National Library of Energy BETA

Sample records for facility type dry

  1. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  2. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  3. Aq Dryers Agricultural Drying Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Facility Aq...

  4. Cold vacuum drying facility 90% design review

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  5. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  6. DRY TRANSFER FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-05-17

    This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Dry Transfer Facility Description Document'' (BSC 2005 [DIRS 173737], p. 3-8). A description of the changes is as follows: (1) Update the supporting calculations for the various Category 1 and 2 event sequences as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2005 [DIRS 171429], Section 7). (2) Update the criticality safety calculations for the DTF staging racks and the remediation pool to reflect the current design. This design calculation focuses on commercial spent nuclear fuel (SNF) assemblies, i.e., pressurized water reactor (PWR) and boiling water reactor (BWR) SNF. U.S. Department of Energy (DOE) Environmental Management (EM) owned SNF is evaluated in depth in the ''Canister Handling Facility Criticality Safety Calculations'' (BSC 2005 [DIRS 173284]) and is also applicable to DTF operations. Further, the design and safety analyses of the naval SNF canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. Also, note that the results for the Monitored Geologic Repository (MGR) Site specific Cask (MSC) calculations are limited to the

  7. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-08

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  8. Low Temperature Direct Use Agricultural Drying Geothermal Facilities...

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"","text":"DryingLowTemperatureGeothermalFacility" title"Geothermal...

  9. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  10. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  11. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  12. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  13. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect (OSTI)

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  14. Cold Vacuum Drying facility design basis accident analysis documentation

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  15. Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility- August 2012

    Broader source: Energy.gov [DOE]

    Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations

  16. Human factors engineering report for the cold vacuum drying facility

    SciTech Connect (OSTI)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  17. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  18. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  19. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect (OSTI)

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  20. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  1. Cold Vacuum Drying facility crane and hoist system design description (SYS 14)

    SciTech Connect (OSTI)

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) crane and hoist system. The overhead crane and hoist system is located in the process bays of the CVDF. It supports the processes required to drain the water and dry the spent nuclear fuel contained in the multi-canister overpacks after they have been removed from the K-Basins. The cranes will also be used to assist maintenance activities within the bays, as required.

  2. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    SciTech Connect (OSTI)

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  3. Dry Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Dry Lake II Wind Farm Facility Dry Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect (OSTI)

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  5. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect (OSTI)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  6. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  7. Energy efficiency in California laboratory-type facilities

    SciTech Connect (OSTI)

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  8. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect (OSTI)

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  9. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  10. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  11. Viability of Existing INL Facilities for Dry Storage Cask Handling R1

    Broader source: Energy.gov [DOE]

    This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks in support of the U.S. Department of Energy's plan for confirmatory dry storage project for high burnup fuel.

  12. Property:Hydrodynamic Testing Facility Type | Open Energy Information

    Open Energy Info (EERE)

    Flume + Flume + Alden Tow Tank + Tow Tank + Alden Wave Basin + Wave Basin + B Breakwater Research Facility + Wave Basin + Bucknell Hydraulic Flume + Flume + C Carderock 2-ft...

  13. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    --____ R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal/Storage a Research Organization a Government 0 Other Sponsored i F[fa' tty ------__------__ I Prime 5 Subcontractor 0 Purchase Order a Other information (i.e., cost + fixed fee, unit p CgNTRACTING PERIOD: L.&G , PX& & cx LFkoL ~~~~~~~~~----------_ __ _______ OWNERSH; P: AEC/MED AEC/MED GOVT GOVT

  14. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  15. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  16. Dry-vault storage of spent fuel at the CASCAD facility

    SciTech Connect (OSTI)

    Baillif, L.; Guay, M.

    1989-01-01

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooled by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.

  17. br Owner br Facility br Type br Capacity br MW br Commercial...

    Open Energy Info (EERE)

    Owner br Facility br Type br Capacity br MW br Commercial br Online br Date br Geothermal br Area br Geothermal br Region Coordinates Ahuachapan Geothermal Power Plant LaGeo SA de...

