National Library of Energy BETA

Sample records for facility site evaluation

  1. Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)

    Broader source: Energy.gov [DOE]

    The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

  2. Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3

    SciTech Connect (OSTI)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-09-01

    This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

  3. Washington State Energy Facility Site Evaluation Council | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,| OpenInformation Energy Facility Site

  4. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  5. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  6. Washington Energy Facility Site Evalutation Council - Siting...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Siting and Review Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Energy...

  7. Removal site evaluation report on the bulk shielding facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-09-01

    This removal site evaluation report on the Bulk Shielding Facility (BSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around BSF buildings pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. A removal site evaluation was conducted at nine areas associated with the BSF. The scope of each evaluation included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that no substantial risks exist from contaminants present because adequate efforts are being made to contain and control existing contamination and hazardous substances and to protect human health and the environment. At Building 3004, deteriorated and peeling exterior paint has a direct pathway to the storm water drainage system and can potentially impact local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. The paint should be sampled and analyzed to determine its lead content and to assess whether a hazard exists. If so, a maintenance action will be necessary to prevent further deterioration and dislodging of the paint. In addition, if the paint contains lead, then a remedial site evaluation should be conducted to determine whether lead from fallen chips has impacted soils in the immediate area of the building.

  8. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  9. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  10. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  11. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  12. DOE Site Facility Management Contracts Internet Posting | Department...

    Energy Savers [EERE]

    DOE Site Facility Management Contracts Internet Posting DOE Site Facility Management Contracts Internet Posting PDF icon DOE NNSA Site Facility Management Contracts - November...

  13. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  14. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  15. Liquefaction Evaluations at DOE Sites

    Office of Environmental Management (EM)

    Background Purpose and Objective Liquefaction Methods Site Evaluations Aging Conclusions 2 Background 3 Liquefaction at DOE Sites Background Liquefaction...

  16. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  17. Removal site evaluation report L-area rubble pile (131-3L) gas cylinder disposal facility (131-2L)

    SciTech Connect (OSTI)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

    1997-10-01

    This Removal Site Evaluation Report (RSER) is prepared in accordance with Sections 300.410 and 300.415 of the National Contingency Plan and Section XIV of the Savannah River Site (SRS) Federal Facility Agreement (FFA). The purpose of this investigation is to report information concerning conditions at the L-Area Rubble Pile (LRP) (131-3L) and the L-Area Gas Cylinder Disposal Facility (LGCDF) (131- 2L) sufficient to assess the threat posed to human health and the environment. This investigation also assesses the need for additional Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) actions. The scope of this investigation included a review of files, limited sampling efforts, and visits to the area. An investigation of the LRP (1131-3L) indicates the presence of semi volatile organic compounds (SVOCs), volatile organic compounds (VOCs), metals, and asbestos. Potential contaminants in the waste piles could migrate into the secondary media (soils and groundwater), and the presence of some of the contaminants in the piles poses an exposure threat to site works. The Department of Energy (DOE), United States Environmental Protection Agency (EPA) and South Carolina Department of Health and Environmental Control (SCDHEC) discussed the need for a removal action at the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation (RFI/RI) work plan scoping meetings on the waste unit, and agreed that the presence of the waste piles limits the access to secondary media for sampling, and the removal of the piles would support future characterization of the waste unit. In addition, the DOE, EPA, and SCDHEC agreed that the proposed removal action for the LRP (131-3L) would be documented in the RFI/RI work plan. The LGCDF (131-2L) consists of a backfilled pit containing approximately 28 gas cylinders. The gas cylinders were supposed to have been vented prior to burial; however, there is a potential that a number of the cylinders are still pressurized. (Abstract Truncated)

  18. Savannah River Site - Mixed Waste Management Facility Northwest...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northeast Plume Savannah River Site - D-Area Oil Seepage Basin...

  19. Savannah River Site - Mixed Waste Management Facility Northeast...

    Energy Savers [EERE]

    state determination for entire site. Addthis Related Articles Savannah River Site - Mixed Waste Management Facility Northwest Plume Savannah River Site - D-Area Oil Seepage Basin...

  20. LIQUEFACTION EVALUATIONS AT DOE SITES

    Broader source: Energy.gov [DOE]

    Liquefaction Evaluations at DOE Sites M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011

  1. Independent Oversight Review, Hanford Site K-West Annex Facility...

    Energy Savers [EERE]

    Review, Hanford Site K-West Annex Facility - April 2014 Independent Oversight Review, Hanford Site K-West Annex Facility - April 2014 April 2014 Review of the Hanford Site K-West...

  2. Savannah River Site Federal Facility Agreement, January 15, 1993...

    Office of Environmental Management (EM)

    River Site Federal Facility Agreement Under Section 120 of CERCLA, January 15, 1993 State South Carolina Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope...

  3. Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site

    SciTech Connect (OSTI)

    Barnes, A.B. [Savannah River National Laboratory, Washington Savannah River Company, Aiken, SC (United States); Iverson, D.C.; Adkins, B.J. [Liquid Waste Operations, Washington Savannah River Company, Aiken, SC (United States); Tchemitcheff, E. [AREVA NC Inc., Richland Office, Richland, WA (United States)

    2008-07-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 kHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 deg. C to 200 deg. C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 deg. C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. (authors)

  4. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    SciTech Connect (OSTI)

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-02-06

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and increase heat transfer to the slurry fed High Level Waste (HLW) sludge, the CCIM may be equipped with bubblers and/or water cooled mechanical agitators. The DWPF could benefit from use of CCIM technology, especially in light of our latest projections of waste volume to be vitrified. Increased waste loading and increased throughput could result in substantial life cycle cost reduction. In order to significantly surpass the waste throughput capability of the currently installed JHM, it may be necessary to install two 950 mm CCIMs in the DWPF Melt Cell. A cursory evaluation of system design requirements and modifications to the facility that may be required to support installation and operation of two 950 mm CCIMs was performed. Based on this evaluation, it appears technically feasible to position two CCIMs in the Melt Cell of the DWPF within the existing footprint of the current melter. Interfaces with support systems and controls including Melter Feed, Power, Melter Cooling Water, Melter Off-gas, and Canister Operations must be designed to support dual CCIM operations. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF.

  5. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  6. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  7. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  8. Application of the SELECS methodology to evaluate socioeconomic and environmental impacts of commercial-scale coal liquefaction plants at six potential sites in Kentucky. Final report from the study on development of environmental guidelines for the selection of sites for fossil energy conversion facilities

    SciTech Connect (OSTI)

    Northrop, G. M.; D'Ambra, C. A.

    1980-11-01

    Environmental and socioeconomic impacts likely to occur during the operational phase of two coal liquefaction processes have been evaluated with SELECS (Site Evaluation for Energy Conversion Systems) for each of six potential sites in Kentucky for commercial scale facilities capable of processing about 26,000 tons of coal per stream day. The processes considered in this evaluation are SRC-I, a direct liquefaction route with solid boiler fuel as the principal product, and Coal-to-Methanol-to-Gasoline, an indirect liquefaction route with transportation fuel as the primary product. For comparative purposes, the impacts of a 2-gigawatt coal-fired steam-electric power plant (with coal requirements comparable to the liquefaction facilities) and an automobile parts manufacturing plant (with employment requirements of 849, comparable to the liquefaction facilities) have also been evaluated at each site. At each site, impacts have been evaluated for one or two nearby cities or towns and four to six counties where significant impacts might be expected. The SELECS methodology affords a well-organized and efficient approach to collecting and assessing a large volume of data needed to comprehensively determine the potential socioeconomic and environmental impacts resulting from the implementation of commercial scale synfuel and other energy conversion facilities. This study has also shown that SELECS is equally applicable to determine the impacts of other facilities, such as automobile parts manufacturing. In brief, the SELECS methodology serves the purpose of objectively screening sites in order to choose one at which adverse impacts will be least, and/or to determine what aspect of a proposed facility might be modified to lessen impacts at a specific site.

  9. Seismic Analysis of Facilities and Evaluation of Risk | Department...

    Office of Environmental Management (EM)

    Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Michael Salmon,...

  10. Story Road Landfill Solar Site Evaluation: San Jose

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  11. Water Pollution Control Plant Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  12. Site selection for the Salt Disposition Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Bowers, J.A.

    2000-01-03

    The purpose of this report is to identify, assess, and rank potential sites for the proposed Salt Disposition Facility (SDF) at the Savannah River Site.

  13. O.A.R. 345-015 - Energy Facility Siting Council Site Certification...

    Open Energy Info (EERE)

    Procedures (2014). Retrieved from "http:en.openei.orgwindex.php?titleO.A.R.345-015-EnergyFacilitySitingCouncilSiteCertificationProcedures&oldid789924" ...

  14. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2000-12-13

    The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

  15. Method for siting detectors within a facility

    DOE Patents [OSTI]

    Gleason, Nathaniel Jeremy Meyer (Livermore, CA)

    2007-12-11

    A method, system and article of manufacture of siting one or more detectors in a facility represented with zones are provided. Signals S.sub.i,j representing an effect in zone j in response to a release of contaminant in zone i for one or more flow conditions are provided. A candidate architecture has one or more candidate zones. A limiting case signal is determined for each flow condition for multiple candidate architectures. The limiting case signal is a smallest system signal of multiple system signals associated with a release in a zone. Each system signal is a maximum one of the signals representing the effect in the candidate zones from the release in one zone for the flow condition. For each candidate architecture, a robust limiting case signal is determined based on a minimum of the limiting case signals. One candidate architecture is selected based on the robust limiting case signals.

  16. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C....

  17. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility

    Broader source: Energy.gov [DOE]

    Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent...

  18. Assessor Training Evaluating OnSite Reports

    E-Print Network [OSTI]

    NVLAP Assessor Training Evaluating OnSite Reports and Corrective Actions #12;Assessor Training 2009Site Report form ·NVLAP OnSite Assessment Review form #12;Assessor Training 2009: Evaluating OnSite Reports · Nonconformities cited #12;Assessor Training 2009: Evaluating OnSite Reports & Corrective Actions 44 Evaluating

  19. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  20. Savannah River Site’s H Canyon Work Ensures Future Missions for Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    EM and its primary contractor at the Savannah River Site (SRS) safely completed 16 facility modifications three months ahead of schedule in support of the continued operation and sustainability of the H Canyon facility.

  1. Environmental Innovation Center Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar photovoltaic (PV) site evaluation conducted at the San Jose Environmental Innovation Center (EIC) in the City of San Jose, California. This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  2. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  3. Hanford Site existing irradiated fuel storage facilities description

    SciTech Connect (OSTI)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  4. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  5. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01

    Strategies for Siting Coal Gasification Facilities in theStrategies for Siting Coal Gasification Facilities in thea 100 MW integrated coal gasification/ combined cycle

  6. EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

  7. Guidelines for Evaluation of Nuclear Facility Training Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  8. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  9. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    SciTech Connect (OSTI)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  10. Earthquake research for the safer siting of critical facilities

    SciTech Connect (OSTI)

    Cluff, J.L. (ed.)

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  11. High Impact Technology Hub- Resources for Evaluators- Site Evaluation Checklists

    Broader source: Energy.gov [DOE]

    The HIT Catalyst conducts technology demonstrations in three main phases govern demonstrations: Site Evaluation, Selection and Project Kick-Off, Measurement and Verification Scoping and Plan...

  12. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    SciTech Connect (OSTI)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  13. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect (OSTI)

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  14. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  15. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards

    SciTech Connect (OSTI)

    Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA)); Short, S.A. (ABB Impell Corp., Mission Viejo, CA (USA)); McDonald, J.R. (Texas Tech Univ., Lubbock, TX (USA)); McCann, M.W. Jr. (Benjamin (J.R.) and Associates, Inc., Mountain View, CA (USA)); Murray, R.C. (Lawrence Livermore National Lab., CA (USA)); Hill, J.R. (USDOE Assistant Secretary for Environment, Safety, and He

    1990-06-01

    The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.

  16. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2002

    SciTech Connect (OSTI)

    Perkins, Craig J.; Markes, Bruce M.; Mckinney, Stephen M.; Mitchell, R. M.; Roos, Richard C.

    2003-09-01

    This report contains the data gathered during near-facility monitoring during 2002 on the Hanford Site.

  17. The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1998-08-01

    This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

  18. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES

    Broader source: Energy.gov [DOE]

    Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

  19. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    E-Print Network [OSTI]

    Hazen, Terry

    2002-01-01

    On-Site Disposal Facility Leachate Treatment Final Report,for such a dilute leachate. Monitored Natural AttenuationOn-Site Disposal Facility Leachate Treatment Final Report,

  20. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2014-10-01

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  1. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    SciTech Connect (OSTI)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  2. Guidelines for Evaluation of Nuclear Facility Training Programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidelines for Evaluation of Nuclear Facility Training Programs Type: Invoked Technical Standards OPI: HS - Office of Health, Safety and Security Status: Current...

  3. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect (OSTI)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  4. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  5. Environmental monitoring plan for the Niagara Falls Storage Site and the Interim Waste Containment Facility

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    As part of the US Department of Energy's (DOE) Surplus Facility Management Program (SFMP), the Niagara Falls Storage Site (NFSS) is undergoing remedial action. Vicinity properties adjacent to and near the site are being cleaned up as part of DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). These programs are a DOE effort to clean up low-level radioactive waste resulting from the early days of the nation's atomic energy program. Radioactively contaminated waste from these remedial action activities are being stored at the NFSS in an interim waste containment facility (IWCF). When the remedial actions and IWCF are completed in 1986, activities at the site will be limited to waste management. The monitoring program was prepared in accordance with DOE Order 5484.1 and is designed to determine the contribution of radioactivity from the site to the environs and to demonstrate compliance with applicable criteria. Major elements of this program will also supplement other monitoring requirements including the performance monitoring system for the IWCF and the closure/post-closure plan. Emphasis will be directed toward the sampling and analysis of groundwater, surface water, air and sediment for parameters which are known to be present in the material stored at the site. The monitoring program will employ a phased approach whereby the first 5 years of data will be evaluated, and the program will be reviewed and modified as necessary. 17 refs., 10 figs., 3 tabs.

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  7. Monticello Mill site Federal Facility Agreement, December 22...

    Office of Environmental Management (EM)

    Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 State Utah Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope...

  8. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead CivilStructural Sub Team Facility Safety Sub Team Engineering...

  9. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  10. DOE_site_facility_mgt_contracts_Internet_Posting_3-21-11.pdf...

    Broader source: Energy.gov (indexed) [DOE]

    .pdf More Documents & Publications DOEMajorSiteFacilityContracts2-2011.pdf DOEsitefacilitymgtcontractsInternetPosting3-21-11(1)...

  11. Gasbuggy Site Assessment and Risk Evaluation

    SciTech Connect (OSTI)

    2011-03-01

    The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

  12. Portsmouth Proposed Plan for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project

    Broader source: Energy.gov [DOE]

    DOE has evaluated alternatives for demolishing the buildings at the Portsmouth Site. Two remedial alternatives were developed for consideration. This Proposed Plan describes the required no-action alternative (Alternative 1) and a D&D alternative (Alternative 2). The preferred alternative is Alternative 2, controlled demolition of the process buildings and complex facilities.

  13. Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1

    E-Print Network [OSTI]

    Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity) to assess change in a setting's visual quality as the result of construction of a nuclear facility, or any

  14. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  15. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  16. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect (OSTI)

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  17. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  18. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.

  19. Environmental Innovation Center Solar Site Evaluation: San José...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Jose, California. This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City. The DOE Tiger Team,...

  20. Former Workers Medical Facilities with Experience Evaluating...

    Energy Savers [EERE]

    Beryllium Disease (CBD). Because the medical community at large is not experienced in the evaluation and treatment of individuals with CBD, this list is offered to individuals in...

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  2. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  3. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect (OSTI)

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

  4. Occupational radiation dose assessment for a non site specific spent fuel storage facility

    SciTech Connect (OSTI)

    Hadley, J. [Duke Engineering and Services, Inc., Charlotte, NC (United States); Eble, R.G. Jr. [Duke Engineering and Services, Inc., Vienna, VA (United States)

    1997-12-01

    To expedite the licensing process of the non site specific Centralized Interim Storage Facility (CISF) the Department of Energy has completed a phase I CISF Topical Safety Analysis Report (TSAR). The TSAR will be used in licensing the phase I CISF if a site is designated. An occupational radiation does assessment of the facility operations is performed as part of the phase I CISF design. The first phase of the CISF has the capability to receive, transfer, and store SNF in dual-purpose cask/canister systems (DPC`s). Currently there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant ISFSI and transport cask handling processes. The second step in the process is to recommend ALARA techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: Dose estimates from vendor SAR`s; ISFSI experience with similar systems; Traditional methods of operations; Expected CISF cask receipt rates; and feasible ALARA techniques. 5 refs., 1 tab.

