera- tions further offshore. The United States is paving the technological road to sustainable development of offshore aquaculture through university-industry-government partnerships. Emerging technology

Miami, University of

124

Offshore Aquaculture in the United States  

E-Print Network (OSTI)

Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities). 2008. Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities;Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities Prepared

125

Japan Completes First Offshore Production Test .............................1  

E-Print Network (OSTI)

1 CONTENTS Japan Completes First Offshore Production Test .............................1 New Reservoirs in the Offshore Caribbean Region of Colombia..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used

126

Electrification of offshore petroleum installations with offshore wind integration  

Science Journals Connector (OSTI)

Electric power supply to oil and gas platforms is conventionally provided by gas turbines located on the platforms. As these gas turbines emit considerable amounts of CO2 and NOx, it is desirable to find alternative solutions. One alternative is to feed the platforms from the onshore power system via subsea power cables, which already have been implemented on some platforms in the Norwegian part of the North Sea. The paper studies a cluster of petroleum installations in this geographic area, connected to the Norwegian onshore power system through an HVDC voltage link. In the study, an offshore wind farm is also connected to the offshore AC power system. The main focus is investigation of transient stability in the offshore power system, and several fault cases have been studied for different levels of wind power generation. Simulations show that faults on the offshore converter platform can be critical due to the dependency of the reactive power delivered by the HVDC link to the offshore AC system. However, it is shown that local wind power production matching the offshore power demand will improve both voltage- and frequency-stability. Further on, it is indicated that offshore reactive power injections or alternative wind farm control topologies could improve voltage stability offshore.

Jorun I. Marvik; Eirik V. Øyslebø; Magnus Korpås

2013-01-01T23:59:59.000Z

127

File:EIA-offshore-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

offshore-gas.pdf offshore-gas.pdf Jump to: navigation, search File File history File usage Natural Gas Production in Offshore Fields, Lower 48 States Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 467 KB, MIME type: application/pdf) Description Natural Gas Production in Offshore Fields, Lower 48 States Sources Energy Information Administration Related Technologies Natural Gas Creation Date 2009-04-08 Extent National Countries United States UN Region Northern America File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 18:32, 20 December 2010 Thumbnail for version as of 18:32, 20 December 2010 1,650 × 1,275 (467 KB) MapBot (Talk | contribs) Automated bot upload

128

Alaska Region Offshore GIS Data | OpenEI  

Open Energy Info (EERE)

Region Offshore GIS Data Region Offshore GIS Data Dataset Summary Description The US Department of Interior's (DOI) Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) published GIS data of offshore information for the Alaska Region. The data are available as GIS shapefiles. The types of data include: active leases, boundary of US jurisdiction for mineral development, and fed/state boundaries. All .zip files included here contain shapefiles, and most also contain supplemental metadata. Note: metadata appears to be available for all shapefiles from BOEMRE, but not all of the links on the BOEMRE website (http://www.boemre.gov/offshore/mapping/alaska.htm#OPD) work. Source US Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Date Released July 01st, 2002 (12 years ago)

129

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

130

Offshore Wind Advanced Technology Demonstration Projects | Department...  

Office of Environmental Management (EM)

will help address key challenges associated with installing full-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

131

Energy Department Announces Offshore Wind Demonstration Awardees...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will help address key challenges associated with installing utility-scale offshore wind turbines, connecting offshore turbines to the power grid, and navigating new permitting and...

132

Offshore Ostsee Wind AG | Open Energy Information  

Open Energy Info (EERE)

Name: Offshore Ostsee Wind AG Place: Brgerende, Mecklenburg-Western Pomerania, Germany Zip: 18211 Sector: Wind energy Product: Joint venture formed to exploit offshore wind...

133

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

134

Developing Integrated National Design Standards for Offshore...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developing Integrated National Design Standards for Offshore Wind Plants Developing Integrated National Design Standards for Offshore Wind Plants January 6, 2014 - 10:00am Addthis...

135

Scira Offshore Energy | Open Energy Information  

Open Energy Info (EERE)

Scira Offshore Energy Jump to: navigation, search Name: Scira Offshore Energy Place: Lowestoft, Suffolk, United Kingdom Zip: NR32 1DE Sector: Wind energy Product: Developer of the...

136

Sandia National Laboratories: Quantifying Offshore Wind Scour...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyComputational Modeling & SimulationQuantifying Offshore Wind Scour with Sandia's Environmental Fluid Dynamics Code (SNL---EFDC) Quantifying Offshore Wind Scour with...

137

Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

138

Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of the Type B Accident Investigation Board (Board) investigation of the October 6, 2009, hand injury at the Department of Energy (DOE) Savannah River Site (SRS) Salt Waste Processing Facility construction site.

139

Grid Integration of Offshore Windparks (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

of Offshore Windparks (Smart Grid Project) of Offshore Windparks (Smart Grid Project) Jump to: navigation, search Project Name Grid Integration of Offshore Windparks Country Germany Coordinates 51.165691°, 10.451526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.165691,"lon":10.451526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Conceptual Model of Offshore Wind Environmental Risk Evaluation System  

SciTech Connect

In this report we describe the development of the Environmental Risk Evaluation System (ERES), a risk-informed analytical process for estimating the environmental risks associated with the construction and operation of offshore wind energy generation projects. The development of ERES for offshore wind is closely allied to a concurrent process undertaken to examine environmental effects of marine and hydrokinetic (MHK) energy generation, although specific risk-relevant attributes will differ between the MHK and offshore wind domains. During FY10, a conceptual design of ERES for offshore wind will be developed. The offshore wind ERES mockup described in this report will provide a preview of the functionality of a fully developed risk evaluation system that will use risk assessment techniques to determine priority stressors on aquatic organisms and environments from specific technology aspects, identify key uncertainties underlying high-risk issues, compile a wide-range of data types in an innovative and flexible data organizing scheme, and inform planning and decision processes with a transparent and technically robust decision-support tool. A fully functional version of ERES for offshore wind will be developed in a subsequent phase of the project.

Anderson, Richard M.; Copping, Andrea E.; Van Cleve, Frances B.; Unwin, Stephen D.; Hamilton, Erin L.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CONMOW: Condition Monitoring for Offshore Wind Farms  

E-Print Network (OSTI)

practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

142

Offshore Wind Turbines and Their Installation  

Science Journals Connector (OSTI)

Offshore winds tend to be higher, more constant and not disturbed by rough terrain, so there is a large potential for utilizing wind energy near to the sea. Compared with the wind energy converters onland, wind turbine components offshore will subject ... Keywords: renewable energy, wind power generation, offshore wind turbines, offshore installation

Liwei Li; Jianxing Ren

2010-01-01T23:59:59.000Z

143

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

144

Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves  

E-Print Network (OSTI)

DESIGN CONSIDERATIONS FOR MONOPILE FOUNDED OFFSHORE WIND TURBINES SUBJECT TO BREAKING WAVES A Thesis by GARRETT REESE OWENS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Farms ...... 4 Figure 2 Overview of Offshore Wind Turbine Terminology................................. 7 Figure 3 Overturning Moment as a Function of Water Depth ............................... 10 Figure 4 Types of Breaking Waves...

Owens, Garrett Reese 1987-

2012-11-26T23:59:59.000Z

145

Production of exotic, short lived carbon isotopes in ISOL-type facilities  

E-Print Network (OSTI)

The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

Franberg, Hanna; Köster, Ulli; Ammann, Markus

2008-01-01T23:59:59.000Z

146

Proposed Evanston Offshore Wind Farm  

NLE Websites -- All DOE Office Websites (Extended Search)

Evanston Offshore Wind Farm Evanston Offshore Wind Farm August 1, 2011 Monday, August 1, 2011 Off Shore Wind Farm FAQ Document available from http://www.greenerevanston.org/ at the Renewable Energy Task Force tab Monday, August 1, 2011 City Manager Commits to City to sign onto Kyoto emissions reduction goals Wind Farm Timeline April 2006 Summer 2007 Fall 2008 February 2008 April 2010 March 2011 July 2011 Network for Evanston's Future proposes joint climate planning effort CGE Formed and Renewable Energy Task Force formed - Wind farm concept begun ECAP passed by City Council with 1st version of proposed Offshore Wind Farm included Offshore Wind Farm RFI unanimously passed by City Council Mayor Tisdahl appointments Committee on the Wind Farm City Council

147

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

148

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...effect temporary simple repairs underwater but the...for the submarine repair of offshore platforms...possibility exists that pipelines at this depth may require local repair. For such simple...connection of bolts for patch repairs etc. and...

1976-01-01T23:59:59.000Z

149

Chapter 6 - Offshore Structural Analysis  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the primary considerations that the design engineer should bear in mind during the initial design and subsequent structural analysis. The designer is faced with a large number of rules, codes, standards, and specifications describing the general policy for structural systems and the detailed design of structural components, which includes government requirements, certification/classification authorities, and other technical documents. The notation “Structures” refers to all types of marine units ranging from floating ship-shaped vessels to bottom founded platforms. Emphasis has been placed on ship-shaped structures. Consideration is also given to column-supported structures, e.g., semi-submersibles, tension leg platforms, spars, and mooring buoys, etc., and also to steel bottom founded offshore structures, such as fixed steel jackets. The main output of the planning process is a “Design Basis,” describing the criteria and a “Design Brief,” describing the procedure to be followed and software to be used. This chapter discusses the finite element method, which is a powerful computational tool that has been widely used in the design of complex marine structures over the decades. This chapter gives a general overview for the design of marine structures using a finite element modeling technique. It also addresses structural modeling defined by industry codes for fixed platforms and floating production installations. Throughout this chapter, emphasis is placed on the design process where the finite element analysis will be employed.