  18. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  19. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  20. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  1. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  2. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  3. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    SciTech Connect (OSTI)

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  4. Feasibility study for Zaporozhye Nuclear Power Plant spent fuel dry storage facility in Ukraine. Export trade information

    SciTech Connect (OSTI)

    1995-12-01

    This document reports the results of a Feasibility Study sponsored by a TDA grant to Zaporozhye Nuclear Power Plant (ZNPP) in Ukraine to study the construction of storage facilities for spent nuclear fuel. It provides pertinent information to U.S. companies interested in marketing spent fuel storage technology and related business to countries of the former Soviet Union or Eastern Europe.

  5. Type B investigation report of curium-244 exposure at the ORNL TRU Facility, January 15, 1986

    SciTech Connect (OSTI)

    Love, G.L.; Butler, H.M.; Duncan, D.T.; Oakes, T.W.

    1986-04-01

    This Type B Investigative Report provides an evaluation of relevant events and activities that led to, were a part of, or resulted from the release of curium-244 in the Building 7920 facility at ORNL in January 1986. Impacts have been evaluated with respect to employee exposures and the costs and loss of productivity resulting from increased bioassay analyses and activities of investigative committees. Management systems evaluated include (1) training of employees performing lab analyses, (2) adherence to procedures, and (3) response to unusual circumstances.

  6. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  7. Headquarters Facilities Master Security Plan- Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas

    Office of Energy Efficiency and Renewable Energy (EERE)

    2016 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas Describes DOE Headquarters procedures for establishing, maintaining, and deactivating Limited Areas and Vault-Type Rooms and protecting the classified information handled within those Areas.

  8. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  9. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  10. Drying '84

    SciTech Connect (OSTI)

    Baunack, F.

    1984-01-01

    This book covers the following topics: mechanism of water sorption-desorption in polymers; progress in freeze drying; on drying of materials in through circulation system; safety aspects of spray drying; dewatering process enhanced by electroosmosis; pressure drop and particle circulation studies in modified slot spouted beds; and experience in drying coal slurries.

  11. Property:Types of Co-located facilities | Open Energy Information

    Open Energy Info (EERE)

    25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Co-located fish holding facility is ideal for evaluating the impacts of generation devices on fish...

  12. Drying studies for corroded DOE aluminum plate fuels

    SciTech Connect (OSTI)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-05-01

    The Idaho National Engineering Laboratory (INEL) currently stores a wide variety of spent nuclear fuel. The fuel was originally intended to be stored underwater for a short period of thermal cooling, then removed and reprocessed. However, it has been stored underwater for much longer thank originally anticipated. During this time dust and airborne desert soil have entered the oldest INEL pool, accumulating on the fuel. Also, the aluminum fuel cladding has corroded compromising the exposed surfaces of the fuel. Plans are now underway to move some the the more vulnerable aluminum plate type fuels into dry storage in an existing vented and filtered fuel storage facility. In preparation for dry storage of the fuel a drying and canning station is being built at the INEL. The two primary objectives of this facility are to determine the influence of corrosion products on the drying process and to establish temperature distribution inside the canister during heating.

  13. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  14. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of thismore » study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  15. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    SciTech Connect (OSTI)

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.

  16. Spearville Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Spearville Wind Energy Facility Facility Spearville Wind Energy Facility Sector Wind energy Facility Type Commercial Scale...

  17. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  18. Ainsworth Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Ainsworth Wind Energy Facility Jump to: navigation, search Name Ainsworth Wind Energy Facility Facility Ainsworth Wind Energy Facility Sector Wind energy Facility Type Commercial...

  19. Searsburg Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Searsburg Wind Energy Facility Jump to: navigation, search Name Searsburg Wind Energy Facility Facility Searsburg Wind Energy Facility Sector Wind energy Facility Type Commercial...

  20. Kammerer Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Kammerer Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  1. Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010

    Broader source: Energy.gov [DOE]

    This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

  2. Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report documents the results of the Type B Accident Investigation Board (Board) investigation of the October 6, 2009, hand injury at the Department of Energy (DOE) Savannah River Site (SRS) Salt Waste Processing Facility construction site.

  3. Teamwork in planning and carrying out the first inspection of the coke dry quenching (CDQ) plant of the Kaiserstuhl Coking Facility

    SciTech Connect (OSTI)

    Burchardt, G.