  5. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  6. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  7. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  9. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Environmental Management (EM)

    of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did...

  10. Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah...

    Office of Environmental Management (EM)

    final design and closure of the facility. To view the full ETR reports, please visit this web site: http:www.em.doe.govPagesExternalTechReviews.aspx July 2009 The purpose of an...

  11. EIS-0385: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Broader source: Energy.gov [DOE]

    DOE announced the cancellation of a supplemental environmental impact statement for certain facilities associated with the 2007 selection of Richton, Mississippi, as the location of a new storage site for expanding the Strategic Petroleum Reserve.

  12. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  13. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  14. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect (OSTI)

    Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  15. EIS-0082-S1: Defense Waste Processing Facility, Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this Supplemental Environmental Impact Statement to assess the potential environmental impacts of completing construction and operating the Defense Waste Processing Facility, a group of associated facilities and structures, to pretreat, immobilize, and store high-level radioactive waste at the Savannah River Site.

  16. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  17. AUTOMATED LANDING SITE EVALUATION FOR SEMI-AUTONOMOUS

    E-Print Network [OSTI]

    Kochersberger, Kevin

    AUTOMATED LANDING SITE EVALUATION FOR SEMI-AUTONOMOUS UNMANNED AERIAL VEHICLES Dylan Klomparens for a vertical-takeoff-and- landing (VTOL) semi-autonomous unmanned aerial vehicle (UAV) from point cloud data Evaluation © 2008, Dylan Klomparens #12;AUTOMATED LANDING SITE EVALUATION FOR SEMI-AUTONOMOUS UNMANNED AERIAL

  18. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  19. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    SciTech Connect (OSTI)

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  20. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    SciTech Connect (OSTI)

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  1. Site Selection for Concrete Batch Plant to Support Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2001-06-15

    WSRC conducted a site selection study to identify, assess, and rank candidate sites for an onsite concrete batch plant at the Savannah River Site in the vicinity of F-Area.

  2. Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure

    SciTech Connect (OSTI)

    Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

    2014-02-21

    Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

  3. RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites

    Office of Energy Efficiency and Renewable Energy (EERE)

    The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

  4. EIS-0385-S1: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Broader source: Energy.gov [DOE]

    Since selecting the Richton site, DOE has engaged in further consultations with Federal and Mississippi state agencies and is now considering different locations from those addressed in DOE/EIS–0385 for certain facilities associated with the Richton SPR expansion site.

  5. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    SciTech Connect (OSTI)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  6. Independent Oversight Review, Savannah River Site Tritium Facilities -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservation StandardsEnergy In2008 |of2013 |ofFacility -

  7. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  8. Independent Oversight Review, Savannah River Site Tritium Facilities - June

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGNEmergency2013 |2013 |ofFacility - August2012 |

  9. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  10. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  11. Hydrologic evaluation methodology for estimating water movement through the unsaturated zone at commercial low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Meyer, P.D.; Rockhold, M.L.; Nichols, W.E.; Gee, G.W. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report identifies key technical issues related to hydrologic assessment of water flow in the unsaturated zone at low-level radioactive waste (LLW) disposal facilities. In addition, a methodology for incorporating these issues in the performance assessment of proposed LLW disposal facilities is identified and evaluated. The issues discussed fall into four areas: estimating the water balance at a site (i.e., infiltration, runoff, water storage, evapotranspiration, and recharge); analyzing the hydrologic performance of engineered components of a facility; evaluating the application of models to the prediction of facility performance; and estimating the uncertainty in predicted facility performance. To illustrate the application of the methodology, two examples are presented. The first example is of a below ground vault located in a humid environment. The second example looks at a shallow land burial facility located in an arid environment. The examples utilize actual site-specific data and realistic facility designs. The two examples illustrate the issues unique to humid and arid sites as well as the issues common to all LLW sites. Strategies for addressing the analytical difficulties arising in any complex hydrologic evaluation of the unsaturated zone are demonstrated.

  12. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  13. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect (OSTI)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  14. Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites |andofMassachusetts --As the state

  15. Oregon Energy Facility Siting Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid DataInformation Land Conservation andSiting Council

  16. DOE NNSA Site Facility Management Contracts - MASTER.xlsx

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartmentAss Fans isDepartment ofSite

  17. Evaluating a Site's Solar Potential May, 2003 When evaluating a site's solar potential, there are several things to consider.

    E-Print Network [OSTI]

    Oregon, University of

    1 Evaluating a Site's Solar Potential May, 2003 When evaluating a site's solar potential the potential locations for the solar electric system have been identified, it is important to optimize to the street. 3. Next, stand in the middle of the potential location for the array. a. Use a Solar Path Finder

  18. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    SciTech Connect (OSTI)

    West, K.A.

    1988-11-01

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  19. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  20. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect (OSTI)

    Sexton, L.; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  1. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  2. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  3. Engineering Facilities Having the facilities to develop and test spacecraft on-site is a

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    concerning the level of allowable contamination for space-bound products. LASP's four on-site cleanrooms. Cleanroom standards are federally and internationally regulated and designated by class, which for Standardization (ISO) Class-5 cleanroom has at most 100,000 particles bigger than a half micron per cubic meter

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  6. EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

  7. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  9. Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica

    E-Print Network [OSTI]

    Vogel, Richard M.

    Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha- ated with their mismanagement and deterioration. Historically, fecal sludge management has been-9496 2008 134:1 55 CE Database subject headings: Sludge; System analysis; Waste stabilization ponds

  10. CRAD, NNSA- Evaluation Site Office Line Oversight Programs

    Broader source: Energy.gov [DOE]

    CRAD for Evaluation Site Office Line Oversight Programs. Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  11. Resource Conservation and Recovery Act industrial site environmental restoration, site characterization plan: Area 6 Decontamination Pond Facility. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility at the Nevada Test Site which will be conducted for the US Department of Energy, Nevada Operations Office, Environmental Restoration Division. The objectives of the planned activities are to: obtain sufficient, sample analytical data from which further assessment, remediation, and/or closure strategies may be developed for the site; obtain sufficient, sample analytical data for management of investigation-derived waste. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and around the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site characterization and waste management purposes.

  12. Liquefaction Triggering Evaluations at DOE Sites – An Update

    Broader source: Energy.gov [DOE]

    Liquefaction Triggering Evaluations at DOE Sites – An Update 2014 Natural Phenomena Hazards Meeting October 21-22, 2014 Germantown, Maryland Michael R. Lewis, Bechtel Corporation Michael D. Boone, Bechtel Corporation Rucker J. Williams, Savannah River Nuclear Solutions, LLC Brent Gutierrez, U.S. Department of Energy, Savannah River Site

  13. Washington Enegy Facility Site Evaluation Council | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)Vossloh Kiepe JumpWarana Group ofDC Home

  14. Southwestern Power Administration - Evaluate our site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top ScientificTechnologies |DOE RateBusiness USA Evaluate

  15. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  16. Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.

    1985-01-01

    The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

  17. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  19. Hanford site near-facility environmental monitoring annual report, calendar year 1996

    SciTech Connect (OSTI)

    Perkins, C.J.

    1997-08-05

    This document summarizes the results of the near-facility environmental monitoring results for 1996 in the 100, 200/600, and 300/400 areas of the Hanford Site in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. The monitoring implements applicable portions of DOE Orders 5400.1 (DOE 1988a), 5400.5 (DOE 1990), and 5820.2A (DOE 1988b); Washington Administrative Code (WAC) 246-247; and Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H (EPA 1989). In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels were slightly elevated when compared to offsite locations, the differences are less than in previous years.

  20. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  1. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Energy Savers [EERE]

    RIFS Report for the Site-Wide Waste Disposition Evaluation Project Portsmouth RIFS Report for the Site-Wide Waste Disposition Evaluation Project This Remedial Investigation and...

  2. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  3. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  5. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  6. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

  7. Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect (OSTI)

    Stephenson, D.K.; Sassaman, K.E.

    1993-11-01

    The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

  8. Recent progress in siting low-level waste disposal facilities in the Southwestern Compact and the Central Interstate Compact

    SciTech Connect (OSTI)

    DeOld, J.H.; Shaffner, J.A.

    1995-11-01

    US Ecology is the private contractor selected to develop and operate low-level waste disposal facilities in the Southwestern and the Central Interstate Compacts. These initiatives have been proceeding for almost a decade in somewhat different regulatory and political climates. This paper chronicles recent events in both projects. In both cases there is reason for continued optimism that low-level waste facilities to serve the needs of waste generators in these two compacts will soon be a reality. When the California Department of Health Services issued a license for the proposed Ward Valley LLRW disposal facility on September 16, 1993, it represented a significant step in implementation of a new generation of regional LLRW disposal facilities. While limited scope land transfer hearings were on the horizon, project beneficiaries were confident that the disposal site would be operational by 1995. Since then, however, political initiatives championed by Senator Barbara Boxer (D-CA) have clouded the federal land transfer process and left the commencement date of operations indeterminant. Since 1993, the biomedical community, waste generators most affected by delays, have been petitioning the current administration to emphasize the need for a timely solution. These efforts are aimed at Clinton administration officials responsible for current delays, who apparently have not recognized the importance of the Ward Valley facility to California`s economy, nor the national ramifications of their delaying actions. The current status of challenges to the Ward Valley license and California Environmental Quality Act (CEQA) documentation is also provided. The presentation also discusses the recently completed National Academy of Science evaluation of reports critical of the Ward Valley development process.

  9. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, “Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input,” focuses on the issue of showing compliance with given...

  10. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  11. Resource Conservation and Recovery Act Industrial Site Environmental Restoration Site Characterization Plan, Area 6 Decontamination Pond Facility, Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-08-12

    This plan presents the strategy for the characterization of the Area 6 Decontamination Pond Facility (DPF) at the Nevada Test Site (NTS) which will be conducted for the U.S. Department of Energy, Nevada Operations OffIce (DOE/NV), Environmental Restoration Division (ERD). The objectives of the planned activities are to: o Obtain sufficient, ample analytical data from which further assessment, remediation, and/or closure strategies maybe developed for the site. o Obtain sufficient, sample analytical data for management of investigation-derived waste. All references to regulations contained in this plan are to the versions of the regulations that are current at the time of publication of this plan. The scope of the characterization may include surface radiation survey(s), surface soil sampling, subsurface soil boring (i.e., drilling), and sampling of soil in and Mound the pond; in situ sampling of the soil within subsurface soil borings; and sample analysis for both site . . characterization and waste management purposes.

  12. Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

  13. Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2009-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and radium-226. A corrective action was implemented to remove approximately 50 cubic yards of PCB-contaminated soil, approximately 1 cubic foot of radium-226 contaminated soil (and scabbled asphalt), and a high-efficiency particulate air filter that was determined to meet the criteria of a potential source material (PSM). Electrical and lighting components (i.e., PCB-containing ballasts and capacitors) and other materials (e.g., mercury-containing thermostats and switches, lead plugs and bricks) assumed to be PSM were also removed from Building 2201, as practical, without the need for sampling. Because the COC contamination and PSMs have been removed, clean closure of CAS 26-41-01 is recommended, and no use restrictions are required to be placed on this CAU. No further action is necessary because no other contaminants of potential concern were found above preliminary action levels. The physical end state for Building 2201 is expected to be eventual demolition to slab. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Clean closure is the recommended corrective action for CAS 26-41-01 in CAU 117. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 117. • Corrective Action Unit 117 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  14. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  15. Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-24

    In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  18. FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY

    SciTech Connect (OSTI)

    Troy Unruh; Joy Rempe; David Nigg; George Imel; Jason Harris; Eric Bonebrake

    2010-11-01

    The Advanced Test Reactor (ATR) and the ATR Critical (ATRC) facilities lack real-time methods for detecting thermal neutron flux and fission reaction rates for irradiation capsules. Direct measurements of the actual power deposited into a test are now possible without resorting to complicated correction factors. In addition, it is possible to directly measure minor actinide fission reaction rates and to provide time-dependent monitoring of the fission reaction rate or fast/thermal flux during transient testing. A joint Idaho State University /Idaho National Laboratory ATR National Scientific User Facility (ATR NSUF) project was recently initiated to evaluate new real-time state-of-the-art in-pile flux detection sensors. Initially, the project is comparing the accuracy, response time, and long duration performance of French Atomic Energy Commission (CEA)-developed miniature fission chambers, specialized self-powered neutron detectors (SPNDs) by the Argentinean National Energy Commission (CNEA), specially developed commercial SPNDs, and back-to-back fission (BTB) chambers developed by Argonne National Laboratory (ANL). As discussed in this paper, specialized fixturing and software was developed by INL to facilitate these joint ISU/INL evaluations. Calculations were performed by ISU to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. Ultimately, project results will be used to select the detector that can provide the best online regional ATRC power measurement. It is anticipated that project results may offer the potential to increase the ATRC’s current power limit and its ability to perform low-level irradiation experiments. In addition, results from this effort will provide insights about the viability of using these detectors in the ATR. Hence, this effort complements current activities to improve ATR software tools, computational protocols and in-core instrumentation under the ATR Modeling, Simulation and V&V Upgrade initiative, as well as the work to replace nuclear instrumentation under the ATR Life Extension Project (LEP) and provide support to the ATR NSUF.

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  20. EA-1605: Biomass Cogeneration and Heating Facilities at the Savannah River Site; Aiken, Allendale and Barnwell Counties, South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS).

  1. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 1999

    SciTech Connect (OSTI)

    DL Edwards; KD Shields; MJ Sula; MY Ballinger

    1999-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP--US Code of Federal Regulations, Title 40 Part 61, Subpart H). In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the US Department of Energy and operated by Pacific Northwest National Laboratory (Pacific Northwest) on the Hanford Site. Two of the facilities evaluated, 325 Building Radiochemical Processing Laboratory, and 331 Building Life Sciences Laboratory met state and federal criteria for continuous sampling of airborne radionuclide emissions. One other building, the 3720 Environmental Sciences Laboratory, was recognized as being in transition with the potential for meeting the continuous sampling criteria.

  2. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    E-Print Network [OSTI]

    2009-01-01

    the Nevada Test Site (NTS). Prior to the Rocky Flats Plant (Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada TestROCKY FLATS CAAS SYSTEM RECALIBRATED, RETESTED, AND ANALYZED TO INSTALL IN THE CRITICALITY EXPERIMENTS FACILITY AT THE NEVADA TEST

  3. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  4. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.

  5. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  6. Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility

    SciTech Connect (OSTI)

    Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

    2005-11-01

    The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for water quality parameters (chloride, iron, manganese, phenols, sodium, and sulfate). This plan will remain in effect until superseded by another plan or until B Pond is incorporated into the Hanford Facility RCRA Permit.

  7. File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1ORDExplorationInjectionPermit (1).pdfInformation HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Jump

  8. File:07MTAEnergyFacilitySiting (6).pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1ORDExplorationInjectionPermit (1).pdfInformationInformation7MTAEnergyFacilitySiting (6).pdf Jump to:

  9. DOE site facility mgt contracts Internet Posting 5-2-11.xlsx | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zeroof Energy DOE site facility mgt

  10. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

  11. Facility Closure Report for Tunnel U16a, Area 16, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-01

    U16a is not listed in the Federal Facility Agreement and Consent Order. The closure of U16a was sponsored by the Defense Threat Reduction Agency (DTRA) and performed with the cooperation of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the Nevada Division of Environmental Protection. This report documents closure of this site as identified in the DTRA Fiscal Year 2008 Statement of Work, Task 6.3. Closure activities included: · Removing and disposing of a shack and its contents · Disposing of debris from within the shack and in the vicinity of the tunnel entrance · Verifying that the tunnel is empty · Welding screened covers over tunnel vent holes to limit access and allow ventilation · Constructing a full-tunnel cross-section fibercrete bulkhead to prevent access to the tunnel Field activities were conducted from July to August 2008.

  12. The design of a Phase I non site-specific Centralized Interim Storage Facility

    SciTech Connect (OSTI)

    Stringer, J.; Kane, D.

    1997-10-28

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) recently completed a Topical Safety Analysis Report (TSAR) for a Phase 1 non site specific Centralized Interim Storage Facility (CISF). The TSAR will be used in licensing the CISF when and if a site is designated. The combined Phase 1 and Phase 2 CISF will provide federal storage capability for 40,000 metric tons of uranium (MTU) Spent Nuclear Fuel (SNF) under the oversight of the DOE. The Phase 1 TSAR was submitted to the NRC on May 1, 1997 and is currently under review having been docketed on June 10, 1997. This paper generally describes the Phase 1 CISF design and its operations as presented in the CISF TSAR.