Yong Bai

2003-01-01T23:59:59.000Z

150

South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Clemson University Project Converted Former Navy Warehouse to First-of-its-Kind Testing Facility for Land-Based and Offshore Wind Turbines

151

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

152

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

153

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

154

Improving Design Methods for Fixed-Foundation Offshore Wind Energy Systems  

Energy.gov (U.S. Department of Energy (DOE))

The design basis for an offshore wind farm establishes the conditions, needs, and requirements to be taken into account in designing the facility. To address design knowledge gaps and facilitate safe deployment of U.S. offshore wind projects in areas along the U.S. Atlantic Coast, DOE is funding research by a team consisting of DOE's Savannah River National Laboratory, Coastal Carolina University, MMI Engineering, and DOE's National Renewable Energy Laboratory.

155

EA-1985: Virginia Offshore Wind Technology Advancement Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia EA-1985: Virginia Offshore Wind Technology Advancement...

156

2014 Offshore Wind Market & Economic Analysis Cover Photo | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4 Offshore Wind Market & Economic Analysis Cover Photo 2014 Offshore Wind Market & Economic Analysis Cover Photo Navigant 2014 Offshore Wind Market and Economic Analysis.JPG More...

157

Assessment of Offshore Wind Energy Resources for the United States...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of Offshore Wind Energy Resources for the United States Assessment of Offshore Wind Energy Resources for the United States This report summarizes the offshore wind...

158

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

159

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the Full Map Today the Energy Department announced investments in seven offshore wind demonstration projects. These projects are part of a broader effort to launch an offshore wind industry in the United States, and support innovative offshore installations for commercial deployment by 2017.

160

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT)  

E-Print Network (OSTI)

RELIABILITY COMPARISON MODELS FOR OFFSHORE WIND TURBINES (OWT) Yizhou Lu, T. M. Delorm, A. Christou of the reliability of these 5 Types Surrogate failure rate data Onshore wind turbines (OT) 1-1.5MW CONCLUSIONS., Faulstich, S. & van Bussel G. J. W. Reliability & availability of wind turbine electrical & electronic

Bernstein, Joseph B.

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coupled dynamic analysis of floating offshore wind farms  

E-Print Network (OSTI)

it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

Shim, Sangyun

2009-05-15T23:59:59.000Z

162

New Report Characterizes Existing Offshore Wind Grid Interconnection...  

Office of Environmental Management (EM)

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

163

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

wind offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description This dataset presents summary information related to world wind energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU wind offshore Wind Power wind power capacity world Data application/vnd.ms-excel icon Excel spreadsheet, data on multiple tabs (xls, 114.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period through 2009 License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

166

offshore resource | OpenEI  

Open Energy Info (EERE)

resource resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

167

offshore wind | OpenEI  

Open Energy Info (EERE)

wind wind Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote

168

Definition: Offshore Wind | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Offshore Wind (Redirected from Offshore Wind) Jump to: navigation, search Dictionary.png Offshore Wind Wind turbine installations built near-shore or further offshore on coastlines for commercial electricity generation.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available Related Terms wind turbine, wind farm, near-shore, offshore References ↑ http://en.wikipedia.org/wiki/Offshore_wind_power Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Offshore_Wind&oldid=586583" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

169

AWEA Offshore Windpower Conference & Exhibition 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AWEA Offshore Windpower Conference & Exhibition 2014 AWEA Offshore Windpower Conference & Exhibition 2014 October 7, 2014 12:00PM EDT to October 8, 2014 9:00PM EDT Atlantic City,...

170

American Wind Energy Association Offshore WINDPOWER Conference...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore WINDPOWER Conference & Exhibition American Wind Energy Association Offshore WINDPOWER Conference & Exhibition October 7, 2014 9:00AM EDT to October 8, 2014 5:00PM EDT AWEA...

171

Mari Voldsund Exergy analysis of offshore  

E-Print Network (OSTI)

Mari Voldsund Exergy analysis of offshore oil and gas processing Doctoral thesis for the degree my contact persons, helping out both with administrative issues, and with matters concerning offshore

Kjelstrup, Signe

172

U.S. Offshore Wind Port Readiness  

Energy.gov (U.S. Department of Energy (DOE))

Report that reviews the current capability of U.S. ports to support offshore wind project development and assesses the challenges and opportunities related to upgrading this capability to support as much as 54 gigawatts of offshore wind by 2030.

173

Storage of Carbon Dioxide in Offshore Sediments  

Science Journals Connector (OSTI)

...Carbon Dioxide in Offshore Sediments 10...efforts to increase energy efficiency; efforts...sources, including renewable and nuclear energy; and investment...repositories. Offshore geological repositories...between Scotland and Norway and far out of...

Daniel P. Schrag

2009-09-25T23:59:59.000Z

174

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and  

E-Print Network (OSTI)

About Hercules Offshore Headquartered in Houston, Texas, Hercules Offshore serves the oil and gas exploration, drilling and related maintenance tasks. Hercules Offshore operates in key oil producing sites at Hercules Offshore require precision control, global management and careful integration of both on

Fisher, Kathleen

175

Scour around an offshore platform  

SciTech Connect

On the whole offshore scour has proved less of a problem than one might fear without being overly pessimistic, based on experience from other hydrotechnical works. The offshore setting, the environment as well as the structures, was simply beyond the reach to which conventional concepts and models could be safely extrapolated. The essentially empirical art of sediment engineering had to acquire a new empirical base. Today we know a lot more than we did a decade ago, however, our knowledge is still fragmentary, and we have no unifying theory yet.

Carstens, T.

1983-01-01T23:59:59.000Z

176

Assessment of Vessel Requirements for the U.S. Offshore Wind Sector  

Energy.gov (U.S. Department of Energy (DOE))

Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options.

177

MFR PAPER 1179 Offshore Headboat Fishing in  

E-Print Network (OSTI)

MFR PAPER 1179 Offshore Headboat Fishing in North Carolina and South Carolina GENE R. HUNTSMAN. Bill Gulf Stream /I Mustang /I Comanche J. J. Operated in Fishing area t972 1973 OffShore X OUshore X X Ollshore X X Offshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X X Inshore X Inshore X X

178

Ankndigung Stellenausschreibung Forschungsprojekt Offshore-Solutions  

E-Print Network (OSTI)

Ankündigung Stellenausschreibung für das Forschungsprojekt Offshore-Solutions - Dienstleistungspotenziale von Werften und Reedereien als Lösungsanbieter während des Betriebs von Offshore Windparks und Reedereien in der Betriebsphase von Offshore-Windparks, ggf. bis zu einer Positionierung als

Berlin,Technische Universität

179

The Offshore Services Global Value Chain  

E-Print Network (OSTI)

The Offshore Services Global Value Chain ECONOMIC UPGRADING AND WORKFORCE DEVELOPMENT Karina & COMPETITIVENESS #12;The Offshore Services Global Value Chain: Economic Upgrading and Workforce Development "Skills & Competitiveness, Duke University Posted: November 17, 2011 #12;The Offshore Services Global Value Chain: Economic

Richardson, David

180

Offshore wind resource assessment through satellite images  

E-Print Network (OSTI)

1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Simple Model of Offshore Outsourcing,  

E-Print Network (OSTI)

A Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon JUNG THEMA Simple Model of Offshore Outsourcing, Technology Upgrading and Welfare Jaewon Jung and Jean Mercenier in the North as making explicit offshore outsourcing decisions to cheap-labor economies. Globalization results

Paris-Sud XI, Université de

182

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil of foundations for offshore structures. He also has a strong interest in the development of the fundamental

Houlsby, Guy T.

183

Business model innovation for sustainable energy: how German municipal utilities invest in offshore wind energy  

Science Journals Connector (OSTI)

Offshore wind energy is considered to have tremendous potential for Germany's future electricity supply. Due to the technology's capital intensity, however, offshore wind energy has so far been considered the domain of large utilities. Municipal utilities on the contrary traditionally have strong ties to their community and conduct low risk business models at the regional and local level. Recently, however, German municipal utilities started to invest in offshore wind energy. Based on a series of interviews with municipal utility executives, the present study identifies two innovative business models and ten key drivers for municipal utilities' engagement in offshore wind energy. It is found that the new business models may have significant further potential and help to stimulate the German market. The present study contributes to the industry debate by identifying business model blueprints for offshore wind and to the academic debate by suggesting three generic types of business model innovation with different characteristics.

Mario Richter

2013-01-01T23:59:59.000Z

184

Voltage and Frequency Control in Offshore Wind Turbines Connected to Isolated Oil Platform Power Systems  

Science Journals Connector (OSTI)

Offshore wind turbines have potential to supply offshore oil and gas platforms in the North Sea with electric energy. For remote located facilities it is attractive to pursue a solution where the wind turbines and oil platform operate in an isolated system. To study the operational properties of a system with these characteristics is necessary to identify possible advantages and disadvantages. This paper demonstrates how added voltage and frequency control in wind turbines equipped with full power electronic converters can improve the voltage and frequency stability in offshore oil and gas installations. The work is based on an electrical simulation model built in the PSCAD software. In the proposed transient simulation scenarios, the voltage dip is reduced from 16% to 6%, while the frequency overshoot is reduced from 97% to 25%. These are significant improvements that should be taken into consideration when offshore wind power is evaluated as power supply to oil installations.

Atle Rygg Årdal; Tore Undeland; Kamran Sharifabadi

2012-01-01T23:59:59.000Z

185

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...conditions may occur more frequently in marine applications than on land. The handling...various reasons offshore platforms and other marine installations may be found to be in need...operating lives despite the rigours of wear and weather, and the maintenance of public...