    1996-12-31

    The coke plant Kaiserstuhl operates a coke dry quenching (CDQ) plant with a downstream installed waste heat boiler to satisfy statutory pollution control rules and requirements. This CDQ which went on stream in March 1993 cools the whole coke production output from the Kaiserstuhl coke plant in counterflow to an inert cooling gas. This brief overview on the whole CDQ plant should elucidate the complex of problems posed when trying to make an exact plant revision plan. After all it was impossible to evaluate or to assess all the interior process technology relevant components during the planning stage as the plant was in operation. The revision data for the first interior check was determined and fixed by the statutory rule for steam boilers and pressure vessels. The relevant terms for this check are mandatorily prescribed. In liaison with the testing agency (RW TUEV) the date for the first revision was fixed for April 1995, that means two years after the first commissioning.

  4. Facile synthesis of B-type carbonated nanoapatite with tailored microstructure

    SciTech Connect (OSTI)

    Gualtieri, Magdalena Lassinantti; Romagnoli, Marcello; Hanuskova, Miriam; Fabbri, Elena; Gualtieri, Alessandro F.

    2014-12-15

    Nanolime and a phosphate-based chelating agent were used to synthesize B-type carbonated apatite. Developed Rietveld refinement strategies allowed one to determine process yield, product crystallinity as well as structural (unit cell) and microstructural (size, strain) parameters. The effect of synthesis temperature (20–60 °C) as well as Ca/P ratio (1.5–2.5) and solid content (10–30 wt%) of the starting batch on these properties were investigated. FTIR, TEM and gas adsorption data provided supporting evidence. The process yield was 42–60 wt% and found to be governed by the Ca/P ratio. The purified products had high specific surface area (107–186 m{sup 2}/g) and crystallinity (76–97%). The unit cell parameters, correlated to the degree of structural carbonate, were sensitive to the Ca/P ratio. Instead, temperature governed the microstructural parameters. Less strained and larger crystals were obtained at higher temperatures. Long-term aging up to 6 months at 20 °C compensated for higher crystal growth kinetics at higher temperature. - Graphical abstract: Controlled synthesis of carbonated apatite at moderate temperatures using nanolime and sodiumhexametaphosphate as starting reagent. - Highlights: • Chemical synthesis of nano-sized apatite with tailored microstructure was performed. • Colloidal Ca(OH){sub 2} and a phosphorus-based chelating agents were used as reagents. • The method is simple and reproducible which facilitate industrial process scale-up. • Rietveld refinement strategies for product characterization were developed. • Rietveld analyses provided yield, microstructural and structure information.

  5. Circulating system simplifies dry scrubbing

    SciTech Connect (OSTI)

    Morrison, S.Q.; Jorgensen, C.

    1995-10-01

    This article describes a circulating dry scrubber, based on fluid-bed absorption process, which demonstrates high SO{sub 2} removal with minimal O and M requirements. Unlike other dry scrubbers, this one involves dry reagent and results in dry products. Before construction can begin on a new coal-fired plant, a rigorous set of permit requirements must be satisfied. When the Roanoke Valley Energy Facility, Weldon, NC, began the permitting process for their proposed 44-MW pulverized-coal (p-c)-fired Unit 2, the facility permit limited not only SO{sub 2} emissions (0.187 lb SO{sub 2}/million Btu) but also the removal efficiency of the flue-gas desulfurization process (93%) and the maximum amount of sulfur in the coal (1.6%).

  6. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  7. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  8. Biodyne Pontiac Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  9. San Marcos Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  10. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  11. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  12. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  13. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  14. Otay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  15. Wheelabrator Saugus Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  16. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  17. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  18. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  19. Dry Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location...

  20. Lincoln Wind Energy Facility I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lincoln Wind Energy Facility I Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  1. Lincoln Wind Energy Facility II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lincoln Wind Energy Facility II Facility Lincoln Wind Energy Facility Sector Wind energy Facility Type Community Wind Facility Status In Service...

  2. Bruceville Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Power Facility Facility Bruceville Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  3. Dillard Road Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Dillard Road Solar Power Facility Sector Solar Facility Type Photovoltaics Facility Status In Service Developer Recurrent Energy Energy Purchaser Sacramento...