  13. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

    2001-09-28

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

  14. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

    2003-12-05

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

  15. Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities

    SciTech Connect (OSTI)

    Bright, J.D.

    1992-09-28

    This Site Maintenance Plan has been developed for Pacific Northwest Laboratory's (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  16. Pacific Northwest Laboratory FY 1993 Site Maintenance Plan for maintenance of DOE nonnuclear facilities

    SciTech Connect (OSTI)

    Bright, J.D.

    1992-09-28

    This Site Maintenance Plan has been developed for Pacific Northwest Laboratory`s (PNL) Nonnuclear Facilities. It is based on requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter I, Change No. 4. The objective of this maintenance plan is to provide baseline information for compliance to the DOE Order 4330.4A, to identify needed improvements, and to document the planned maintenance budget for Fiscal Year (FY) 1993 and to estimate maintenance budgets for FY 1994 and FY 1995 for all PNL facilities. Using the results of the self-assessment, PNL has selected 12 of the 36 elements of the Maintenance Program defined by DOE Order 4330.4A, Chapter I, for improvement. The elements selected for improvement are: Facility Condition Inspections; Work Request (Order) System; Formal Job Planning and Estimating; Work Performance (Time) Standards; Priority System; Maintenance Procedures and Other Work-Related Documents; Scheduling System; Post Maintenance Testing; Backlog Work Control; Equipment Repair History and Vendor Information; Work Sampling; and Identification and Control. Based upon a graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  17. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment.

  18. Preclosure radiological safety analysis for the exploratory shaft facilities; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Ma, C.W.; Miller, D.D.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

    1992-06-01

    This study assesses which structures, systems, and components of the exploratory shaft facility (ESF) are important to safety when the ESF is converted to become part of the operating waste repository. The assessment follows the methodology required by DOE Procedure AP-6.10Q. Failures of the converted ESF during the preclosure period have been evaluated, along with other underground accidents, to determine the potential offsite radiation doses and associated probabilities. The assessment indicates that failures of the ESF will not result in radiation doses greater than 0.5 rem at the nearest unrestricted area boundary. Furthermore, credible accidents in other underground facilities will not result in radiation doses larger than 0.5 rem, even if any structure, system, or component of the converted ESF fails at the same time. Therefore, no structure, system, or component of the converted ESF is important to safety.

  19. X-ray Detector System Helps Evaluate Facility Contamination ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is pinpointing the exact location of contamination in facilities that DOE is dismantling," says Joe Gray, co-developer of the K-edge heavy metal detector. "But quickly...

  20. EXPERIMENTAL TEST FACILITY FOR EVALUATION OF CONTROLS AND CONTROL STRATEGIES

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01

    a solar heat input simulator, a 3000 gallon storage tank, aSupply Storage tank heater AUX gure 5. Solar trols FacilitySOLAR CONTROLS COLLECTOR LOOP Pseudo collector boiler Direct heating Supply PV1 Storage

  1. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  2. Hanford Site Annual Report Radiological Dose Calculation Upgrade Evaluation

    SciTech Connect (OSTI)

    Snyder, Sandra F.

    2010-02-28

    Operations at the Hanford Site, Richland, Washington, result in the release of radioactive materials to offsite residents. Site authorities are required to estimate the dose to the maximally exposed offsite resident. Due to the very low levels of exposure at the residence, computer models, rather than environmental samples, are used to estimate exposure, intake, and dose. A DOS-based model has been used in the past (GENII version 1.485). GENII v1.485 has been updated to a Windows®-based software (GENII version 2.08). Use of the updated software will facilitate future dose evaluations, but must be demonstrated to provide results comparable to those of GENII v1.485. This report describes the GENII v1.485 and GENII v2.08 dose exposure, intake, and dose estimates for the maximally exposed offsite resident reported for calendar year 2008. The GENII v2.08 results reflect updates to implemented algorithms. No two environmental models produce the same results, as was again demonstrated in this report. The aggregated dose results from 2008 Hanford Site airborne and surface water exposure scenarios provide comparable dose results. Therefore, the GENII v2.08 software is recommended for future offsite resident dose evaluations.

  3. Skyshine And Groundshine Phenomena And Related Radiological quantities evaluated For The Environment Of A High Current Spallation Facility

    E-Print Network [OSTI]

    Zazula, J M; Cloth, P

    1987-01-01

    Skyshine And Groundshine Phenomena And Related Radiological quantities evaluated For The Environment Of A High Current Spallation Facility

  4. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  5. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  6. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  7. Impact Evaluation Plan for the Site-Specific Savings Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE- SPECIFIC SAVINGS PORTFOLIO Prepared for

  8. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  9. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  10. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  11. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  12. From Legislation to Implementation: An Evaluation of the Instructional Facilities Allotment Policy 

    E-Print Network [OSTI]

    Core, Brandon Heath

    2013-04-24

    The purpose of this study was to advance our understanding of the original legislative intents of the Instructional Facilities Allotment (IFA) and to evaluate the IFA policy in achieving its goals. The study seeks to identify the original...

  13. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    SciTech Connect (OSTI)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  14. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  15. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  16. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  17. The development and evaluation of a neutron window filter facility utilizing the TAMU NSC TRIGA reactor 

    E-Print Network [OSTI]

    Harding, Patricia Colleen

    1982-01-01

    THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1982 Major Subject: Nuclear Engineering THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Approved as to style...

  18. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    SciTech Connect (OSTI)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D; Rowe, Nathan C; Younkin, James R

    2011-01-01

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment also provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.

  19. Early Site Permit Demonstration Program: Regulatory criteria evaluation report

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    The primary objective of the ESPDP is to demonstrate successfully the use of 10CFR52 to obtain ESPs for one or more US sites for one (or more) ALWR nuclear power plants. It is anticipated that preparation of the ESP application and interaction with NRC during the application review process will result not only in an ESP for the applicant(s) but also in the development of criteria and definition of processes, setting the precedent that facilitates ESPs for subsequent ESP applications. Because siting regulatory processes and acceptance criteria are contained in over 100 separate documents, comprehensive licensing and technical reviews were performed to establish whether the requirements and documentation are self-consistent, whether the acceptance criteria are sufficiently well-defined and clear, and whether the licensing process leading to the issuance of an ESP is unambiguously specified. The results of the technical and licensing evaluations are presented in this report. The purpose, background, and organization of the ESPDP is delineated in Section 1. Section 11 contains flowcharts defining siting application requirements, environmental report requirements, and emergency planning/preparedness requirements for ALWRS. The licensing and technical review results are presented in Section III.

  20. Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

  1. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  2. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    SciTech Connect (OSTI)

    Agogino, Karen; Sanchez, Rebecca

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  3. Umatilla Satellite and Release Sites Project : Final Siting Report.

    SciTech Connect (OSTI)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  4. Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FY 2007 FeeFederalFirst2 DOEMeeting Facility

  5. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  6. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect (OSTI)

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  7. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect (OSTI)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  8. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

  9. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    SciTech Connect (OSTI)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  10. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect (OSTI)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  11. Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California

    SciTech Connect (OSTI)

    1996-02-01

    This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through the implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.

  12. Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

  13. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  14. GIS-based wind farm site selection: Evaluating the case for New York State

    E-Print Network [OSTI]

    Bergman, Keren

    GIS-based wind farm site selection: Evaluating the case for New York State E-mail: rv2216@columbia Conference, Saratoga Springs, NY, November 15, 2011 #12;Where to build a 50 MW wind farm? 1. What sites.clca.columbia.edu GIS-based wind farm site selection: evaluating the case for New York State ­ NEARC GIS conference 2011

  15. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  16. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  17. Surplus Facilities Management Program. Post-remedial-action survey report for SNAP-8 Experimental Reactor Facility, Building 010 site, Santa Susana Field Laboratories, Rockwell International, Ventura County, California

    SciTech Connect (OSTI)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Mayes, C.B.; Justus, A.L.; Flynn, K.F.

    1984-04-01

    Based on the results of the radiological assessment, the Argonne National Laboratory Radiological Survey Group arrived at the following conclusions: (1) soil contaminated with the radionuclides /sup 60/Co and /sup 152/Eu of undetermined origin was detected in the southwest quadrant of the Building 010 site. /sup 60/Co was also detected in one environmental sample taken from an area northwest of the site and in a borehole sample taken from the area that previously held the radioactive gas hold-up tanks. Uranium was detected in soil from a hole in the center of the building site and in a second hole southwest of the building site. In all cases, the radionuclide levels encountered in the soil were well below the criteria set by DOE for this site; and (2) the direct instrument readings at the surface of the site were probably the result of natural radiation (terrestrial and celestial), as well as shine from the material being stored at the nearby RMDF facility. There was no evidence that the contaminated soil under the asphalt pad contributed detectable levels to the total background readings.

  18. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  19. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  20. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01

    Dilemma: California's 20 Year Power Plant Siting Plan, (siting process for power plants in California" Moreover, thedistribution of power plants in California was not likely to

  1. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  2. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01

    FACILITY LOCATION THEORY Electrical utilities, even ifTheory Public Versus Private Ownership of Electricallocation theory pertains to the electrical utility problem

  3. Development and evaluation of fully automated demand response in large facilities

    SciTech Connect (OSTI)

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-03-30

    This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing, characterization, and evaluation relating to Auto-DR. This evaluation also included the related decisionmaking perspectives of the facility owners and managers. Another goal of this project was to develop and test a real-time signal for automated demand response that provided a common communication infrastructure for diverse facilities. The six facilities recruited for this project were selected from the facilities that received CEC funds for new DR technology during California's 2000-2001 electricity crises (AB970 and SB-5X).

  4. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  5. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect (OSTI)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  6. Nerva fuel nondestructive evaluation and characterization equipment and facilities

    SciTech Connect (OSTI)

    Caputo, A.J. (Martin Marietta Energy Systems, Inc., Oak Ridge, Y-12 Plant Oak Ridge, TN 37831 (United States))

    1993-01-20

    Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y[minus]12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes.

  7. Evaluation of beryllium exposure assessment and control programs at AWE, Cardiff Facility, Rocky Flats Plant, Oak Ridge Y-12 Plant and Lawrence Livermore National Laboratory. Phase 1

    SciTech Connect (OSTI)

    Johnson, J.S.; Foote, K.L.; Slawski, J.W.; Cogbill, G.

    1995-04-28

    Site visits were made to DOE beryllium handling facilities at the Rocky Flats Plant; Oak Ridge Y-12 Plant, LLNL; as well as to the AWE Cardiff Facility. Available historical data from each facility describing its beryllium control program were obtained and summarized in this report. The AWE Cardiff Facility computerized Be personal and area air-sampling database was obtained and a preliminary evaluation was conducted. Further validation and documentation of this database will be very useful in estimating worker Be. exposure as well as in identifying the source potential for a variety of Be fabrication activities. Although all of the Be control programs recognized the toxicity of Be and its compounds, their established control procedures differed significantly. The Cardiff Facility, which was designed for only Be work, implemented a very strict Be control program that has essentially remained unchanged, even to today. LLNL and the Oak Ridge Y-12 Plant also implemented a strict Be control program, but personal sampling was not used until the mid 1980s to evaluate worker exposure. The Rocky Flats plant implemented significantly less controls on beryllium processing than the three previous facilities. In addition, records were less available, management and industrial hygiene staff turned over regularly, and less control was evident from a management perspective.

  8. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a “Non-Impacted Class” which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into “survey units” and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three “Class 1,” four “Class 2,” and one “Class 3” survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the building’s interior, Building 2201 may be considered radiologically “clean,” or free of contamination.

  9. Thesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ;Motivation · The residential sector consumes over 20% of the total energy use in the U.S. · Net zero energy buildings reduce energy consumption and reduce dependence on non- renewable energy sources. · As interestThesis: Modeling and Evaluation of the NIST Net Zero Energy Residential Test Facility Liz Balke M

  10. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    SciTech Connect (OSTI)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

  11. Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556

    SciTech Connect (OSTI)

    Lohmann, Peter; Nasarek, Ralph; Aign, Joerg

    2012-07-01

    The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

  12. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  13. Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility

    SciTech Connect (OSTI)

    Pin, F.G.; Oblow, E.M.

    1984-01-01

    The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

  14. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  15. Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

  16. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  17. Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques

    SciTech Connect (OSTI)

    Deng, Yangyang; Parajuli, Prem B.

    2011-08-10

    Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

  18. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  19. Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

    2013-04-30

    The Blue Ribbon Commission on America’s Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: • characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites • an evaluation of the onsite transportation conditions at the shutdown sites • an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites • an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

  20. Evaluating off-site disposal of low-level waste at LANL-9498

    SciTech Connect (OSTI)

    Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

    2009-01-01

    Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

  1. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Drollinger, Harold; Holz, Barbara A; Bullard, Thomas F; Goldenberg, Nancy G; Ashbaugh, Laurence J; Griffin, Wayne R

    2014-01-09

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the summer of 2011. It was discovered that major modifications to the terrain have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to the tests and experiments, and construction of drill pads and retention ponds. Six large trenches for exploring across the Boundary geologic fault are also present. The U15 Complex, designated historic district 143 and site 26NY15177, is eligible to the National Register of Historic Places under Criteria A, C, and D of 36 CFR Part 60.4. As a historic district and archaeological site eligible to the National Register of Historic Places, the Desert Research Institute recommends that the area defined for the U15 Complex, historic district 143 and site 26NY15117, be left in place in its current condition. The U15 Complex should also be included in the NNSS cultural resources monitoring program and monitored for disturbances or alterations.

  2. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  3. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    SciTech Connect (OSTI)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  4. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect (OSTI)

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

  5. Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous...

    Office of Environmental Management (EM)

    in the vadose zone). These alternatives to conventional ground water monitoring and assessment could persuade the regulatory agency to allow siting in a brownfield area. USACOE...

  6. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  7. Criteria for the development and use of the methodology for environmentally-acceptable fossil energy site evaluation and selection. Volume 2. Final report

    SciTech Connect (OSTI)

    Eckstein, L.; Northrop, G.; Scott, R.

    1980-02-01

    This report serves as a companion document to the report, Volume 1: Environmentally-Acceptable Fossil Energy Site Evaluation and Selection: Methodology and Users Guide, in which a methodology was developed which allows the siting of fossil fuel conversion facilities in areas with the least environmental impact. The methodology, known as SELECS (Site Evaluation for Energy Conversion Systems) does not replace a site specific environmental assessment, or an environmental impact statement (EIS), but does enhance the value of an EIS by thinning down the number of options to a manageable level, by doing this in an objective, open and selective manner, and by providing preliminary assessment and procedures which can be utilized during the research and writing of the actual impact statement.

  8. Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year

    SciTech Connect (OSTI)

    Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

    1985-06-01

    This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

  9. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

  11. Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309

    SciTech Connect (OSTI)

    Phillips, S.J.; Phillips, M.; Etheridge, D. [Applied Geotechnical Engineering and Construction, Incorporated, Richland, Washington (United States); Chojnacki, D.W.; Herzog, C.B.; Matosich, B.J.; Steffen, J.M.; Sterling, R.T. [CH2M HILL Plateau Remediation Company, Richland, Washington (United States); Flaucher, R.H.; Lloyd, E.R. [Fluor Federal Services, Incorporated, Richland, Washington (United States)

    2012-07-01

    Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks, (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)

  12. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  13. IN-CORE FLUX SENSOR EVALUATIONS AT THE ATR CRITICAL FACILITY.

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois VIllard

    2014-12-01

    As part of an Idaho State University (ISU)–led Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) collaborative project that includes Idaho National Laboratory (INL) and the French Alternative Energies and Atomic Energy Commission (CEA), flux detector evaluations were completed to compare their accuracy, response time, and longduration performance. Special fixturing, developed by INL, allows real-time flux detectors to be inserted into various Advanced Test Reactor Critical Facility (ATRC) core positions to perform lobe power measurements, axial flux profile measurements, and detector crosscalibrations. Detectors initially evaluated in this program included miniature fission chambers, specialized self-powered neutron detectors (SPNDs), and specially developed commercial SPNDs. Results from this program provide important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and yield new flux data required for benchmarking models in the ATR Life Extension Program (LEP) Modeling Update Project.