1976-01-01T23:59:59.000Z

186

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

187

Property:PotentialOffshoreWindArea | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindArea PotentialOffshoreWindArea Jump to: navigation, search Property Name PotentialOffshoreWindArea Property Type Quantity Description The area of potential offshore wind in a place. Use this type to express a quantity of two-dimensional space. The default unit is the square meter (m²). http://en.wikipedia.org/wiki/Area Acceptable units (and their conversions) are: Square Meters - 1 m²,m2,m^2,square meter,square meters,Square Meter,Square Meters,Sq. Meters,SQUARE METERS Square Kilometers - 0.000001 km²,km2,km^2,square kilometer,square kilometers,square km,square Kilometers,SQUARE KILOMETERS Square Miles - 0.000000386 mi²,mi2,mi^2,mile²,square mile,square miles,square mi,Square Miles,SQUARE MILES Square Feet - 10.7639 ft²,ft2,ft^2,square feet,square foot,FT²,FT2,FT^2,Square Feet, Square Foot

188

National Offshore Wind Energy Grid Interconnection Study  

SciTech Connect

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

2014-07-30T23:59:59.000Z

189

B9 Energy Offshore Developments Ltd | Open Energy Information  

Open Energy Info (EERE)

Developments Ltd Developments Ltd Jump to: navigation, search Name B9 Energy Offshore Developments Ltd Place Larne, United Kingdom Zip BT40 2SF Sector Wind energy Product Established in 2002 to develop the offshore wind energy potential in Northern Ireland. Coordinates 54.85114°, -5.823019° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.85114,"lon":-5.823019,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Hurricanes and Offshore Wind Farms  

Wind Powering America (EERE)

Hurricanes and Offshore Wind Farms Hurricanes and Offshore Wind Farms July 17, 2013 Man: Please continue to stand by. Today's conference will begin momentarily. Thank you. Coordinator: Welcome, and think you for standing by. At this time, all participants are in a listen only mode for the duration of today's call. Today's conference is being recorded. If you have any objections, you may disconnect at this time. Now I would like to turn the meeting over to Mr. Jonathan Bartlett. Sir you may begin. Jonathan Bartlett: Thank you. Good afternoon, this is Jonathan Bartlett. I'm speaking to you from the Department of Energy in Washington, D.C. Welcome everyone to the July Edition of the Wind Power in America webinar. This month we have two speakers, Joel Cline and Mark Powell will discuss the impacts of

191

Dynamically Coupled 3D Pollutant Dispersion Model for Assessing Produced Water Discharges in the Canadian Offshore Area  

Science Journals Connector (OSTI)

Dynamically Coupled 3D Pollutant Dispersion Model for Assessing Produced Water Discharges in the Canadian Offshore Area ... The collected samples of produced water and seawater were analyzed by the COOGER (Centre for Offshore Oil and Gas Environmental Research) at the Fisheries and Oceans Canada, Environmental Engineering labrotary at the Concordia University, and the Trace Analysis Facility (TAF) at the University of Regina. ... In Offshore Oil and Gas Environmental Effects Monitoring Approaches and Technologies; Armsworthy, S. L.; Cranford, P. J.; Lee, K., Eds.; Battelle Memorial Institute: Columbus, OH 2005; pp 319– 342. ...

Lin Zhao; Zhi Chen; Kenneth Lee

2012-12-26T23:59:59.000Z

192

Offshore petroleum security: Analysis of offshore security threats, target attractiveness, and the international legal framework for the protection and security of offshore petroleum installations.  

E-Print Network (OSTI)

??The offshore petroleum industry is of critical importance to the global economy. Offshore petroleum installations are considered elements of critical national infrastructure in many nation-States… (more)

Kashubsky, Mikhail

2011-01-01T23:59:59.000Z

193

Characteristics and determinants of insourced and offshored projects: A comparative analysis  

Science Journals Connector (OSTI)

Abstract Similar in-house (or insourced) and offshored software development data were paired to find differences (if any) on four project performance criteria: project elapsed times, size, data quality, and same-source nations. For each paired project, the differences between five technical variables (development type, application type, architecture, development platform, and programming language) were considered. The resource dependency theory was used to examine the technical differences between matched projects. Additionally, Hofstede's cultural dimensions were used to analyze the performance of offshored software projects. Data from the International Software Benchmarking Standard Group (ISBSG) was used. The main empirical findings were as follows: project completion time is significantly shorter for in-house development projects; and firms prefer offshoring for new projects, client-service platforms, and newer application languages. Some of Hofstede's cultural dimensions do affect project quality and work effort for offshore projects.

Kallol Bagchi; Peeter Kirs; Godwin Udo; Robert Cerveny

2014-01-01T23:59:59.000Z

194

World offshore energy loss statistics  

Science Journals Connector (OSTI)

Offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment taking place in a confined space in a hostile environment under the constant danger of catastrophe and loss. It is possible to engineer some risks to a very low threshold of probability, but losses and unforeseen events can never be entirely eliminated because of cost considerations, the human factor, and environmental uncertainty. Risk events occur infrequently but have the potential of generating large losses, as evident by the 2005 hurricane season in the Gulf of Mexico, which was the most destructive and costliest natural disaster in the history of offshore production. The purpose of this paper is to provide a statistical assessment of energy losses in offshore basins using the Willis Energy Loss database. A description of the loss categories and causes of property damage are provided, followed by a statistical assessment of damage and loss broken out by region, cause, and loss category for the time horizon 1970–2004. The impact of the 2004–2005 hurricane season in the Gulf of Mexico is summarized.

Mark J. Kaiser

2007-01-01T23:59:59.000Z

195

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

196

INFOGRAPHIC: Offshore Wind Outlook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Wind Outlook Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic resource could support up to 200,000 manufacturing, construction, operation and supply chain jobs across the country and drive over $70 billion in annual investments by 2030. Infographic by Sarah Gerrity. For more details, check out: New Reports Chart Offshore Wind’s Path Forward. According to a new report commissioned by the Energy Department, a U.S. offshore wind industry that takes advantage of this abundant domestic

197

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

198

Guadalupe Power Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Plant Biomass Facility Jump to: navigation, search Name Guadalupe Power Plant Biomass Facility Facility Guadalupe Power Plant Sector Biomass Facility Type Landfill Gas...

199

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

200

Covanta Fairfax Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Covanta Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

202

Optimization of offshore natural gas field development.  

E-Print Network (OSTI)

?? In this thesis the target is to find the optimal development solution of an offshore natural gas field. Natural gas is increasing in importance… (more)

Johansen, Gaute Rannem

2011-01-01T23:59:59.000Z

203

Offshore Wind Technology Development Projects | Department of...  

Office of Environmental Management (EM)

optimized for installation and operation in the marine environment. Offshore wind turbines are frequently located far from shore, face greater potential for corrosion from...

204

Oregon Department of Energy Webinar: Offshore Wind  

Energy.gov (U.S. Department of Energy (DOE))

The intended audience for this webinar on offshore wind basics is decision-makers, energy industry practitioners, utilities, and those knowledgeable about renewable energy. The webinar will feature...

205

Offshore Safety Regulations - The European perspective.  

E-Print Network (OSTI)

??The thesis consists of two parts which are closely interlinked together. Firstly, there is a description of the successful safety regimes in offshore oil and… (more)

Chourdaki, Dimitra

2012-01-01T23:59:59.000Z

206

Dynamically installed anchors for floating offshore structures.  

E-Print Network (OSTI)

??The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors… (more)

Richardson, Mark Damian

2008-01-01T23:59:59.000Z

207

Paraffin deposition in offshore oil production.  

E-Print Network (OSTI)

??The extreme environmental conditions typically encountered in offshore oil operations lead to a number of problems. Cool deep sea temperatures promote particle formation and deposition… (more)

Elphingstone, Gerald Mason

2012-01-01T23:59:59.000Z

208

OFFSHORE CONTRACTS, : LIABILITY AND INDEMNITY REGIMES.  

E-Print Network (OSTI)

??The development phase of an offshore oil field involves a series of contracting activities which are no less complex than the projects themselves. Along the… (more)

Perivolaris, Ana Carolina

2008-01-01T23:59:59.000Z

209

Offshore Wind in NY State (New York)  

Energy.gov (U.S. Department of Energy (DOE))

NYSERDA has expressed support for the development of offshore wind and committed funding to several publicly-available assessments that measure the potential energy benefits and environmental...

210

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

211

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

212

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

213

,"Federal Offshore California Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

214

,"Federal Offshore, Pacific (California) Proved Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

215

,"California State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release...

216

,"Federal Offshore, Pacific (California) Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Pacific (California) Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",...

217

Deep Offshore and New Foundation Concepts  

Science Journals Connector (OSTI)

Abstract As the offshore wind power sector moves to deeper waters, new foundation concepts are being developed. The European Wind Energy Association (EWEA) has created a task force under its Offshore Wind Industry Group, to look specifically at the issues revolving around the development of deep offshore and new foundation concepts. Within this paper a comprehensive presentation of state-of-the-art concepts and their maturity is provided. In addition the main technical, economic and political challenges are discussed and recommendations are provided to accommodate the sustainable development of the deep offshore wind sector in Europe.

Arapogianni Athanasia; Anne Benedicte Genachte

2013-01-01T23:59:59.000Z

218

Condition Monitoring of Offshore Wind Turbines.  

E-Print Network (OSTI)

?? The growing interest around offshore wind power, providing at the same time better wind conditions and fewer visual or environmental impacts, has lead many… (more)

Wisznia, Roman

2013-01-01T23:59:59.000Z

219

Sandia National Laboratories: Offshore Wind Energy Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Energy Simulation Toolkit Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference On July 8, 2014, in Computational...

220

Structural reliability of offshore wind turbines.  

E-Print Network (OSTI)

??Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the… (more)

Agarwal, Puneet, 1977-

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Type B Investigation Board Report on the April 2, 2002, Worker Fall from Shoring/Scaffolding Structure at the Savannah River Site Tritium Extraction Facility Construction Site  

Energy.gov (U.S. Department of Energy (DOE))

On April 2, 2002, a carpenter helping to erect shoring/scaffolding fell about 52” and struck his head. He sustained head injuries requiring hospitalization that exceeded the threshold for a Type B investigation in accordance with Department of Energy (DOE) Order 225.1A, Accident Investigation. The accident occurred at the DOE’s Savannah River Site (SRS) at the Tritium Extraction Facility (TEF) construction site.