  4. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR...

  5. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  6. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energys Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  7. Cold Vacuum Drying Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    irradiated fuel rods were stored underwater in the K-Basins for the purpose of cooling, contamination control, and to shield workers from radiation. However, for long-term...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric

  9. Type B Investigation Board Report on the April 2, 2002, Worker Fall from Shoring/Scaffolding Structure at the Savannah River Site Tritium Extraction Facility Construction Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 2, 2002, a carpenter helping to erect shoring/scaffolding fell about 52” and struck his head. He sustained head injuries requiring hospitalization that exceeded the threshold for a Type B investigation in accordance with Department of Energy (DOE) Order 225.1A, Accident Investigation. The accident occurred at the DOE’s Savannah River Site (SRS) at the Tritium Extraction Facility (TEF) construction site.

  10. Oceanridge Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Oceanridge Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  11. Arrowhead Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Arrowhead Fisheries Sector Geothermal energy Type Aquaculture Location Susanville, California Coordinates...

  12. Dashun Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Dashun Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  13. Pacific Aquafarms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Pacific Aquafarms Sector Geothermal energy Type Aquaculture Location Niland, California Coordinates 33.2400366,...

  14. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  15. SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  16. SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Aquaculture Location Las Cruces, New Mexico Coordinates 32.3123157,...

  17. Technology Transitions Facilities Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transitions Facilities Database Technology Transitions Facilities Database Type* Laboratory Name Facilities DataBase The DOE National Laboratories maintain cutting-edge ...

  18. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  19. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  20. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  1. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  2. Covanta Hennepin Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal...

  3. Covanta Babylon Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal...

  4. Covanta Bristol Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal...

  5. Covanta Fairfax Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type Municipal...

  6. Covanta Stanislaus Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type...

  7. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  8. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  9. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  10. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  11. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  12. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  13. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  14. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  15. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  16. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  17. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  18. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...

  19. Newby Island I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Newby Island I Biomass Facility Jump to: navigation, search Name Newby Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa...

  20. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  1. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  2. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  3. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  4. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  5. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  6. McKenzie Solar Power Facility | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Facility Facility McKenzie Solar Plant Sector Solar Facility Type Photovoltaic Facility Status In Service Owner Recurrent Energy Developer Recurrent Energy Energy...

  7. Montenay Montgomery LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Montenay Montgomery LP Biomass Facility Jump to: navigation, search Name Montenay Montgomery LP Biomass Facility Facility Montenay Montgomery LP Sector Biomass Facility Type...

  8. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type...

  9. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  10. High-intensity drying processes: Impulse drying. Annual report

    SciTech Connect (OSTI)

    Orloff, D.I.; Phelan, P.M.

    1993-12-01

    Experiments were conducted on a sheet-fed pilot-scale shoe press to compare impulse drying and double-felted pressing. Both an IPST (Institute of Paper Science and Technology) ceramic coated and Beloit Type A press roll were evaluated for lienrboard sheet structures having a wide range of z-direction permeability. Purpose was to find ways of correcting sheet sticking problems observed in previous pilot-scale shoe press experiments. Results showed that impulse drying was superior to double felted pressing in both press dryness and in important paper physical properties. Impulse drying critical temperature was found to depend on specific surface of the heated layer of the sheet, thermal properties of the press roll surface, and choice of felt. Impulse drying of recycled and two-ply liner was demonstrated for both Southern Pile and Douglas fir-containing furnishes.

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2010 [Data Announcements, Facility News] Tandem Differential Mobility Analyzer (TDMA) Data Available at the ARM Data Archive Bookmark and Share Dry samples are collected by the aerosol stack and transferred inside the Aerosol Observation System structure to the TDMA where they are exposed to humidity for growth rate sampling. For more details on how the TDMA works, see this schematic. Dry samples are collected by the aerosol stack and transferred inside the Aerosol Observation System

  12. ORPS Facility Registration Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note:  Only one facility per form  Type or print all entries 1. TYPE OF CHANGE  Add a Facility (Complete Section 1.A, then go to Section 2)  Change a Facility (Complete Section 1.B, then go to Section)  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  13. Type B Accident Investigation of the July 14, 2005, Americium Contamination Accident at the Sigma Facility, Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by Edwin L. Wilmot, Manager of the Los Alamos Site Office of the National Nuclear Security Administration, U.S. Department of Energy.