  14. Statistical Evaluation of Effluent Monitoring Data for the 200 Area Treated Effluent Disposal Facility

    SciTech Connect (OSTI)

    Chou, Charissa J; Johnson, Vernon G

    2000-03-08

    This report updates the original effluent variability study for the 200 Area Treated Effluent Disposal Facility (TEDF) and provides supporting justification for modifying the effluent monitoring portion of the discharge permit. Four years of monitoring data were evaluated and used to statistically justify changes in permit effluent monitoring conditions. As a result, the TEDF effluent composition and variability of the effluent waste stream are now well defined.

  15. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  16. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  17. Page 1 D. Dilling, T. Brown FIRE FACILITIES AND SITE REQUIREMENTS

    E-Print Network [OSTI]

    with regulations for nuclear facilities. They must also include systems to manage tritium and tritiated water, activated dust, and radioactive waste material. Maintenance activities on FIRE will require the use service connections will be required to feed power to the copper magnet system and deliver plasma

  18. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  19. Federal Facilities Liaison Weighs in on EM Achievements, Challenges at Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – For more than two decades, Shelly Wilson has been working with the Savannah River Site (SRS) as an employee of South Carolina Department of Health and Environmental Control (SCDHEC)....

  20. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  1. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    SciTech Connect (OSTI)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-41-03. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for CAS 25-41-03. It is anticipated that the results of the field investigation and implementation of corrective actions will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The CAS will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 25-41-03. The following text summarizes the SAFER activities that will support the closure of CAU 114: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a contaminant of concern to environmental media. • If no PSMs are present at the CAS, establish no further action as the corrective action. • If a PSM is present at the CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed and disposed of as waste, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  3. Remote video radioactive systems evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.; Robinson, C.W.

    1991-12-31

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  4. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  5. Remote video radioactive process evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.

    1990-12-31

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  6. Remote video radioactive systems evaluation, Savannah River Site

    SciTech Connect (OSTI)

    Heckendorn, F.M.; Robinson, C.W.

    1991-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS.

  7. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  8. Siting of low-level radioactive waste disposal facilities in Texas 

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01

    receive from other states. Generators of low-level radioactive waste have resorted to the interim measure of storing their wastes. Ultimate disposal of this waste is the only real solution because generators faced with limited storage capacity... or limited access to storage facilities may be forced to curtail waste pro- ducing activities (Subcommittee on Nuclear Waste Disposal, Texas House of Representatives, 1980). Responsibility for safe disposal of low-level radioactive waste has been...

  9. DECOMMISSIONING OF THE 247-F FUEL MANUFACTURING FACILITY AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Santos, J; Stephen Chostner, S

    2007-05-22

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980s. The building layout is shown in Fig. 1. A photograph of the facility is shown in Fig. 2. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the cold war wound down, the need for naval fuel declined. Consequently, the facility was shut down and underwent initial deactivation. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation was completed in 1990. At that time, a non-destructive assay of the process area identified approximately 17 (+/- 100%) kg of uranium held up in equipment and piping.

  10. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  11. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect (OSTI)

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  12. OMEGA: A NEW COLD X-RAY SIMULATION FACILITY FOR THE EVALUATION OF OPTICAL COATINGS

    SciTech Connect (OSTI)

    Fisher, J H; Newlander, C D; Fournier, K B; Beutler, D E; Coverdale, C A; May, M J; Tobin, M; Davis, J F; Shiekh, D

    2007-04-27

    We report on recent progress for the development of a new cold X-ray optical test capability using the Omega Facility located at the Laboratory for Laser Energetics (LLE) at the University of Rochester. These tests were done on the 30 kJ OMEGA laser at the Laboratory for Laser Energetics (LLE) at the University of Rochester, Rochester, NY. We conducted a six-shot series called OMEGA II on 14 July 2006 in one eight-hour day (supported by the Defense Threat Reduction Agency). The initial testing was performed using simple protected gold optical coatings on fused silica substrates. PUFFTFT analyses were completed and the specimen's thermal lateral stress and transverse stress conditions were calculated and interpreted. No major anomalies were detected. Comparison of the pre- and posttest reflective measurements coupled with the TFCALC analyses proved invaluable in guiding the analyses and interpreting the observed damage. The Omega facility is a high quality facility for performing evaluation of optical coatings and coupons and provides experience for the development of future National Ignition Facility (NIF) testing.

  13. Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS -Portmouth SitePowerDepartment of Energy 3,

  14. Voluntary Protection Program On-site Evaluations | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryinEnableVisualization & ControlsforEnergy-On-site

  15. Hanford Site Evaluation of Electrical Equipment for Beryllium Procedure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚—34OctoberK West60 Revision 1 Hanford Site2-005

  16. Resource Evaluation and Site Selection for Microalgae Production in India

    SciTech Connect (OSTI)

    Milbrandt, A.; Jarvis, E.

    2010-09-01

    The study evaluates climate conditions, availability of CO2 and other nutrients, water resources, and land characteristics to identify areas in India suitable for algae production. The purpose is to provide an understanding of the resource potential in India for algae biofuels production and to assist policymakers, investors, and industry developers in their future strategic decisions.

  17. Monticello NPL Sites Federal Facilities Agreement Meeting Minutes & Action Items

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring, Missouri,MSEReportyGWSHP 1.83SiteS

  18. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  19. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  20. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    SciTech Connect (OSTI)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  1. Evaluation of Potential Locations for Siting Small Modular Reactors near

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSof 2005 atHouse Environmental1-01 EvaluationOE-2: 2015-1

  2. DOE-Evaluating A Potential Microhydro Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordiaConsumerLEDSEnergyDMS Company LtdEvaluating A

  3. Image analysis for facility siting: a comparison of low- and high-altitude image interpretability for land use/land cover mapping

    SciTech Connect (OSTI)

    Borella, H.M.; Estes, J.E.; Ezra, C.E.; Scepan, J.; Tinney, L.R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both are-weighted and by-class accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.

  4. Site characterization summary report for Waste Area Grouping 10 Wells at the Old Hydrofracture Facility, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the Department of Energy (DOE) by Martin Marietta Energy Systems (Energy Systems). As part of its DOE mission, ORNL has pioneered waste disposal technologies throughout the years of site operations since World War II. In the late 1950s, efforts were made to develop a permanent disposal alternative to the surface impoundments at ORNL at the request of the National Academy of Sciences. One such technology, the hydrofracture process, involved forming fractures in an underlying geologic host formation (a low-permeability shale) at depths of up to 1000 ft and subsequently injecting a grout slurry containing low-level liquid waste, cement, and other additives at an injection pressure of about 2000 psi. The objective of the effort was to develop a grout slurry that could be injected as a liquid but would solidify after injection, thereby immobilizing the radioisotopes contained in the low-level liquid waste. The scope of this site characterization was the access, sampling, logging, and evaluation of observation wells near the Old Hydrofracture Facility (OHF) in preparation for plugging, recompletion, or other final disposition of the wells.

  5. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  6. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  7. A brief history of the T Plant facility at the Hanford Site. Addendum 1

    SciTech Connect (OSTI)

    Gerber, M.S.

    1994-05-16

    T Plant (221-T) was the first and largest of the early chemical separations plants at the Hanford Engineer Works (HEW) (World War II name for the Hanford Site). Officially designated as a Cell Building by the Manhattan Engineer District (MED) of the Army Corps of Engineers (agency responsible for HEW), T Plant served as the headquarters of chemical processing operations at Hanford from its construction until the opening of the REDOX Plant in January 1952. Because it formed a crucial link in the first full-scale plutonium production operations in world history, it meets criteria established in the National Historic Preservation Act of 1966 as a National Historic Structure.

  8. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    SciTech Connect (OSTI)

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS).

  9. In-core flux sensor evaluations at the ATR critical facility

    SciTech Connect (OSTI)

    Troy Unruh; Benjamin Chase; Joy Rempe; David Nigg; George Imel; Jason Harris; Todd Sherman; Jean-Francois Villard

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by the Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.

  10. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  11. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    SciTech Connect (OSTI)

    Boing, L.E.

    1997-06-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed.

  12. Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report

    SciTech Connect (OSTI)

    1980-01-01

    A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

  13. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  14. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  15. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  16. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  17. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    SciTech Connect (OSTI)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  18. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy; Copinger, Donald A; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  19. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  20. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    SciTech Connect (OSTI)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these experiments were of particular importance because they provide extensive information which can be directly applied to the design of large LMFBR’s. It should be recognized that the data presented in the initial report were evaluated only to the extent necessary to ensure that adequate data were obtained. Later reports provided further interpretation and detailed comparisons with prediction techniques. The conclusion of the isothermal physics measurements was that the FFTF nuclear characteristics were essentially as designed and all safety requirements were satisfied. From a nuclear point of view, the FFTF was qualified to proceed into power operation mode. The FFTF was completed in 1978 and first achieved criticality on February 9, 1980. Upon completion of the isothermal physics and reactor characterization programs, the FFTF operated for ten years from April 1982 to April 1992. Reactor operations of the FFTF were terminated and the reactor facility was then defueled, deactivated, and placed into cold standby condition. Deactivation of the reactor was put on hold from 1996 to 2000 while the U.S. Department of Energy examined alternative uses for the FFTF but then announced the permanent deactivation of the FFTF in December 2001. Its core support basket was later drilled in May 2005, so as to remove all remaining sodium coolant. On April 17, 2006, the American Nuclear Society designated the FFTF as a “National Nuclear Historic Landmark”.

  1. Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    MacDonell, M M; Peterson, J M

    1989-05-01

    The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon-Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA`s National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impacts associated with the proposed action.

  2. BENCHMARK EVALUATION OF THE INITIAL ISOTHERMAL PHYSICS MEASUREMENTS AT THE FAST FLUX TEST FACILITY

    SciTech Connect (OSTI)

    John Darrell Bess

    2010-05-01

    The benchmark evaluation of the initial isothermal physics tests performed at the Fast Flux Test Facility, in support of Fuel Cycle Research and Development and Generation-IV activities at the Idaho National Laboratory, has been completed. The evaluation was performed using MCNP5 with ENDF/B-VII.0 nuclear data libraries and according to guidelines provided for inclusion in the International Reactor Physics Experiment Evaluation Project Handbook. Results provided include evaluation of the initial fully-loaded core critical, two neutron spectra measurements near the axial core center, 32 reactivity effects measurements (21 control rod worths, two control rod bank worths, six differential control rod worths, two shutdown margins, and one excess reactivity), isothermal temperature coefficient, and low-energy electron and gamma spectra measurements at the core center. All measurements were performed at 400 ºF. There was good agreement between the calculated and benchmark values for the fully-loaded core critical eigenvalue, reactivity effects measurements, and isothermal temperature coefficient. General agreement between benchmark experiment measurements and calculated spectra for neutrons and low-energy gammas at the core midplane exists, but calculations of the neutron spectra below the core and the low-energy gamma spectra at core midplane did not agree well. Homogenization of core components may have had a significant impact upon computational assessment of these effects. Future work includes development of a fully-heterogeneous model for comprehensive evaluation. The reactor physics measurement data can be used in nuclear data adjustment and validation of computational methods for advanced fuel cycle and nuclear reactor systems using Liquid Metal Fast Reactor technology.

  3. Geochemical Evaluation of Uranium Fate and Transport Guterl Specialty Steel Site, New York - 12077

    SciTech Connect (OSTI)

    Frederick, Bill; Tandon, Vikas

    2012-07-01

    Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Site soils are composed of anthropogenic fill and re-worked, glacially-derived native soil. This overburden is underlain by the weathered and fractured Lockport Dolostone bedrock. Shallow groundwater levels fluctuate seasonally and allow groundwater to contact U contaminated soil, which promotes transport. This condition is exemplified through coincident increases in specific conductivity and groundwater levels, which flush soluble constituents in the fill/soil to groundwater during recharge events. In addition, water-level fluctuations affect reduction-oxidation (redox) conditions at the site. The U in soils is subject to wetting and drying cycles that promote oxidation more than stable redox conditions (e.g., dry soil or fully saturated conditions). This oxidizing mechanism increases uranium solubility and mobility. Site groundwater also receives uranium via leaching from near-surface contaminated fill. The strong correlation between nitrate and uranium in groundwater indicates that uranium is mobile where oxidizing conditions occur. Analytical models of contaminant leaching determined that multiple pathways and transport mechanisms govern site risk. Uranium transport to groundwater involves three mechanisms: 1) direct contact of contaminated soil with groundwater, 2) the oxidation-state or chemical valence of uranium, and 3) the leaching of near-surface contamination to groundwater. These mechanisms require an integrated remedial solution that is sustainable and cost effective. (authors)

  4. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-09-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE`s predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  5. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-01-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE's predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  6. EERC pilot-scale CFBC evaluation facility Project CFB test results

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

  7. CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS

    E-Print Network [OSTI]

    CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS the magnitude of earthquake- induced shear stresses in a natural soil deposit. These seismically-induced shear resistance for this purpose. The seismic shear stress ratio (SSR) is calculated as described by

  8. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

  9. EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES

    E-Print Network [OSTI]

    Heinemann, Detlev

    EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface that an important part of the future expansion of wind energy utilisation at least in Europe will come from offshore

  10. Engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Hartmann, H.M.; Nimmagadda, M.R. ); Williams, M.J. )

    1991-05-01

    The US Department of Energy (DOE) is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area: the St. Louis Downtown Site (SLDS), the St. Louis Airport Site (SLAPS) and vicinity properties, and the Latty Avenue Properties, including the Hazelwood Interim Storage Site (HISS). The general location of these properties is shown in Figure 1; the properties are referred to collectively as the St. Louis Site. None of the properties are owned by DOE, but each property contains radioactive residues from federal uranium processing activities conducted at the SLDS during and after World War 2. The activities addressed in this environmental evaluation/cost analysis (EE/CA) report are being proposed as interim components of a comprehensive cleanup strategy for the St. Louis Site. As part of the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP), DOE is proposing to conduct limited decontamination in support of proprietor-initiated activities at the SLDS, commonly referred to as the Mallinckrodt Chemical Works. The primary goal of FUSRAP activity at the SLDS is to eliminate potential environmental hazards associated with residual contamination resulting from the site's use for government-funded uranium processing activities. 17 refs., 3 figs., 5 tabs.

  11. Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility

    SciTech Connect (OSTI)

    Metz, Paul; Bolz, Patricia

    2013-03-25

    With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

  12. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

  13. A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation

    E-Print Network [OSTI]

    Iamsumang, Chonlagarn

    2010-01-01

    With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to the inclusion of highly enriched material and reprocessing ...

  14. Adapting a GIS-Based Multicriteria Decision Analysis Approach for Evaluating New Power Generating Sites

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A [ORNL; Blevins, Brandon R [ORNL; Jochem, Warren C [ORNL; Mays, Gary T [ORNL; Belles, Randy [ORNL; Hadley, Stanton W [ORNL; Harrison, Thomas J [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL; Rose, Amy N [ORNL

    2012-01-01

    There is a growing need to site new power generating plants that use cleaner energy sources due to increased regulations on air and water pollution and a sociopolitical desire to develop more clean energy sources. To assist utility and energy companies as well as policy-makers in evaluating potential areas for siting new plants in the contiguous United States, a geographic information system (GIS)-based multicriteria decision analysis approach is presented in this paper. The presented approach has led to the development of the Oak Ridge Siting Analysis for power Generation Expansion (OR-SAGE) tool. The tool takes inputs such as population growth, water availability, environmental indicators, and tectonic and geological hazards to provide an in-depth analysis for siting options. To the utility and energy companies, the tool can quickly and effectively provide feedback on land suitability based on technology specific inputs. However, the tool does not replace the required detailed evaluation of candidate sites. To the policy-makers, the tool provides the ability to analyze the impacts of future energy technology while balancing competing resource use.

  15. Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site

    SciTech Connect (OSTI)

    Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

    1995-03-01

    In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

  16. Canyon Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013,Cafe ScientifiqueCanister Storage Building

  17. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-02-24

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  18. Superfund innovative technology evaluation (site) program evaluation report for antox BTX water screen (BTX immunoassay)

    SciTech Connect (OSTI)

    Gerlach, R.W.; White, R.J.; O'Leary, N.F.; Van Emon, J.M.

    1993-06-01

    The results of a demonstration of a portable immunoassay for the detection of benzene, toluene, and xylene(s) (BTX) are described in the report. Seventy-nine field samples were obtained from monitoring wells at several sites with gasoline contaminated ground water. Sample splits were analyzed on-site by the BTX immunoassay and in the laboratory by gas chromatography (GC) using EPA Method 8020. The BTX immunoassay was rapid and simple to use. It performed well in identifying high level contamination and gasoline contaminated samples having BTX concentrations greater than 100 ppb. It did not fully meet the claims of the developer of identifying contamination levels down to 25 ppb BTX. Two field samples determined by GC to have between 25 and 100 ppb BTX failed to be classified correctly by the immunoassay. Results from quality assurance samples with BTX concentrations of 2.5, 25, and 100 ppb also showed that false negative results would be expected at higher than a 5 percent rate when BTX contamination levels were between 25 and 100 ppb. However, for samples with higher BTX levels, the immunoassay gave excellent results. Two field samples yielded false positive results compared to GC values, but these samples showed signs of low-level gasoline contamination.