222

Improving offshore communication by choosing the right coordination  

E-Print Network (OSTI)

Improving offshore communication by choosing the right coordination strategy Matthias Fabriek;Improving offshore communication by choosing the right coordination strategy Page 2 of 92 ABSTRACT This thesis researches communication and coordination in offshore custom software development (CSD) projects

Utrecht, Universiteit

223

Sandia National Laboratories: Innovative Offshore Vertical-Axis...  

NLE Websites -- All DOE Office Websites (Extended Search)

WindInnovative Offshore Vertical-Axis Wind Turbine Rotors Innovative Offshore Vertical-Axis Wind Turbine Rotors This project seeks to advance large offshore vertical-axis wind...

224

Electric power from offshore wind via synoptic-scale interconnection  

Science Journals Connector (OSTI)

...hub-height of modern offshore wind turbines. Our extrapolation...output of an offshore turbine at each selected station with wind speed measurements...Practical commercial offshore wind developments...minimum of 100 turbines at each location...

Willett Kempton; Felipe M. Pimenta; Dana E. Veron; Brian A. Colle

2010-01-01T23:59:59.000Z

225

WKN Windkraft Nord AG WKN Offshore Tech | Open Energy Information  

Open Energy Info (EERE)

AG WKN Offshore Tech AG WKN Offshore Tech Jump to: navigation, search Name WKN Windkraft Nord AG (WKN Offshore Tech) Place Husum, Germany Zip 25813 Sector Wind energy Product Wind project developer. The majority of their wind farms are marketed as closed end funds though some have been sold to private investors such as DIFKO Vind. Coordinates 45.799479°, -121.486901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.799479,"lon":-121.486901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

File:NREL-ca-90m-offshore.pdf | Open Energy Information  

Open Energy Info (EERE)

m-offshore.pdf m-offshore.pdf Jump to: navigation, search File File history File usage California - 90 Meter Offshore Wind Speed Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 1.44 MB, MIME type: application/pdf) Description California - 90 Meter Offshore Wind Speed Sources National Renewable Energy Laboratory Related Technologies Wind Creation Date 2010-04-06 Extent State Countries United States UN Region Northern America States California File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:06, 21 December 2010 Thumbnail for version as of 15:06, 21 December 2010 1,275 × 1,650 (1.44 MB) MapBot (Talk | contribs) Automated upload from NREL's "mapsearch" data

227

Attitudes toward offshore oil development: A summary of current evidence  

E-Print Network (OSTI)

squarely on offshore oil drilling, but contrary to what manyopposition to offshore oil drilling that would be comparableJE, editor. History of oil well drilling. Houston: Gulf

Gramling, R; Freudenburg, Wm R

2006-01-01T23:59:59.000Z

228

Off-design Simulations of Offshore Combined Cycles.  

E-Print Network (OSTI)

?? This thesis presents an off-design simulation of offshore combined cycles. Offshore installations have a substantial power demand to facilitate the oil and gas production.… (more)

Flatebø, Øystein

2012-01-01T23:59:59.000Z

229

Strategic Environmental Assessment in Norway's Offshore Oil and Gas.  

E-Print Network (OSTI)

??Strategic environmental assessment (SEA) is used as a policy tool in the management of offshore oil and gas. As offshore oil and gas exploration continues… (more)

Ohman, Tyra

2014-01-01T23:59:59.000Z

230

Assessment of Offshore Wind System Design, Safety, and Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of...

231

EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore of Massachusetts June 25, 2014 EIS-0470: Cape...

232

SciTech Connect: Offshore Wind Jobs and Economic Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation) Citation Details In-Document Search Title: Offshore Wind Jobs and Economic Development...

233

DOE Announces Webinars on an Offshore Wind Economic Impacts Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Offshore Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for...

234

Louisiana Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million...

235

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

236

WINDExchange Webinar: Economic Impacts of Offshore Wind: Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs WINDExchange Webinar: Economic Impacts of Offshore Wind: Market, Manufacturing, and Jobs...

237

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

238

NREL: Wind Research - NREL Supports Innovative Offshore Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Supports Innovative Offshore Wind Energy Projects Demonstration Projects Eligible for up to 46.7M Additional Funding An offshore wind turbine floating off the coast of...

239

Offshore Resource Assessment and Design Conditions Public Meeting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's...

240

DOE Announces Webinars on Economic Impacts of Offshore Wind,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Report Highlights Trends in Offshore Wind with 14 Projects...  

Energy Savers (EERE)

Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced...

242

Advanced Offshore Wind Tech: Accelerating New Opportunities for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

243

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

244

American Wind Energy Association Offshore WINDPOWER Conference & Exhibition  

Energy.gov (U.S. Department of Energy (DOE))

AWEA Offshore WINDPOWER 2014 Conference & Exhibition is the largest offshore wind energy event in North America. The conference and exhibition will be held at the Atlantic City Convention...

245

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

246

Environmental Pollution in Offshore Operations [and Discussion  

Science Journals Connector (OSTI)

...Environmental Pollution in Offshore Operations [and Discussion...Gaskell B. White The oil industry has made contingency...as the North Sea, the oil companies have mutual...booms to minimize any oil that may be driven to...global mineral resources offshore policy pollution production...

1978-01-01T23:59:59.000Z

247

States' authority to veto offshore leasing limited  

Science Journals Connector (OSTI)

States' authority to veto offshore leasing limited ... In a controversial, 5-to-4 decision, the U.S. Supreme Court has ruled that coastal states do not have the authority to veto most of the leases granted by the federal government for offshore drilling and oil and natural gas explorations. ...

1984-01-23T23:59:59.000Z

248

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

249

Offshore Wind Resource | OpenEI  

Open Energy Info (EERE)

Offshore Wind Resource Offshore Wind Resource Dataset Summary Description Global Wind Potential Supply Curves by Country, Class, and Depth (quantities in GW) Source National Renewable Energy Laboratory Date Released July 12th, 2012 (2 years ago) Date Updated July 12th, 2012 (2 years ago) Keywords offshore resource offshore wind renewable energy potential Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon offshore_resource_100_vs2.xlsx (xlsx, 41.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access

250

Short-term production optimization of offshore oil and gas production using nonlinear model predictive control  

Science Journals Connector (OSTI)

The topic of this paper is the application of nonlinear model predictive control (NMPC) for optimizing control of an offshore oil and gas production facility. Of particular interest is the use of NMPC for direct short-term production optimization, where two methods for (one-layer) production optimization in NMPC are investigated. The first method is the unreachable setpoints method where an unreachable setpoint is used in order to maximize oil production. The ideas from this method are combined with the exact penalty function for soft constraints in a second method, named infeasible soft-constraints. Both methods can be implemented within standard NMPC software tools. The case-study first looks into the use of NMPC for ‘conventional’ pressure control, where disturbance rejection of time-varying disturbances (caused, e.g., by the ‘slugging’ phenomenon) is an issue. Then the above two methods for production optimization are employed, where both methods find the economically optimal operating point. Two different types of reservoir models are studied, using rate-independent and rate-dependent gas/oil ratios. These models lead to different types of optimums. The relative merits of the two methods for production optimization, and advantages of the two one-layer approaches compared to a two-layer structure, are discussed.

Anders Willersrud; Lars Imsland; Svein Olav Hauger; Pål Kittilsen

2013-01-01T23:59:59.000Z

251

MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC)  

E-Print Network (OSTI)

MARINE INSTITUTE Offshore Safety and Survival Centre (OSSC) Fisheries and Marine Institute Memorial/PROGRAM APPLYING FOR: [ ] MED A1 Basic Safety [ ] Offshore Fire Team (OFT) [ ] Offshore Fire Team Recurrent Familiarization[ ] Offshore Survival Introduction (OSI) [ ] MED D Senior Officer [ ] HUET Helicopter Underwater

Oyet, Alwell

252

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource  

E-Print Network (OSTI)

ORIGINAL PAPER Review of Methodologies for Offshore Wind Resource Assessment in European Seas A. M offshore is generally larger than at geographically nearby onshore sites, which can offset the higher installation, operation and maintenance costs associated with offshore wind parks. Successful offshore wind

Pryor, Sara C.

253

Offshore Series Wind Turbine Variable Hub heights & rotor diameters  

E-Print Network (OSTI)

3.6MW Offshore Series Wind Turbine GE Energy #12;Feature Variable Hub heights & rotor diameters-savings feature, considering the rigors of offshore power generation. The 3.6 MW offshore wind turbine also, for both on and offshore use. Special features include... As the world's first commercially available wind

Firestone, Jeremy

254

Cost Comparison Among Concepts of Injection for CO2 Offshore Underground Sequestration Envisaged in Japan  

Science Journals Connector (OSTI)

Publisher Summary Japan is in the process of 5-year R&D program of underground storage of CO2, and this study was carried out as part of this program. Offshore saline aquifers are the target geological formation in this program because (1) most of large-scale emission sources of CO2 are located near the coast in Japan, (2) aquifers of large volume are expected to be found more in offshore than on land, and (3) site acquisition is much more costly on land. At present, the total time scheme of the sequestration process is assumed, which is based on practical results from similar processes such as large-scale underground storage of natural gas in aquifers. The total system of underground sequestration can be roughly divided into three processes: recovery, transportation, and injection. Although the methods of recovery and transportation have been well studied, the injection process has not been established as it is significantly affected by geographic, geological, and topographic features of the site. The cost of injection into an offshore aquifer varies with the method applied. One reason is that there are a variety of applicable designs and construction methods of wells and surface facilities (especially offshore) that depend on the conditions of injection site. The other reason is that there are many uncertainties in exploration and operation, as is the case with petroleum development. This chapter presents the results of the preliminary analysis on the costs of injection facilities.