  14. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  15. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  16. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1, 2015 [Facility News] BAMS Features Results of 21-Month ARM Deployment Bookmark and Share Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Featured in the March 2015 Bulletin of the American Meteorological Society (BAMS), the 21-month ARM mobile facility deployment in the Azores was the longest of its type in a non-tropical

  18. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise & Facilities Expertise & Facilities Our full spectrum of end-to-end integrated capabilities in explosives make Los Alamos the ideal place to develop, characterize, and test all types of explosives and explosives threat scenarios. v Award-winning scientists, state-of-the-art facilities LACED is built upon Los Alamos' unparalleled explosives detection capabilities derived from the expertise of award-winning scientists and state-of-the-art facilities. LACED is made up of 57

  19. Recent progress of spray drying in China

    SciTech Connect (OSTI)

    Jinxin, T.; Zonglian, W.; Lixin, H.

    1999-10-01

    The development of spray drying technique during past 10 years of China is reviewed. Main achievements in research, development and utilization of three types of atomization are described and summarized. General trend of spray drying research and development in 21st century is forecasted.

  20. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  1. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  2. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  3. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  4. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  5. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  6. Woodlake Sanitary Services Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility Type Landfill Gas Location Hennepin County, Minnesota...

  7. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  8. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  9. Newby Island II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Newby Island II Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459 Show Map Loading...

  10. Wheelabrator North Andover Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Wheelabrator North Andover Sector Biomass Facility Type Municipal Solid Waste Location Essex County, Massachusetts Coordinates 42.7051144, -70.9071236...

  11. SEMASS Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility SEMASS Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Plymouth County, Massachusetts Coordinates 41.9120406, -70.7168469...

  12. Wheelabrator South Broward Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility Wheelabrator South Broward Sector Biomass Facility Type Municipal Solid Waste Location Broward County, Florida Coordinates 26.190096, -80.365865 Show Map...

  13. North County Regional Resource Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility North County Regional Resource Sector Biomass Facility Type Municipal Solid Waste Location Palm Beach County, Florida Coordinates 26.6514503, -80.2767327 Show...

  14. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  15. Ridgewood Providence Power Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Ridgewood Providence Power Biomass Facility Facility Ridgewood Providence Power Sector Biomass Facility Type Landfill Gas Location Providence County, Rhode Island...

  16. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  17. KMS Joliet Power Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search Name KMS Joliet Power Partners LP Biomass Facility Facility KMS Joliet Power Partners LP Sector Biomass Facility Type Landfill Gas Location Will County, Illinois...

  18. Marsh Road Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  19. Americulture Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Americulture Sector Geothermal energy Type Aquaculture Location Animas, New Mexico Coordinates 31.9489799, -108.8072777...

  20. Idaho National Engineering Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Federal Facility Agreement and Consent Order State Idaho Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts...

  1. Property:Testing Facilities | Open Energy Information

    Open Energy Info (EERE)

    Name Testing Facilities Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:TestingFacilities&oldid595932" Feedback Contact needs updating...

  2. Lawrence Livermore National Laboratory Federal Facility Agreement...

    Office of Environmental Management (EM)

    Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility ...

  3. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  4. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  5. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  6. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  7. American Ref-Fuel of Niagara Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal...

  8. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  9. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  10. Activity release during the dry storage of fuel assemblies

    SciTech Connect (OSTI)

    Valentine, M.K. ); Fettel, W.; Gunther, H. )

    1991-01-01

    This paper reports that wet storage is the predominant storage method in the USA for spent fuel assemblies. Nevertheless, most utilities have stretched their storage capacities and several reactors will lose their full-core reserve in the 90's. A great variety of out-of-pool storage methods already exist, including the FUELSTOR vault-type dry storage concept. A FUELSTOR vault relies on double containment of the spent fuel (intact cladding as the primary containment and sealing of assemblies in canisters filled with an inert gas as the secondary containment) to reduce radiation levels at the outside wall of the vault to less than site boundary levels. Investigation of accident scenarios reveals that radiation release limits are only exceeded following complete failure of all canisters and simultaneous cladding breach for more than 40% of the rods (or for more than 1% of failed rods if massive fuel oxidation occurs following cladding failure). Such failures are considered highly improbable. Thus, it can be concluded that this type of dry storage is safe and individual canister monitoring is not required in the facility.