  19. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect (OSTI)

    Ramirez, Amanda Ann

    2008-09-01

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  20. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stops on her tour was the site's largest groundwater treatment facility. The 200 West Pump and Treat System removes multiple chemical and radiological contaminants from...

  2. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    SciTech Connect (OSTI)

    Wingo, H.E.

    1992-05-20

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site.

  3. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    SciTech Connect (OSTI)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose during the 1) institutional control period (0-100 years), compliance period (0-1000 years) and post-compliance period (>1000 years). Evaluation of the all pathway dose included the dose from ingestion and irrigation of contaminated groundwater extracted from a well 100 meters downgradient, in addition to the dose received from direct contact of radionuclides deposited near the surface resulting from facility overflow. Depending on the disposal facility radionuclide inventory, facility design, cover performance, and the location and environment where the facility is situated, the dose from exposure via direct contact of near surface deposited radionuclides can be much greater than the dose received via transport to the groundwater and subsequent ingestion.

  4. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    E-Print Network [OSTI]

    2009-01-01

    Nuclear Facilities, DOE- HDBK-3010-94, Vol. 1 (1994). 8. T.in the DOE Handbook, DOE-HDBK-3010-94 (Ref. 7). According to

  5. Site Recommendation Subsurface Layout

    SciTech Connect (OSTI)

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  6. A facility to evaluate the focusing performance of mirrors for Cherenkov Telescopes

    E-Print Network [OSTI]

    Canestrari, Rodolfo; Bonnoli, Giacomo; Farisato, Giancarlo; Lessio, Luigi; Rodeghiero, Gabriele; Spiga, Rossella; Toso, Giorgio; Pareschi, Giovanni

    2015-01-01

    With the advent of the imaging atmospheric Cherenkov technique in late 1980's, ground-based observations of Very High-Energy gamma rays came into reality. Since the first source detected at TeV energies in 1989 by Whipple, the number of high energy gamma-ray sources has rapidly grown up to more than 150 thanks to the second generation experiments like MAGIC, H.E.S.S. and VERITAS. The Cherenkov Telescope Array observatory is the next generation of Imaging Atmospheric Cherenkov Telescopes, with at least 10 times higher sensitivity than current instruments. Cherenkov Telescopes have to be equipped with optical dishes of large diameter -- in general based on segmented mirrors -- with typical angular resolution of a few arc-minutes. To evaluate the mirror's quality specific metrological systems are required that possibly take into account the environmental conditions in which typically Cherenkov telescopes operate (in open air without dome protection). For this purpose a new facility for the characterization of mi...

  7. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

  8. Evaluation of cobalt mobility in soils from the Nevada Test Site

    SciTech Connect (OSTI)

    Papelis, C.

    1996-09-01

    Nuclear testing at and around the Nevada Test Site (NTS) resulted in widespread contamination from transuranic and other radionuclides, as well as from other toxic inorganic and organic contaminants. The type of contamination, including spatial distribution and type of radionuclides present, depends on the type of testing performed. Remediation of the contaminated areas is currently under way. The optimum in situ or ex situ remediation technology depends on the degree of interaction between the particular radionuclide, or contaminant in general, and the soil matrix, among other factors. The objective of this project was to evaluate the sorption affinity of NTS soils for common non-transuranic radionuclides. The sorption of cobalt (Co) on soils from two different areas of the NTS, namely the Little Feller and Cabriolet event sites, was studied. Experiments were conducted as a function of pH, solid concentration, total Co concentration, ionic strength, and particle size fraction. Preliminary results indicate that both soils have a high sorption capacity for Co. The results suggest that Co uptake is controlled by sorption on either internal, permanent-charge, ion-exchange sites of clay minerals or on amphoteric, surface-hydroxyl sites of oxides. The results further indicate strong retardation of Co in these soils, under most conditions tested and expected to be found in the respective soil environments. These conclusions are applicable to transport of radionuclides which are expected to bind strongly on oxide surfaces (e.g., Co) but the results may not be representative of the behavior of weakly binding radionuclides. These studies clearly demonstrate the importance of evaluating the mobility of radionuclides and the degree of radionuclide-soil interaction before final selection of an in situ or ex situ remediation technology for a contaminated site.

  9. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  10. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  11. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  12. Independent criticality safety evaluation of deposits in cooler equipment in Building K-31 at the Oak Ridge K-25 Site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    This report provides an independent assessment of nuclear criticality issues associated with uranium deposits in the West and East Coolers for the 6A Booster Station in Building K-31 at the Oak Ridge K-25 Site. This assessment investigates the applicability of the initial assumptions used by Lockheed Martin Energy Systems (Energy Systems) and evaluates criticality calculations previously completed by Energy Systems. The calculations were independently verified. Each component was evaluated for its ability to satisfy requirements for subcriticality and meet the double contingency principle. Facility walk downs, detailed neutronics analysis, and fault tree analysis (FTA) were performed. The facility walk downs provided a better understanding of the building condition and status, equipment configuration, and uranium deposit locations. The detailed neutronics analysis focused on system geometry and moderation levels applicable to the individual components. The FTA considered the annual rate of occurrence for the events identified as potential causes of criticality issues. This report also examines the advantages of using this type of evaluation to assess the removal process for additional components and equipment.

  13. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect (OSTI)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

  14. Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-04-08

    This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

  15. Design, construction and evaluation of a facility for the simulation of fast reactor blankets

    E-Print Network [OSTI]

    Forbes, Ian Alexander

    1970-01-01

    A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

  16. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect (OSTI)

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  17. Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008

    SciTech Connect (OSTI)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2008-08-29

    In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.

  18. Impact Evaluation of the FY2012-13 Site-Specific Savings Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE- SPECIFIC SAVINGS PORTFOLIO Prepared

  19. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a ''go/no-go'' CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the ''go/no-go'' decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the ''go/no-go'' criteria developed from the sludge simulant testing was conservative for these samples taken from Sludge Batch 7b (SB7b), the sludge batch currently being processed. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  20. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  1. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1

    SciTech Connect (OSTI)

    David Strand

    2006-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

  2. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  3. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Tartakovsky, Guzel D.

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  4. Sumner County Solid-Waste Energy Recovery Facility. Volume 2. Performance and environmental evaluation. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    This report summarizes the operation of the Sumner County Solid Waste Energy Recovery Facility for a 2-year period, beginning with initial operation of the plant in December 1981. The 200-ton/day facility is located at Gallatin, Tennessee, and converts municipal solid waste into steam and eletricity. The report addresses physical and chemical properties of process and waste streams, other operating factors including thermal efficiency and availability, and the initial operating expenses and revenues. Two series of tests were carried out approximately one year apart. An environmental analysis was performed to determine the potential solids, liquid, and gaseous emissions from the plant. The results of the testing will be of interest to others who may be considering a resource recovery facility for the production of energy. The principal conclusions of the report are: The initial operation of the facility has been satisfactory. The ash drag system and air pollution control device must be extensively modified. Waste quantities and steam sales have been less than predicted causing some economic difficulties. Cadmium and lead concentrations in the ash have been high (especially fly ash). The long-range outlook for the facility continues to be optimistic. 10 refs., 6 figs., 34 tabs.

  5. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  6. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  7. Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2007-09-01

    This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

  8. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore »with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  9. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect (OSTI)

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-? turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  10. Evaluation of a permeable reactive barrier technology for use at Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    DWYER,BRIAN P.

    2000-01-01

    Three reactive materials were evaluated at laboratory scale to identify the optimum treatment reagent for use in a Permeable Reactive Barrier Treatment System at Rocky Flats Environmental Technology Site (RFETS). The contaminants of concern (COCS) are uranium, TCE, PCE, carbon tetrachloride, americium, and vinyl chloride. The three reactive media evaluated included high carbon steel iron filings, an iron-silica alloy in the form of a foam aggregate, and a peculiar humic acid based sorbent (Humasorb from Arctech) mixed with sand. Each material was tested in the laboratory at column scale using simulated site water. All three materials showed promise for the 903 Mound Site however, the iron filings were determined to be the least expensive media. In order to validate the laboratory results, the iron filings were further tested at a pilot scale (field columns) using actual site water. Pilot test results were similar to laboratory results; consequently, the iron filings were chosen for the fill-scale demonstration of the reactive barrier technology. Additional design parameters including saturated hydraulic conductivity, treatment residence time, and head loss across the media were also determined and provided to the design team in support of the final design. The final design was completed by the Corps of Engineers in 1997 and the system was constructed in the summer of 1998. The treatment system began fill operation in December, 1998 and despite a few problems has been operational since. Results to date are consistent with the lab and pilot scale findings, i.e., complete removal of the contaminants of concern (COCs) prior to discharge to meet RFETS cleanup requirements. Furthermore, it is fair to say at this point in time that laboratory developed design parameters for the reactive barrier technology are sufficient for fuel scale design; however,the treatment system longevity and the long-term fate of the contaminants are questions that remain unanswered. This project along with others such as the Durango, CO and Monticello, UT reactive barriers will provide the data to determine the long-term effectiveness and return on investment (ROI) for this technology for comparison to the baseline pump and treat.

  11. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  12. Evaluation of the Dallas Thompson Riverscreen Site on the Touchet River.

    SciTech Connect (OSTI)

    Chamness, Mickie [Pacific Northwest National Laboratory

    2007-07-25

    Riverscreen irrigation pumps are a relatively new design in which the pump intake floats on the river surface, pulling water in only from the bottom side and surrounded by a self-cleaning screen. The Walla Walla County Conservation District recently started replacing old pump screens with the Riverscreen and was interested in whether the screens are protective of juvenile salmonids. Pacific Northwest National Laboratory evaluated approach velocities and operations at the Riverscreen installation on the Dallas Thompson property, approximately 3 mi. north of Touchet, Washington and 300 ft north of Hofer Dam, on June 18, 2007. Evaluation of this site consisted of underwater videography and water velocity measurements. The Dallas Thompson Riverscreen was pumping approximately 930 gpm during our evaluation, which is close to the maximum pumping rate for this model. Underwater videography showed only slow movement of water-borne particulates toward the pump intake, and the screen material was clean. All water velocity measurements were taken below the pump intake opening and between 3 to 6 in. from the screen face. All approach velocities (flow toward the screen and pump) were below National Marine Fisheries Service draft guidelines for juvenile fish screens.

  13. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    SciTech Connect (OSTI)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  14. Melter technology evaluation for vitrification of Hanford Site low-level waste

    SciTech Connect (OSTI)

    Wilson, C.N.; Burgard, K.C.; Weber, E.T.; Brown, N.R.

    1995-04-01

    The current plan at the Hanford Site, in accordance with the Tri-Party Agreement among Washington State, the US Environmental Protection Agency, and the US Department of Energy, is to convert the low-level tank waste fraction into a silicate glass. The low-level waste will be composed primarily of sodium nitrate and nitrite salts concentrated in a highly alkaline aqueous solution. The capability to process up to 200 metric tons/day off glass will be established to produce an estimated 210,000 m{sup 3} for onsite disposal. A program to test and evaluate high-capacity melter technologies is in progress. Testing performed by seven different industrial sources using Joule heating, combustion, plasma, and carbon arc melters is described.

  15. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  16. TECHNICAL EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM-CONTAMINATED SOILS AT THE NEVADA TEST SITE (NTS)

    SciTech Connect (OSTI)

    Steve Hoeffner

    2003-12-31

    The Clemson Environmental Technologies Laboratory (CETL) was contracted by the National Energy Technology Center to evaluate technologies that might be used to reduce the volume of plutonium-contaminated soil at the Nevada Test Site. The project has been systematically approached. A thorough review and summary was completed for: (1) The NTS soil geological, geochemical and physical characteristics; (2) The characteristics and chemical form of the plutonium that is in these soils; (3) Previous volume reduction technologies that have been attempted on the NTS soils; (4) Vendors with technology that may be applicable; and (5) Related needs at other DOE sites. Soils from the Nevada Test Site were collected and delivered to the CETL. Soils were characterized for Pu-239/240, Am-241 and gross alpha. In addition, wet sieving and the subsequent characterization were performed on soils before and after attrition scrubbing to determine the particle size distribution and the distribution of Pu-239/240 and gross alpha as a function of particle size. Sequential extraction was performed on untreated soil to provide information about how tightly bound the plutonium was to the soil. Magnetic separation was performed to determine if this could be useful as part of a treatment approach. Using the information obtained from these reviews, three vendors were selected to demonstration their volume reduction technologies at the CETL. Two of the three technologies, bioremediation and soil washing, met the performance criteria. Both were able to significantly reduce the concentration plutonium in the soil from around 1100 pCi/g to 200 pCi/g or less with a volume reduction of around 95%, well over the target 70%. These results are especially encouraging because they indicate significant improvement over that obtained in these earlier pilot and field studies. Additional studies are recommended.

  17. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    SciTech Connect (OSTI)

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ``standard sites`` located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements.

  18. Hanford Site Asbestos Abatement Plan. Revision 1

    SciTech Connect (OSTI)

    Mewes, B.S.

    1993-09-01

    The Hanford Site Asbestos Abatement Plan (Plan) lists priorities for asbestos abatement activities to be conducted in Hanford Site facilities. The Plan is based on asbestos assessment information gathered in fiscal year 1989 that evaluated all Hanford Site facilities for the presence and condition of asbestos. Of those facilities evaluated, 414 contain asbestos-containing materials and are classified according to the potential risk of asbestos exposure to building personnel. The Plan requires that asbestos condition update reports be prepared for all affected facilities. The reporting is completed by the asbestos coordinator for each of the 414 affected facilities and transmitted to the Plan manager annually. The Plan manager uses this information to reprioritize future project lists. Currently, five facilities are determined to be Class Al, indicating a high potential for asbestos exposure. Class Al and B1 facilities are the highest priority for asbestos abatement. Abatement of the Class A1 and Bl facilities is scheduled through fiscal year 1997. Removal of asbestos in B1 facilities will reduce the risk for further Class ``A`` conditions to arise.

  19. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    SciTech Connect (OSTI)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  20. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  1. Evaluation of Dynamic Behavior of Pile Foundations for Interim Storage Facilities Through Geotechnical Centrifuge Tests

    SciTech Connect (OSTI)

    Shizuo Tsurumaki; Hiroyuki Watanabe; Akira Tateishi; Kenichi Horikoshi; Shunichi Suzuki

    2002-07-01

    In Japan, there is a possibility that interim storage facilities for recycled nuclear fuel resources may be constructed on quaternary layers, rather than on hard rock. In such a case, the storage facilities need to be supported by pile foundations or spread foundations to meet the required safety level. The authors have conducted a series of experimental studies on the dynamic behavior of storage facilities supported by pile foundations. A centrifuge modeling technique was used to satisfy the required similitude between the reduced size model and the prototype. The centrifuge allows a high confining stress level equivalent to prototype deep soils to be generated (which is considered necessary for examining complex pile-soil interactions) as the soil strength and the deformation are highly dependent on the confining stress. The soil conditions were set at as experimental variables, and the results are compared. Since 2000, the Nuclear Power Engineering Corporation (NUPEC) has been conducting these research tests under the auspices on the Ministry of Economy, Trade and Industry of Japan. (authors)

  2. Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2010

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. M.

    2011-05-13

    Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants ([NESHAP]; U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code 246-247: Radiation Protection - Air Emissions. In these NESHAP assessments, potential unabated off-site doses were evaluated for emission locations at buildings that are part of the consolidated laboratory campus of the Pacific Northwest National Laboratory. This report describes the inventory-based methods and provides the results for the NESHAP assessment performed in 2010.

  3. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2009-08-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility • 25-99-20, EMAD Facility Exterior Releases This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 114. The following text summarizes the SAFER activities that will support the closure of CAU 114: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. • If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  4. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    SciTech Connect (OSTI)

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  5. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect (OSTI)

    Kimura, C Y; Sanzo, D L; Sharirli, M

    1998-07-09

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of ?no-fly? periods for R-4808N during which SNM is present in the DAF should be formalized either by modifying an existing operational procedure or instituting a new procedure. Additionally, the process for DOE notification by DAF personnel of the presence of SNM should be formalized.