Hironori Kotsubo; Takashi Ohsumi; Hitoshi Koide; Motoo Uno; Takeshi Ito; Toshio Kobayashi; Kozo Ishida

2003-01-01T23:59:59.000Z

255

Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2  

SciTech Connect

Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2011-03-01T23:59:59.000Z

256

EA-1992: Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Funding for Principle Power, Inc., for the WindFloat Pacific Offshore Wind Demonstration Project, offshore of Coos Bay, Oregon

257

Offshore Development Policy in the United States  

Gasoline and Diesel Fuel Update (EIA)

U.S. Legislation and Regulations Affecting U.S. Legislation and Regulations Affecting Offshore Natural Gas and Oil Activity Legislation and regulations regarding natural gas and oil exploration, development, and production from U.S. offshore lands developed over many decades in response to a variety of concerns and disputes that were most often engendered by competing priorities. This article discusses the evolution of offshore developments and the major legislation and regulations that have affected the natural gas and oil industry in the past 50 years. The most common early disputes revolved around ownership of coastal waters. Eventually, as offshore activities became more abundant, more complicated issues arose over the need to ensure that operations are accompanied by safety, equity, and the

258

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

259

LNG-FPSO: Offshore LNG solution  

Science Journals Connector (OSTI)

The floating production, storage and offloading system for liquefied natural gas (LNG-FPSO), is a new conceptual unit ... offshore associated-gas resources. However, a real LNG-FPSO unit cannot be built unless so...

Yan Gu; Yonglin Ju

2008-09-01T23:59:59.000Z

260

Optimal Siting of Offshore Wind Farms  

Science Journals Connector (OSTI)

The goal of this study is finding the best location for constructing an offshore wind farm with respect to investment and operation costs and technical limitations. Wind speed, sea depth and distance between shor...

Salman Kheirabadi Shahvali…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Engineering Challenges for Floating Offshore Wind Turbines  

SciTech Connect

The major objective of this paper is to survey the technical challenges that must be overcome to develop deepwater offshore wind energy technologies and to provide a framework from which the first-order economics can be assessed.

Butterfield, S.; Musial, W.; Jonkman, J.; Sclavounos, P.

2007-09-01T23:59:59.000Z

262

Visualization of vibration experienced in offshore platforms  

E-Print Network (OSTI)

In this thesis, I design and evaluate methods to optimize the visualization of vortex-induced vibration (VIV) in marine risers. VIV is vibration experienced by marine risers in offshore drilling platforms due to ocean ...

Patrikalakis, Alexander Marinos Charles

2010-01-01T23:59:59.000Z

263

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

264

,"LA, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

11RLASF1","RNGR9908RLASF1","RNGR9909RLASF1","RNGR9910RLASF1" "Date","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Louisiana--Stat...

265

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Current Catcher Wave Catcher This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOffshoreIslandsLtd&oldid76931...

266

Federal Offshore California Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

267

Offshore Infrastructure Associates Inc | Open Energy Information  

Open Energy Info (EERE)

Database. This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleOffshoreInfrastructureAssociatesInc&oldid769313...

268

Gulf of Mexico Federal Offshore Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

269

Expanders do payouts offshore North Sea  

SciTech Connect

Rich associated gas may be beneficially processed offshore, to yield high value condensate to be spiked into the crude, whilst still producing gas with an acceptable nett calorific value. Actual turbo expander operating experience on the Occidental Piper North Sea Platform has demonstrated that expanders are reliable offshore. This paper, describes both the process and mechanical aspects that affect the choice of an expander system for an offshore application. For a given typical rich associated gas, three process options are compared, Joule-Thompson expansion, external refrigeration and a turbo expander system. The process study illustrates that a turbo expander system is comparable for the offshore situation with the other two options. The paper also describes the mechanical features that should be incorporated into the specification of an expander for use on a platform topsides.

Barnwell, J.; Wong, W.

1984-02-01T23:59:59.000Z

270

Slow motion responses of compliant offshore structures  

E-Print Network (OSTI)

An efficient method is developed to predict slow motion responses of slender compliant offshore structures in the unidirectional irregular waves and currents. The environmental loads are computed using the modified Morison equation based on slender...

Cao, Peimin

2012-06-07T23:59:59.000Z

271

Investigation on installation of offshore wind turbines  

Science Journals Connector (OSTI)

Wind power has made rapid progress and should ... interest in renewable energy and clean energy. Offshore wind energy resources have attracted significant attention, as, compared with land-based wind energy resou...

Wei Wang; Yong Bai

2010-06-01T23:59:59.000Z

272

EERE Leadership Celebrates Offshore Wind in Maine  

Office of Energy Efficiency and Renewable Energy (EERE)

The University of Maine utilized $12 million in funding from EERE to deploy the VolturnUS, a one-eighth scale prototype of a commercial scale offshore floating turbine. This is the first step toward developing an offshore wind industry in Maine. The University is setting a great example for the rest of the country for just how far we can go when we dedicate ourselves to clean energy innovation.

273

Making Offshore Wind Areas Available for Leasing   

Energy.gov (U.S. Department of Energy (DOE))

When the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM) needed a process to delineate the bureau's proposed offshore Wind Energy Areas (WEA) into auctionable leasing areas, the agency turned to DOE's National Renewable Energy Laboratory (NREL). Under an interagency agreement, wind energy experts from NREL helped develop a process to evaluate BOEM's designated offshore WEAs in terms of energy production, resource, water depth, and other physical criteria and delineate specific WEAs into two or more leasing areas.

274

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network (OSTI)

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

275

Ocean acoustic noise budgets: Application to the environmental assessment of offshore wind power generation.  

Science Journals Connector (OSTI)

A noise budget is a listing of the various sources of acoustic noise and their associated ranking by importance. A number of different types of budgets can be conceived using various acoustic measures such as intensity energy or duration of maximum amplitude level. These budgets are typically parameterized by frequency and are usually computed over 1/3 octave bands. As part of the environmental assessment of the proposed offshore wind powergeneration project under the Rhode Island Special Area Management Plan (SAMP) noise measurements were made using the Passive Acoustic Listener (PAL) systems off the coast of Rhode Island prior to the installation of any wind power facilities. Two PALs were deployed within two miles of Block Island in water depths of 20 m from October 6 to November 11 2008. The data included noise spectra and source identification every 3 min. Short snapshots of unusual sounds were also recorded. From this data the ocean acoustic noise budget is computed with contributions from shipping wind/waves marine mammals and rain from 500 Hz to 50 kHz. The shipnoise data is correlated with ship traffic data from the Automatic Identification System (AIS). [Funding provided by the Rhode Island Office of Energy Resources.

2009-01-01T23:59:59.000Z

276

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Stockton Regional Water Control Facility Biomass Facility Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional Water Control Facility Sector Biomass Facility Type Non-Fossil Waste Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Middlesex Generating Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Middlesex Generating Facility Biomass Facility Middlesex Generating Facility Biomass Facility Jump to: navigation, search Name Middlesex Generating Facility Biomass Facility Facility Middlesex Generating Facility Sector Biomass Facility Type Non-Fossil Waste Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Wheelabrator Millbury Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Millbury Facility Biomass Facility Wheelabrator Millbury Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Millbury Facility Biomass Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528°, -71.8571331° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4096528,"lon":-71.8571331,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

North City Cogen Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

City Cogen Facility Biomass Facility City Cogen Facility Biomass Facility Jump to: navigation, search Name North City Cogen Facility Biomass Facility Facility North City Cogen Facility Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423°, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Newby Island I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

287

Newby Island II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Island II Biomass Facility Facility Newby Island II Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

288

Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Facility Facility Byxbee Park Sanitary Landfill Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

289

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass Facility Type Landfill Gas Location Winnebago County, Wisconsin Coordinates...

290

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES  

E-Print Network (OSTI)

SUBSPACE-BASED DETECTION OF FATIGUE DAMAGE ON JACKET SUPPORT STRUCTURES OF OFFSHORE WIND TURBINES damage in real size structural components of offshore wind turbines. KEYWORDS : Damage detection, Offshore wind turbines, Numerical response simulation. INTRODUCTION Offshore wind turbines are exposed

Paris-Sud XI, Université de

291

Offshore Gross Withdrawals of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total Offshore 3,476,755 3,028,561 3,072,285 2,875,945 2,416,644 2,044,643 1977-2012 State Offshore 618,042 653,704 586,953 575,601 549,151 489,505 1978-2012 From Gas Wells 276,117 297,565 259,848 234,236 208,970 204,667 1978-2012 From Oil Wells 341,925 356,139 327,105 341,365 340,182 284,838 1978-2012 Federal Offshore 2,858,713 2,374,857 2,485,331 2,300,344 1,867,492 1,555,138 1977-2012 From Gas Wells 2,204,379 1,849,891 1,878,928 1,701,665 1,355,489 1,028,474 1977-2012 From Oil Wells 654,334 524,965 606,403 598,679 512,003 526,664 1977-2012 Alabama Total Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012 State Offshore 134,451 125,502 109,214 101,487 84,270 87,398 1987-2012

292

Offshore Wind Technologie GmbH OWT | Open Energy Information  

Open Energy Info (EERE)

Technologie GmbH OWT Technologie GmbH OWT Jump to: navigation, search Name Offshore Wind Technologie GmbH (OWT) Place Leer, Germany Zip 26789 Sector Wind energy Product Germany-based wind project developer. Coordinates 45.197795°, -83.728994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.197795,"lon":-83.728994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Property:Testing Facilities | Open Energy Information  

Open Energy Info (EERE)

Name Testing Facilities Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:TestingFacilities&oldid595932" Categories: Properties Testing...

294

Regulatory capture by default: Offshore exploratory drilling for oil and gas  

Science Journals Connector (OSTI)

Abstract This article examines a form of regulatory capture that occurs when significant ambiguity exists regarding the environmental protection standards for new types of activities in the marine environment. To begin with, there is little research that categorizes the typologies of regulatory capture despite the ubiquity of the phenomenon. After a discussion of theoretical approaches to regulatory capture, I describe the operative definition and theory appropriate to the situation related to authorization of oil and natural gas production in Israel following the discovery of large offshore reserves in 2010. This approach, embodying several facets of existing typologies, is applied to decisions made authorizing construction of the Gabriella offshore exploratory drilling platform. The analysis highlights the nature of capture in the absence of clear agency jurisdiction over new activities located in offshore environs organized as temporal and spatial “vacuums”. I conclude that comprehensive marine spatial planning would result in less capture and the development of more capture-resistant regulations.