  11. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  12. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  13. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  14. Biomass drying technologies. Final report, September 1997--May 1998

    SciTech Connect (OSTI)

    Salomaa, E.

    1998-07-01

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the drying medium are discussed more closely, with comparison to the methods of drying using air or flue gas as the drying medium. Available types of steam dryers are described with reference to operating conditions, energy requirements, and types of biomass dried. Energy aspects are considered, as well as possibilities of steam utilization to recover the latent heat of vaporization. Thermal energy required for drying of biomass is calculated using tabulated values of steam properties. The amount of steam to provide the thermal energy needed for biomass drying, at different pressures and temperatures applicable in steam dryers, is calculated for both indirectly and directly heated steam dryers. The calculated heat requirement values of steam dryers have been compared with those reported in the literature. Further, anticipated emissions from flue gas and steam drying processes have been summarized.

  15. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-12-07

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  16. Dry Valleys in Antarctica

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 20, 2016 The McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth. The sensitivity of these glaciers to climate change is not well understood. A ...

  17. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  18. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  19. Plant No 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    No 2 Biomass Facility Jump to: navigation, search Name Plant No 2 Biomass Facility Facility Plant No 2 Sector Biomass Facility Type Non-Fossil Waste Location Orange County,...

  20. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  1. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  2. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  6. Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

  7. Type B Accident Investigation on the August 5, 2003, Pu-238 Multiple Uptake Event at the Pu Facility, Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 5, 2003, a release of plutonium-238 occurred in a storage room at the Plutonium Facility, Los Alamos National Laboratory, resulting in radiation doses to two workers in the room. The Accident Investigation Board concluded that the direct cause of the accident was the release of airborne contamination from a degraded package that contained cellulose material and plutonium-238 residues.

  8. Type A Accident Investigation of the March 16, 2000, Plutonium-238 Multiple Intake Event at the Plutonium Facility, Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    On March 16, 2000, at approximately 2 p.m., a radiological release of plutonium-238 occurred near a glovebox in the Plutonium Processing and Handling Facility (TA-55) of the Los Alamos National Laboratory. At least seven of the eight workers who were in the room at the time received confirmed intakes of plutonium-238.

  9. Low Temperature Direct Use Aquaculture Geothermal Facilities...

    Open Energy Info (EERE)

    Low Temperature Direct Use Aquaculture Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYB...

  10. Low Temperature Direct Use Greenhouse Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Greenhouse Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  11. Habanero EGS Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Austrailia Plant Information Facility Type EGS Owner Geodynamics Developer Geodynamics Energy Purchaser Siemens Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  12. Low Temperature Direct Use Industrial Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  13. Full containment spray drying

    SciTech Connect (OSTI)

    Masters, K.

    1999-11-01

    Aspects of safety, environmental protection, and powder quality will continue to influence advances within spray dryer design and operation, and the concept of full containment spray drying offers a means to meet future industrial requirements. Process air recycle and powder containment within the drying chamber leads to no process air discharge to atmosphere, provides a more favorable operator environment around the spray dryer installation, reduces regions within the dryer layout where potential explosive powder/air mixtures can exist, improves yields, reduces powder losses, and provides easier cleaning operations with reduced wash water requirements.

  14. Spray-drying FGD

    SciTech Connect (OSTI)

    Yeager, K.

    1984-05-01

    Limited data are available on spray drying for SO/SUB/2 and particulate control to enable utilities to evaluate the claims of vendors. EPRI is sponsoring pilot- and full-scale testing of this technology and some results are presented.

  15. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  16. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  17. Type B Accident Investigation of the Mineral Oil Leak Discovered on January 8, 2001, Resulting in Property Damage at the Atlas Facility, Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an independent product of the Type B Accident Investigation Board appointed by Acting Chief Operating Officer for Defense Programs, Ralph E. Erickson.