  6. Crash hit frequency analysis of aircraft overflights of the Nevada Test Site (NTS) and the Device Assembly Facility (DAF)

    SciTech Connect (OSTI)

    Kimura, C. Y.; Sanzo, D. L.; Sharirli, M.

    1998-12-16

    Aircraft crashes are an element of external events required to be analyzed and documented in Facility Safety Analysis Reports (SARs) and Nuclear Explosive Safety Studies (NESS). Aircraft crashes into DOE facilities are of concern due to effects related to impact and fire that can potentially lead to penetration of the facility, disruption of operations, and the potential of release of radioactive and/or hazardous materials subsequent to the aircraft impact. Recent changes in the control of the airspace were not considered in previous safety studies of aircraft flights over the NTS [Refs. 4,5,6]. The Airspace changes have warranted review of the effects of the issued MOU on the Device Assembly Facility (DAF) Authorization Basis Documents [Refs. 4,5], the underlying analysis assumptions, and results relevant to aircraft crash. This report documents the review and analysis of aircraft crash hit frequency on the DAF within NTS. It focuses on the impact of airspace changes based on the MOU. The frequency of an aircraft crashing and hitting the DAF is in the 1 E-7 to E-8 range. While this is considered to be acceptably small, it should not be considered an upper bound. This conclusion should not be interpreted to mean that no further work need be done. The results of the analysis are highly dependent on the assumptions made and the available data. There is considerable uncertainty in the number of overflights which are taking place over the NTS and restricted airspace R-4808N. To reduce this uncertainty, additional follow-on work should be done to activate the monitor in the CP at NTS which is to receive information from the Nellis Range control station, to monitor the level of air activity in R-4808N and to recalculate the aircraft crash hit frequency on the DAF when better overflight estimates are obtained. Finally, to reduce the human error component, the process by which the DOE notifies the USAF of ?no-fly? periods for R-4808N during which SNM is present in the DAF should be formalized either by modifying an existing operational procedure or instituting a new procedure. Additionally, the process for DOE notification by DAF personnel of the presence of SNM should be formalized.

  7. EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and...

  8. MOSE: a feasibility study for optical turbulence forecasts with the Meso-Nh mesoscale model to support AO facilities at ESO sites (Paranal and Armazones)

    E-Print Network [OSTI]

    Masciadri, E; 10.1117/12.925924

    2012-01-01

    We present very encouraging preliminary results obtained in the context of the MOSE project, an on-going study aiming at investigating the feasibility of the forecast of the optical turbulence and meteorological parameters (in the free atmosphere as well as in the boundary and surface layer) at Cerro Paranal (site of the Very Large Telescope - VLT) and Cerro Armazones (site of the European Extremely Large Telescope - E-ELT), both in Chile. The study employs the Meso-Nh atmospheric mesoscale model and aims at supplying a tool for optical turbulence forecasts to support the scheduling of the scientific programs and the use of AO facilities at the VLT and the E-ELT. In this study we take advantage of the huge amount of measurements performed so far at Paranal and Armazones by ESO and the TMT consortium in the context of the site selection for the E-ELT and the TMT to constraint/validate the model. A detailed analysis of the model performances in reproducing the atmospheric parameters (T, V, p, H, ...) near the g...

  9. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  10. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

  11. Estimated airborne release of plutonium from Atomics International's Nuclear Materials Development Facility in the Santa Susana site, California, as a result of postulated damage from severe wind and earthquake hazard

    SciTech Connect (OSTI)

    Mishima, J.; Ayer, J.E.

    1981-09-01

    The potential mass of airborne releases of plutonium (source term) that could result from wind and seismic damage is estimated for the Atomics International Company's Nuclear Materials Development Facility (NMDF) at the Santa Susana site in California. The postulated source terms will be useful as the basis for estimating the potential dose to the maximum exposed individual by inhalation and to the total population living within a prescribed radius of the site. The respirable fraction of airborne particles is thus the principal concern. The estimated source terms are based on the damage ratio, and the potential airborne releases if all enclosures suffer particular levels of damage. In an attempt to provide a realistic range of potential source terms that include most of the normal processing conditions, a best estimate bounded by upper and lower limits is provided. The range of source terms is calculated by combining a high best estimate and a low damage ratio, based on a fraction of enclosures suffering crush or perforation, with the airborne release from enclosures based upon an upper limit, average, and lower limit inventory of dispersible materials at risk. Two throughput levels are considered. The factors used to evaluate the fractional airborne release of materials and the exchange rates between enclosed and exterior atmospheres are discussed. The postulated damage and source terms are discussed for wind and earthquake hazard scenarios in order of their increasing severity.

  12. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  13. EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown...

  14. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL

    SciTech Connect (OSTI)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

  15. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2006-06-01

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  16. Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater 

    E-Print Network [OSTI]

    Nagarnaik, Pranav Mukund

    2012-07-16

    ). Chemical oxidation using molecular ozone and advanced oxidation processes (AOPs) (UV-hydrogen peroxide, Fenton’s Reagent, and Photo – Fenton’s Reagent) were screened and evaluated as potential treatment technologies for removal of APEOs in water...

  17. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites

    E-Print Network [OSTI]

    of Waterless Human Waste Management Systems at North American Public Remote Sites GEOG 699 September 16, 2013; An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites by GEOFFREY

  18. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    SciTech Connect (OSTI)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F; Ashbaugh, Laurence J; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  19. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    SciTech Connect (OSTI)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F; Ashbaugh, Laurence J; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  20. Site evaluations for the uranium-atomic vapor laser isotope separation (U-AVLIS) production plant

    SciTech Connect (OSTI)

    Wolsko, T.; Absil, M.; Cirillo, R.; Folga, S.; Gillette, J.; Habegger, L.; Whitfield, R.

    1991-07-01

    This report describes a uranium-atomic vapor laser isotope separation (U-AVLIS) production plant siting study conducted during 1990 to identify alternative plant sites for examination in later environmental impact studies. A siting study methodology was developed in early 1990 and was implemented between June and December. This methodology had two parts. The first part -- a series of screening analyses that included exclusionary and other criteria -- was conducted to identify a reasonable number of candidates sites. This slate of candidate sites was then subjected to more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. To fully appreciate the siting study methodology, it is important to understand the U-AVLIS program and site requirements. 16 refs., 29 figs., 54 tabs.

  1. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  2. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  3. Facility effluent monitoring plan for 242-A Evaporator facility. Revision 1

    SciTech Connect (OSTI)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  4. 218 E-8 Borrow Pit Demolition Site clean closure soil evaluation report

    SciTech Connect (OSTI)

    Korematsu-Olund, D.M.

    1995-06-12

    This report summarizes the sampling activities undertaken and the analytical results obtained in a soil sampling and analyses study performed for the 218 E-8 Borrow Pit Demolition Site (218 E-8 Demolition Site). The 218 E-8 Demolition Site is identified as a Resource Conservation and Recovery Act (RCRA) treatment unit that will be closed in accordance with the applicable laws and regulations. The site was used for the thermal treatment of discarded explosive chemical products. No constituents of concern were found in concentrations indicating contamination of the soil by 218 E-8 Demolition Site activities.

  5. Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud type climatology

    E-Print Network [OSTI]

    Evaluation of ECMWF cloud type simulations at the ARM Southern Great Plains site using a new cloud; accepted 13 December 2006; published 3 February 2007. [1] A new method to derive a cloud type climatology is applied to cloud observations over the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM

  6. Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste

    SciTech Connect (OSTI)

    Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

    1997-05-01

    A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

  7. After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014

    SciTech Connect (OSTI)

    V. Scott Barnes

    2014-12-01

    On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

  8. Environmental Restoration and Waste Management Site-Specific Plan for the Oak Ridge Reservation. [Appendix contains accromyms list and maps of waste management facilities

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance at its waste sites and facilities, while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities, planned and completed, undertaken to implement these FYP goals at the DOE Field Office-Oak Ridge (DOE/OR) installations and programs; specifically, for the Oak Ridge Reservation (ORR), Oak Ridge Associated Universities (ORAU), and Hazardous Waste Remedial Action Program (HAZWRAP). Activities described in this SSP address hazardous, radioactive, mixed, and sanitary wastes, along with treatment, storage, and disposal of current production waste and legacy waste from past operation. The SSP is presented in sections emphasizing Corrective Activities (A), Environmental Restoration (ER), Waste Management (WM), Technology Development (TD), and Transportation; and includes descriptions of activities, resources, and milestones by installation or program. 87 tabs.

  9. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  10. An Expert Elicitation Process in Support of Groundwater Model Evaluation for Frenchman Flat, Nevada National Security Site

    SciTech Connect (OSTI)

    Chapman Jenny,Pohlmann Karl

    2011-02-01

    The U.S. Department of Energy is implementing corrective actions at facilities where nuclear-related operations were conducted in Nevada. Among the most significant sites being addressed are the locations of underground nuclear tests on the Nevada National Security Site (NNSS). The process for implementing corrective actions for the Underground Test Area (UGTA) locations is defined in Appendix VI of a Federal Facility Agreement and Consent Order (1996, as amended). In broad terms, Appendix VI describes a Corrective Action Investigation followed by a Corrective Action Decision, and implementation of a Corrective Action Plan prior to closure. The Frenchman Flat Corrective Action Unit (CAU) is farthest along in the UGTA corrective action process. It includes ten underground tests within the Frenchman Flat topographic basin, in the southeastern portion of the NNSS. Data have been collected from drilling exploration, hydrologic testing, and field and laboratory studies. Modeling has been completed at a variety of scales and focusing on a variety of flow and transport aspects ranging from regional boundary conditions to process dynamics within a single nuclear cavity. The culmination of the investigations is a transport model for the Frenchman Flat CAU (Stoller Navarro Joint Venture, 2009) that has undergone rigorous peer review and been accepted by the State of Nevada, setting the stage for the Corrective Action Decision and progression from the investigation phase to the corrective action phase of the project.

  11. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    SciTech Connect (OSTI)

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left 'as is' and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines. (authors)

  12. Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site

    SciTech Connect (OSTI)

    Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

    1996-06-01

    Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

  13. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    SciTech Connect (OSTI)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility...

  15. Activity-level Work Planning and Control in the Hanford Site Worker Evaluation Tool

    Broader source: Energy.gov [DOE]

    Slide Presentation by Ted Giltz, Volpentest HAMMER Federal Training Center. Hanford Site Worker Eligibility Tool, Verifying Activity-Level Worker Medical Clearance and Training. The Hanford Site Worker Eligibility Tool (HSWET) provides line management an easy to use tool to determine if workers are medically cleared and trained to perform work safely.

  16. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-Evidence at the Hanford Nuclear Weapons Facility MASTERAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

  17. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01

    Gas Tanks . . . . 2.5.4 Nuclear Power Facility Structures .iii 3 Nuclear Power Plants 3.1 Nuclear Facility StructuralThe Kashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 Ch¯

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerial of Groundwater Treatment Facility Aerial of Groundwater Treatment Facility Groundwater Treatment Facility Groundwater Treatment Facility Groundwater Treatment Facility...

  1. EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

  2. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments. Volume 1

    SciTech Connect (OSTI)

    Wingo, H.E.

    1992-05-20

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site.

  3. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  4. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  5. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  6. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    SciTech Connect (OSTI)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  7. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    SciTech Connect (OSTI)

    Belles, Randy J.; Omitaomu, Olufemi A.

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  8. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tronox Facility in Savannah, Georgia. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tronox Facility site in Savannah, Georgia, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  10. Hanford Site Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  11. Impact Evaluation of the FY2012-13 Site-Specific Savings Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more savings for Commercial measures, and 1.9% more for Industrial measures. One Option 2 utility applied realization rates (from a prior evaluation) before reporting savings to...

  12. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  13. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoalCode

  14. Effluent Treatment Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science NetworkMediator Effects of ProtonationEfficient

  15. Integrated Disposal Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibiting Individual NotchInspiringAppendix forWeatherizeCodes

  16. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working1999-2000UniversityIn

  17. Program plan for evaluation of the Ferrocyanide Waste Tank safety issue at the Hanford Site

    SciTech Connect (OSTI)

    Borsheim, G.L.; Meacham, J.E.; Cash, R.J.; Dukelow, G.T.

    1994-03-01

    This document describes the background, priorities, strategy and logic, and task descriptions for the Ferrocyanide Waste Tank Safety Program. The Ferrocyanide Safety Program was established in 1990 to provide resolution of a major safety issue identified for 24 high-level radioactive waste tanks at the Hanford Site.

  18. Evaluation of erosion and cover re-establishment following site preparation on east Texas forest lands 

    E-Print Network [OSTI]

    Blume, Timothy Allen

    1979-01-01

    Bogx'aphic ax'Bas (as opposed to 88mpling in oQly one Brea) so th8t coQtx'ol plots sere located as Qeax' 'to the treated study sites as possible. CRAPTER IV PROCEDURES The two objectives of this study were: (1) to describe the re- establishment of soil...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contaminated Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility...

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX...

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX...

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    groundwater 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility...

  4. MOX Lead Assembly Fabrication at the Savannah River Site

    SciTech Connect (OSTI)

    Geddes, R.L.; Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  5. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge Batches 8, 16, and 17, regardless of the addition of SCIX or SWPF streams. This indicates that the blending strategy for these sludge batches should be reevaluated by Savannah River Remediation (SRR). (2) In general, candidate frits were available to accommodate CST additions to either Tank 40 or Tank 51. A larger number of candidate frits were typically available for the sludge batches when CST is added to Tank 51 rather than Tank 40, meaning that more compositional flexibility would be available for frit selection and DWPF operation. Note however that for SB8 and SB17, no candidate frits were available to accommodate CST going to Tank 40 with and without SWPF streams. The addition of SWPF streams generally improves the number of candidate frits available for processing of a given sludge batch. (3) The change in production rate from 40 Sludge Receipt and Adjustment Tank (SRAT) batches per year (i.e., the current production rate) to 75 SRAT batches per year, without SWPF streams included, had varied results in terms of the number of candidate frits available for processing of a given sludge batch. Therefore, this variable is not of much concern in terms of incorporating the SCIX streams. Note that the evaluation at 75 SRAT batches per year (approximately equivalent to 325 canisters per year) is more conservative in terms of the impact of SCIX streams as compared to a production rate of 400 canisters per year. Overall, the outcome of this paper study shows no major issues with the ability to identify an acceptable glass processing window when CST from the SCIX process is transferred to either Tank 40 or Tank 51. The assumptions used and the model limitations identified in this report must be addressed through further experimental studies, which are currently being performed. As changes occur to the planned additions of MST and CST, or to the sludge batch preparation strategy, additional evaluations will be performed to determine the potential impacts. As stated above, the issues with Sludge Batches 8, 16, and 17 should be further evaluated by SRR. A

  6. INDEPENDENT TECHNICAL EVALUATION AND RECOMMENDATIONS FOR CONTAMINATED GROUNDWATER AT THE DEPARTMENT OF ENERGY OFFICE OF LEGACY MANAGEMENT RIVERTON PROCESSING SITE

    SciTech Connect (OSTI)

    Looney, B.; Denham, M.; Eddy-Dilek, C.

    2014-05-06

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated). A few of the key findings include: ? Physical removal of the tailings and associated materials reduced contaminant discharges to groundwater and reduced contaminant concentrations in the near-field plume. ? In the mid-field and far-field areas, residual contaminants are present in the vadose zone as a result of a variety of factors (e.g., evaporation/evapotranspiration from the capillary fringe and water table, higher water levels during tailings disposal, and geochemical processes). ? Vadose zone contaminants are widely distributed above the plume and are expected to be present as solid phase minerals that can serve as “secondary sources” to the underlying groundwater. The mineral sample collected at the site is consistent with thermodynamic predictions. ? Water table fluctuations, irrigation, infiltration and flooding will episodically solubilize some of the vadose zone secondary source materials and release contaminants to the groundwater for continued down gradient migration – extending the overall timeframe for flushing. ? Vertical contaminant stratification in the vadose zone and surficial aquifer will vary from location to location. Soil and water sampling strategies and monitoring well construction details will influence characterization and monitoring data. ? Water flows from the Wind River, beneath the Riverton Processing Site and through the plume toward the Little Wind River. This base flow pattern is influenced by seasonal irrigation and other anthropogenic activities, and by natural perturbations (e.g., flooding). ? Erosion and reworking of the sediments adjacent to the Little Wind River results in high heterogeneity and complex flow and geochemistry. Water flowing into oxbow lakes (or through areas where oxbow lakes were present in the past) will be exposed to localized geochemical conditions that favor chemical reduction (i.e., “naturally reduced zones”) and other attenuation processes. This attenuation is not sufficient to fully stabilize the plume or to reduce contaminant concentrations in the groundwater to target levels. Consistent with these observations, the team recommended increased emphasis on collecting data in the zones where secondary source minerals are projected to accumulate (e.g., just above the water table) using low cost methods such as x-ray fluorescence. The team also suggested several low cost nontraditional sources of data that have the potential to provide supplemental data (e.g., multispectral satellite imagery) to inform and improve legacy management decisions. There are a range of strategies for management of the legacy contamination in the groundwater and vadose zone near the Riverton Processing Site. These range from the current strategy, natural flushing, to intrusive remedies such as plume scale excavation of the vadose zone and pump & treat. Each option relates to the site specific conditions, issues and opportunities in a unique way. Further, each option has advantages and disadvantages that need to be weighed. Scoping evaluation was performed for three major classes

  7. Evaluation of proposed designs for streamflow monitoring structures at waste disposal sites

    SciTech Connect (OSTI)

    Clapp, R.B.; Borders, D.M.; Tardiff, M.F.; Huff, D.D.