Michelle E. Portman

2014-01-01T23:59:59.000Z

295

Federal Offshore Statistics, 1993. Leasing, exploration, production, and revenue as of December 31, 1993  

SciTech Connect

This document contains statistical data on the following: federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; federal offshore oil and natural gas sales volume and royalties; revenue from federal offshore leases; disbursement of federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. A glossary is included.

Francois, D.K.

1994-12-31T23:59:59.000Z

296

Offshore Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Offshore Wind Energy Jump to: navigation, search The Middelgrunden Wind Farm was established as a collaboration between Middelgrunden Wind Turbine Cooperative and Copenhagen Energy, each installing 10 2-MW Bonus wind turbines. The farm is located off the coast of Denmark, east of the northern tip of Amager. Photo from H.C. Sorensen, NREL 17856 Offshore wind energy is a clean, domestic, renewable resource that can help the United States meet its critical energy, environmental, and economic challenges. By generating electricity from offshore wind turbines, the nation can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

297

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

298

2012 & 2013 Offshore Wind Market & Economic Analysis Reports  

Energy.gov (U.S. Department of Energy (DOE))

The objective of these report is to provide a comprehensive annual assessment of the U.S. offshore wind market. Available for download are the 2012 & 2013 Offshore Wind Market & Economic Analysis full reports prepared by Navigant Consulting.

299

Prospects for Offshore Mineral Mining Remain in Doubt  

Science Journals Connector (OSTI)

Prospects for Offshore Mineral Mining Remain in Doubt ... Oil and gas exploration and exploitation offshore have been well established, and such sources are already supplying considerable quantities of energy and chemicals to the world economy. ...

JOSEPH HAGGIN

1988-11-07T23:59:59.000Z

300

New DOE Report Investigates Port Readiness for Offshore Wind...  

Energy Savers (EERE)

New DOE Report Investigates Port Readiness for Offshore Wind New DOE Report Investigates Port Readiness for Offshore Wind October 1, 2013 - 1:22pm Addthis This is an excerpt from...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Louisiana Natural Gas Gross Withdrawals Total Offshore (Million...  

Annual Energy Outlook 2012 (EIA)

Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

302

National Offshore Wind Energy Grid Interconnection Study (NOWEGIS)  

Energy.gov (U.S. Department of Energy (DOE))

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

303

DOE Wind Program to Host Booth at Offshore WINDPOWER | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Wind Program to Host Booth at Offshore WINDPOWER DOE Wind Program to Host Booth at Offshore WINDPOWER September 12, 2014 - 10:16am Addthis The Department of Energy's Wind...

304

Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

-- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

305

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department today released the first National Offshore Wind Energy Grid Interconnection Study that investigated the key economic and technological factors that will influence the integration of offshore wind energy onto the national grid.

306

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER...  

Energy Savers (EERE)

Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER Wind Program to Host Exhibit Booth at AWEA's Offshore WINDPOWER October 1, 2012 - 11:15am Addthis This is an excerpt...

307

Advanced Offshore Solutions ApS AOS | Open Energy Information  

Open Energy Info (EERE)

Offshore Solutions ApS AOS Jump to: navigation, search Name: Advanced Offshore Solutions ApS (AOS) Place: Tranbjerg, Denmark Zip: 8310 Sector: Wind energy Product: Denmark-based...

308

Department of Energy Awards $43 Million to Spur Offshore Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Awards 43 Million to Spur Offshore Wind Energy Department of Energy Awards 43 Million to Spur Offshore Wind Energy October 3, 2011 - 12:00pm Addthis This is...

309

WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore...

310

Dynamic characteristics analysis of the offshore wind turbine blades  

Science Journals Connector (OSTI)

The topic of offshore wind energy is attracting more and more attention ... . The blades are the key components of offshore wind turbines, and their dynamic characteristics directly determine the effectiveness of...

Jing Li; Jianyun Chen; Xiaobo Chen

2011-03-01T23:59:59.000Z

311

Lateral and Axial Capacity of Monopiles for Offshore Wind Turbines  

Science Journals Connector (OSTI)

Offshore wind has enormous worldwide potential to generate increasing ... are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In ... of axial and lateral loa...

Aliasger Haiderali; Ulas Cilingir; Gopal Madabhushi

2013-09-01T23:59:59.000Z

312

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

313

NREL Assesses National Design Standards for Offshore Wind (Fact Sheet)  

SciTech Connect

Report summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

Not Available

2014-06-01T23:59:59.000Z

314

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Lease Condensate Estimated Production Federal Offshore California Lease Condensate Proved Reserves, Reserve Changes, and Production Lease...

315

Avian collision risk at an offshore wind farm  

Science Journals Connector (OSTI)

...research-article Avian collision risk at an offshore wind farm Mark Desholm * Johnny Kahlert...can detect and avoid a large offshore wind farm by tracking their diurnal migration...waters. At present, two large offshore wind farms operate in Denmark, one of...

2005-01-01T23:59:59.000Z

316

Energy Efficient Pump Control for an Offshore Oil Processing System  

E-Print Network (OSTI)

Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system control, energy saving 1. INTRODUCTION Pump systems have been extensively used in offshore oil & gas

Yang, Zhenyu

317

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD  

E-Print Network (OSTI)

OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD INFRASTRUCTURE UNDER COMPLEX FISCAL Pittsburgh, PA 15213 Abstract The optimal development planning of offshore oil and gas fields has received development planning. Keywords Multiperiod Optimization, Planning, Offshore Oil and Gas, MINLP, MILP, FPSO

Grossmann, Ignacio E.

318

OFFSHORE BOUNDARY-LAYER MODELLING H. Bergstrm1  

E-Print Network (OSTI)

OFFSHORE BOUNDARY-LAYER MODELLING H. Bergström1 and R. Barthelmie2 1) Uppsala Univ., Dept. of Earth) of the ENDOW (EfficieNt Development of Offshore Windfarms) project, where the objectives are to provide currently be incorporated into a wind farm design tool. The offshore thermal stratification climate is also

319

Modeling and Computational Strategies for Optimal Development Planning of Offshore  

E-Print Network (OSTI)

1 Modeling and Computational Strategies for Optimal Development Planning of Offshore Oilfields for offshore oil and gas fields as a basis to include the generic fiscal rules with ringfencing provisions-integer programming. 1 Introduction Offshore oil and gas field development planning has received significant attention

Grossmann, Ignacio E.

320

Numerical Simulation of Wave Loads on Static Offshore Structures  

E-Print Network (OSTI)

Numerical Simulation of Wave Loads on Static Offshore Structures Hrvoje Jasak, Inno Gatin, Vuko Workshop, Cambridge, 30 July 2014 Numerical Simulation of Wave Loads on Static Offshore Structures ­ p. #12 of Wave Loads on Static Offshore Structures ­ p. #12;VOF Free Surface Flow Model Modelling of Free Surface

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessing Novel Foundation Options for Offshore Wind Turbines  

E-Print Network (OSTI)

Assessing Novel Foundation Options for Offshore Wind Turbines B.W. Byrne, BE(Hons), BCom, MA, DPhil G.T. Houlsby, MA, DSc, FREng, FICE Oxford University, UK SYNOPSIS Offshore wind farms of these being the foundations for the offshore turbines. We review here the results of a recent research

Byrne, Byron

322

Ris National Laboratory Satellite SAR applied in offshore wind  

E-Print Network (OSTI)

Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

323

Floating Offshore Wind Technology Generating Resources Advisory Committee  

E-Print Network (OSTI)

Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

324

Scour around an offshore wind turbine W.F. Louwersheimer  

E-Print Network (OSTI)

Scour around an offshore wind turbine MSc Thesis W.F. Louwersheimer January, 2007 Delft University of Technology Ballast Nedam Faculty of Civil Engineering Egmond Offshore Energy Section of Hydraulic Engineering #12;Scour around an offshore wind turbine Delft University of Technology Ballast Nedam - Egmond

Langendoen, Koen

325

Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations  

E-Print Network (OSTI)

1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of uncertainty and complex fiscal rules in the development planning of offshore oil and gas fields which involve, Offshore Oil and Gas, Multistage Stochastic, Endogenous, Production Sharing Agreements (PSAs) 1

Grossmann, Ignacio E.

326

Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms  

E-Print Network (OSTI)

#12;Hydroacoustic Monitoring of Fish Communities in Offshore Wind Farms Annual Report 2004 Horns Rev Offshore Wind Farm Published: May 2005 Prepared by: Christian B. Hvidt Lars Brünner Frank Reier without clear reference to the source. #12;Hydroacoustic monitoring of fish communities in offshore wind

327

Access to and Usage of Offshore Liberty Ship  

E-Print Network (OSTI)

Access to and Usage of Offshore Liberty Ship Reefs in Texas ROBERT B. DITTON, ALAN R. GRAEFE to establish cover and habitat for fisheries. Offshore artificial reef con- struction began in 1935 led many other states to become interested in deploying offshore artificial reefs. The first reef

328

REVIEW Open Access Assessing environmental impacts of offshore wind  

E-Print Network (OSTI)

REVIEW Open Access Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future Helen Bailey1* , Kate L Brookes2 and Paul M Thompson3 Abstract Offshore wind power literature and our experience with assessing impacts of offshore wind developments on marine mammals

Aberdeen, University of

329

Armelle Choplin et Jrme Lombard La Mauritanie offshore.  