  18. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  19. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  20. Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  2. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  3. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  4. Ultrasonic Clothes Drying Technology

    ScienceCinema (OSTI)

    Patel, Viral; Momen, Ayyoub

    2016-05-12

    Oak Ridge National Laboratory researchers Ayyoub Momen and Viral Patel demonstrate a direct contact ultrasonic clothes dryer under development by ORNL in collaboration with General Electric (GE) Appliances. This novel approach uses high-frequency mechanical vibrations instead of heat to extract moisture as cold mist, dramatically reducing drying time and energy use. Funding for this project was competitively awarded by DOE?s Building Technologies Office in 2014.

  5. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  6. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  7. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J.

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  8. Avila Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524, -120.6596156 Show Map Loading...

  9. Pah Temple Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Facility Facility Pah Temple Sector Geothermal energy Type Pool and Spa Location Hurricane, Utah Coordinates 37.1752607, -113.2899484 Show Map Loading map......

  10. Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Mimbres Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075,...

  11. Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Faywood Hot Springs Sector Geothermal energy Type Pool and Spa Location Faywood, New Mexico Coordinates Show Map Loading map......

  12. Riverbend Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Riverbend Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  13. Ojo Caliente Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Ojo Caliente Resort Sector Geothermal energy Type Pool and Spa Location Ojo Caliente, New Mexico Coordinates Show Map Loading...

  14. The Wilderness Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075,...

  15. Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Bubbles Hot Spring Sector Geothermal energy Type Pool and Spa Location Catron County, New Mexico Coordinates 34.1515173,...

  16. Indian Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Facility Indian Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  17. Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Marshall Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  18. Doc Cambell's Post Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Doc Cambell's Post Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  19. Sierra Grande Lodge Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Sierra Grande Lodge Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  20. Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates...

  1. Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183, -116.84503 Show Map Loading map......

  2. SS Vong Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Name SS Vong Aquaculture Low Temperature Geothermal Facility Facility SS Vong Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  3. Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193, -105.9989022 Show Map Loading map......

  4. Esalen Institute Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Esalen Institute Sector Geothermal energy Type Pool and Spa Location Big Sur, California Coordinates 36.270241, -121.8074545 Show Map Loading map......

  5. Pioneer Valley Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314, -72.6624209...

  6. Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Barkell's Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver Star, Montana Coordinates 45.690204,...

  7. Spray-dried fluid-bed sorbents tests - CMP-5

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01

    The objective of this study is to determine the feasibility of manufacturing highly reactive and attrition-resistant zinc titanate sorbents by spray drying, suitable for bubbling (conventional) as well as transport-type fluidized-bed reactor systems.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  9. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect (OSTI)

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  11. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  12. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A.; Kiggans, Jr., James O.

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  16. Operations to be Performed in the Waste Package Dry Remediation Cell

    SciTech Connect (OSTI)

    Norman E. Cole; Randy K. Elwood

    2003-10-01

    Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

  17. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  18. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  19. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S.

    2008-07-01

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  20. Development of an ACP facility

    SciTech Connect (OSTI)

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  1. ORPS Facility Registration Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Registration Form ORPS Facility Registration Form June 9, 2014 Add, Change or Delete a Facility for Occurrence Reporting and Processing System Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note: Only one facility per form Type or print all entries TYPE OF CHANGE: Add a Facility (Complete Section 1.A, then go to Section 2) Change a Facility (Complete Section 1.B, then go to Section) Delete a

  2. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  3. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy

  4. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Solar Energy/Concentrating Solar Power (CSP)/National Solar Thermal Test Facility National Solar Thermal Test Facility admin 2016-04-14T21:34:04+00:00 Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and

  5. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  6. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Objective Advance research from prototype dryer ... First commercial market is dry flavors designed to ... change from existing practice Requires novel dryer ...

  7. DRI Companies | Open Energy Information

    Open Energy Info (EERE)

    Irvine, California Zip: 92614 Sector: Solar Product: US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates:...

  8. Some considerations in simulation of superheated steam drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S. [New Zealand Forest Research Inst., Rotorua (New Zealand). Wood Processing Div.

    1997-05-01

    A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the superheated steam drying was found to be much higher than that in the moist air drying, however, the heat transfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  10. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.