    1991-01-01

    Design of small surface water monitoring stations associated with waste sites requires an approach that balances several problems. The monitoring site must have a capacity for a wide range of flows, allow accurate measurements over the full performance range, minimize effects from accumulation of contaminated sediments, and minimize costs of construction and operation. Selecting a station design that takes these factors into consideration can be done systematically through use of formal decision analysis. The paper discusses the effectiveness of various hydraulic structures as flumes and weirs to monitor stream flow and drainage. The process has produced the most viable alternative designs and yielded fully documented guidelines for designing new stations as they are needed. 7 refs., 6 figs., 3 tabs.

  8. Portsmouth Site Delivers First Radioactive Waste Shipment to...

    Office of Environmental Management (EM)

    Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

  9. Responsiveness summary for the engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Peterson, J.M. (Argonne National Lab., IL (United States)); Williams, M.J. (Bechtel National, Inc., Oak Ridge, TN (United States))

    1991-12-01

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Mallinckrodt Chemical Plant, also referred to as the St. Louis Downtown Site (SLDS), located in the city of St. Louis, Missouri. Remedial activities at the SLDS are being carried out under DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP) as part of the overall cleanup planned for three noncontiguous areas in St. Louis, which are collectively referred to as the St. Louis Site. Potential response action alternatives for managing the contaminated material generated at the SLDS have been evaluated in accordance with US Environmental Protection Agency (EPA) guidance for conducting interim actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. An engineering evaluation/cost analysis (EE/CA) report was prepared to document this process. On the basis of the analysis presented in the EE/CA, the preferred alternative for the management of contaminated wastes generated by DOE-supported plant activities is the provision of temporary storage capacity, which can be made available by modifying an existing building (i.e., Building 116) at SLDS. This alternative would enable DOE and Mallinckrodt to coordinate efforts to prevent the uncontrolled relocation of contamination and ensure that ultimate site cleanup objectives are not complicated by plant activities implemented by Mallinckrodt. The EE/CA, dated May 1991, was issued to the general public on June 7, 1991, and a public comment period was held from June 7 through July 10, 1991, in accordance with the public participation process identified in CERCLA. Comments on the proposed action were received in writing from the Missouri Department of Health, private citizen Kay Drey, and the EPA Region 7. This responsiveness summary has been prepared to respond to issues identified in these comment letters on the proposed action.

  10. Responsiveness summary for the engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri

    SciTech Connect (OSTI)

    Picel, M.H.; Peterson, J.M. [Argonne National Lab., IL (United States); Williams, M.J. [Bechtel National, Inc., Oak Ridge, TN (United States)

    1991-12-01

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Mallinckrodt Chemical Plant, also referred to as the St. Louis Downtown Site (SLDS), located in the city of St. Louis, Missouri. Remedial activities at the SLDS are being carried out under DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP) as part of the overall cleanup planned for three noncontiguous areas in St. Louis, which are collectively referred to as the St. Louis Site. Potential response action alternatives for managing the contaminated material generated at the SLDS have been evaluated in accordance with US Environmental Protection Agency (EPA) guidance for conducting interim actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. An engineering evaluation/cost analysis (EE/CA) report was prepared to document this process. On the basis of the analysis presented in the EE/CA, the preferred alternative for the management of contaminated wastes generated by DOE-supported plant activities is the provision of temporary storage capacity, which can be made available by modifying an existing building (i.e., Building 116) at SLDS. This alternative would enable DOE and Mallinckrodt to coordinate efforts to prevent the uncontrolled relocation of contamination and ensure that ultimate site cleanup objectives are not complicated by plant activities implemented by Mallinckrodt. The EE/CA, dated May 1991, was issued to the general public on June 7, 1991, and a public comment period was held from June 7 through July 10, 1991, in accordance with the public participation process identified in CERCLA. Comments on the proposed action were received in writing from the Missouri Department of Health, private citizen Kay Drey, and the EPA Region 7. This responsiveness summary has been prepared to respond to issues identified in these comment letters on the proposed action.

  11. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Hranac, K.C.; Chromec, F.W.; Fiehweg, R.; Hopkins, J.

    1998-07-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

  12. Oak Ridge K-25 Site Technology Logic Diagram. Volume 1, Technology evaluation

    SciTech Connect (OSTI)

    Fellows, R.L. [ed.

    1993-02-26

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration and waste management problems at the Oak Ridge K-25 Site to potential technologies that can remediate these problems. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remedial action, and decontamination and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. This Volume, Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume is divided into ten chapters. The first chapter is a brief introduction, and the second chapter details the technical approach of the TLD. These categories are the work activities necessary for successful decontamination and decommissioning, waste management, and remedial action of the K-25 Site. The categories are characterization, decontamination, dismantlement, robotics and automation, remedial action, and waste management. Materials disposition is addressed in Chap. 9. The final chapter contains regulatory compliance information concerning waste management, remedial action, and decontamination and decommissioning.

  13. Evaluating, Migrating, and Consolidating Databases and Applications for Long-Term Surveillance and Maintenance Activities at the Rocky Flats Site

    SciTech Connect (OSTI)

    Surovchak, S.; Marutzky, S.; Thompson, B.; Miller, K.; Labonte, E.

    2006-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) is assuming responsibilities for long-term surveillance and maintenance (LTS and M) activities at the Rocky Flats Environmental Technology Site (RFETS) during fiscal year 2006. During the transition, LM is consolidating databases and applications that support these various functions into a few applications which will streamline future management and retrieval of data. This paper discussed the process of evaluating, migrating, and consolidating these databases and applications for LTS and M activities and provides lessons learned that will benefit future transitions. (authors)

  14. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    SciTech Connect (OSTI)

    Reimus, Paul William

    2015-05-22

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  15. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in the United States. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    This report is a summary of a series of preliminary reports describing the laws and regulatory programs of the United states and each of the 50 states affecting the siting and operation of energy generating facilities likely to be used in Integrated Community Energy Systems (ICES). A brief summary of public utility regulatory programs, energy facility siting programs, and municipal franchising authority is presented in this report to identify how such programs and authority may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES. Subsequent reports will (1) describe public utility rate regulatory procedures and practices as they might affect an ICES, (2) analyze each of the aforementioned regulatory programs to identify impediments to the development of ICES, and (3) recommend potential changes in legislation and regulatory practices and procedures to overcome such impediments.

  16. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  17. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Treatment Facility Interior Groundwater Treatment Facility Interior Groundwater Treatment Facility Operations Groundwater Treatment Facility Operations Groundwater...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    savings Groundwater Treatment Facility Interior Groundwater Treatment Facility Interior Groundwater Treatment Facility Operations Groundwater Treatment Facility Operations...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resin Groundwater Treatment Facility Interior Groundwater Treatment Facility Interior Groundwater Treatment Facility Operations Groundwater Treatment Facility Operations...

  1. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  2. A systematic approach to evaluate erosion potential at environmental restoration sites

    SciTech Connect (OSTI)

    Veenis, S.J.; Mays, D.C. [Merrick and Co., Los Alamos, NM (United States)

    1998-12-01

    The Environmental Restoration (ER) Project at the Los Alamos National Laboratory (LANL) is responsible for investigation and remediation of solid waste management units (SWMUs) under the Resource Conservation and Recovery Act and area of concerns (AOCs) under the direction of the Department of Energy. During the investigation and remediation phases, information may be gathered that indicates that conditions may be present at the site which may effect surface water quality. Depending on the constituent found, its concentration, and erosion/sediment transport potential, it may be necessary to implement temporary or permanent mitigative measures.

  3. OFFLINE EVALUATION OF SIX SURFACE LAYER PARAMETERIZATION SCHEMES AGAINST OBSERVATIONS AT THE ARM SGP SITE

    E-Print Network [OSTI]

    OFFLINE EVALUATION OF SIX SURFACE LAYER PARAMETERIZATION SCHEMES AGAINST OBSERVATIONS AT THE ARM of surface fluxes collected by the DOE (Department of Energy) ARM (Atmospheric Radiation Measurement) program to quantify the uncertainty/discrepancy between the ARM measurements based on the EC (Eddy Correlation

  4. Land and Facility Use Planning

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-07-09

    The Land and Facility Use Planning process provides a way to guide future site development and reuse based on the shared long-term goals and objectives of the Department, site and its stakeholders. Does not cancel other directives.

  5. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect (OSTI)

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  6. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    SciTech Connect (OSTI)

    Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

    2012-09-01

    This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.

  7. Fiscal year 1992 program plan for evaluation of ferrocyanide in the Hanford Site waste tanks

    SciTech Connect (OSTI)

    Cash, R.J.; Dukelow, G.T.

    1992-07-01

    The purpose of this document is to provide a description of the fiscal year (FY) 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Ferrocyanide Waste Tank Safety Program. The Ferrocyanide Safety Program was established in 1990 to provide resolution of a major safety issue identified for 24 high-level waste tanks at the Hanford Site. Radioactive wastes from defense operations have accumulated at the Hanford Site in underground waste tanks since the early 1940s. During the 1950s, additional tank disposal space was required to support the defense mission. Two procedures were used to obtain this additional volume within a short period of time while minimizing the construction of additional tanks. One procedure involved the use of evaporators to concentrate the waste by removing water. The second procedure involved a process for scavenging radiocesium from tank waste liquids and pumping the resulting liquids to disposal cribs. In implementing this process, approximately 140 metric tons of ferrocyanide were added to wastes that were later routed to 24 single-shell tanks.

  8. Evaluation of cement kiln laboratories testing hazardous waste derived fuels

    SciTech Connect (OSTI)

    Nichols, R.E.

    1998-12-31

    Cement kiln operators wishing to burn hazardous waste derived fuels in their kilns must submit applications for Resource Conservation Recovery Act permits. One component of each permit application is a site-specific Waste Analysis Plan. These Plans describe the facilities` sampling and analysis procedures for hazardous waste derived fuels prior to receipt and burn. The Environmental Protection Agency has conducted on-site evaluations of several cement kiln facilities that were under consideration for Resource Conservation Recovery Act permits. The purpose of these evaluations was to determine if the on-site sampling and laboratory operations at each facility complied with their site-specific Waste Analysis Plans. These evaluations covered sampling, laboratory, and recordkeeping procedures. Although all the evaluated facilities were generally competent, the results of those evaluations revealed opportunities for improvement at each facility. Many findings were noted for more than one facility. This paper will discuss these findings, particularly those shared by several facilities (specific facilities will not be identified). Among the findings to be discussed are the ways that oxygen bombs were scrubbed and rinsed, the analytical quality control used, Burn Tank sampling, and the analysis of pH in hazardous waste derived fuels.

  9. Population Sensitivity Evaluation of Two Proposed Hampton Roads Area Sites for a Possible Small Modular Reactor

    SciTech Connect (OSTI)

    Belles, R. J.; Omitaomu, O. A.

    2014-08-01

    The overall objective of this research project is to use the OR-SAGE tool to support the US Department of Energy (DOE) Office of Nuclear Energy (NE) in evaluating future electrical generation deployment options for small modular reactors (SMRs) in areas with significant energy demand from the federal sector. Deployment of SMRs in zones with high federal energy use can provide a means of meeting federal clean energy goals.

  10. Evaluation of the potential for agricultural development at the Hanford Site

    SciTech Connect (OSTI)

    RG Evans; MJ Hattendorf; CT Kincaid

    2000-02-25

    By 2050, when cleanup of the Hanford Site is expected to be completed, large worldwide demands to increase the global production of animalhlish protein, food, and fiber are anticipated, despite advancements in crop breeding, genetic engineering, and other technologies. World population is projected to double to more than 12 billion people, straining already stressed worldwide agricultural resources. The current world surpluses in many commodities will not last when faced with increasing population, decreasing ocean fisheries, and rapid loss of productive lands from soil salivation and erosion. The production of pharmaceuticals from bioengineered plants and animals will undoubtedly add more pressure on the already limited (and declining) arable land base. In addition there will be pressure to produce crops that can help reduce the world's dependence on petroleum and be used for chemical plant feedstock. These external, formidable pressures will necessitate increasing investments in irrigation infi-a-structures in many areas of the world to increase productivity. Intensive greenhouse culture and aqua-culture also will be greatly expanded. There will be large economic and social pressures to expand production in areas such as the Pacific Northwest. Agricultural exports will continue to be important The most likely large areas for expanded irrigation in the Pacific Northwest are the undeveloped East High areas of the Columbia Basin Project and non-restricted areas within the Hanford Site in south-central Washington State. Both of these are potentially highly productive area: for producing food and export capital. The environmental concerns will be large however, the favorable growing conditions, high-quality (low-salinity) abundant water supplies and minimal problems with salivation of soils make the Pacific Northwest a very desirable region for economically sustainable expansion from a world perspective.

  11. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  12. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from the southwest plume area to Fourmile Branch between 25 to 35 percent. If this proposed action is undertaken and its effectiveness is demonstrated, it may become a component of the final action in the CAP. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR 1500-1508); and the DOE Regulations for Implementing NEPA (10 CFR 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact (FONSI) or prepare an environmental impact statement (EM).

  13. Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report

    SciTech Connect (OSTI)

    Doerge, D. H.; Miller, R. L.; Scotti, K. S.

    1986-05-01

    This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    100 DX Pump and Treat Facility 100 DX Pump and Treat Facility Groundwater Treatment Facility Interior Groundwater Treatment Facility Interior Groundwater Treatment Facility...

  15. Review of Nevada Site Office Criticality Safety Assessments at the Criticality Experiments Facility and Training Assembly for Criticality Safety and Appraisal of the Criticality Experiments Facility Startup Plan, October 2011

    Broader source: Energy.gov [DOE]

    This report provides the results of an independent oversight review of criticality safety assessment activities conducted by the Department of Energy's (DOE) Nevada Site Office

  16. Preliminary design for a maglev development facility

    SciTech Connect (OSTI)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M.; Zhang, Z.Y.; Myers, G.; Cvercko, A.; Williams, J.R.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  17. Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR0987P Uncertainty inInhibitingSciTech

  18. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    SciTech Connect (OSTI)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  19. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  20. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    SciTech Connect (OSTI)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  1. Evaluation of Phase II glass formulations for vitrification of Hanford Site low-level waste

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.R.; Schweiger, M.J. [and others

    1996-03-01

    A vendor glass formulation study was carried out at Pacific Northwest Laboratory (PNL), supporting the Phase I and Phase II melter vendor testing activities for Westinghouse Hanford Company. This study is built upon the LLW glass optimization effort that will be described in a separate report. For Phase I vendor melter testing, six glass formulations were developed at PNL and additional were developed by Phase I vendors. All the doses were characterized in terms of viscosity and chemical durability by the 7-day Product Consistency Test. Twelve Phase II glass formulations (see Tables 3.5 and 3.6) were developed to accommodate 2.5 wt% P{sub 2}O{sub 5} and 1.0 wt% S0{sub 3} without significant processing problems. These levels of P{sub 2}O{sub 5} and SO{sub 3} are expected to be the highest possible concentrations from Hanford Site LLW streams at 25 wt% waste loading in glass. The Phase H compositions formulated were 6 to 23 times more durable than the environmental assessment (EA) glass. They melt within the temperature range of 1160{degrees} to 1410{degrees}C to suit different melting technologies. The composition types include boron-free for volatilization sensitive melters; boron-containing glasses for coId-cap melters; Zr-containing, glasses for enhanced Iong-term durability; and Fe-containing glasses for reducing melting temperature and melt volatility while maintaining chemical durability.