E-Print Network (OSTI)

1 Armelle Choplin et Jérôme Lombard La Mauritanie offshore. Extraversion économique, �tat et du pouvoir. La « Mauritanie offshore » prime désormais sur l'intérieur du pays et sur la société well into the first circles of the power. The « offshore Mauritania » dominates henceforth

Boyer, Edmond

330

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER  

E-Print Network (OSTI)

ForPeerReview PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Journal: Wind, Andrew; Minerals Management Service Keywords: offshore wind power, public opinion, social acceptancePeerReview 1 PUBLIC ACCEPTANCE OF OFFSHORE WIND POWER PROJECTS IN THE UNITED STATES Jeremy Firestone*, Willett

Firestone, Jeremy

331

Ab Frhjahr 2009 startet hier der Bau von sechs Offshore-  

E-Print Network (OSTI)

Ab Frühjahr 2009 startet hier der Bau von sechs Offshore- Windenergieanlagen (OWEA) vom Typ Ent- wicklung der Offshore-Wind- energie besondere Bedeutung zu. Derzeit laufen in der Aus Vorhaben durchgeführt. Acht Einleitung Ziel der Bundesregierung ist es, bis zum Jahr 2030 Offshore

Vollmer, Heribert

332

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

333

Avian collision risk at an offshore wind farm  

Science Journals Connector (OSTI)

...research-article Avian collision risk at an offshore wind farm Mark Desholm * Johnny Kahlert...ducks can detect and avoid a large offshore wind farm by tracking their diurnal...1994), and no fewer than 13000 offshore wind turbines are currently proposed...

2005-01-01T23:59:59.000Z

334

Quantifying the hurricane risk to offshore wind turbines  

Science Journals Connector (OSTI)

...Quantifying the hurricane risk to offshore wind turbines 10.1073/pnas.1111769109...observed in typhoons, but no offshore wind turbines have yet been built in the...Gulf coast is 460 GW (2). Offshore wind turbines in these areas will be at...

Stephen Rose; Paulina Jaramillo; Mitchell J. Small; Iris Grossmann; Jay Apt

2012-01-01T23:59:59.000Z

335

LANSCE | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

336

Wheelabrator Sherman Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Sherman Energy Facility Biomass Facility Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector Biomass Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in  

E-Print Network (OSTI)

Copyright 2000, Offshore Technology Conference This paper was prepared for presentation at the 2000 Offshore Technology Conference held in Houston, Texas, 1­4 May 2000. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Byrne, Byron

338

Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in  

E-Print Network (OSTI)

Copyright 2002, Offshore Technology Conference This paper was prepared for presentation at the 2002 Offshore Technology Conference held in Houston, Texas U.S.A., 6­9 May 2002. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Knapp, Camelia Cristina

339

Titre franais : L'externalisation offshore de systme d'information Titre anglais : Information Systems Offshore Outsourcing  

E-Print Network (OSTI)

1 Titre français : L'externalisation offshore de système d'information Titre anglais : Information Systems Offshore Outsourcing De Dominique Geyer Dominique Geyer is Associate Professor in Financial Achats et de la Supply Chain). Résumé en français : L'externalisation offshore de système d

Boyer, Edmond

340

Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in  

E-Print Network (OSTI)

Copyright 1999, Offshore Technology Conference This paper was prepared for presentation at the 1999 Offshore Technology Conference held in Houston, Texas, 3­6 May 1999. This paper was selected by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology

Byrne, Byron

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Visual impact assessment of offshore wind farms and prior experience  

Science Journals Connector (OSTI)

Energy planners have shifted their attention towards offshore wind power generation and the decision is supported by the public in general, which in the literature has a positive attitude towards offshore wind generation. However, globally only a few offshore wind farms are operating. As more wind farms start operating and more people become experienced with especially the visual impacts from offshore wind farms, the public positive attitude could change if the experienced impacts are different from the initially perceived visual interference. Using a binary logit model, the present paper investigates the relation between different levels of prior experience with visual disamenities from offshore wind farms and perception of visual impacts from offshore wind farms. The differences in prior experience are systematically controlled for sampling respondents living in the areas close to the large scale offshore wind farms Nysted and Horns Rev and by sampling the a group of respondents representing the Danish population, which has little experience with offshore wind farms. Compared to previous results in the literature, the present paper finds that perception of wind power generation is influenced by prior experience. More specifically, the results show that people with experience from offshore wind farms located far from the coast have a significant more positive perception of the visual impacts from offshore wind farms than people with experience from wind farms located closer to the coast. These results are noteworthy on two levels. First of all, the results show that perceptions of offshore wind generation are systematically significantly influenced by prior experience with offshore wind farms. Secondly, and in a policy context, the results indicate that the future acceptance of future offshore wind farms is not independent of the location of existing and new offshore wind farms. This poses for caution in relation to locating offshore wind farms too close to the coast.

Jacob Ladenburg

2009-01-01T23:59:59.000Z

342

Controversy Bubbles Over Offshore Oil Development  

Science Journals Connector (OSTI)

When Chevron U.S.A. announced last year a major offshore oil discovery on tract 450 in California's Santa Maria Basin, the news didn't come as a surprise to the oil industry. Chevron and Phillips Petroleum, 50% partners in the tract, had bid, after all, a ...

RUDY BAUM

1983-05-23T23:59:59.000Z

343

Cleaning the Valhall offshore oil pipeline  

SciTech Connect

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

344

Offshore Gross Withdrawals of Natural Gas  

Annual Energy Outlook 2012 (EIA)

Jun-14 Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 View History Federal Offshore 103,230 105,028 107,756 104,940 108,655 100,590 1997-2014 From Gas Wells NA NA NA NA NA NA 1997-2014 From...

345

Offshore Wind Turbine Wakes Measured by Sodar  

Science Journals Connector (OSTI)

A ship-mounted sodar was used to measure wind turbine wakes in an offshore wind farm in Denmark. The wake magnitude and vertical extent were determined by measuring the wind speed profile behind an operating turbine, then shutting down the ...

R. J. Barthelmie; L. Folkerts; F. T. Ormel; P. Sanderhoff; P. J. Eecen; O. Stobbe; N. M. Nielsen

2003-04-01T23:59:59.000Z

346

Final Report DE-EE0005380: Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems  

SciTech Connect

Offshore wind energy is a valuable resource that can provide a significant boost to the US renewable energy portfolio. A current constraint to the development of offshore wind farms is the potential for interference to be caused by large wind farms on existing electronic and acoustical equipment such as radar and sonar systems for surveillance, navigation and communications. The US Department of Energy funded this study as an objective assessment of possible interference to various types of equipment operating in the marine environment where offshore wind farms could be installed. The objective of this project was to conduct a baseline evaluation of electromagnetic and acoustical challenges to sea surface, subsurface and airborne electronic systems presented by offshore wind farms. To accomplish this goal, the following tasks were carried out: (1) survey electronic systems that can potentially be impacted by large offshore wind farms, and identify impact assessment studies and research and development activities both within and outside the US, (2) engage key stakeholders to identify their possible concerns and operating requirements, (3) conduct first-principle modeling on the interactions of electromagnetic signals with, and the radiation of underwater acoustic signals from, offshore wind farms to evaluate the effect of such interactions on electronic systems, and (4) provide impact assessments, recommend mitigation methods, prioritize future research directions, and disseminate project findings. This report provides a detailed description of the methodologies used to carry out the study, key findings of the study, and a list of recommendations derived based the findings.

Ling, Hao [The University of Texas at Austin] [The University of Texas at Austin; Hamilton, Mark F. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Bhalla, Rajan [Science Applications International Corporation] [Science Applications International Corporation; Brown, Walter E. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Hay, Todd A. [The University of Texas at Austin Applied Research Laboratories] [The University of Texas at Austin Applied Research Laboratories; Whitelonis, Nicholas J. [The University of Texas at Austin] [The University of Texas at Austin; Yang, Shang-Te [The University of Texas at Austin] [The University of Texas at Austin; Naqvi, Aale R. [The University of Texas at Austin] [The University of Texas at Austin

2013-09-30T23:59:59.000Z

347

NREL: Wind Research - Grid Integration of Offshore Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Offshore Wind Grid Integration of Offshore Wind Photograph of a wind turbine in the ocean. Located about 10 kilometers off the coast of Arklow, Ireland, the Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource. Integration and Transmission One comprehensive grid integration study is the Eastern Wind Integration and Transmission Study (EWITS), in which offshore wind scenarios were analyzed. Nearly 80 GW of offshore wind was studied in the highest penetration scenario. Specific offshore grid distribution and transmission solutions were identified, including cost estimates. With the Atlantic coast likely to lead the way in offshore wind power deployment, EWITS is a benchmark for

348

Salazar, Chu Announce Major Offshore Wind Initiatives | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Offshore Wind Initiatives Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore wind energy deployment and several high priority Wind Energy Areas in the mid-Atlantic that will spur rapid, responsible development of this abundant renewable resource. Deployment of clean, renewable offshore wind energy will help meet the President's goal of generating 80 percent of the Nation's electricity from

349

Global Offshore Wind Farms Database | Open Energy Information  

Open Energy Info (EERE)

Global Offshore Wind Farms Database Global Offshore Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website: www.4coffshore.com/offshorewind/ Equivalent URI: cleanenergysolutions.org/content/global-offshore-wind-farms-database,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This online database and interactive map for global offshore wind development contains details on over 900 wind farms in 36 countries. The 4C Offshore Interactive Map provides an interactive map-based view of wind farm data, as well as wind farm-related news and career information. References Retrieved from "http://en.openei.org/w/index.php?title=Global_Offshore_Wind_Farms_Database&oldid=514428"

350

Internet Gambling Offshore: Caribbean Struggles over Casino Capitalism. Andrew F. Cooper. Basingstoke, U.K.: Palgrave Macmillan, 2011. xvii + 201 pp. (Cloth US$ 85.00)  

E-Print Network (OSTI)

Reviews Internet Gambling Offshore: Caribbean Struggles overcrisis. Antigua hosted offshore gambling operations thatweaker than those against offshore gambling. Furthermore,

Maurer, Bill

2013-01-01T23:59:59.000Z

351

Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten universiteiten en HBO-instellingen hierop reageren? Volgens Roel Wieringa  

E-Print Network (OSTI)

Onderwijs en offshoring Offshore outsourcing is een trend die niet is tegen te houden. Hoe moeten internationaal karakter universiteiten' De discussie over offshoring laat een opmerkelijke consensus zien onder

Wieringa, Roel

352

WIPP - Public Reading Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

353

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

354

Offshore Burger Windpark Butendiek GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Burger Windpark Butendiek GmbH Co KG Burger Windpark Butendiek GmbH Co KG Jump to: navigation, search Name Offshore-Burger-Windpark Butendiek GmbH & Co KG Place Husum, Germany Zip 25813 Sector Wind energy Product Developing the 240MW Butendiek offshore wind farm. Coordinates 45.799479°, -121.486901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.799479,"lon":-121.486901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

MHK Projects/Makah Bay Offshore Wave Pilot Project | Open Energy  

Open Energy Info (EERE)

Makah Bay Offshore Wave Pilot Project Makah Bay Offshore Wave Pilot Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.3238,"lon":-124.682,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

356

Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea  

Science Journals Connector (OSTI)

Abstract Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.

Wei Shi; Jonghoon Han; Changwan Kim; Daeyong Lee; Hyunkyoung Shin; Hyunchul Park

2015-01-01T23:59:59.000Z

357

Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint  

SciTech Connect

Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.

Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

2014-02-01T23:59:59.000Z

358

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

359

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

360

Certified Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance® (SEP™).

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salazar to Announce Major Offshore Wind Energy Initiatives Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM EST WHO: Steven Chu, Secretary of Energy Ken Salazar, Secretary of the Interior WHERE: Half Moone Center 11 Waterside Dr Norfolk, VA 23510 DIAL-IN: News media, state and local stakeholders, industry representatives and other interested parties can join a listen-only teleconference of the announcement by dialing 800-369-3311 and entering code: OFFSHORE.

362

NREL: Wind Research - Energy Analysis of Offshore Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis of Offshore Systems Energy Analysis of Offshore Systems Chart of cost data for actual and projected offshore wind projects as reported by developers. Enlarge image NREL has a long history of successful research to understand and improve the cost of wind generation technology. As a research laboratory, NREL is a neutral, third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore wind. Market Analysis NREL's extensive research on installed and proposed projects in Europe, the United States, and other emerging offshore markets enables the compilation of a database of installed and proposed project costs. These are used to report on cost trends. Recent studies include: Analysis of capital cost trends for planned and installed offshore

363

New Reports Chart Offshore Wind's Path Forward | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Chart Offshore Wind's Path Forward Reports Chart Offshore Wind's Path Forward New Reports Chart Offshore Wind's Path Forward December 12, 2012 - 2:29pm Addthis Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity. Taking a look at the challenges and opportunities that lie ahead as the U.S. prepares to enter the offshore wind market. Click here to view the full infographic. | Infographic by Sarah Gerrity.

364

Overcoming Challenges in America's Offshore Wind Industry | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry Overcoming Challenges in America's Offshore Wind Industry November 18, 2013 - 4:40pm Addthis Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Deputy Assistant Secretary for Renewable Energy Steven Chalk speaks during the American Wind Energy Association WINDPOWER Offshore conference in Providence, Rhode Island. | Photo courtesy of American Wind Energy Association Gregory M. Matzat PE; Senior Advisor, Offshore Wind Technologies A year of progress, preparation and promise was the theme connecting two days of panels and presentations last month at the 2013 American Wind

365

Blowing in the Wind ...Offshore | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore Blowing in the Wind ...Offshore February 10, 2011 - 9:28am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What will this project do? The new offshore wind strategy lays out a path to potentially have 54 gigawatts of offshore wind capacity by 2030, enough to power more than 15 million homes with clean, renewable energy. Have you ever flown a kite at the beach? If you have, you know how breezy it can be. A few miles offshore, you'll find that the wind is even stronger and steadier. And it's like that all around the country. Along the eastern seaboard and west coast, in the Great Lakes and Gulf of Mexico, and even around Hawaii we have a massive clean energy resource waiting to

366

Offshore outsourcing and political risk: India in 2004  

Science Journals Connector (OSTI)

The results of the 2004 Indian elections were surprising as the victory of the Congress party was unforeseen by most pre-poll and exit surveys. The unexpected political change, with an associated shift from a centre-right to a centre-left government presented an unanticipated discontinuity in the business environment. We examine whether US companies that had offshored to India faced heightened levels of political risk when election results were announced. A unique contribution of the paper is that we also examine whether US companies that offshored to India in early-2004, faced greater political risk than companies that offshored to the country in 2002 and 2003. Results indicate an increase in political risk as manifested as an increase in systematic risk. Companies that offshored in 2004 faced greater political risk as compared to companies that offshored earlier. Our findings validate the use of a political risk premium when evaluating offshore ITES projects.

Niranjan Chipalkatti; Bruce Koch; Meenakshi Rishi

2013-01-01T23:59:59.000Z

367

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

368

Operational Impacts of Large Deployments of Offshore Wind (Poster)  

SciTech Connect

The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

Ibanez, E.; Heaney, M.

2014-10-01T23:59:59.000Z

369

PNNL Reviews Wildlife-Interaction Monitoring for Offshore Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monitoring birds, bats, and aquatic animals such as marine mammals, sea turtles, and fish in the offshore wind farm environment. Informed by monitoring results and research...

370

Offshore Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

and advanced technology demonstration. Technology Development Offshore wind turbines are frequently located far from shore, more than 60 percent, are in areas where...

371

Offshore Wind Market Acceleration Projects | Department of Energy  

Energy Savers (EERE)

on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

372

University of Michigan Gets Offshore Wind Ready for Winter on...  

Energy Savers (EERE)

Project Overview Positive Impact Understanding the impact of ice on offshore wind turbines. Modeling tool to analyze the ice buildup on wind turbine blades. Locations...

373

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

374

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2012,"6301981"...

375

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

376

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

377

,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012...

378

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

379

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1...

380

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Estimated Production from Reserves...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

382

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

383

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

384

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

385

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million...

386

Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade...

387

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1...

388

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

390

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

391

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

392

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

393

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1...

394

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1...

395

,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

396

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

397

,"Texas State Offshore Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

398

Design for safety framework for offshore oil and gas platforms.  

E-Print Network (OSTI)

??This main aim of this work is to develop a “design for safety” based risk assessment technique for the offshore platforms in order to facilitate… (more)

Umar, Abubakar Attah

2010-01-01T23:59:59.000Z

399

,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

400

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate New Reservoir Discoveries in Old...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1...

402

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

403

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

404

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2...

405

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

406

Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade...

407

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

408

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

409

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

410

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

411

NREL Assesses National Design Standards for Offshore Wind (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

summarizes regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States. In 2012, the American Wind Energy Association...

412

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

413

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

414

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

415

California Federal Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

416

Federal Offshore California Natural Gas Plant Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

417

,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1...

418

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

419

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

420

Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

422

,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

423

,"Federal Offshore--California Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

424

California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

425

,"California State Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

426

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

427

,"California State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2013...

428

Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2012 (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

429

California--State Offshore Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1...

430

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

431

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

432

,"Federal Offshore--Texas Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","1...

433

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

434

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

435

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

436

Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future...  

Gasoline and Diesel Fuel Update (EIA)

Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

437

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

438

Federal Offshore--California Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0...

439

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

440

,"Texas--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

442

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

443

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

444

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

445

,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

446

Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade...

447

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

448

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

449

,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

450

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

451

Federal Offshore--California Natural Gas Plant Liquids, Expected...  

Annual Energy Outlook 2012 (EIA)

Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

452

,"California Federal Offshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

453

Sandia National Laboratories: Offshore Wind RD&D: Sediment Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind RD&D: Sediment Transport Offshore Wind RD&D: Sediment Transport This project focuses on three technical areas Flow chart of sediment stability risk assessment methodology....

454

Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

455

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

456

,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

457

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

458

,"California--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

459

Texas State Offshore Dry Natural Gas Expected Future Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

460

Louisiana State Offshore Dry Natural Gas Expected Future Production...  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

462

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

463

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

464

,"Mississippi (with State Offshore) Natural Gas Liquids Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

465

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

466

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

467

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

468

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

469

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

470

,"California--State Offshore Natural Gas Marketed Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

471

,"Louisiana State Offshore Associated-Dissolved Natural Gas,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

472

NREL Collaborates with SWAY on Offshore Wind Demonstration (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

consumer waste. NWTC researchers gain valuable data from one of the first floating offshore wind prototypes. The National Renewable Energy Laboratory (NREL) is collaborating...

473

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

474

Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

475

,"Louisiana--State Offshore Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

476

DOE Announces Webinars on Economic Impacts of Offshore Wind,...  

Office of Environmental Management (EM)

DOE Announces Webinars on Economic Impacts of Offshore Wind, Overview of Energy Efficiency Conservation Loan Program, and More DOE Announces Webinars on Economic Impacts of...

477

California State Offshore Dry Natural Gas Expected Future Production...  

Gasoline and Diesel Fuel Update (EIA)

Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

478

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

479

California--State Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Lease Condensate Estimated Production CA, State Offshore Lease Condensate Proved Reserves, Reserve Changes, and Production Lease Condensate...

480

Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

Note: This page contains sample records for the topic "facility type offshore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

482

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

483

,"Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2...

484

,"Federal Offshore--California Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million...

485

,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

486

,"California--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

487

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

488

,"Texas--State Offshore Shale Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

489

,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","1302015"...

490

,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",...

491

,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

492

,"California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

493

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

494

,"Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

495

California--State Offshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

496

,"Alabama (with State Offshore) Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","124...

497

NREL: Wind Research - New Report Characterizes Existing Offshore...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities Study concludes a three-year collaborative investigation with positive outlooks for U.S.-based...

498

,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",...

499

,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2...

500

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...