  2. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    SciTech Connect (OSTI)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

  3. Model Evaluation Report for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Ruskauff, Greg; Marutzky, Sam

    2014-09-01

    Model evaluation focused solely on the PIN STRIPE and MILK SHAKE underground nuclear tests’ contaminant boundaries (CBs) because they had the largest extent, uncertainty, and potential consequences. The CAMBRIC radionuclide migration experiment also had a relatively large CB, but because it was constrained by transport data (notably Well UE-5n), there was little uncertainty, and radioactive decay reduced concentrations before much migration could occur. Each evaluation target and the associated data-collection activity were assessed in turn to determine whether the new data support, or demonstrate conservatism of, the CB forecasts. The modeling team—in this case, the same team that developed the Frenchman Flat geologic, source term, and groundwater flow and transport models—analyzed the new data and presented the results to a PER committee. Existing site understanding and its representation in numerical groundwater flow and transport models was evaluated in light of the new data and the ability to proceed to the CR stage of long-term monitoring and institutional control.

  4. Evaluation of Flygt Mixers for Application in Savannah River Site Tank Summary of Test Results from Phase A, B, and C Testing

    SciTech Connect (OSTI)

    BK Hatchell; H Gladki; JR Farmer; MA Johnson; MR Poirier; MR Powell; PO Rodwell

    1999-10-21

    Staff from the Savannah River Site (SRS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and ITT Flygt Corporation in Trumbull, Connecticut, are conducting a joint mixer testing program to evaluate the applicability of Flygt mixers to SRS Tank 19 waste retrieval and waste retrieval in other U.S. Department of Energy (DOE) tanks. This report provides the results of the Phase C Flygt mixer testing and summarizes the key findings from the Phase A and B tests. Phase C Flygt mixer testing used full-scale, Model 4680 Flygt mixers (37 kW, 51-cm propeller) installed in a fall-scale tank (25.9-m diameter) at SRS. Phase A testing used a 0.45-m tank and Flygt mixers with 7.8-cm diameter propellers. Phase B testing used Model 4640 Flygt mixers (3 kW, 37-cm propeller) installed in 1.8-m and 5.7-m tanks. Powell et al. (1999z4 1999b) provide detailed descriptions of the Phase A and B tests. In Phase C, stationary submerged jet mixers manufactured by ITT Flygt Corporation were tested in the 25.9-m diameter tank at the SRS TNX facility. The Model 4680 mixers used in Phase C have 37-kW (50-hp) electric motors that drive 51-cm (20-in.) diameter propellers at 860 rpm. Fluid velocity was measured at selected locations with as many as four Model 4680 mixers operating simultaneously in the 25.9-m tank, which was filled with water to selected levels. Phase C involved no solids suspension or sludge mobilization tests.

  5. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    SciTech Connect (OSTI)

    Jones, Roberrt C [DRI; Drollinger, Harold [DRI

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16a Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U16a Tunnel area be left in place in its current condition and that the U16a Tunnel historic landscape be included in the Nevada National Security Site monitoring program and monitored on a regular basis.

  6. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    SciTech Connect (OSTI)

    Jones, robert C; Drollinger, Harold; Bullard, Thomas F; Ashbaugh, Laurence J; Griffin, Wayne R

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16a Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U16a Tunnel area be left in place in its current condition and that the U16a Tunnel historic landscape be included in the Nevada National Security Site monitoring program and monitored on a regular basis.

  7. Regional Radiological Security Partnership in Southeast Asia – Increasing the Sustainability of Security Systems at the Site-Level by Using a Model Facility Approach

    SciTech Connect (OSTI)

    Chamberlain, Travis L.; Dickerson, Sarah; Ravenhill, Scott D.; Murray, Allan; Morris, Frederic A.; Herdes, Gregory A.

    2009-10-07

    In 2004, Australia, through the Australian Nuclear Science and Technology Organisation (ANSTO), created the Regional Security of Radioactive Sources (RSRS) project and partnered with the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI) and the International Atomic Energy Agency (IAEA) to form the Southeast Asian Regional Radiological Security Partnership (RRSP). The intent of the RRSP is to cooperate with countries in Southeast Asia to improve the security of their radioactive sources. This Southeast Asian Partnership supports objectives to improve the security of high risk radioactive sources by raising awareness of the need and developing national programs to protect and control such materials, improve the security of such materials, and recover and condition the materials no longer in use. The RRSP has utilized many tools to meet those objectives including: provision of physical protection upgrades, awareness training, physical protection training, regulatory development, locating and recovering orphan sources, and most recently - development of model security procedures at a model facility. This paper discusses the benefits of establishing a model facility, the methods employed by the RRSP, and three of the expected outcomes of the Model Facility approach. The first expected outcome is to increase compliance with source security guidance materials and national regulations by adding context to those materials, and illustrating their impact on a facility. Second, the effectiveness of each of the tools above is increased by making them part of an integrated system. Third, the methods used to develop the model procedures establishes a sustainable process that can ultimately be transferred to all facilities beyond the model. Overall, the RRSP has utilized the Model Facility approach as an important tool to increase the security of radioactive sources, and to position facilities and countries for the long term secure management of those sources.

  8. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect (OSTI)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  9. Manhattan Project Signature Facilities | Department of Energy

    Energy Savers [EERE]

    Reactor, the T Plant Chemical Separations Building, the V-Site Assembly BuildingGun Site, and the Trinity Site. Two of the facilities--the Metallurgical Laboratory at the...

  10. Evaluation of an interactive technique for creating site models from range data

    SciTech Connect (OSTI)

    Wood, F.W.; Hoff, W.A.; King, R. [Colorado School of Mines, Golden, CO (United States)

    1997-10-01

    Recognizing and locating objects is crucial to robotic operations in unstructured environments. To satisfy this need, we have developed an interactive system for creating object models from range data based on simulated a annealing and supervisory control This interactive modeling system maximizes the advantages of both manual and autonomous methods while minimizing their weaknesses. Therefore, it should outperform purely autonomous or manual techniques. We have designed and executed experiments for the purpose of evaluating the performance of our application as compared to an identical but purely manually driven application. These experiments confirmed the following hypotheses: (1) Interactive modeling should outperform purely manual modeling in total task time and fitting accuracy. (2) Operator effort decreases significantly when utilizing interactive modeling. (3) User expertise does not have a significant effect on interactive modeling task time. (4) Minimal human interaction will increase performance on {open_quotes}easy{close_quotes} scenes. Using 14 subjects and 8 synthetically generated scenes, we recorded the task times and pose data and, from them, used analysis of variance (ANOVA) to test a set of hypotheses.

  11. Options To Cleanup Site-wide Vadose Zone Contamination At The Hanford Site, WA, State

    SciTech Connect (OSTI)

    Goswami, D. [Ph.D, and John Price, Nuclear Waste Program, Washington State Department of Ecology, Richland, WA (United States)

    2008-07-01

    The U.S. Department of Energy (DOE) Hanford Site in south central Washington State lies along the Columbia River and is one of DOE's largest legacy waste management sites. Enormous radionuclide and chemical inventories exist below-ground. These include Resource Conservation and Recovery Act (RCRA) storage facilities where hazardous and radioactive contaminants were discharged and leaked to the soil surface and to the deep vadose zone and groundwater. The vadose zone is also contaminated from facilities regulated by the RCRA and Comprehensive Environmental Response Compensation and Liability Act (CERCLA) Act. Hanford now contains as much as 28,300 cubic meters of soil contaminated with radionuclides from liquid wastes released near processing facilities. The Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement (TPA) has set the completion of the cleanup of these sites by 2024. There are numerous technical and regulatory challenges to cleanup of the vadose zone at the Hanford site. This paper attempts to identify the categories of deep vadose zone problem and identifies a few possible regulatory options to clean up the site under the mix of state and federal regulatory authorities. There are four major categories of vadose contamination areas at the Hanford Site. The first is laterally extensive with intermediate depth (ground surface to about 45 meters depth) mostly related to high volume effluent discharge into cribs, ponds and ditches of designated CERCLA facilities. The second is dominated by laterally less extensive mostly related to leaks from RCRA tank farms. The later contamination is often commingled at depth with wastes from adjacent CERCLA facilities. The third category is from the high volume CERCLA facilities extending from the surface to more than 60 meters below ground. Contamination from the later category crosses the entire thickness of the vadose zone and reached groundwater. The fourth category is the lower volume waste sites. There are multiple management options to clean up the above four categories of vadose zones sites. The following are some of the options considered for detailed evaluation: - Maintain separate decision processes for each RCRA and CERCLA units/waste sites with a more accommodating schedule. - Create new vadose zone operable units with limited geographical boundaries regardless of site category/origin and make an integrated decision. - Expand the existing CERCLA groundwater operable units to include the deep vadose zone - Use a combination of the above. Each option has pros and cons and regulatory limitations. Detailed evaluation of these options is required to support a cost effective expedited cleanup. (authors)

  12. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  13. Independent Oversight Inspection, Savannah River Site- December 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Inspection of Reinforced Concrete Construction at the Savannah River Site Mixed Oxide Fuel Fabrication Facility

  14. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, August 1993--January 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M.; Hoffman, F.O.

    1994-03-01

    This project, ``Use of International Data Sets to Evaluate and Validate Pathway Assessment Models Applicable to Exposure and Dose Reconstruction at DOE Facilities,`` grew out of several activities being conducted by the Principal Investigator Dr. F Owen Hoffman. One activity was originally part of the Chernobyl Studies Project and began as Task 7.1D, ``Internal Dose From Direct Contamination of Terrestrial Food Sources.`` The objective of Task 7.1D was to (1) establish a collaborative US USSR effort to improve and validate our methods of forecasting doses and dose commitments from the direct contamination of food sources, and (2) perform experiments and validation studies to improve our ability to predict rapidly and accurately the long-term internal dose from the contamination of agricultural soil. The latter was to include the consideration of remedial measures to block contamination of food grown on contaminated soil. The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates the activity of Task 7.1D into a multinational effort to evaluate data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (BIOspheric MOdel Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (VAlidation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains.

  15. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

  16. Sandia Energy - Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing Test Site Operations & Maintenance Safety Test...

  17. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect (OSTI)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  18. Radiative cooling test facility and performance evaluation of 4-MIL aluminized polyvinyl fluoride and white-paint surfaces

    SciTech Connect (OSTI)

    Kruskopf, M.S.; Berdahl, P.; Martin, M.; Sakkal, F.; Sobolewski, M.

    1980-11-01

    A test facility designed to measure the amount of radiative cooling a specific material or assembly of materials will produce when exposed to the sky is described. Emphasis is placed upon assemblies which are specifically designed to produce radiative cooling and which therefore offer promise for the reduction of temperatures and/or humidities in occupied spaces. The hardware and software used to operate the facility are documented and the results of the first comprehensive experiments are presented. A microcomputer-based control/data acquisition system was employed to study the performance of two prototype radiator surfaces: 4-mil aluminized polyvinyl fluoride (PVF) and white painted surfaces set below polyethylene windscreens. The cooling rates for materials tested were determined and can be approximated by an equation (given). A computer model developed to simulate the cooling process is presented. (MCW)

  19. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Removes Nuclear Materials from Two Facilities to Reduce Site's Nuclear Footprint (Alpha 5 and 9720-38 No Longer Designated as Nuclear Facilities) | National Nuclear Security...

  20. Geoarchaeological investigation of natural formation processes to evaluate context of the clovis component at the Gault site (41BL323), Bell County, Texas 

    E-Print Network [OSTI]

    Alexander, Dawn Aileen Joyce

    2008-10-10

    OF NATURAL FORMATION PROCESSES TO EVALUATE CONTEXT OF THE CLOVIS COMPONENT AT THE GAULT SITE (41BL323), BELL COUNTY, TEXAS A Thesis by DAWN AILEEN JOYCE ALEXANDER Submitted to the Office of Graduate Studies of Texas A&M University... SITE (41BL323), BELL COUNTY, TEXAS A Thesis by DAWN AILEEN JOYCE ALEXANDER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF ARTS Approved by...

  1. Progress report and technical evaluation of the ISCR pilot test conducted at the former CCC/USDA grain storage facility in Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2009-01-14

    In October, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented the document Interim Measure Conceptual Design (Argonne 2007a) to the Kansas Department of Health and Environment, Bureau of Environmental Remediation (KDHE/BER), for a proposed non-emergency Interim Measure (IM) at the site of the former CCC/USDA grain storage facility in Centralia, Kansas (Figure 1.1). The IM was recommended to mitigate existing levels of carbon tetrachloride contamination identified in the vadose zone soils beneath the former facility and in the groundwater beneath and in the vicinity of the former facility, as well as to moderate or decrease the potential future concentrations of carbon tetrachloride in the groundwater. The Interim Measure Conceptual Design (Argonne 2007a) was developed in accordance with the KDHE/BER Policy No.BERRS-029, Policy and Scope of Work: Interim Measures (KDHE 1996). The hydrogeologic, geochemical, and contaminant distribution characteristics of the Centralia site, as identified by the CCC/USDA, factored into the development of the nonemergency IM proposal. These characteristics were summarized in the Interim Measure Conceptual Design (Argonne 2007a) and were discussed in detail in previous Argonne reports (Argonne 2002a, 2003, 2004, 2005a,b,c, 2006a,b, 2007b). The identified remedial goals of the proposed IM were as follows: (1) To reduce the existing concentrations of carbon tetrachloride in groundwater in three 'hot spot' areas identified at the site (at SB01, SB05, and SB12-MW02; Figure 1.2) to levels acceptable to the KDHE. (2) To reduce carbon tetrachloride concentrations in the soils near the location of former soil boring SB12 and existing monitoring well MW02 (Figure 1.2) to levels below the KDHE Tier 2 Risk-Based Screening Level (RBSL) of 200 {micro}g/kg for this contaminant. To address these goals, the potential application of an in situ chemical reduction (ISCR) treatment technology, employing the use of the EHC{reg_sign} treatment materials marketed by Adventus Americas, Inc. (Freeport, Illinois), was recommended. The EHC materials are proprietary mixtures of food-grade organic carbon and zero-valent iron that are injected into the subsurface as a slurry (EHC) or in dissolved form (EHC-A) and subsequently released slowly into the formation. The materials are designed to create highly reducing geochemical conditions in the vadose and saturated zones that foster both thermodynamic and biological reductive dechlorination of carbon tetrachloride.

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux...

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FFTF PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC Fast Flux Test Facility PRC...

  4. Comparative Informatics Analysis to Evaluate Site-Specific Protein Oxidation in Multidimensional LC-MS/MS Data

    SciTech Connect (OSTI)

    McClintock, Carlee; Parks, Jerry M; Bern, Marshall; Ghattyvenkatakrishna, Pavan K; Hettich, Robert {Bob} L

    2013-01-01

    Redox proteomics has yielded molecular insight into diseases of protein dysfunction attributable to oxidative stress, underscoring the need for robust detection of protein oxidation products. Additionally, oxidative protein surface mapping techniques utilize hydroxyl radicals to gain structural insight about solvent exposure. Interpretation of tandem mass spectral data is a critical challenge for such investigations, because reactive oxygen species target a wide breadth of amino acids. Additionally, oxidized peptides may be generated in a wide range of abundances since the reactivity of hydroxyl radicals with different amino acids spans three orders of magnitude. Taken together, these attributes of oxidative footprinting pose both experimental and computational challenges to detecting oxidized peptides that are naturally less abundant than their unoxidized counterparts. In this study, three model proteins were oxidized electrochemically and analyzed at both the intact protein and peptide levels. A multidimensional chromatographic strategy was utilized to expand the dynamic range of oxidized peptides measurements. Peptide mass spectral data were searched by the hybrid software packages Inspect and Byonic, which incorporate de novo elements of spectral interpretation into a database search. This dynamic search capacity accommodates the challenge of searching for more than forty oxidative mass shifts that can occur in a staggering variety of possible combinatorial occurrences. A prevailing set of oxidized residues was identified with this comparative approach, and evaluation of these sites was informed by solvent accessible surface area gleaned through molecular dynamics simulations. Along with increased levels of oxidation around highly reactive hotspot sites as expected, the enhanced sensitivity of these measurements uncovered a surprising level of oxidation on less reactive residues.

  5. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  6. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  7. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  8. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6

    SciTech Connect (OSTI)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Facility Aerial Photo of 200 West Groundwater Treatment Facility Drilling a Well Drilling a Well 200 West Facility Under Construction 200 West Facility Under...

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pump and Treat Operator Pump and Treat Operator 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater Facility 100-HX Groundwater...

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gold Construction Material Reuse Construction Material Reuse Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford...

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    46.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LEED Construction Material Reuse Construction Material Reuse Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford...

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3s.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Facility Construction Material Reuse Construction Material Reuse Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold...