Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Washington State Energy Facility Site Evaluation Council | Open Energy  

Open Energy Info (EERE)

Energy Facility Site Evaluation Council Energy Facility Site Evaluation Council Jump to: navigation, search Name Washington State Energy Facility Site Evaluation Council Short Name EFSEC Place Olympia, Washington Zip 98504 Website http://www.efsec.wa.gov/defaul References EFSEC: Energy Facility Siting Evaluation Council[1] This article is a stub. You can help OpenEI by expanding it. The Washington State Energy Facility Siting Council (EFSEC) oversees the siting process for major energy facilities in the State of Washington. EFSEC coordinates all evaluation and licensing steps for siting certain energy facilities. References ↑ "EFSEC: Energy Facility Siting Evaluation Council" Retrieved from "http://en.openei.org/w/index.php?title=Washington_State_Energy_Facility_Site_Evaluation_Council&oldid=694902

2

Energy Facility Evaluation, Siting, Construction and Operation (New  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Evaluation, Siting, Construction and Operation (New Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Hampshire Program Type Siting and Permitting Provider NH Department of Environmental Services, Public Information and Permitting Unit The statute establishes a procedure for the review, approval, monitoring,

3

Risk management study for the retired Hanford Site facilities: Qualitative risk evaluation for the retired Hanford Site facilities. Volume 3  

SciTech Connect (OSTI)

This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.

Coles, G.A.; Shultz, M.V.; Taylor, W.E.

1993-09-01T23:59:59.000Z

4

Risk management study for the retired Hanford Site facilities. Volume 2, Risk evaluation work procedure for the retired Hanford Site facilities  

SciTech Connect (OSTI)

Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished.

Coles, G.A.; Shultz, M.V.; Taylor, W.E.

1993-04-01T23:59:59.000Z

5

Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base)  

SciTech Connect (OSTI)

The purpose of this report is to formally document the assessment activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that address the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program for the cleanup of inactive waste sites. The DOE orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986. This methodology includes: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the Hazard Ranking System methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 13 refs.

Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.; Stenner, R.D.; Cramer, K.H.; Higley, K.A.

1988-10-01T23:59:59.000Z

6

Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site  

SciTech Connect (OSTI)

The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

2011-03-07T23:59:59.000Z

7

Site maps and facilities listings  

SciTech Connect (OSTI)

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

8

Nevada Test Site Sensor Test Facility  

SciTech Connect (OSTI)

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01T23:59:59.000Z

9

Independent Oversight Review, Savannah River Site Tritium Facilities -  

Broader source: Energy.gov (indexed) [DOE]

Tritium Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Savannah River Site Tritium Facilities The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of preparedness for severe natural phenomena events (NPEs) at the National Nuclear Security Administration (NNSA) Savannah River Site's (SRS's) Tritium Facilities (TF). The HSS Office of Safety and Emergency Management Evaluations performed this review to evaluate the processes for identifying emergency response capabilities and maintaining them in a state of readiness in case of a severe NPE.

10

224-T Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T Facility 242-A Evaporator 300 Area 324...

11

Cold Test Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects & Facilities > Cold Test Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T...

12

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

13

Medical Testing and Surveillance Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Site Wide Programs > Beryllium Program > Medical Testing and Surveillance Facilities About Us Beryllium Program Beryllium Program Points of Contact Beryllium...

14

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

15

Monticello Mill site Federal Facility Agreement, December 22, 1988 Summary  

Broader source: Energy.gov (indexed) [DOE]

Monticello Monticello Agreement Name Monticello (Utah) Site: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 State Utah Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; US EPA; State of Utah Department of Environmental Health Date 12/22/1988 SCOPE * Identify Interim Remedial Action (IRA) alternatives, if any, which are appropriate at the Site prior to the implementation of final remedial actions for the Site. * Evaluate all past investigative and response actions taken at the Site and documented

16

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

17

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

18

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Energy Savers [EERE]

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

19

Site and facility transportation services planning documents  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

1990-01-01T23:59:59.000Z

20

Livermore Site Office Facility Representative Program Self-Assessment  

Broader source: Energy.gov (indexed) [DOE]

ARPT-LSO-2011-001 ARPT-LSO-2011-001 Site: Livermore Site Office Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Livermore Site Office Facility Representative Program Self-Assessment Dates of Activity 01/24/2011 - 01/28/2011 Report Preparer Robert Freeman Activity Description/Purpose: This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of Suitability of Selected Set of Department of Defense Military Bases and Department of Energy Facilities for Siting a Small Modular Reactor  

SciTech Connect (OSTI)

This report summarizes the approach that ORNL developed for screening a sample set of US Department of Defense (DOD) military base sites and DOE sites for possible powering with an SMR; the methodology employed, including spatial modeling; and initial results for several sample sites. The objective in conducting this type of siting evaluation is demonstrate the capability to characterize specific DOD and DOE sites to identify any particular issues associated with powering the sites with an SMR using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

Poore III, Willis P [ORNL; Belles, Randy [ORNL; Mays, Gary T [ORNL; Omitaomu, Olufemi A [ORNL

2013-03-01T23:59:59.000Z

22

Regional analysis of energy facility siting  

SciTech Connect (OSTI)

This paper has examined some of the regional environmental parameters of energy facility siting, with emphasis on air quality impacts. An example of a siting optimization study was presented, and it was shown how difficult it presently is to specify an environmental objective function that is universally applicable. The importance of regional background effects was discussed, and long-range transport models were used to analyze the relative importance of local and long-range impacts.

Lipfert, F W; Meier, P M; Kleinman, L I

1980-01-01T23:59:59.000Z

23

Independent Oversight Review, Hanford Site K-West Annex Facility...  

Broader source: Energy.gov (indexed) [DOE]

K-West Annex Facility - April 2014 Independent Oversight Review, Hanford Site K-West Annex Facility - April 2014 April 2014 Review of the Hanford Site K-West Annex Facility...

24

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

25

Site & Facility Restoration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Restoration Restoration Site & Facility Restoration Deactivation & Decommissioning (D&D) Deactivation and Decommissioning (D&D) is the process of taking an active/excess/abandoned facility to a final disposition end state. Because of residual radioactivity, other hazardous constituents, and the physical condition of EM's facilities, D&D presents unique hazards that must be addressed from a safety, programmatic, environmental, and technological standpoint. Read more Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic

26

National Ignition Facility Project Site Safety Program  

SciTech Connect (OSTI)

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

27

Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive grout slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.

NONE

1996-08-01T23:59:59.000Z

28

Chapter 2 Transmission Facility Siting, Route Segments and Action...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, such as the proposed I-5 Project. It describes the general factors that BPA considers in siting potential new facilities. It then discusses how potential...

29

Cold Vacuum Drying Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Facility U Plant Vitrification Plant Waste Encapsulation and Storage Facility Waste Receiving and Processing Facility Waste Sampling and Characterization Facility Waste...

30

LIQUEFACTION EVALUATIONS AT DOE SITES  

Broader source: Energy.gov [DOE]

Liquefaction Evaluations at DOE Sites M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011

31

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

32

Environmental Restoration Disposal Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

33

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

34

GRR/Section 7-WA-a - Energy Facility Siting Process | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 7-WA-a - Energy Facility Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-WA-a - Energy Facility Siting Process 7-WA-a - Energy Facility Siting Process (1).pdf Click to View Fullscreen Contact Agencies Washington State Energy Facility Site Evaluation Council Regulations & Policies RCW 80.50.60(1) WAC 463-60 RCW 80.50.090(2) WAC 463-30-270 WAC 463-30-320 Triggers None specified Under RCW 80.50.60(1) a developer may not begin construction of a new energy facility site until they obtain Energy Facility Siting certification

35

Review of the Savannah River Site Tritium Facilities Implementation Verification Review Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Site Tritium Facilities Savannah River Site Tritium Facilities Implementation Verification Review Processes June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background ........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 1

36

Review of the Savannah River Site Tritium Facilities Implementation Verification Review Processes  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Tritium Facilities Savannah River Site Tritium Facilities Implementation Verification Review Processes June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background ........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 1

37

Method for siting detectors within a facility  

DOE Patents [OSTI]

A method, system and article of manufacture of siting one or more detectors in a facility represented with zones are provided. Signals S.sub.i,j representing an effect in zone j in response to a release of contaminant in zone i for one or more flow conditions are provided. A candidate architecture has one or more candidate zones. A limiting case signal is determined for each flow condition for multiple candidate architectures. The limiting case signal is a smallest system signal of multiple system signals associated with a release in a zone. Each system signal is a maximum one of the signals representing the effect in the candidate zones from the release in one zone for the flow condition. For each candidate architecture, a robust limiting case signal is determined based on a minimum of the limiting case signals. One candidate architecture is selected based on the robust limiting case signals.

Gleason, Nathaniel Jeremy Meyer (Livermore, CA)

2007-12-11T23:59:59.000Z

38

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

39

Idaho waste treatment facility startup testing suspended to evaluate system  

Broader source: Energy.gov (indexed) [DOE]

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

40

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Broader source: Energy.gov (indexed) [DOE]

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Guidelines for Applicants for Energy Facility Site Certificates...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guidelines for Applicants for Energy Facility Site CertificatesPermittingRegulatory...

42

Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-01T23:59:59.000Z

43

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Broader source: Energy.gov (indexed) [DOE]

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

44

Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Visit at the LANL CMRR Project Facility Construction Site, November 1-5, 2010  

Broader source: Energy.gov (indexed) [DOE]

Office of Independent Oversight's Office of Environment, Safety and Health Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Visit at the LANL CMRR Project Facility Construction Site, November 1-5, 2010 The U. S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 1-5, 2010, at the Chemical and Metallurgy Research Replacement (CMRR) project site at the Department of Energy Los Alamos National Laboratory (LANL). The purpose of the visit was to determine ways in which HSS would be able to carry out its independent oversight responsibilities with respect to this project in a method that encourages integration with DOE-LANL. The orientation visit was conducted by the HSS LANL Site Lead and an HSS contractor.

45

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

46

Monticello Mill site Federal Facility Agreement, December 22, 1988  

Broader source: Energy.gov (indexed) [DOE]

: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility AgreemPage 1 of 36 : Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility AgreemPage 1 of 36 EM Home | Regulatory Compliance | Environmental Compliance Agreements Monticello (Utah) Site: Monticello Vicinity Properties NPL Site and Monticello Millsite Federal Facility Agreement Pursuant to CERCLA Section 120, December 22, 1988 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VIII and THE STATE OF UTAH DEPARTMENT OF HEALTH and THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER: UNITED STATES DEPARTMENT OF ENERGY MONTICELLO (UTAH) SITE: MONTICELLO VICINITY PROPERTIES NPL SITE and MONTICELLO MILLSITE Federal Facility Agreement pursuant to Section 120 of the Comprehensive Environmental Response, Compensation, and ) FEDERAL FACILITY ) AGREEMENT PURSUANT TO

47

Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition  

SciTech Connect (OSTI)

A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

1995-12-31T23:59:59.000Z

48

Liquefaction Evaluations at DOE Sites  

Broader source: Energy.gov (indexed) [DOE]

LIQUEFACTION EVALUATIONS AT LIQUEFACTION EVALUATIONS AT DOE SITES M. Lewis, M. McHood, R. Williams, B. Gutierrez October 25, 2011 Agenda  Background  Purpose and Objective  Liquefaction Methods  Site Evaluations  Aging  Conclusions 2 Background 3 Liquefaction at DOE Sites Background  Liquefaction evaluations are required at all DOE sites  Methods have evolved over the years, but there is currently only one consensus methodology;  Youd et al., 2001  Two other methods have emerged in the last few years;  Cetin et al., 2004  Idriss & Boulanger, 2008 4 Background  Youd et al., was the result of two workshops (NCEER/NSF) held in the late 1990s, culminating in a NCEER report and a ASCE publication in 2001. The method is widely used.  Cetin et al., was the result of several doctoral

49

Water Pollution Control Plant Solar Site Evaluation: San Jos  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

50

Story Road Landfill Solar Site Evaluation: San Jose  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

51

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Broader source: Energy.gov (indexed) [DOE]

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

52

City of Gainesville- Public Facilities Siting  

Broader source: Energy.gov [DOE]

The City of Gainesville requires the design process for public facilities within city limits to take into consideration current and future solar access. In addition, regulated trees may be removed...

53

Savannah River Sites H Canyon Work Ensures Future Missions for Facility  

Broader source: Energy.gov [DOE]

EM and its primary contractor at the Savannah River Site (SRS) safely completed 16 facility modifications three months ahead of schedule in support of the continued operation and sustainability of the H Canyon facility.

54

Montana Major Facility Siting Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Major Facility Siting Act (Montana) Montana Major Facility Siting Act (Montana) Montana Major Facility Siting Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The Montana Major Facility Siting Act aims to protect the environment from

55

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Broader source: Energy.gov (indexed) [DOE]

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

56

Assessor Training Evaluating OnSite Reports  

E-Print Network [OSTI]

NVLAP Assessor Training Evaluating OnSite Reports and Corrective Actions #12;Assessor Training 2009Site Report form ·NVLAP OnSite Assessment Review form #12;Assessor Training 2009: Evaluating OnSite Reports · Nonconformities cited #12;Assessor Training 2009: Evaluating OnSite Reports & Corrective Actions 44 Evaluating

57

MAINTENANCE Assessment Plan, NNSA/Nevada Site Office Facility  

Broader source: Energy.gov (indexed) [DOE]

MAINTENANCE Assessment Plan, NNSA/Nevada Site Office Facility MAINTENANCE Assessment Plan, NNSA/Nevada Site Office Facility Representative Division MAINTENANCE Assessment Plan, NNSA/Nevada Site Office Facility Representative Division An effective facilities maintenance program should optimize the material condition of components and equipment to support safe and effective operations and ensure the peak performance and reliability of those systems and equipment important to operations. The program, facility or operation has a Maintenance Implementation Plan (MIP), or equivalent document, which defines and documents the approach to conduct of maintenance .Employees shall be encouraged to become involved in the identification and control of hazards in the workplace. (DOE O 440.1A CRD) Workers shall have the right, without reprisal, to accompany DOE worker

58

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

59

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Broader source: Energy.gov (indexed) [DOE]

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

60

Intra-site Secure Transport Vehicle test and evaluation  

SciTech Connect (OSTI)

In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ``intra-site``. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation.

Scott, S.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DNAPL site evaluation. Research report  

SciTech Connect (OSTI)

Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including: (a) the risk of inducing DNAPL migration by drilling, pumping or other field activities; (b) the use of special sampling and measurement methods to assess DNAPL presence and migration potential; and (c) development of a cost-effective characterization strategy that accounts for DNAPL chemical transport processes, the risk of inducing DNAPL movement during field work, and the data required to select and implement a realistic remedy. The manual provides information to address these issues and describes and evaluates activities that can be used to determine the presence, fate and transport of subsurface DNAPL contamination.

Cohen, R.M.; Mercer, J.W.

1993-02-01T23:59:59.000Z

62

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Broader source: Energy.gov (indexed) [DOE]

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

63

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

64

Equipment and Piping Labeling Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

EQUIPMENT AND PIPING LABELING EQUIPMENT AND PIPING LABELING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as opposed to tracing its schematic, and to reduce personnel exposure to radiation and hazardous materials. This assessment provides a basis for evaluating the effectiveness of the contractor's program for labeling equipment and piping and for establishing compliance

65

Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1  

SciTech Connect (OSTI)

This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan.

NONE

1994-08-31T23:59:59.000Z

66

Environmental Innovation Center Solar Site Evaluation: San Jos  

Broader source: Energy.gov [DOE]

This report describes the findings of a solar photovoltaic (PV) site evaluation conducted at the San Jose Environmental Innovation Center (EIC) in the City of San Jose, California. This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

67

Savannah River Site Federal Facility Agreement, January 15, 1993 Summary  

Broader source: Energy.gov (indexed) [DOE]

Site Site Agreement Name Savannah River Site Federal Facility Agreement Under Section 120 of CERCLA, January 15, 1993 State South Carolina Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Ensure that the environmental impacts associated with past and present activities at the Savannah River Site are thoroughly investigated and that appropriate response actions are taken to protect the public health, welfare, and the environment. Parties DOE; US EPA; South Carolina Department of Health and Environmental Control (SCDHEC) Date 1/15/1993 SCOPE * Ensure that the environmental impacts associated with past and present activities at the Savannah River Site are thoroughly investigated and that appropriate response actions are taken to protect the public health, welfare, and the environment.

68

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

69

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

70

Oregon Energy Facility Siting Council | Open Energy Information  

Open Energy Info (EERE)

Energy Facility Siting Council Energy Facility Siting Council Jump to: navigation, search Name Oregon Energy Facility Siting Council Address 625 Marion St. NE Place Salem, Oregon Zip 97301-3737 Year founded 1975 Phone number 503-378-4040 Website http://www.oregon.gov/energy/S Coordinates 44.943987°, -123.032543° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.943987,"lon":-123.032543,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

STI Products Produced by Site/Facility Management Contracts | Scientific  

Office of Scientific and Technical Information (OSTI)

Site/Facility Management Contracts Site/Facility Management Contracts Print page Print page Email page Email page In general, site/facility management contracts provide for Government ownership and unlimited rights for the Government for all technical data first produced in the performance of the contract. One exception to the Government's unlimited rights is data for which the contractor has asserted copyright. For scientific and technical articles submitted to and published in journals, symposia proceedings, or similar works, the contractor can assert copyright without prior permission of DOE, but the Government is granted a nonexclusive, paid-up, irrevocable worldwide license to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government (broad license). The

72

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

73

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- August 2013  

Broader source: Energy.gov [DOE]

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development.

74

Independent Oversight Review, Savannah River Site Salt Waste Processing Facility- April 2014  

Broader source: Energy.gov [DOE]

Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems

75

Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites  

SciTech Connect (OSTI)

The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

76

Review of the Facility Representative Program at the Idaho Site, March 2013  

Broader source: Energy.gov (indexed) [DOE]

of the Facility Representative Program at the Idaho Site March 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................. ! 2.0 Scope ..................................................................................................................................................... ! 3.0 Background ........................................................................................................................................... 1 4.0 Results ..................................................................................................................................................

77

Review of the Facility Representative Program at the Idaho Site, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Facility Representative Program at the Idaho Site March 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................. ! 2.0 Scope ..................................................................................................................................................... ! 3.0 Background ........................................................................................................................................... 1 4.0 Results ..................................................................................................................................................

78

EIS-0089: PUREX Plant and Uranium Oxide Plant Facilities, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of resumption of operations of the PUREX/Uranium Oxide facilities at the Hanford Site to produce plutonium and other special nuclear materials for national defense needs.

79

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY  

SciTech Connect (OSTI)

This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

C.J. Byrne

2000-07-25T23:59:59.000Z

80

Guidelines for Evaluation of Nuclear Facility Training Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

1995-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

82

Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities  

SciTech Connect (OSTI)

This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

1986-01-01T23:59:59.000Z

83

GRR/Section 7-MT-a - Energy Facility Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-MT-a - Energy Facility Siting GRR/Section 7-MT-a - Energy Facility Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-MT-a - Energy Facility Siting 07MTAEnergyFacilitySiting (6).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Major Facility Siting Act ARM Title 17 Triggers None specified Click "Edit With Form" above to add content 07MTAEnergyFacilitySiting (6).pdf 07MTAEnergyFacilitySiting (6).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Montana Major Facility Siting Act governs the siting of energy facilities in Montana. 7-MT-a.1 to 7-MT-a.2 - Does the Power Plant Have a Production Capacity of

84

Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease  

Broader source: Energy.gov [DOE]

This document provides a listing of medical facilities within the United States with experience in evaluating Chronic Beryllium Disease.

85

Home I Qoehannn Site Facility Cleanup yroject Histow Cleanun  

Office of Legacy Management (LM)

Home Home I Qoehannn Site Facility Cleanup yroject Histow Cleanun Progress Media PowerPoint Robotics Gallem Contacts A view of the Permagrain building from the e Located in northwestern Clearfield County, Quehanna many businesses that have used radiation in their man facility contains residual radioactivity left over from \I for the federal government. Under an approved plan by the federal Nuclear Reeul: responsible regulatory agency, the Commonwealth be; The site now includes operations for PermaGrain Prod manufacturer of specialty wood tile and flooring. 1 Home 1 Histow 1 Cleanun 1 Progress I ( Media 1 PowerPoint I Robotics ( Gallerv 1 Contacts ( Contact Webmaster Last Modified ( I ofl 3s been the location of lcturing processes. The .k conducted decades ag

86

Former Workers Medical Facilities with Experience Evaluating Chronic  

Broader source: Energy.gov (indexed) [DOE]

Former Workers Medical Facilities with Experience Evaluating Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April 2011 This document provides a listing of medical facilities within the United States with experience in evaluating Chronic Beryllium Disease (CBD). Because the medical community at large is not experienced in the evaluation and treatment of individuals with CBD, this list is offered to individuals in the Former Worker Medical Screening Program who have received an abnormal Beryllium Lymphocyte Proliferation Test and may need further medical monitoring for CBD. Former Worker Medical Facilities with Experience Evaluating Chronic Beryllium Disease More Documents & Publications

87

Facility siting and compensation: Lessons from the Massachusetts experience  

SciTech Connect (OSTI)

In 1980, Massachusetts enacted a unique and comprehensive process for siting hazardous waste facilities. No facility has been constructed or approved since then, however, so it seems appropriate to ask whether the process was fundamentally flawed in concept, implemented imperfectly, or whether some other lesson can be drawn. The authors of this study were closely involved with the legislation at its inception, and Sanderson has stayed involved with it professionally, most recently as manager of the Clean Harbors project. In this essay they combine analysis and memoir to examine the reasons why the Massachusetts siting process has not yet delivered a facility. They argue that the critical factors were both specific design defects of the law itself and general characteristics of the Massachusetts public decisionmaking process. The Massachusetts negotiated compensation model of facility siting is so complicated in practice, and so contingent on local factors, that no one can judge confidently whether it is on the whole hopeless, flawed but correctable, or merely unlucky. We believe its principal liability is that it offers two fatal temptations: to public officials, it appears to offer an alternative to taking leadership risks; and to frightened citizens, it appears to offer a way to avoid, rather than confront and control, physical risks and anxiety. Specific features of the process - its complexity, the inherent delay, the unfortunate design of the siting council - might be corrected with good effect. But we see larger and more pervasive forces as the real obstacle. The NIMBY problem is, at heart, symptomatic of the pessimistic expectations; raising those expectations is not a task that can be accomplished by any legislated decision process. 4 refs., 1 tabs.

O'Hare, M. (Univ. of California, Berkeley (United States)); Sanderson, D. (EIP Associates, San Francisco, CA (United States))

1993-01-01T23:59:59.000Z

88

Evaluating Solar Energy Sites | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the electric and heating loads at a site Size, condition, and efficiency of existing heating systems. After evaluation the site, the next step in the planning process is to...

89

File:07TXAEnergyFacilitySiting.pdf | Open Energy Information  

Open Energy Info (EERE)

TXAEnergyFacilitySiting.pdf TXAEnergyFacilitySiting.pdf Jump to: navigation, search File File history File usage Metadata File:07TXAEnergyFacilitySiting.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 30 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 08:25, 29 July 2013 Thumbnail for version as of 08:25, 29 July 2013 1,275 × 1,650 (30 KB) Abergfel (Talk | contribs) 11:08, 10 June 2013 Thumbnail for version as of 11:08, 10 June 2013 1,275 × 1,650 (30 KB) Apalazzo (Talk | contribs) 11:06, 30 April 2013 Thumbnail for version as of 11:06, 30 April 2013 1,275 × 1,650 (49 KB) Dfitzger (Talk | contribs)

90

Descriptions of representative contaminated sites and facilities within the DOE complex  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a {open_quotes}No Action{close_quotes} alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory`s (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each.

Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D. [Pacific Northwest Lab., Richland, WA (United States); Oates, L. [ICF, Richland, WA (United States)] [and others

1994-10-01T23:59:59.000Z

91

DOE - Office of Legacy Management -- Geothermal Test Facility...  

Office of Legacy Management (LM)

Geothermal Test Facility - 001 FUSRAP Considered Sites Site: Geothermal Test Facility (001) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

92

Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility  

Broader source: Energy.gov (indexed) [DOE]

of5 of5 U.S. Department of Energy Subject: Review of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility - Inspection Criteria, Approach, and Line:~ HS: Rev: Eff. Date: HSS CRAD 45-57 0 January 31,2013 Office of Safety and Emergency Management Evaluations Acting Direc or, Office of Sifety and Emergency Management Evaluations Date: January 31, 2013 Criteria Review and Approach Document LL.v. ~·M Criteria Lead:ife\riew of Safety Basis Development for the Savannah River Site Salt Waste Processing Facility Page 1 of 5 Date: January 31, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the

93

Microsoft Word - FINAL 7-12-10 Site Visit Report - LANL Radioactive Liquid Waste Facility FCA.docx  

Broader source: Energy.gov (indexed) [DOE]

Site Visit Report Facility Centered Assessment of the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility - June 2010 This site visit report documents the results of the Office of Health, Safety and Security's (HSS) review of the Facility Centered Assessment (FCA) of the Los Alamos National Laboratory (LANL) Radioactive Liquid Waste Treatment Facility (RLW). This review, conducted June 9-25, 2010, was sponsored by the U.S. Department of Energy (DOE) Los Alamos Site Office (LASO) and LANL, and conducted jointly by HSS, LASO, and LANL staff. The Office of Environment, Safety and Health Evaluations was the overall lead organization for evaluation of the FCA process with the participation of the LASO Facility Representative assigned to RLW.

94

Review of the Implementation Verification Rev iew Processes at the Savannah River Site Environmental Management Nuclear Facilities, September 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Implementation Verification Review Implementation Verification Review Processes at the Savannah River Site Environmental Management Nuclear Facilities May 2011 September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Review of the Implementation Verification Review Processes at the Savannah River Site Environmental Management Nuclear Facilities Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background ........................................................................................................................................... 1

95

Review of the Implementation Verification Rev iew Processes at the Savannah River Site Environmental Management Nuclear Facilities, September 2011  

Broader source: Energy.gov (indexed) [DOE]

Implementation Verification Review Implementation Verification Review Processes at the Savannah River Site Environmental Management Nuclear Facilities May 2011 September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Review of the Implementation Verification Review Processes at the Savannah River Site Environmental Management Nuclear Facilities Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background ........................................................................................................................................... 1

96

The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

NONE

1998-08-01T23:59:59.000Z

97

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov [DOE]

Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

98

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

99

Review of the Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping and Pipe Supports, September 2012  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site, Salt Waste Processing Savannah River Site, Salt Waste Processing Facility, Construction Quality of Piping & Pipe Supports September 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

100

Medical Facilities With Experience Evaluating CBD  

Broader source: Energy.gov (indexed) [DOE]

/25/11 /25/11 Medical Facilities With Experience Evaluating Chronic Beryllium Disease Cleveland Clinic Foundation Raid Dweik, M.D., FACP, F.C.C.P. Pulmonary and Critical Care Medicine 9500 Euclid Avenue Cleveland, OH 44195 Contact: Jessica Phone: 216-445-5763 East Tennessee Pulmonary Associates R. Hal Hughes, M.D. East Tennessee Pulmonary Associates 800 Oak Ridge Turnpike Oak Ridge, TN 37830-9657 Phone: 865-483-3594 Philip Harber, M.D. 7230 Medical Center Drive, Ste 300 West Hills, CA 91307 Contact: Samantha Phone: 310-433-5342 Harborview Medical Center University of Washington Jordan Firestone, M.D.; Victor VanHee, M.D.; Szerre Vedal, M.D.; David Bonauto, M.D.; or June Spector, M.D. Occupational & Environmental Medicine Program Box 359739

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Weldon Spring Site Federal Facility Agreement UNITED STATES ENVIRONMENTAL PROTECTION AGENCY  

Office of Legacy Management (LM)

Site Site Federal Facility Agreement UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VII UNITED STATES DEPARTMENT OF ENERGY MISSOURI DEPARTMENT OF NATURAL RESOURCES IN THE MATTER OF: The United States Department of Energy's Weldon Spring Site, St. Charles, Missouri Docket No. CERCLA-07-2006-0161 FEDERAL FACILITY AGREEMENT FOR THE WELDON SPRING SITE Weldon Spring Site Federal Facility Agreement i TABLE OF CONTENTS I. PRELIMINARY STATEMENT.............................................................................................. 1 II. JURISDICTION ...................................................................................................................... 2 III. PARTIES BOUND .................................................................................................................

102

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

103

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

SciTech Connect (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

104

Voluntary Protection Program On-site Evaluations | Department...  

Broader source: Energy.gov (indexed) [DOE]

Star recognition. September 14, 2012 Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - September 2012 Evaluation to determine whether Facility...

105

GRR/Section 7-HI-b - Renewable Energy Facility Siting Process | Open Energy  

Open Energy Info (EERE)

7-HI-b - Renewable Energy Facility Siting Process 7-HI-b - Renewable Energy Facility Siting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-HI-b - Renewable Energy Facility Siting Process 07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Business, Economic Development, and Tourism Regulations & Policies Hawaii Revised Statutes 201N Hawaii Administrative Rules Title 15, Chapter 36 Triggers None specified Click "Edit With Form" above to add content 07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf 07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf 07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Error creating thumbnail: Page number not in range.

106

Planning Tool for Strategic Evaluation of Facility Plans - 13570  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)] [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

2013-07-01T23:59:59.000Z

107

Evaluating Sites for Industrial Cogeneration in Chicago  

E-Print Network [OSTI]

and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

Fowler, G. L.; Baugher, A. H.

1982-01-01T23:59:59.000Z

108

Preliminary site studies for critical facilities using geotechnical units derived from engineering geologic analyses  

E-Print Network [OSTI]

be r enamed as the same unit. 12) Using the geotechnical units to define the site's character, determine the most economical and desirable location for the facility within each site, and recommend at least two sites for final consideration... be r enamed as the same unit. 12) Using the geotechnical units to define the site's character, determine the most economical and desirable location for the facility within each site, and recommend at least two sites for final consideration...

Conover, Dale Everette

2012-06-07T23:59:59.000Z

109

DOE - Office of Legacy Management -- Piqua Nuclear Power Facility...  

Office of Legacy Management (LM)

Piqua Nuclear Power Facility - OH 08 FUSRAP Considered Sites Site: Piqua Nuclear Power Facility (OH.08 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

110

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

Paducah DUF Paducah DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Paducah, Kentucky, Site Vicinity Summary S-18 Paducah DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Paducah Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Paducah DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Paducah Conversion Facility Summary S-21 Paducah DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Paducah Summary S-28 Paducah DUF 6 Conversion Final EIS FIGURE S-6 Areas of Potential Impact Evaluated for Each Alternative Alternatives 2-7 Paducah DUF 6 Conversion Final EIS

111

Critical Protection Item classification for a waste processing facility at Savannah River Site  

SciTech Connect (OSTI)

This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Garrett, R.J. [ABB Government Services, Aiken, SC (United States)

1993-10-01T23:59:59.000Z

112

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

113

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of compliance conditions and activities Discussion of the facilitys environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

114

Determination of DCGL for Site Closure of Nuclear Facility  

SciTech Connect (OSTI)

To measure the degree of radioactive contamination of industrial facilities using depleted uranium as catalysts, and to release the site on this basis, RESRAD 6.21 was used to radiological impact assessment. Samples were taken from 20 points. Among the 20 sampling points, the highest point artificially contaminated (upper and lower part of point 16) was selected, and radiological impact was assessed and assessment and DCGL (Derived concentration guideline level) was computed. As a result, individual doses by nuclide were U-234: 4.162E-03 mSv/yr, U-235: 8.762E-04 mSv/yr, U-238: 2.204E-02 mSv/yr. In addition, the domestic dose standard relating to self-disposal and IAEA TECDOC-855 Clearance levels define the individual dose as 10 {mu}Sv. On this basis DCGL (Derived concentration guideline level) was computed, and it was 6.35E-02 Bq/g for U-238. (authors)

Kim, J.; Shin, S.; Whang, J. [Kyung Hee Univ., Dept. of Nuclear Engineering (Korea, Republic of)

2007-07-01T23:59:59.000Z

115

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect (OSTI)

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

116

Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities  

Broader source: Energy.gov [DOE]

Guidelines and criteria describe meeting requirements within Section 432 of the Energy Independence and Security Act of 2007 (EISA 2007), including defining facilities covered by the provision, designating facility energy managers to ensure compliance, and conducting comprehensive energy and water evaluations.

117

I.C. 61-17 - Siting of Certain Electrical Transmission Facilities...  

Open Energy Info (EERE)

7 - Siting of Certain Electrical Transmission Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 61-17 - Siting of...

118

RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)  

SciTech Connect (OSTI)

This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

Palmer, E.

1998-10-02T23:59:59.000Z

119

Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development, August 2013  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development May 2011 August 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose.................................................................................................................................................... 1 2.0 Background ............................................................................................................................................. 1 3.0 Scope and Methodology ......................................................................................................................... 2 4.0 Results .................................................................................................................................................... 3

120

Cost-Efficient Work Rids Paducah Site of Old Facilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cost-Efficient Work Rids Paducah Site of Old Facilities Cost-Efficient Work Rids Paducah Site of Old Facilities Cost-Efficient Work Rids Paducah Site of Old Facilities April 25, 2012 - 12:00pm Addthis Old trailers that had sat for decades in the southwestern part of the Paducah site were cut up and placed in containers so that the debris could be placed in the site’s industrial landfill. Old trailers that had sat for decades in the southwestern part of the Paducah site were cut up and placed in containers so that the debris could be placed in the site's industrial landfill. Workers cut up old trailers and placed them in containers so that the debris could be placed in the site’s industrial landfill. Workers cut up old trailers and placed them in containers so that the debris could be placed in the site's industrial landfill.

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Major Facility Siting Program - Circular 2 | Open Energy Information  

Open Energy Info (EERE)

included in a linear facility application; including but not limited to: the need for the transmission line or pipeline, the proposed location, baseline data and reasonable...

122

Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site  

SciTech Connect (OSTI)

DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

NONE

1995-07-01T23:59:59.000Z

123

EIS-0385: Ancillary Facilities for the Richton Site of the Strategic  

Broader source: Energy.gov (indexed) [DOE]

85: Ancillary Facilities for the Richton Site of the 85: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi EIS-0385: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi Overview DOE announced the cancellation of a supplemental environmental impact statement for certain facilities associated with the 2007 selection of Richton, Mississippi, as the location of a new storage site for expanding the Strategic Petroleum Reserve. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download September 9, 2011 EIS-0385-S1: Notice of Cancellation of a Supplemental Environmental Impact Statement Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi March 21, 2008

124

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

SciTech Connect (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

125

U.S. Federal Facility Compliance Agreement for the Hanford Site, February 7, 1994 Summary  

Broader source: Energy.gov (indexed) [DOE]

for Radionuclide for Radionuclide NESHAP State Washington Agreement Type Federal Facility Compliance Agreement Legal Driver(s) CAA Scope Summary Bring DOE's Hanford site into compliance with CAA Parties EPA; DOE; Richland Operations Office (RL) Date 02/07/1994 SCOPE * Bring DOE's Hanford site into compliance with CAA. This Compliance Plan contains a schedule for DOE to evaluate the monitoring systems associated with Designated Stacks to ensure that these systems conform to the standards for continuous monitoring systems in 40 Code of Federal Regulations (CFR) Part 61, Subpart H. ESTABLISHING MILESTONES * Beginning 30 days after the effective date of this Agreement, DOE shall submit quarterly progress reports to EPA until the requirements contained in Amendment A

126

Removal site evaluation report on Building 7602 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This removal site evaluation report for Building 7602 at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. The scope of the project included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions, removal actions, or remedial evaluation. The results of the removal site evaluation indicate that areas associated with Building 7602 pose no imminent hazards requiring maintenance actions. Adequate engineering and administrative controls are in place and enforced within the facility to ensure worker and environmental protection. Current actions that are being taken to prevent further release of contamination and ensure worker safety within Building 7602 are considered adequate until decontamination and decommissioning activities begin. Given the current status and condition of Building 7602, this removal site evaluation is considered complete and terminated.

NONE

1996-09-01T23:59:59.000Z

127

Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities  

Broader source: Energy.gov (indexed) [DOE]

Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) 25 November 2008 I. Background A. Authority Section 432 of the Energy Independence and Security Act of 2007 (EISA) amends section 543 of the National Energy Conservation Policy Act, by adding a new subsection (f) Use of Energy and Water Efficiency Measures in Federal Buildings (42 U.S.C. 8253(f); referred to as "the statute" in this guidance). The new subsection prescribes a framework for facility energy project management and benchmarking, including the following elements: * Designated "facility energy managers" for ensuring compliance of "covered facilities"

128

Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Energy Management Guidelines and Criteria for Energy and Water Evaluations in Covered Facilities (42 U.S.C. 8253 Subsection (f), Use of Energy and Water Efficiency Measures in Federal Buildings) 25 November 2008 I. Background A. Authority Section 432 of the Energy Independence and Security Act of 2007 (EISA) amends section 543 of the National Energy Conservation Policy Act, by adding a new subsection (f) Use of Energy and Water Efficiency Measures in Federal Buildings (42 U.S.C. 8253(f); referred to as "the statute" in this guidance). The new subsection prescribes a framework for facility energy project management and benchmarking, including the following elements: * Designated "facility energy managers" for ensuring compliance of "covered facilities"

129

Savannah River Site - Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

SALT WASTE PROCESSING FACILITY SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead Civil/Structural Sub Team Facility Safety Sub Team Engineering Sub Team Peter Lowry, Lead James Langsted, Lead George Krauter, Lead Robert Kennedy Chuck Negin Art Etchells Les Youd Jerry Evatt Oliver Block Loring Wyllie Richard Stark Tim Adams Tom Anderson Todd LaPointe Stephen Gosselin Carl Costantino Norman Moreau Patrick Corcoran John Christian Ken Cooper Kari McDaniel _____________________________ Harry D. Harmon ITR Team Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical Review 11/22/2006 ACKNOWLEDGEMENT The ITR Team wishes to thank Shari Clifford of Pacific Northwest National Laboratory for

130

Head of EM Program Tours Hanford Site Facilities | Department...  

Office of Environmental Management (EM)

November 26, 2014 - 12:00pm Addthis EM Office of River Protection (ORP) Manager Kevin Smith, right, discusses the Low-Activity Waste Facility design and construction with Waste...

131

Department of Energy Announces Two Year Pay Freeze on Site and Facility  

Broader source: Energy.gov (indexed) [DOE]

Two Year Pay Freeze on Site and Two Year Pay Freeze on Site and Facility Management Contractor Employees Department of Energy Announces Two Year Pay Freeze on Site and Facility Management Contractor Employees December 17, 2010 - 12:00am Addthis Washington DC - Following President Obama's recent proposal for a two-year pay freeze for all civilian federal workers, U.S. Energy Secretary Steven Chu today announced a decision to stop salary and bonus pool increases for site and facility management contractor employees, who manage day-to-day operations at certain Department of Energy sites and facilities, including national laboratories. "As our nation continues to recover from these challenging economic times, households and small businesses across the country are making sacrifices,"

132

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect (OSTI)

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

133

DOE Permitting Hydrogen Facilities: Animation of a Telecommunications Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Animation of a Telecommunications Site Example Layout Animation of a Telecommunications Site Example Layout The animation below provides an example of a telecommunications site layout that uses hydrogen fuel cells for backup power along with some of the codes and standards that apply to such a site. Roll over each of the colored bars below to reveal individual setback requirements, which identify the mandatory separation distances of the site's various components, or select the "Go to Setback Details" button for a chart that summarizes these requirements as defined by the 2006 International Fire Code. Select the "Construction Approval" button for a detailed list of codes and standards related to the construction of a site, or select the "Operation Approval" button for codes and standards related to ongoing operation and

134

Criteria for Evaluation of Nuclear Facility Training Programs  

Broader source: Energy.gov (indexed) [DOE]

STD-1070-94 STD-1070-94 Reaffirmed June 2013 DOE STANDARD CRITERIA FOR EVALUATION OF NUCLEAR FACILITY TRAINING PROGRAMS (Formerly Titled: Guidelines for Evaluation of Nuclear Facility Training Programs) U.S. Department of Energy FSC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE HDBK-1070-94 Errata June 2013 Table of Changes Page/Section Change Cover Criteria for Evaluation of Nuclear Facility Training Programs Page ii This document is available on the Department of Energy Technical Standards Program Web page at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Page iii Table of Contents Page iv This DOE Technical Standard is invoked as a requirement by DOE Order 426.2, Personnel Selection, Training, Qualifications and

135

Facility Siting and Layout Optimization Based on Process Safety  

E-Print Network [OSTI]

) that identifies potential layouts by minimizing overall costs. This approach gives the coordinates of each facility in a continuous plane, and estimates for the total length of pipes, the land area, and the selection of safety devices. Finally, the 3D...

Jung, Seungho

2012-02-14T23:59:59.000Z

136

Site Resources, Facilities & Operations Directorate, Brookhaven National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Resources Division Site Resources Division Homepage The mission of the Site Resources Division is to enhance the site aesthetic so as to improve staff recruitment and retention, safety, and customer satisfaction, and to support the overall Laboratory mission. To that end, we are dedicated to providing services to the Laboratory at the highest standard per science dollar. The Site Resources Division is responsible for the following: Custodial Services BNL Recycling Program Sanitation Grounds Maintenance, including limited herbicide applications Masonry Operation and maintenance of light and heavy machine equipment, including elevators and emergency generators Rigging & Hoisting Pest control Clean-up of outdoor and select indoor spills Top of Page Last Modified: February 28, 2011

137

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

138

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

139

Enterprise Assessments, Hanford Site K-West Annex Facility Constructio...  

Energy Savers [EERE]

of liquid or semi-solid radioactive and chemical waste stored in 177 underground tanks at the Hanford Site. DOE-ORP serves as DOE line management for two functions: the Tank...

140

National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Confined Spaces Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

CONFINED SPACES CONFINED SPACES Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: This assessment provides a basis for evaluating the safety effectiveness of the contractor's confined or enclosed spaces procedure, and for establishing compliance with DOE and OSHA requirements. Specifically, this assessment is to verify the information and findings of the BN Management Self Assessment Report on "Confined Space", ES&H-MSA-03-13, dated December 31, 2003. Criteria: Practices and procedures are in place to protect employees in general industry from the hazards of entry into permit-required confined spaces. 29 CFR 1910.146 (a) Each employee is instructed in the recognition and avoidance of unsafe conditions and the regulations applicable to his work environment to

142

Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008  

SciTech Connect (OSTI)

Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

2009-09-15T23:59:59.000Z

143

Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993  

SciTech Connect (OSTI)

This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

Not Available

1994-02-01T23:59:59.000Z

144

Addressing concerns related to geologic hazards at the site of the proposed Transuranic Waste Facility , TA-63, Los Alamos National Laboratory: focus on the current Los Alamos Seismic Network earthquake catalog, proximity of identified seismic events to the proposed facility , and evaluation of prev  

SciTech Connect (OSTI)

This technical paper presents the most recent and updated catalog of earthquakes measured by the Los Alamos Seismic Network at and around Los Alamos National Laboratory (LANL), with specific focus on the site of the proposed transuranic waste facility (TWF) at Technical Area 63 (TA-63). Any questions about the data presented herein, or about the Los Alamos Seismic Network, should be directed to the authors of this technical paper. LANL and the Los Alamos townsite sit atop the Pajarito Plateau, which is bounded on its western edge by the Pajarito fault system, a 35-mile-long system locally comprised of the down-to-the-east Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos, and is potentially seismogenic (e.g., Gardner et al., 2001; Reneau et al., 2002; Lewis et al., 2009). The proposed TWF area at TA-63 is situated on an unnamed mesa in the north-central part of LANL between Twomile Canyon to the south, Ten Site Canyon to the north, and the headwaters of Canada del Buey to the east (Figure 2). The local bedrock is the Quaternary Bandelier Tuff, formed in two eruptive pulses from nearby Valles caldera, the eastern edge of which is located approximately 6.5 miles west-northwest of the technical area. The older member (Otowi Member) of the Bandelier Tuff has been dated at 1.61 Ma (Izett and Obradovich 1994). The younger member (Tshirege Member) of the Bandelier Tuff has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Several discrete cooling units comprise the Tshirege Member. Commonly accepted stratigraphic nomenclature for the Tshirege Member is described in detail by Broxton and Reneau (1995), Gardner et al. (2001), and Lewis et al. (2009). The Tshirege Member cooling unit exposed at the surface at TA-63 is Qbt3. Understanding the subtle differences between Tshirege Member cooling units and the nature of the contacts between cooling units is critical to identifying the presence or absence of faults associated with the Pajarito fault system on the Pajarito Plateau. The Los Alamos Seismic Network (LASN) continuously monitors local earthquake activity in the Los Alamos area in support of LANL's Seismic Hazards program. Seismic monitoring of LANL facilities is a requirement of DOE Order 420.1B (Facility Safety). LASN currently consists of nine permanent seismic instrument field stations that telemeter real-time sensitive ground motion data to a central recording facility. Four of these stations are located on LANL property, with three of those within 2.5 miles of TA-63. The other five stations are in remote locations in the Jemez Mountains, Valles Caldera, St Peters Dome, and the Caja del Rio plateau across the Rio Grande from the Los Alamos area. Local earthquakes are defined as those with locations within roughly 100 miles of Los Alamos. Plate 1 shows the current LASN station locations and all local earthquakes recorded from 1973 through 2011. During this time period, LASN has detected and recorded over 850 local earthquakes in north-central New Mexico. Over 650 of these were located within about 50 miles of Los Alamos, and roughly 60 were within 10 miles. The apparent higher density of earthquakes close to Los Alamos, relative to the rest of north-central New Mexico, is due largely to the fact that LASN is a sensitive local seismic network, recording many very small nearby events (magnitude less than 1.0) that are undetectable at greater distances.

Roberts, Peter M. [Los Alamos National Laboratory; Schultz-Fellenz, Emily S. [Los Alamos National Laboratory; Kelley, Richard E. [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

145

EIS-0385-S1: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi  

Broader source: Energy.gov [DOE]

Since selecting the Richton site, DOE has engaged in further consultations with Federal and Mississippi state agencies and is now considering different locations from those addressed in DOE/EIS0385 for certain facilities associated with the Richton SPR expansion site.

146

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

147

Hanford Site near-facility environmental monitoring data report for calendar year 1998  

SciTech Connect (OSTI)

This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

DIEDIKER, L.P.

1999-07-29T23:59:59.000Z

148

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

149

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect (OSTI)

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

150

Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure  

SciTech Connect (OSTI)

Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

2014-02-21T23:59:59.000Z

151

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

SciTech Connect (OSTI)

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

152

Review of the Hanford Site K-West Annex Facility Layup Program for Construction Suspension/Delay, June 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Hanford-2013-06-10 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Review of the Hanford Site K-West Annex Facility Layup Program for Construction Suspension/Delay Dates of Activity : June 10, 2013 Report Preparer: Joseph Lenahan Activity Description/Purpose: 1. Perform an inspection of the project site to examine the contractor's actions to protect completed work from deteriorating during the current suspension of construction work activities. 2. Inspect storage areas to determine if construction materials are stored in a manner that will prevent deterioration during possible long-term storage while construction work is suspended.

153

Review of the Hanford Site K-West Annex Facility Layup Program for Construction Suspension/Delay, June 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Hanford-2013-06-10 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Review of the Hanford Site K-West Annex Facility Layup Program for Construction Suspension/Delay Dates of Activity : June 10, 2013 Report Preparer: Joseph Lenahan Activity Description/Purpose: 1. Perform an inspection of the project site to examine the contractor's actions to protect completed work from deteriorating during the current suspension of construction work activities. 2. Inspect storage areas to determine if construction materials are stored in a manner that will prevent deterioration during possible long-term storage while construction work is suspended.

154

Evaluation of energy system analysis techniques for identifying underground facilities  

SciTech Connect (OSTI)

This report describes the results of a study to determine the feasibility and potential usefulness of applying energy system analysis techniques to help detect and characterize underground facilities that could be used for clandestine activities. Four off-the-shelf energy system modeling tools were considered: (1) ENPEP (Energy and Power Evaluation Program) - a total energy system supply/demand model, (2) ICARUS (Investigation of Costs and Reliability in Utility Systems) - an electric utility system dispatching (or production cost and reliability) model, (3) SMN (Spot Market Network) - an aggregate electric power transmission network model, and (4) PECO/LF (Philadelphia Electric Company/Load Flow) - a detailed electricity load flow model. For the purposes of most of this work, underground facilities were assumed to consume about 500 kW to 3 MW of electricity. For some of the work, facilities as large as 10-20 MW were considered. The analysis of each model was conducted in three stages: data evaluation, base-case analysis, and comparative case analysis. For ENPEP and ICARUS, open source data from Pakistan were used for the evaluations. For SMN and PECO/LF, the country data were not readily available, so data for the state of Arizona were used to test the general concept.

VanKuiken, J.C.; Kavicky, J.A.; Portante, E.C. [and others

1996-03-01T23:59:59.000Z

155

File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf | Open Energy  

Open Energy Info (EERE)

HIBRenewableEnergyFacilitySitingProcessREFSP.pdf HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Jump to: navigation, search File File history File usage File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 124 KB, MIME type: application/pdf, 3 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:39, 27 December 2012 Thumbnail for version as of 16:39, 27 December 2012 1,275 × 1,650, 3 pages (124 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

156

DOE Programs and Major Site/Facility Contractors | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

DOE Programs and Major Site/Facility Contractors DOE Programs and Major Site/Facility Contractors Print page Print page Email page Email page DOE Programs and Major Site/Facility Contractors have the option to provide metadata via the Announcement Notice 241.1 web notice, Batch Upload, or Harvesting. The metadata-based announcement notice generated and supplied by DOE and contractors for unclassified STI products includes the basic Dublin Core metadata elements, supplemented by a few DOE data elements, and a minimal number of subelements necessary to further identify the announcement/availability of the STI product. Principal Investigators and Authors A Principal Investigator is designated by a research organization to have an appropriate level of authority and responsibility for the proper conduct of the research, the use of funds, and administrative requirements,

157

Summary - Salt Waste Processing Facility Design at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge and strip effluent from the SWPF that contain concentrated Sr, actinide, and Cs wastes will be sent to the SRS Defense Waste Processing Facility (DWPF), where they will be vitrified. The decontaminated salt solution (DSS) that is left after removal of the highly

158

Environmental Assessment for the new Whole Body Counter facility at the Savannah River Site  

SciTech Connect (OSTI)

The U.S. Department of Energy proposes to construct and operate a new in-vivo counting facility at the Savannah River Site for the monitoring of employees for internal radionuclides. The proposed facility, titled the new Whole Body Counter (WBC) facility, would house both the existing and additional new invivo counting equipment and facility support operations. The proposed facility would be sited and located in an area of the SRS in which background radiation levels are sufficiently low to assure accurate in-vivo counts and a location that would assure ease of access for occupational workers. This Environmental Assessment has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CPR Parts 1500-1508). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. The proposed action has independent utility to the Savannah River operations and will be necessary to support plant activities regardless of the makeup of the future mission at the site. As such, the proposed new WBC facility is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement ``No Action`` alternative.

Not Available

1993-01-01T23:59:59.000Z

159

Engineering Facilities Having the facilities to develop and test spacecraft on-site is a  

E-Print Network [OSTI]

concerning the level of allowable contamination for space-bound products. LASP's four on-site cleanrooms. Cleanroom standards are federally and internationally regulated and designated by class, which for Standardization (ISO) Class-5 cleanroom has at most 100,000 particles bigger than a half micron per cubic meter

Mojzsis, Stephen J.

160

Maintenance Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

MAINTENANCE MAINTENANCE Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: An effective facilities maintenance program should optimize the material condition of components and equipment to support safe and effective operations and ensure the peak performance and reliability of those systems and equipment important to operations. Criteria: The program, facility or operation has a Maintenance Implementation Plan (MIP), or equivalent document, which defines and documents the approach to conduct of maintenance. The maintenance organization structure is well defined and understood. Responsibilities, organizational interfaces, and administrative activities are adequately defined and implemented to provide timely availability of

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

162

RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

Sexton, L.; Fuller, Kenneth

2013-07-09T23:59:59.000Z

163

DOE-Evaluating A Potential Microhydro Site | Open Energy Information  

Open Energy Info (EERE)

DOE-Evaluating A Potential Microhydro Site DOE-Evaluating A Potential Microhydro Site Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE-Evaluating A Potential Microhydro Site Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Water Power Topics: Co-benefits assessment, - Energy Access Resource Type: Guide/manual, Training materials Website: www.energysavers.gov/your_home/electricity/index.cfm/mytopic=11070 Cost: Free Language: English DOE-Evaluating A Potential Microhydro Site Screenshot References: DOE-Evaluating A Potential Microhydro Site[1] Logo: DOE-Evaluating A Potential Microhydro Site "To build a microhydropower system, you need access to flowing water on your property. A sufficient quantity of falling water must be available,

164

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect (OSTI)

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

165

USDA - NRCS Land Evaluation and Site Assessment: Guidebook |...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: USDA - NRCS Land Evaluation and Site Assessment: GuidebookPermittingRegulatory...

166

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Broader source: Energy.gov [DOE]

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

167

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

168

Optimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica  

E-Print Network [OSTI]

for rural wastewater treatment. However, there are serious environmental and human health effects associ for wastewater treatment. Fecal sludge FS is defined as the sludge of variable consistency collected from onOptimal Siting of Regional Fecal Sludge Treatment Facilities: St. Elizabeth, Jamaica Ana Martha

Vogel, Richard M.

169

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

SciTech Connect (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

170

: The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

Resumption of Criticality Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site OAS-M-13-09 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site" BACKGROUND The mission of the Criticality Experiments Facility, located at the Los Alamos National Laboratory (Los Alamos) was to conduct nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National

171

Health-hazard evaluation report HETA 89-270-2080, Harrisburg Steam Generation Facility, Harrisburg, Pennsylvania  

SciTech Connect (OSTI)

In response to a request from the City of Harrisburg, Pennsylvania, a health hazard evaluation was conducted at the Harrisburg Steam Generation Facility (HSGF)(SIC-4953) concerning possible exposure to fly ash, combustion products and asbestos (1332214). The facility was a waste to energy site where municipal refuse was incinerated at approximately 1400 degrees-F. The steam generated was either sold directly or converted to electricity via an on site turbine. Employees used hard hats, safety shoes and glasses, work clothes and single use disposable dust and mist respirators. There was a potential for exposure to fly ash for employees working in the boiler and basement areas. Total particulate exposures ranged from 5 to llmg/m3 for laborers. The concentration of lead (7439921) exceeded the standards set by OSHA permissible exposure level of 0.05mg/kg in three of the personal breathing zone air samples. Amosite (12172735) and chrysotile (12001295) asbestos were identified in bulk samples of insulation and asbestos taken from a settled dust sample in the boiler area. Surface wipe samples indicated the possibility of hand to mouth contact with fly ash, particularly in the break and locker rooms. The author concludes that there is a need for reducing worker exposure to fly ash particulate. The author recommends engineering and work practice controls to reduce particulate exposures, increased cleaning and maintenance activities; and further evaluation of asbestos contamination at the facility.

Seitz, T.A.

1990-11-01T23:59:59.000Z

172

Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites |  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Removing Used Nuclear Fuel From Shutdown Evaluation of Removing Used Nuclear Fuel From Shutdown Sites Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America's Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. Shutdown sites are defined as those commercial nuclear power reactor sites where the

173

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility  

Broader source: Energy.gov (indexed) [DOE]

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division : To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001

174

Review of the Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pantex Site Office's Compliance with Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1 1.0 Purpose .................................................................................................................................................. 1 2.0 Introduction ........................................................................................................................................... 1 3.0 Assessment Methodologies and Approach ........................................................................................... 1

175

Review of the Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, June 2012  

Broader source: Energy.gov (indexed) [DOE]

Pantex Site Office's Compliance with Pantex Site Office's Compliance with DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1 1.0 Purpose .................................................................................................................................................. 1 2.0 Introduction ........................................................................................................................................... 1 3.0 Assessment Methodologies and Approach ........................................................................................... 1

176

Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility, July 19-22, 210  

Broader source: Energy.gov (indexed) [DOE]

Office of Independent Oversight's Office of Environment, Safety and Health Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Shadowing of the Environmental Management Construction Project Review of the Savannah River Site Salt Waste Processing Facility on July 19-22, 2010 A Department of Energy Construction Project Review (CPR) of the Salt Waste Processing Facility (SWPF) project was conducted on July 19-22, 2010, at the request of the Principal Deputy Secretary, Office of Environmental Management (EM-2). The purpose of the review was to assess the cost, schedule, and technical progress against the approved Performance Baseline. Specific review areas were Engineering; Commissioning; Environment, Safety, Health, and Quality Assurance; Cost, Schedule, and Risk; and Management and Acquisition.

177

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

178

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

179

Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted Release Decontamination and Verification Survey and Dismantling of Building 3126. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors, and the preferred CAA chosen on technical merit was Alternative 2. This CAA was judged to meet all requirements for the technical components evaluated and applicable state and federal regulations for closure of the site, and reduce the potential for future exposure pathways.

U.S. Department of Energy, Nevada Operations Office

2000-06-01T23:59:59.000Z

180

DECOMMISSIONING OF THE NUCLEAR FACILITIES OF VKTA AT THE ROSSENDORF RESEARCH SITE  

SciTech Connect (OSTI)

VKTA decommissioned the old nuclear facilities of former GDR's (German Democratic Republic) Central Institute of Nuclear Research which was closed end of 1991. VKTA is responsible for fissile material and waste management, environmental and radiation protection and runs an accredited laboratory for environmental and radionuclide analytics. The Rossendorf research site is located east of the city of Dresden. The period from 1982 to about 1997 was mainly characterized by obtaining the necessary licenses for decommissioning and developing a new infrastructure (i.e. waste treatment facility, interim storages for fissile material and waste, clearance monitoring facility). The decommissioning work has been in progress since that time. The decommissioning projects are concentrated on three complexes: (1) the reactors and a fuel development and testing facility, (2) the radioisotope production facilities, and (3) the former liquid and solid waste storage facilities. The status of decommissioning progress and treatment of the residues will be demonstrated. Finally an outlook will be given on the future tasks of VKTA based on the ''Conception VKTA 2000 plus'', which was confirmed by the Saxonian government last year.

U. Helwig, W. Boessert

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA  

SciTech Connect (OSTI)

Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

Dean, L.N. [Advanced Sciences, Inc., (United States)

1994-02-01T23:59:59.000Z

182

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect (OSTI)

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

183

Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation  

SciTech Connect (OSTI)

The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

Zaltash, Abdolreza [ORNL

2007-09-01T23:59:59.000Z

184

Recent ORNL experience in site performance prediction: the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility  

SciTech Connect (OSTI)

The suitability of the Portsmouth Gas Centrifuge Enrichment Plant Landfill and the Oak Ridge, Tennessee, Central Waste Disposal Facility for disposal of low-level radioactive waste was evaluated using pathways analyses. For these evaluations, a conservative approach was selected; that is, conservatism was built into the analyses when assumptions concerning future events had to be made or when uncertainties concerning site or waste characteristics existed. Data from comprehensive laboratory and field investigations were used in developing the conceptual and numerical models that served as the basis for the numerical simulations of the long-term transport of contamination to man. However, the analyses relied on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Maximum potential doses to man were calculated and compared to the appropriate standards. Even under this conservative framework, the sites were found to provide adequate buffer to persons outside the DOE reservations and conclusions concerning site capacity and site acceptability were drawn. Our experience through these studies has shown that in reaching conclusions in such studies, some consideration must be given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and to quantitatively determine the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed.

Pin, F.G.

1985-01-01T23:59:59.000Z

185

Construction and Operation of a Tritium Extraction Facility at the Savannah Siver Site  

Broader source: Energy.gov (indexed) [DOE]

T T E D S T A T E S O F A M E R I C A D E P A R T M E NT O F E N E R G Y DOE/EIS-0271 Construction & Operation of a Tritium Extraction Facility at the Savannah River Site Department of Energy Savannah River Operations Office Aiken, South Carolina Final Environmental Impact Statement March 1999 DOE/EIS-0271 March 1999 Preface iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement: Construction and Operation of a Tritium Extraction Facility at the Savannah River Site (DOE/EIS-0271) LOCATION: Aiken and Barnwell Counties, South Carolina CONTACT: For additional information on this environmental impact statement (EIS), write or call: Andrew R. Grainger, NEPA Compliance Officer U.S. Department of Energy

186

Finding of No Significant Impact, Consolidated Incineration Facility at the Savannah River Site, Aiken, SC  

Broader source: Energy.gov (indexed) [DOE]

92 WL 381301 (F.R.) 92 WL 381301 (F.R.) NOTICES DEPARTMENT OF ENERGY Finding of No Significant Impact, Consolidated Incineration Facility at the Savannah River Site, Aiken, SC Thursday, December 24, 1992 *61402 AGENCY: Department of Energy. ACTION: Finding of no significant impact. SUMMARY: The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA -0400) for the proposed construction and operation of the Consolidated Incineration Facility (CIF) at the Savannah River Site (SRS), Aiken, South Carolina. The CIF would be for the treatment of hazardous, low- level radioactive, and mixed (both hazardous and radioactive) wastes from SRS. Incineration would reduce the volume and toxicity of these wastes. Construction and operation of the

187

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

188

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

189

Hanford Site near-facility environmental monitoring annual report, calendar year 1997  

SciTech Connect (OSTI)

Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemical or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.

Perkins, C.J.

1998-07-28T23:59:59.000Z

190

File:07MTAEnergyFacilitySiting (6).pdf | Open Energy Information  

Open Energy Info (EERE)

MTAEnergyFacilitySiting (6).pdf MTAEnergyFacilitySiting (6).pdf Jump to: navigation, search File File history File usage File:07MTAEnergyFacilitySiting (6).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 72 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:21, 9 January 2013 Thumbnail for version as of 15:21, 9 January 2013 1,275 × 1,650, 2 pages (72 KB) Alevine (Talk | contribs) 13:17, 9 January 2013 Thumbnail for version as of 13:17, 9 January 2013 1,275 × 1,650, 2 pages (71 KB) Alevine (Talk | contribs) 12:15, 1 October 2012 Thumbnail for version as of 12:15, 1 October 2012 1,275 × 1,650 (62 KB) Dklein2012 (Talk | contribs)

191

Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

NONE

1995-01-01T23:59:59.000Z

192

Remedial investigation of the High Explosives Burn Pit facility, Building 829 complex, Lawrence Livermore National Laboratory site 300  

SciTech Connect (OSTI)

To assess any impact on the environment resulting from operations at the High Explosives (HE) Burn Pits at Lawrence Livermore National Laboratory (LLNL) Site 300, we evaluated the soil, rock, and ground water beneath the burn pit facility. Between November 16, 1986, and January 12, 1987, we drilled eight exploratory holes; one was converted to a monitor well, and another was converted to a piezometer. Seven holes were drilled, geologically logged, and sampled to determine the concentration and extent of substances that may have infiltrated to the subsurface from the burn pits. The eighth hole was completed as a monitor well but was not sampled, and no detailed log was prepared. Electric logging was performed in one exploratory hole further evaluate the geologic conditions. 27 refs., 4 figs., 6 tabs.

Webster-Scholten, C.P.; Crow, N.B.

1989-08-01T23:59:59.000Z

193

Liquefaction Triggering Evaluations at DOE Sites An Update  

Broader source: Energy.gov [DOE]

Liquefaction Triggering Evaluations at DOE Sites An Update 2014 Natural Phenomena Hazards Meeting October 21-22, 2014 Germantown, Maryland Michael R. Lewis, Bechtel Corporation Michael D. Boone, Bechtel Corporation Rucker J. Williams, Savannah River Nuclear Solutions, LLC Brent Gutierrez, U.S. Department of Energy, Savannah River Site

194

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect (OSTI)

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26T23:59:59.000Z

195

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

196

Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)  

SciTech Connect (OSTI)

During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

Not Available

1987-06-01T23:59:59.000Z

197

Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas  

SciTech Connect (OSTI)

The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

Branz, M A

1980-09-30T23:59:59.000Z

198

Monticello NPL Sites Federal Facilities Agreement Meeting Minutes & Action Items  

Office of Legacy Management (LM)

NPL Sites NPL Sites Federal Facilities Agreement Meeting Minutes & Action Items Location Monticello, Utah- DOE Office of Legacy Management field office Date September 27,2006 Attendees David Bird- Utah Department of Environmental Quality Paul Mushovic- U.S. Environmental Protection Agency Att Kleinrath- U.S. Depmtment of Energy Tim Bartlett- S. M. Stoller Meeting topics and discussion points are summarized separately under the headings that follow. Attaclunent 1 to this report includes the agenda and handout materials provided at the meeting. This report also includes disposal cell and Pond 4 leachate collection data (Attachment 2), quarterly site inspection results (Attachment 3), and project schedule and deliverables through the next two qumters (October 2006 through March 2007). With this

199

The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site, OAS-L-12-05  

Broader source: Energy.gov (indexed) [DOE]

Joint Actinide Shock Physics Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site OAS-L-12-05 April 2012 Department of Energy Washington, DC 20585 April 23, 2012 MEMORANDUM FOR THE MANAGER, NEVADA SITE OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site" BACKGROUND The Department of Energy, National Nuclear Security Administration's, Joint Actinide Shock Physics Experimental Research (JASPER) facility plays an integral role in the certification of the Nation's nuclear weapons stockpile by providing a method to generate and measure data

200

RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites  

Broader source: Energy.gov (indexed) [DOE]

Deployed Deployed Widely Used and Maintained Argonne National Laboratory, Environmental Science Division - RESRAD Program RESRAD codes are used at more than 300 sites since its first release in 1989. Page 1 of 2 Argonne National Laboratory Multiple States & Sites Illinois RESRAD Computer Code - Evaluation of Radioactively Contaminated Sites Challenge The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989. The RESRAD code has been updated since then to improve the models within the codes, to operate on new computer platforms, to use new state of science radiation dose and risk factors, and to calculate cleanup criteria ("Authorized Limits") for radioactively contaminated sites. A series of similar codes have been developed to address radiation dose, risk, and cleanup criteria

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

Smith, F.; Phifer, M.

2014-04-10T23:59:59.000Z

202

Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A  

SciTech Connect (OSTI)

This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

ARD, K.E.

1999-07-14T23:59:59.000Z

203

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

204

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect (OSTI)

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

205

Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Broader source: Energy.gov (indexed) [DOE]

i i TABLE OF CONTENTS 1. INTRODUCTION 1 2. LINE OF INQUIRY NO. 1 - Future Uses of the Subtitle D Landfill 2 3. LINE OF INQUIRY NO. 2 - OSDF Siting in a Brownfield Area 3 4. LINE OF INQUIRY NO. 3 - Seismic Issues 4 5. LINE OF INQUIRY NO. 4 - Post-Closure Public Use of the OSDF 5 6. LINE OF INQUIRY NO. 5 - Public Communication Plan 7 7. LINE OF INQUIRY NO. 6 - Baseline Schedule 8 8. RECOMMENDATIONS 8 9. ACKNOWLEDGEMENT 10 10. REFERENCES 10 APPENDIX 11 1 1. INTRODUCTION The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that is owned by the US Department of Energy (DOE). Uranium enrichment facilities at PGDP are leased to and operated by the United States Enrichment Corporation. In 1994, PGDP was placed

206

NASA Benchmarks Communications Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

COMMUNICATIONS COMMUNICATIONS Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Lines of authority are clearly defined with clear and open communications existing between all departments and all levels. Criteria: Dialogue exists between personnel involved in engineering/design, operations, maintenance, safety issues, and remedial actions. Personnel within the departments are promptly informed on issues as they occur on a need-to-know basis. Lessons Learned and feedback is encouraged inter-departmentally regarding safety, adequate resources, and processes to enable prompt and effective corrective actions and resolutions for mission accomplishment. Management has an effective and specified chain of communication in both directions between corporate and facility management. (DOE/EH-0135)

207

MONTICELLO NPL SITES Minutes and Action Items of the Federal Facilities Agreement Meeting  

Office of Legacy Management (LM)

Minutes and Action Items of the Federal Facilities Agreement Meeting Minutes and Action Items of the Federal Facilities Agreement Meeting September 16 and 17,2008 Meeting Location U.S. Department of Energy Site Office, Monticello, Utah Meeting Attendees Jalena Dayvault- U.S. Department of Energy Tim Bartlett- S.M. Stoller Todd Moon- S.M. Stoller Linda Sheader- S. M. Stoller Paul Wetherstein- S.M. Stoller Brent Everett- Utah Department of Environmental Quality Duane Mortensen- Utah Department of Environmental Quality Paul Mushovic- U.S. Environmental Protection Agency Rob Stites- U.S. Environmental Protection Agency (participated by phone) Christina Wilson- U.S. Environmental Protection Agency (participated by phone) Meeting topics and discussion points are summarized under the headings listed below. The agenda and copies of handouts presented during the meeting are attached to this report.

208

Groundwater Monitoring Plan for the Hanford Site 216-B-3 Pond RCRA Facility  

SciTech Connect (OSTI)

The 216-B-3 Pond system was a series of ponds used for disposal of liquid effluent from past Hanford production facilities. In operation from 1945 to 1997, the B Pond System has been a Resource Conservation and Recovery Act (RCRA) facility since 1986, with RCRA interim-status groundwater monitoring in place since 1988. In 1994 the expansion ponds of the facility were clean closed, leaving only the main pond and a portion of the 216-B-3-3 ditch as the currently regulated facility. In 2001, the Washington State Department of Ecology (Ecology) issued a letter providing guidance for a two-year, trial evaluation of an alternate, intrawell statistical approach to contaminant detection monitoring at the B Pond system. This temporary variance was allowed because the standard indicator-parameters evaluation (pH, specific conductance, total organic carbon, and total organic halides) and accompanying interim status statistical approach is ineffective for detecting potential B-Pond-derived contaminants in groundwater, primarily because this method fails to account for variability in the background data and because B Pond leachate is not expected to affect the indicator parameters. In July 2003, the final samples were collected for the two-year variance period. An evaluation of the results of the alternate statistical approach is currently in progress. While Ecology evaluates the efficacy of the alternate approach (and/or until B Pond is incorporated into the Hanford Facility RCRA Permit), the B Pond system will return to contamination-indicator detection monitoring. Total organic carbon and total organic halides were added to the constituent list beginning with the January 2004 samples. Under this plan, the following wells will be monitored for B Pond: 699-42-42B, 699-43-44, 699-43-45, and 699-44-39B. The wells will be sampled semi-annually for the contamination indicator parameters (pH, specific conductance, total organic carbon, and total organic halides) and annually for water quality parameters (chloride, iron, manganese, phenols, sodium, and sulfate). This plan will remain in effect until superseded by another plan or until B Pond is incorporated into the Hanford Facility RCRA Permit.

Barnett, D BRENT.; Smith, Ronald M.; Chou, Charissa J.; McDonald, John P.

2005-11-01T23:59:59.000Z

209

Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas  

E-Print Network [OSTI]

/or Robertson County sites on the following dates: January 9, 2013 February 10, 2013 March 10, 2013 April 3, 2013 May 9, 2013 May 16, 2013 May 21, 2013 June 3, 2013 June 10, 2013 July 15, 2013 Results from the analysis... Research Service Texas Water Resources Institute TR-452 November 2013 Preliminary evaluation of VTA effectiveness to protect runoff water quality on small pork production facilities in Texas STATE NONPOINT SOURCE GRANT PROGRAM TSSWCB PROJECT...

Wagner, K.; Harmel, D.; Higgs, K.

2013-01-01T23:59:59.000Z

210

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program  

SciTech Connect (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

211

DOE/EA-1605: Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)  

Broader source: Energy.gov (indexed) [DOE]

605 605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE DOE/EA-1605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page intentionally left blank - i - TABLE OF CONTENTS Page 1.0 INTRODUCTION ...................................................................................................1 1.1 Background and Proposed Action ...............................................................1 1.2 Purpose and Need ........................................................................................4

212

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect (OSTI)

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

213

Interaction of Sr-90 with site candidate soil for demonstration disposal facility at Serpong  

SciTech Connect (OSTI)

Interaction of radiostrontium (Sr-90) with site candidate soil for demonstration disposal facility to be constructed in the near future at Serpong has been done. This activity is to anticipate the interim storage facility at Serpong nuclear area becomes full off condition, and show to the public how radioactive waste can be well managed with the existing technology. To ensure that the location is save, a reliability study of site candidate soil becomes very importance to be conducted through some experiments consisted some affected parameters such as contact time, effect of ionic strength, and effect of Sr{sup +} ion in solution. Radiostrontium was used as a tracer on the experiments and has role as radionuclide reference in low-level radioactive waste due to its long half-live and it's easy to associate with organism in nature. So, interaction of radiostrontium and soil samples from site becomes important to be studied. Experiment was performed in batch method, and soil sample-solution containing radionuclide was mixed in a 20 ml of PE vial. Ratio of solid: liquid was 10{sup ?2} g/ml. Objective of the experiment is to collect the specific characteristics data of radionuclide sorption onto soil from site candidate. Distribution coefficient value was used as indicator where the amount of initial and final activities of radiostrontium in solution was compared. Result showed that equilibrium condition was reached after contact time 10 days with Kd values ranged from 1600-2350 ml/g. Increased in ionic strength in solution made decreased of Kd value into soil sample due to competition of background salt and radiostrontium into soil samples, and increased in Sr ion in solution caused decreased of Kd value in soil sample due to limitation of sorption capacity in soil samples. Fast condition in saturated of metal ion into soil samples was reached due to a simple reaction was occurred.

Setiawan, Budi, E-mail: bravo@batan.go.id [Radwaste Technology Center-National Nuclear Energy Agency, PUSPIPTEK, Serpong-Tangerang 15310 (Indonesia); Mila, Oktri; Safni [Dept. of Chemistry, Fac. of Math. and Nat. Sci., Andalas University, Kampus Limau Manis, Padang-West Sumatra 25163 (Indonesia)

2014-03-24T23:59:59.000Z

214

Savannah River Site- Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov [DOE]

This is a presentation outlining the Salt Waste Processing Facility process, major risks, approach for conducting reviews, discussion of the findings, and conclusions.

215

Early Site Permit Demonstration Program: Siting Guide, Site selection and evaluation criteria for an early site permit application. Revision 1  

SciTech Connect (OSTI)

In August 1991, the Joint Contractors came to agreement with Sandia National Laboratories (SNL) and the Department of Energy (DOE) on a workscope for the cost-shared Early Site Permit Demonstration Program. One task within the scope was the development of a guide for site selection criteria and procedures. A generic Siting Guide his been prepared that is a roadmap and tool for applicants to use developing detailed siting plans for their specific region of the country. The guide presents three fundamental principles that, if used, ensure a high degree of success for an ESP applicant. First, the site selection process should take into consideration environmentally diverse site locations within a given region of interest. Second, the process should contain appropriate opportunities for input from the public. Third, the process should be applied so that it is clearly reasonable to an impartial observer, based on appropriately selected criteria, including criteria which demonstrate that the site can host an advanced light water reactor (ALWR). The Siting Guide provides for a systematic, comprehensive site selection process in which three basic types of criteria (exclusionary, avoidance, and suitability) are presented via a four-step procedure. It provides a check list of the criteria for each one of these steps. Criteria are applied qualitatively, as well as presented numerically, within the guide. The applicant should use the generic guide as an exhaustive checklist, customizing the guide to his individual situation.

Not Available

1993-03-24T23:59:59.000Z

216

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Portsmouth, Ohio, Site Vicinity Summary S-18 Portsmouth DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Portsmouth Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Portsmouth DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Portsmouth Conversion Facility Summary S-21 Portsmouth DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Portsmouth Summary S-25 Portsmouth DUF 6 Conversion Final EIS FIGURE S-6 Potential Locations for Construction of a New Cylinder Storage Yard at Portsmouth

217

Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

218

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

219

Relative risk site evaluation for buildings 7740 and 7741 Fort Campbell, Kentucky  

SciTech Connect (OSTI)

Buildings 7740 and 7741 are a part of a former nuclear weapon`s storage and maintenance facility located in the southeastern portion of Fort Campbell, Kentucky. This underground tunnel complex was originally used as a classified storage area beginning in 1949 and continuing until 1969. Staff from the Pacific Northwest National Laboratory recently completed a detailed Relative Risk Site Evaluation of the facility. This evaluation included (1) obtaining engineering drawings of the facility and associated structures, (2) conducting detailed radiological surveys, (3) air sampling, (4) sampling drainage systems, and (5) sampling the underground wastewater storage tank. Ten samples were submitted for laboratory analysis of radionuclides and priority pollutant metals, and two samples submitted for analysis of volatile organic compounds. No volatile organic contaminants were detected using field instruments or laboratory analyses. However, several radionuclides and metals were detected in water and/or soil/sediment samples collected from this facility. Of the radionuclides detected, only {sup 226}Ra may have come from facility operations; however, its concentration is at least one order of magnitude below the relative-risk comparison value. Several metals (arsenic, beryllium, cadmium, copper, mercury, lead, and antimony) were found to exceed the relative-risk comparison values for water, while only arsenic, cadmium, and lead were found to exceed the relative risk comparison values for soil. Of these constituents, it is believed that only arsenic, beryllium, mercury, and lead may have come from facility operations. Other significant hazards posed by the tunnel complex include radon exposure and potentially low oxygen concentrations (<19.5% in atmosphere) if the tunnel complex is not allowed to vent to the outside air. Asbestos-wrapped pipes, lead-based paint, rat poison, and possibly a selenium rectifier are also present within the tunnel complex.

Last, G.V.; Gilmore, T.J.; Bronson, F.J.

1998-01-01T23:59:59.000Z

220

Environmentally-acceptable fossil energy site evaluation and selection: methodology and user's guide. Volume 1  

SciTech Connect (OSTI)

This report is designed to facilitate assessments of environmental and socioeconomic impacts of fossil energy conversion facilities which might be implemented at potential sites. The discussion of methodology and the User's Guide contained herein are presented in a format that assumes the reader is not an energy technologist. Indeed, this methodology is meant for application by almost anyone with an interest in a potential fossil energy development - planners, citizen groups, government officials, and members of industry. It may also be of instructional value. The methodology is called: Site Evaluation for Energy Conversion Systems (SELECS) and is organized in three levels of increasing sophistication. Only the least complicated version - the Level 1 SELECS - is presented in this document. As stated above, it has been expressly designed to enable just about anyone to participate in evaluating the potential impacts of a proposed energy conversion facility. To accomplish this objective, the Level 1 calculations have been restricted to ones which can be performed by hand in about one working day. Data collection and report preparation may bring the total effort required for a first or one-time application to two to three weeks. If repeated applications are made in the same general region, the assembling of data for a different site or energy conversion technology will probably take much less time.

Northrop, G.M.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The utility of a geographic information system in facility/land use-related opportunities and constraints analysis for the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

Facility/land use-related opportunities and constraints analysis, which is indispensable for the evaluation of potential future uses for a site, is essentially spatial in nature. Spatial analysis is best accomplished using a geographic information system (GIS), as a GIS allows the identification and reporting or mapping of complex relationships among multiple data layers such as geology, soils, vegetation, contamination, and facilities. GIS-based maps and reports are valuable tools for communicating facility/land use-related opportunities and constraints to decision makers. This paper defines the term {open_quotes}GIS,{close_quotes}, provides an example of how a GIS could be used to conduct opportunities and constraints analysis at the Rocky Flats Environmental Technology Site (RFETS), and summarizes the benefits of using a GIS for this analysis. Because a GIS is often seen as a {open_quotes}black box{close_quotes} shrouded in technical jargon, this paper attempts to describe the concepts and benefits of a GIS in language understandable to decision makers who are not GIS experts but who migth profit from the use of GIS products. The purpose of this paper is to alert DOE decision makers to a valuable source of facility/land use-related information that already exists at many sites and that should not be overlook during the analysis of future use options.

Stewart, J. [S.M. Stoller Corp., Boulder, CO (United States)

1994-12-31T23:59:59.000Z

222

F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview  

SciTech Connect (OSTI)

The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

1992-07-01T23:59:59.000Z

223

Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility  

SciTech Connect (OSTI)

The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time.

CJ Chou; VG Johnson

2000-04-04T23:59:59.000Z

224

Survey of computer codes applicable to waste facility performance evaluations  

SciTech Connect (OSTI)

This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs.

Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

1988-01-01T23:59:59.000Z

225

NASA Benchmarks Lessons Learned Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

LESSONS LEARNED LESSONS LEARNED Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should have an established Lessons Learned Program with an effective system to continuously distribute information of improvement in safe operations to all affected personnel. Criteria: Timely and effective action is taken to track and correct identified deficiencies and to prevent their recurrence by addressing their basic causes and related generic problems. (DOE/EH-0135) Management installs an effective corrective action program (caWeb) for safety-related issues, wherein records are updated and actions are tracked through completion. (DOE/EH-0135) Management uses the corrective action program (caWeb) as the database to analyze safety issues, implement corrective actions, and define

226

NASA Benchmarks Safety Functions Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

SAFETY FUNCTIONS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety- related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135) Management promotes safety programs and the organization's safety culture through sponsoring and attending safety meetings. (DOE/EH- 0135) Management encourages and supports effective programs for reporting

227

Operations Authorization Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Operations Authorization Operations Authorization Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to verify there is documentation in place which accurately describes the safety envelope for a facility, program or project. Criteria: Conditions and requirements should be established to ensure programs addressing all applicable functional areas are adequately implemented to support safe performance of the work. The extent of documentation and level of authority for agreement shall be tailored to the complexity and hazards associated with the work. Personnel shall be responsible and accountable for performance of work in accordance with the controls established. Controls established for safety are a discernible part of the plan for

228

Multiattribute utility analysis as a framework for public participation siting a hazardous waste facility  

SciTech Connect (OSTI)

How can the public play a role in decisions involving complicated scientific arguments? This paper describes a public participation exercise in which stakeholders used multiattribute utility analysis to select a site for a hazardous waste facility. Key to success was the ability to separate and address the two types of judgements inherent in environmental decisions: technical judgements on the likely consequences of alternative choices and value judgements on the importance or seriousness of those consequences. This enabled technical specialists to communicate the essential technical considerations and allowed stakeholders to establish the value judgements for the decision. Although rarely used in public participation, the multiattribute utility approach appears to provide a useful framework for the collaborative resolution of many complex environmental decision problems.

Merkhofer, M.W. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Conway, R. [Sandia National Labs., Albuquerque, NM (United States); Anderson, R.G. [Los Alamos National Lab., NM (United States)

1996-05-01T23:59:59.000Z

229

Environmental Assessment for the Ammunition Storage Facility at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

t30. t30. U.S. DEPARTHEHT OF EMERCT , FXNIDIIG OF It0 SIONI~ICAMT. IMPACT -1TIOH STORAGE E'ACXLITX AT THE SAVAxmAa RI-R iIT@ " Afl[EN, 6OtfTE CAROLXNA AGEYCT: U.S. Department of Energy ACTIOR: Finding of No Significant Impact s-r: The Department of Energy (DOE1 hqe prepared an Environmental ~Asscssx~ent (EA), DOE/EA-0820, for the proposed construction and operation of ~rl Ammunition Storage Facility at the Savannah River Site (SRS), Aiken, South Carolina. Based on the analyses in the &A, DOE ha8 determined that the propoeed action ie aot a major Federal action significantly affecting the quality of the human environment, within the meaning of the Natioaal Eavironmcatal Policy Act (NEPA) of 1969. Therefore, the preparatioa of an environruents~,impaCt Statement iS not required

230

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

231

Type B Investigation Board Report on the April 2, 2002, Worker Fall from Shoring/Scaffolding Structure at the Savannah River Site Tritium Extraction Facility Construction Site  

Broader source: Energy.gov [DOE]

On April 2, 2002, a carpenter helping to erect shoring/scaffolding fell about 52 and struck his head. He sustained head injuries requiring hospitalization that exceeded the threshold for a Type B investigation in accordance with Department of Energy (DOE) Order 225.1A, Accident Investigation. The accident occurred at the DOEs Savannah River Site (SRS) at the Tritium Extraction Facility (TEF) construction site.

232

General Engineer / Physical Scientist (Facility Representative)  

Broader source: Energy.gov [DOE]

Facility Representatives (FRs) are line management's on-site technical representative with responsibility for identifying and evaluating environmental, safety and health issues and concerns,...

233

Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

Flynn, N.C. Bechtel Jacobs

2008-04-21T23:59:59.000Z

234

Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)  

SciTech Connect (OSTI)

The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

Smith, Frank G.; Phifer, Mark A.

2014-01-22T23:59:59.000Z

235

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

236

Verification and Validation of Facilities Procedures Assessment Plan - Developed By NNSA/Nevada Site Office Independent Oversight Division  

Broader source: Energy.gov (indexed) [DOE]

Verification and Validation of Facilities Procedures Verification and Validation of Facilities Procedures Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is verify and validate the process for the development of operations procedures and that procedures are in place which provide direction to personnel to ensure that the facility is operated within its design bases. Criteria: Operations procedures should be written to provide specific direction for operating systems and equipment during normal and postulated abnormal and emergency conditions. (DOE O 5480.19 A) Operations procedures should provide appropriate direction to ensure that the facility is operated within its design bases and should be effectively used to support safe operations of the facility. (DOE O 5480.19 A)

237

Addendum to environmental monitoring plan Nevada Test Site and support facilities  

SciTech Connect (OSTI)

This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

NONE

1992-11-01T23:59:59.000Z

238

A successful effort to involve stakeholders in a facility siting decision using LIPS with stakeholder involvement  

SciTech Connect (OSTI)

Local public opposition to federal bureaucratic decisions has resulted in public agencies rethinking the role of stakeholders in decision making. Efforts to include stakeholders directly in the decision-making process are on the increase. Unfortunately, many attempts to involve members of the public in decisions involving complex technical issues have failed. A key problem has been defining a meaningful role for the public in the process of arriving at a technical decision. This paper describes a successful effort by Sandia National Laboratories (SNL) in New Mexico to involve stakeholders in an important technical decision associated with its Environmental Restoration (ER) Project. The decision was where to locate a Corrective Action Management Unit (CAMU), a facility intended to consolidate and store wastes generated from the cleanup of hazardous waste sites. A formal priority setting process known as the Laboratory Integration Prioritization System (LIPS) was adapted to provide an approach for involving the public. Although rarely applied to stakeholder participation, the LIPS process proved surprisingly effective. It produced a consensus over a selected site and enhanced public trust and understanding of Project activities.

Merkhofer, L. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Conway, R. [Sandia National Labs., Albuquerque, NM (United States); Anderson, B. [Los Alamos National Lab., NM (United States)

1995-12-31T23:59:59.000Z

239

Evaluation of a Low-Cost Salmon Production Facility; 1988 Annual Report.  

SciTech Connect (OSTI)

This fiscal year 1988 study sponsored by the Bonneville Power Administration evaluates an existing, small-scale salmon production facility operated and maintained by the Clatsop County Economic Development Committee's Fisheries Project.

Hill, James M.; Olson, Todd

1989-05-01T23:59:59.000Z

240

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C. Smith July 13, 2009 Prepared by the U.S. Department of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 ii This page intentionally left blank SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iii Signatures SRS Salt Waste Processing Facility Technology Readiness Assessment July 13, 2009 iv This page intentionally left blank SRS Salt Waste Processing Facility

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relative risk site evaluations for Yakima Training Center  

SciTech Connect (OSTI)

All 20 U.S. Army Yakima Training Center (YTC) sites evaluated were given a `low` relative risk. At Solid Waste Management Unit (SWMU) 22, a `minimum` soils contaminant hazard factor was assigned even though 6,700 mg/kg TPH-diesel was found in surface soil. SWMU 22 is physically located on top of and with the fence surrounding Area of Concern (AOC) 4. Because the diesel is most likely associated with AOC 4, and plans are to clean up AOC 4, any further actions regarding these contaminated soils should be addressed as part of the planned actions for AOC 4. Contaminant hazard factors of `moderate` were assigned to the soil pathway for SWMUs 4 and 7 because dieldrin and arsenic, respectively, were found in surface soil samples at concentrations exceeding standards. A `moderate` contaminant hazard factor was also assigned to the sediment pathway for AOC 1 because arsenic detected in sediments in `Larry`s Swimming Pool` exceeded the standard. All other contaminant hazard factors were rated as minimal. The receptor factor for all sites and pathways was rated `limited,` except for SWMU 54 in which the groundwater receptor factor was rated `potential.` A `potential` rating was assigned to the groundwater pathway at this site to be conservative. The site is located on the south side of the syncline axis where the unconfined aquifer may be present and there are no monitoring wells at the site to confirm or deny the presence of groundwater contamination.

Smith, R.M.; Whelan, G.

1996-11-01T23:59:59.000Z

242

Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository  

SciTech Connect (OSTI)

The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

Kalia, H.N.; Merson, T.J.

1990-03-01T23:59:59.000Z

243

From Legislation to Implementation: An Evaluation of the Instructional Facilities Allotment Policy  

E-Print Network [OSTI]

FROM LEGISLATION TO IMPLEMENTATION: AN EVALUATION OF THE INSTRUCTIONAL FACILITIES ALLOTMENT POLICY A Dissertation by BRANDON HEATH CORE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...: Educational Administration Copyright 2013 Brandon Heath Core ii ABSTRACT The purpose of this study was to advance our understanding of the original legislative intents of the Instructional Facilities Allotment (IFA) and to evaluate the IFA policy...

Core, Brandon Heath

2013-04-24T23:59:59.000Z

244

The development and evaluation of a neutron window filter facility utilizing the TAMU NSC TRIGA reactor  

E-Print Network [OSTI]

THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1982 Major Subject: Nuclear Engineering THE DEVELOPMENT AND EVALUATION OF A NEUTRON WINDOW FILTER FACILITY UTILIZING THE TAMU NSC TRIGA REACTOR A Thesis by PATRICIA COLLEEN HARDING Approved as to style...

Harding, Patricia Colleen

2012-06-07T23:59:59.000Z

245

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

246

Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada  

SciTech Connect (OSTI)

Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

2002-01-17T23:59:59.000Z

247

Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

Bergren, Christopher L.; Long, J. Tony; Blankenship, John K. [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Karen M. [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

248

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Independent Technical Review Harry Harmon January 9, 2007 2 U.S. Department of Energy Outline * SWPF Process Overview * Major Risks * Approach for Conducting Review * Discussion of Findings * Conclusions 3 U.S. Department of Energy Salt Waste Processing Facility 4 U.S. Department of Energy SWPF Process Overview Alpha Finishing Process CSSX Alpha Strike Process MST/ Sludge Cs Strip Effluent DSS 5 U.S. Department of Energy BOTTOM LINE The SWPF Project is ready to move into final design. 6 U.S. Department of Energy Major Risks * Final geotechnical data potentially could result in redesign of the PC-3 CPA base mat and structure. * Cost and schedule impacts arising from the change from ISO-9001 to NQA-1 quality assurance requirements. * The "de-inventory, flush, and then hands-on

249

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

250

CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL  

SciTech Connect (OSTI)

RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

Farfan, E.; Coleman, R.

2011-03-31T23:59:59.000Z

251

SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES  

Broader source: Energy.gov (indexed) [DOE]

Y Y : J O H N D . S T E V E N S O N C O N S U L T I N G E N G I N E E R 6 6 1 1 R O C K S I D E R D . I N D E P E N D E N C E , O H I O 4 4 1 3 1 T E L . 2 1 6 - 4 4 7 - 9 4 4 0 E M A I L : J S T E V E N S O N 4 @ E A R T H L I N K . N E T SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES Categorization of Natural Hazard Phenomenon and Operational Load Combinations Prior to the 1988 Uniform Building Code, UBC (1) natural hazard phenomenon (earthquake, wind, flooding and precipitation) and operational load combinations were divided into two categories: NORMAL- Loads such as dead, live and design basis pressure. Expected frequency: 1.0 per yr with a limiting acceptance criteria Allowable stress design criteria: equal to one-half to two-thirds of specified minimum yield stress. SEVERE - Natural hazard and operational transient loads.

252

A Model Evaluation Data Set for the Tropical ARM Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

Jakob, Christian

253

Type B Accident Investigation Board Report of the Savannah River Site Hand Injury at the Salt Waste Processing Facility on October 6, 2009  

Broader source: Energy.gov [DOE]

This report documents the results of the Type B Accident Investigation Board (Board) investigation of the October 6, 2009, hand injury at the Department of Energy (DOE) Savannah River Site (SRS) Salt Waste Processing Facility construction site.

254

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect (OSTI)

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

Not Available

1993-11-01T23:59:59.000Z

255

Summary environmental site assessment report for the U.S. Department of Energy Oxnard Facility, Oxnard, California  

SciTech Connect (OSTI)

This report summarizes the investigations conducted by Rust Geotech at the U.S. Department of Energy (DOE) Oxnard facility, 1235 East Wooley Road, Oxnard, California. These investigations were designed to locate, identify, and characterize any regulated contaminated media on the site. The effort included site visits; research of ownership, historical uses of the Oxnard facility and adjacent properties, incidences of and investigations for contaminants on adjacent properties, and the physical setting of the site; sampling and analysis; and reporting. These investigations identified two friable asbestos gaskets on the site, which were removed, and nonfriable asbestos, which will be managed through the implementation of an asbestos management plan. The California primary drinking water standards were exceeded for aluminum on two groundwater samples and for lead in one sample collected from the shallow aquifer underlying the site; remediation of the groundwater in this aquifer is not warranted because it is not used. Treated water is available from a municipal water system. Three sludge samples indicated elevated heavy metals concentrations; the sludge must be handled as a hazardous waste if disposed. Polychlorinated biphenyls (PCBs) were detected at concentrations below remediation criteria in facility soils at two locations. In accordance with U.S. Environmental Protection Agency (EPA) and State of California guidance, remediation of the PCBs is not required. No other hazardous substances were detected in concentrations exceeding regulatory limits.

NONE

1996-02-01T23:59:59.000Z

256

Audit Report: Modular Office Facilities for Recovery Act Program Activities at the Hanford Site, OAS-RA-13-04  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Modular Office Facilities for Recovery Act Program Activities at the Hanford Site OAS-RA-L-13-04 July 2013 Department of Energy Washington, DC 20585 July 9, 2013 MEMORANDUM FOR THE MANAGER, RICHLAND OPERATIONS OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Modular Office Facilities for Recovery Act Program Activities at the Hanford Site" BACKGROUND The Department of Energy's Richland Operations Office (Richland) awarded a contract, effective October 1, 2008, to CH2M HILL Plateau Remediation Company (CHPRC) to remediate select portions of the Hanford Site's Central Plateau. As part of the American Recovery and

257

Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference.

Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

1981-02-04T23:59:59.000Z

258

Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation  

SciTech Connect (OSTI)

This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

NONE

1995-10-01T23:59:59.000Z

259

Evaluation of replacement tritium facility (RTF) compliance with DOE safety goals using probabilistic consequence assessment methodology. Revision 1  

SciTech Connect (OSTI)

The Savannah River Site (SRS), operated by the Westinghouse Savannah River Company (WSRC) for the US Department of Energy (DOE), is a major center for the processing of nuclear materials for national defense, deep-space exploration, and medical treatment applications in the United States. As an integral part of the DOE`s effort to modernize facilities, implement improved handling and processing technology, and reduce operational risk to the general public and onsite workers, transition of tritium processing at SRS from the Consolidated Tritium Facility to the Replacement Tritium Facility (RTF) began in 1993. To ensure that operation of new DOE facilities such as RTF present minimum involuntary and voluntary risks to the neighboring public and workers, indices of risk have been established to serve as target levels or safety goals of performance for assessing nuclear safety. These goals are discussed from a historical perspective in the initial part of this paper. Secondly, methodologies to quantify risk indices are briefly described. Lastly, accident, abnormal event, and normal operation source terms from RTF are evaluated for consequence assessment purposes relative to the safety targets.

O`Kula, K.R.; East, J.M.; Moore, M.L.

1993-12-31T23:59:59.000Z

260

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

262

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

263

2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report  

SciTech Connect (OSTI)

This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation.

Luke, S.N.

1994-07-14T23:59:59.000Z

264

Recent characterization activities of Midway Valley as a potential repository surface facility site  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier).

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Wesling, J.R.; Swan, F.H.; Bullard, T.F. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-31T23:59:59.000Z

265

Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

266

Walla Walla River Basin Fish Screen Evaluations, 2001 : Burlingame and Little Walla Walla Sites.  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) evaluated 2 newly constructed fish screen sites in the Walla Walla River Basin during the spring of 2001. The fish screens facilities at the Little Walla Walla River in Milton-Freewater, Oregon and at Burlingame west of Walla Walla, Washington were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. Data were collected to determine if velocities in front of the screens and in the bypasses met current National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. Due to a calibration problem with the instrument used to measure water velocities during the spring evaluations, we re-evaluated the water velocities at both sites after the canals discharges were increased in the fall. Based on the results of our studies in 2001, we concluded: Burlingame site--The rotary-drum screen design appeared to be efficiently protecting juvenile fish from entrainment, impingement, and migration delay in May and June. However, sediment and debris accumulations in the screen forebay could result in screen seal wear (due to silt) and may increase mortality due to predation in the screen forebay (due to woody debris accumulations along the screen face). All approach velocities were below the NMFS criteria of 0.4 feet per second in November. Sweep velocities were appreciably higher than approach velocities, however sweep velocities did not increase toward the bypass. Bypass velocity was greater than sweep velocities. Little Walla Walla--The flat-plate screen design appeared to be efficiently protecting juvenile fish from entrainment, impingement, and migration delay in May and June. All approach velocities were below the NMFS criteria of 0.4 feet per second in November. Sweep velocities were substantially higher than approach velocities and increased toward the bypass. Bypass velocity was greater than sweep velocities. The automated cleaning brushes at the Little Walla Walla site generally functioned properly. However, there was a small (6 to 12 in.) band along the length of the facility at the bottom of the screen that was not being cleaned effectively by the brush. In addition, the cable that drives the cleaning brush was showing signs of wear (cracks and frays) and should be replaced.

McMichael, Geoffrey A.; Chamness, M.A.

2001-12-01T23:59:59.000Z

267

Umatilla Satellite and Release Sites Project : Final Siting Report.  

SciTech Connect (OSTI)

This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Montgomery, James M.

1992-04-01T23:59:59.000Z

268

The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site  

SciTech Connect (OSTI)

This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

1995-02-01T23:59:59.000Z

269

Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site  

SciTech Connect (OSTI)

This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

NONE

1998-01-01T23:59:59.000Z

270

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

271

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

272

Enforcement Letter - Evaluation of Deficiencies Operational Emergency at Building 6000, Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

3,2009 3,2009 Dr. Thom Mason President and CEO UT-Battelle Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6255 Dear Dr. Mason: The Department of Energy's Office of Enforcement within the Office of Health, Safety and Security has conducted an evaluation of the deficiencies described in Noncompliance Tracking System (NTS) report NTS-ORO--0RNL-XlOPHYSICS-2008-0001, Operational Emergency at Building 6000, Holzfield Radioactive Ion Beam Facility. Our evaluation included a review of the Oak Ridge National Laboratory (ORNL) Management Investigation Team Report dated November 19,2008, the associated corrective action plan, and discussions with site personnel. The subject NTS report described a series of deficiencies at the Holifield Radioactive Ion

273

DOE/EH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of Energy Facilities, 1997  

Broader source: Energy.gov [DOE]

The guidance for DOE/EH-0545, Seismic Evaluation Procedure for Equipment in U.S. Department of Energy Facilities, March 1997

274

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

275

Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or clean, building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, Final Status Survey Plan for Corrective Action Unit 117 Pluto Disassembly Facility, Building 2201) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a Non-Impacted Class which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into survey units and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three Class 1, four Class 2, and one Class 3 survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the buildings interior, Building 2201 may be considered radiologically clean, or free of contamination.

Jeremy Gwin and Douglas Frenette

2010-09-30T23:59:59.000Z

276

Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility  

SciTech Connect (OSTI)

As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to overpressure--external to T Plant, was included for completeness but is not within the scope of the hazards evaluation. Container failures external to T Plant will be addressed as part of the transportation analysis. This document describes the HazOp analysis performed for the activities associated with the storage of SNF sludge in the T Plant.

SCHULTZ, M.V.

2000-08-22T23:59:59.000Z

277

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

SciTech Connect (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

278

Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1  

SciTech Connect (OSTI)

The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

King, J.W.

1993-08-01T23:59:59.000Z

279

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect (OSTI)

This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

NONE

1998-09-01T23:59:59.000Z

280

Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)  

SciTech Connect (OSTI)

The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

Not Available

1989-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

General Engineer/Physical Scientist (Senior Facility Representative)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Site Managers Senior Facility Representative, and responsible for program management, technical monitoring, advising and evaluating all...

282

Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility  

SciTech Connect (OSTI)

Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

Mack, J.E.; Williams, L.C.

1982-01-01T23:59:59.000Z

283

Evaluation of syngas production unit cost of bio-gasification facility using regression analysis techniques  

SciTech Connect (OSTI)

Evaluation of economic feasibility of a bio-gasification facility needs understanding of its unit cost under different production capacities. The objective of this study was to evaluate the unit cost of syngas production at capacities from 60 through 1800Nm 3/h using an economic model with three regression analysis techniques (simple regression, reciprocal regression, and log-log regression). The preliminary result of this study showed that reciprocal regression analysis technique had the best fit curve between per unit cost and production capacity, with sum of error squares (SES) lower than 0.001 and coefficient of determination of (R 2) 0.996. The regression analysis techniques determined the minimum unit cost of syngas production for micro-scale bio-gasification facilities of $0.052/Nm 3, under the capacity of 2,880 Nm 3/h. The results of this study suggest that to reduce cost, facilities should run at a high production capacity. In addition, the contribution of this technique could be the new categorical criterion to evaluate micro-scale bio-gasification facility from the perspective of economic analysis.

Deng, Yangyang; Parajuli, Prem B.

2011-08-10T23:59:59.000Z

284

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program  

Broader source: Energy.gov [DOE]

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

285

SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES'  

Office of Scientific and Technical Information (OSTI)

6 1 6 1 7 1 1 SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE DOE HLW FACILITIES' Chi-Wen Lin Consultant, Martinez, CA George Antaki Westinghouse Savannah River Co., Aiken, SC Kamal Bandyopadhyay Brookhaven National Lab., Upton, NY ABSTRACT This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic- foundation analysis principle and the inertial response calculation method, respectively, for piping directly

286

Application of pathways analyses for site performance prediction for the Gas Centrifuge Enrichment Plant and Oak Ridge Central Waste Disposal Facility  

SciTech Connect (OSTI)

The suitability of the Gas Centrifuge Enrichment Plant and the Oak Ridge Central Waste Disposal Facility for shallow-land burial of low-level radioactive waste is evaluated using pathways analyses. The analyses rely on conservative scenarios to describe the generation and migration of contamination and the potential human exposure to the waste. Conceptual and numerical models are developed using data from comprehensive laboratory and field investigations and are used to simulate the long-term transport of contamination to man. Conservatism is built into the analyses when assumptions concerning future events have to be made or when uncertainties concerning site or waste characteristics exist. Maximum potential doses to man are calculated and compared to the appropriate standards. The sites are found to provide adequate buffer to persons outside the DOE reservations. Conclusions concerning site capacity and site acceptability are drawn. In reaching these conclusions, some consideration is given to the uncertainties and conservatisms involved in the analyses. Analytical methods to quantitatively assess the probability of future events to occur and the sensitivity of the results to data uncertainty may prove useful in relaxing some of the conservatism built into the analyses. The applicability of such methods to pathways analyses is briefly discussed. 18 refs., 9 figs.

Pin, F.G.; Oblow, E.M.

1984-01-01T23:59:59.000Z

287

Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572  

SciTech Connect (OSTI)

Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

2013-07-01T23:59:59.000Z

288

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in the flue gas; this was true for all SCR catalyst types and sources. Although chlorine has been suggested as a factor affecting the mercury speciation in flue gas, coal chlorine was not a statistically significant factor affecting mercury speciation at the economizer exit or at the air heater exit. The only statistically significant factors were the coal ash CaO content and the fly ash carbon content; the fraction of mercury in the elemental form at the economizer exit was positively correlated with both factors. In a direct comparison at four SCR-equipped units vs. similar units at the same sites without SCR (or with the SCR bypassed), the elemental mercury fractions (measured at the ESP outlet) were lower, and the coal-to-stack mercury removals were higher, when the SCR was present and operating. The average coal-to-stack mercury removal at the four units without an operating SCR was 72%, whereas the average removal at the same sites with operating SCRs was 88%. The unit mercury mass balance (a gauge of the overall quality of the tests) at all of the units ranged from 81% to 113%, which were within our QA/QC criterion of 80-120%.

J.A. Withum

2006-03-07T23:59:59.000Z

289

Type B Accident Investigation Board Report Employee Puncture Wound at the F-TRU Waste Remediation Facility at the Savannah River Site on June 14, 2010  

Broader source: Energy.gov [DOE]

This report documents the results of the Type B Accident Investigation Board investigation of the June 14, 2010, employee puncture wound at the Department of Energy (DOE) Savannah River Site (SRS) F-TRU Wste Facility located in the F Canyon Facility.

290

Grout Isolation and Stabilization of Structures and Materials within Nuclear Facilities at the U.S. Department of Energy, Hanford Site, Summary - 12309  

SciTech Connect (OSTI)

Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks, (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)

Phillips, S.J.; Phillips, M.; Etheridge, D. [Applied Geotechnical Engineering and Construction, Incorporated, Richland, Washington (United States); Chojnacki, D.W.; Herzog, C.B.; Matosich, B.J.; Steffen, J.M.; Sterling, R.T. [CH2M HILL Plateau Remediation Company, Richland, Washington (United States); Flaucher, R.H.; Lloyd, E.R. [Fluor Federal Services, Incorporated, Richland, Washington (United States)

2012-07-01T23:59:59.000Z

291

Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year  

SciTech Connect (OSTI)

This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

1985-06-01T23:59:59.000Z

292

Work Controls Assessment Plan Assessment Plan Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

WORK CONTROLS WORK CONTROLS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Performance Objective: Management should have an established work control process in place with authorized, controlled and documented methods that provide an accurate status of the work to be performed. Criteria: Work planning addresses applicable laws, codes and regulations. Work planning includes operational configuration constraints; material, tool, and manpower requirements; inter-organizational coordination; operational history; special training; safety considerations; hazards protection requirements; post-maintenance testing; quality control requirements; and other considerations as necessary. The work to be accomplished is defined by identifying the existing

293

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah...  

Office of Environmental Management (EM)

was to provide input on (1) the most effective use of the existing RCRA Subtitle D landfill, (2) site considerations such as seismic and brown versus green field, (3) the public...

294

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network [OSTI]

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

295

SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

296

ARM - SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

297

Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

NONE

1992-01-01T23:59:59.000Z

298

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Quality Improvement Inspections Take Place Annual Quality Improvement Inspections Take Place Bookmark and Share During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. The Continuous Quality Improvement Program (CQIP) implemented by the ARM Program in 1998 requires annual audits and inspection visits to each of the ARM Climate Research Facility Southern Great Plains (SGP) site's 27 field facilities located in Oklahoma and Kansas. A small team of scientists and engineers conduct the inspections each year to evaluate the field

299

Results of Surveys for Special Status Reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The purpose of this report is to present the results of a live-trapping and visual surveys for special status reptiles at the Site 300 Facilities of Lawrence Livermore National Laboratory (LLNL). The survey was conducted under the authority of the Federal recovery permit of Swaim Biological Consulting (PRT-815537) and a Memorandum of Understanding issued from the California Department of Fish and Game. Site 300 is located between Livermore and Tracy just north of Tesla road (Alameda County) and Corral Hollow Road (San Joaquin County) and straddles the Alameda and San Joaquin County line (Figures 1 and 2). It encompasses portions of the USGS 7.5 minute Midway and Tracy quadrangles (Figure 2). Focused surveys were conducted for four special status reptiles including the Alameda whipsnake (Masticophis lateralis euryxanthus), the San Joaquin Whipsnake (Masticophis Hagellum ruddock), the silvery legless lizard (Anniella pulchra pulchra), and the California horned lizard (Phrynosoma coronanum frontale).

Woollett, J J

2008-09-18T23:59:59.000Z

300

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vegetation communities associated with the 100-Area and 200-Area facilities on the Hanford Site  

SciTech Connect (OSTI)

The Hanford Site, Benton County, Washington, lies within the broad semi-arid shrub-steppe vegetation zone of the Columbia Basin. Thirteen different habitat types on the Hanford Site have been mapped in Habitat Types on the Hanford Site: Wildlife and Plant Species of Concern (Downs et al. 1993). In a broad sense, this classification is correct. On a smaller scale, however, finer delineations are possible. This study was conducted to determine the plant communities and estimate vegetation cover in and directly adjacent to the 100 and 200 Areas, primarily in relation to waste sites, as part of a comprehensive ecological study for the Compensation Environmental Response, Compensation, and Liability Act (CERCLA) characterization of the 100 and 200 Areas. During the summer of 1993, field surveys were conducted and a map of vegetation communities in each area, including dominant species associations, was produced. The field surveys consisted of qualitative community delineations. The community delineations described were made by field reconnaissance and are qualitative in nature. The delineations were made by visually determining the dominant plant species or vegetation types and were based on the species most apparent at the time of inspection. Additionally, 38 transects were run in these plant communities to try to obtain a more accurate representation of the community. Because habitat disturbances from construction/operations activities continue to occur in these areas, users of this information should be cautious in applying these maps without a current ground survey. This work will complement large-scale habitat maps of the Hanford Site.

Stegen, J.A.

1994-01-17T23:59:59.000Z

302

Allowable residual contamination levels for decommissioning the 115-F and 117-F facilities at the Hanford Site  

SciTech Connect (OSTI)

This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for the 115-F and 117-F facilities at the Hanford Site. The purpose of this study is to provide data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. Information on restricted and controlled use is provided to permit a full consideration of decommissioning alternatives. Procedures are presented for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations and to determine instrument responses for various mixtures of radionuclides. Finally, a comparison is made between existing decommissioning guidance and the ARCL values calculated for unrestricted release of the 115-F and 117-F facilities. The comparison shows a good agreement.

Kennedy, W.E. Jr.; Napier, B.A.

1983-07-01T23:59:59.000Z

303

Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506  

SciTech Connect (OSTI)

The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

2013-07-01T23:59:59.000Z

304

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

305

Colorado School of Mines Research Institute Site Data Evaluation Report  

E-Print Network [OSTI]

................................................................................................................... 5 3.2.1 Remedial Investigation/Feasibility Study past site characterization work by a previous consultant and presented in the remedial investigation............................................................... 5 3.2.2 Remedial Action

306

3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan  

SciTech Connect (OSTI)

The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D. [Korea Atomic Energy Research Institute - KAERI, 989-111 Daeduk-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

307

Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites  

SciTech Connect (OSTI)

The Blue Ribbon Commission on Americas Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites an evaluation of the onsite transportation conditions at the shutdown sites an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

Maheras, Steven J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Best, Ralph [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ross, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Buxton, Kenneth A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); England, Jeffery L. [Savannah River National Laboratory, Aiken, SC (United States); McConnell, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

2013-04-30T23:59:59.000Z

308

GRR/Section 10 - On-Site Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 10 - On-Site Evaluation Process GRR/Section 10 - On-Site Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 10 - On-Site Evaluation Process 10SiteEvaluation.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management U S Army Corps of Engineers United States Environmental Protection Agency Fish and Wildlife Service United States Department of Defense Regulations & Policies Endangered Species Act Clean Water Act Clean Air Act Triggers None specified Click "Edit With Form" above to add content 10SiteEvaluation.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

309

Bingen wastewater treatment facility energy evaluation. A reconnaissance level technical assistance study for the city of Bingen  

SciTech Connect (OSTI)

In the fall of 1983, the city of Bingen was selected as a target community for the Local Government Technical Assistance (LGTA) Program. They requested the LGTA team to assist them in identifying cost-effective energy conservation opportunities at their wastewater treatment facility. A description of the wastewater treatment process, monthly energy cost and consumption data, and process in-flow data were collected and analyzed by the LGTA team. An onsite treatment facility evaluation was performed in March of 1984. The purpose of this report is to present the results of the LGTA energy inventory and to recommend directions for further study. The city of Bingen operates a small treatment plant which averages 9.6 million gallons per month (an average of 0.31 million gallons per day). The treatment process consists of passing wastewater through a comminutor, grit chamber, aeration basin, clarifier, and a chlorination contact chamber prior to releasing the treated water into the Columbia River. The solids portion of the waste stream is biologically treated by aerobic digesters before the sludge is trucked to a land disposal site. Annual electrical consumption at the facility averages about 80,000 kWh. As estimated by the LGTA equipment inventory, the largest electrical consuming process component is the operation of the brush aerators (approx.65% of the total process electrical consumption). An Energy Utilization Index (EUI) was determined on a bimonthly basis. Over the last 18 months, the EUI has averaged a very respectable 2.67 million Btus per million gallons of processed wastewater.

James, J.W.

1985-10-01T23:59:59.000Z

310

1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters  

SciTech Connect (OSTI)

This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order.

Jeppson, D.W.; Biyani, R.K.; Duncan, J.B.; Flyckt, D.L.; Mohondro, P.C.; Sinton, G.L.

1997-07-24T23:59:59.000Z

311

DOE site facility mgt contracts Internet Posting 5-2-11.xlsx  

Broader source: Energy.gov (indexed) [DOE]

6/30/2011 6/30/2011 2 three month option periods until protest resolved 9/30/2011 M&O 1999 http://www.id.energy.gov/PSD/AMWTPHomepage.html Mike Adams 208-526-5277 Wendy Bauer 208-526-2808 Paducah Remediation EM LATA Environmental Services of Kentucky 4/22/2010 7/21/2015 7/21/2015 Site Clean up 2009 http://www.emcbc.doe.gov/dept/contracting/primecontracts.php Pam Thompson 859-219-4056 Bill Creech 859-219-4044 West Valley Demonstration Project EM West Valley Environmental Svcs 6/29/2007 6/30/2011 6/30/2011 Site Clean up 2007 http://www.emcbc.doe.gov/dept/contracting/primecontracts.php Ralph Holland 513-246-0550 Derrick Franklin 513-246-0103 Argonne National Laboratory SC UChicago Argonne, LLC 7/31/2006 9/30/2011 4 yrs Award Term Earned/additional 11 yrs Award

312

Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

Durant, W.S.; Baughman, D.F.

1990-03-01T23:59:59.000Z

313

Northeast Oregon Hatchery Project, Final Siting Report.  

SciTech Connect (OSTI)

This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

Watson, Montgomery

1995-03-01T23:59:59.000Z

314

Procuring Solar Energy: A Guide for Federal Facility Decision Makers, Solar Screening Evaluation Checklist, September 2010  

Broader source: Energy.gov [DOE]

This guide presents an overview of the process for successfully planning for and installing solar technology on a federal site. It is specifically targeted to managers of federal buildings and sites, contracting officers, energy and sustainability officers, and regional procurement managers. The solar project process is outlined in a concise, easy-to-understand, step-by-step format. Information includes a brief overview of legislation and executive orders related to renewable energy and the compelling reasons for implementing a solar project on a federal site. It also includes how to assess a facility to identify the best solar installation site, project recommendations and considerations to help avoid unforeseen issues, and guidance on financing and contracting options. Case studies with descriptions of successful solar deployments across multiple agencies are presented. In addition, detailed information and sample documents for specific tasks are referenced with Web links or included in the appendixes. The guide concentrates on distributed solar generation and not large, centralized solar energy generation.

315

Evaluating suspect sites {open_quotes}to clean or not to clean?{close_quotes}  

SciTech Connect (OSTI)

Within many large government reservations are many sites that are potentially contaminated from various uses such as experiments, material storage, or material processes. There also exist many smaller areas that, by proximity to contaminated sites, or due to work contracts, are likely to be contaminated. The party responsible for such sites must evaluate if remediation is required, based on current guidelines and future uses. The Departments of Defense and Energy have many sites and properties that are suspected of being contaminated or associated with operations that could cause contamination. In some cases the contaminants may have been adequately cleaned up, then decayed away, biodegraded, or dispersed to a nondetectable level. The decision to remove these sites from any further consideration of remediation or control must be based on historical data, potential contaminants, current analytical data, future uses, and the cost associated with managing the sites. This paper deals with the methodology for evaluating small sites and gives some case studies.

Murray, M.E.; Coleman, R.L.; Tiner, P.F.

1996-04-01T23:59:59.000Z

316

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

317

Welding Cutting and Brazing Assessment Plan Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

WELDING, CUTTING AND BRAZING WELDING, CUTTING AND BRAZING Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: This assessment is to verify hot work requirements associated with welding, cutting, burning, brazing, grinding and other spark- or flame-producing operations have been implemented. Verify that the requirements implemented are appropriate for preventing loss of life and property from fire, and personal injury from contact with or exposure to molten metals, vapors, radiant energy, injurious rays and sparks. Criteria: Establish designated area in which routine and repetitive welding, cutting, and other spark- or flame producing operations are conducted [1910.252(a)(2)(iv),1910.252(a)(2)(vi)(A), 1910.252(a)(2)(xv), General Requirements].

318

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

319

Site Characterization Plan for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The aboveground structures of the Old Hydrofracture Facility (OHF) at Oak Ridge National Laboratory (ORNL) are scheduled for decontamination and decommissioning (D&D). This Site Characterization Plan presents the strategy and techniques to be used to characterize the OHF D&D structures in support of D&D planning, design, and implementation. OHF is located approximately 1 mile southwest of the main ORNL complex. From 1964 to 1979, OHF was used in the development and full-scale application of hydrofracture operations in which 969,000 gal of liquid low-level waste (LLLW) was mixed with grout and then injected under high pressure into a low-permeability shale formation approximately 1/6 mile underground.

Not Available

1994-01-01T23:59:59.000Z

320

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

322

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

323

Machine Shop Safe Operations Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

July 2003 - Machine Shop Safe Operations July 2003 - Machine Shop Safe Operations Utilize 29 CFR 1910 Utilize applicable LLNL, LANL, DTRA, BN procedures VALUE ADDED FOR: AMTS Contractor Assurance Focus Area AMTS ISM Improvements Focus Area AMTS Safety Precursors/Hazards Analysis Focus Area AMTS Environment, Safety, & Health Division MACHINE SHOP SAFE OPERATIONS Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is to verify that machine shop operators are provided a safe and healthful workplace which will reduce or prevent injuries, illnesses, and accidental losses. Criteria: A worker protection program shall be implemented that provides a place of employment free from recognized hazards that are causing or likely to cause

324

Self-Assessment Program Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

SELF-ASSESSMENT SELF-ASSESSMENT Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: Management should ensure that effective management and independent self- assessments are being conducted periodically by technically qualified personnel. [10 CFR 830.122, subpart A & DOE O 414.1A, Quality Assurance] Criteria: Managers shall assess their management processes and be actively involved in the assessment process to ensure results contribute to improved performance of programs, systems, and work processes. DOE O 414.1A, Criterion 9 (a) An effective assessment and safety management program shall focus on achieving DOE/NNSA expectations through federal regulations and standards. DOE O 414.1A, Criterion 9 (a) An effective assessment supports management's goal to protect people and

325

Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report  

SciTech Connect (OSTI)

A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

None

1980-01-01T23:59:59.000Z

326

Evaluation of irradiation facility options for fusion materials research and development  

Science Journals Connector (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuteriumtritium (DT) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50200displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. One or more intense neutron source(s) are needed to address two complementary missions: (1) scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and (2) engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Some of the key technical considerations for selecting the most appropriate fusion materials irradiation source are summarized. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, DLi stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Steven J. Zinkle; Anton Mslang

2013-01-01T23:59:59.000Z

327

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL] [ORNL; Mslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany] [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

328

Mercury contaminated sediment sitesAn evaluation of remedial options  

SciTech Connect (OSTI)

Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ? Managing mercury-contaminated sediment sites are challenging to remediate. ? Remediation technologies are making a difference in managing these sites. ? Partitioning plays a dominant role in the distribution of mercury species. ? Mathematical models can be used to help us understand the chemistry and processes.

Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)] [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

2013-08-15T23:59:59.000Z

329

Finding of no significant impact shipment of stabilized mixed waste from the K-25 Site to an off-site commercial disposal facility, Oak Ridge K-25 Site, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) for the shipment of stabilized mixed waste, removed from K-1407-B and -C ponds, to an off-site commercial disposal facility (Envirocare) for permanent land disposal. Based on the analysis in the EA, DOE has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1994-12-31T23:59:59.000Z

330

Site Characterization Report ORGDP Diffusion Facilities Permanent Shutdown K-700 Power House and K-27 Switch Yard/Switch House  

SciTech Connect (OSTI)

The K-700 Power House area, initially built to supply power to the K-25 gaseous diffusion plant was shutdown and disassembled in the 1960s. This shutdown was initiated by TVA supplying economical power to the diffusion plant complex. As a result of world wide over production of enriched, reactor grade U{sup 235}, the K-27 switch yard and switch house area was placed in standby in 1985. Subsequently, as the future production requirements decreased, the cost of production increased and the separation technologies for other processes improved, the facility was permanently shutdown in December, 1987. This Site Characterization Report is a part of the FY-88 engineering Feasibility Study for placing ORGDP Gaseous Diffusion Process facilities in 'Permanent Shutdown'. It is sponsored by the Department of Energy through Virgil Lowery of Headquarters--Enrichment and through Don Cox of ORO--Enrichment Operations. The primary purpose of these building or site characterization reports is to document, quantify, and map the following potential problems: Asbestos; PCB containing fluids; Oils, coolants, and chemicals; and External contamination. With the documented quantification of the concerns (problems) the Engineering Feasibility Study will then proceed with examining the potential solutions. For this study, permanent shutdown is defined as the securing and/or conditioning of each facility to provide 20 years of safe service with minimal expenditures and, where feasible, also serving DOE's needs for long-term warehousing or other such low-risk use. The K-700 power house series of buildings were either masonry construction or a mix of masonry and wood. The power generating equipment was removed and sold as salvage in the mid 1960s but the buildings and auxiliary equipment were left intact. The nine ancillary buildings in the power house area use early in the Manhattan Project for special research projects, were left intact minus the original special equipment. During the late 1960s and 1970s, some of the abandoned buildings were used for offices, special projects, and storage. Some of the remaining electrical transformers contain PCBs in concentrations less than 500 ppm. Many of the steam and hot water pipes in the buildings are insulated with asbestos insulation, but none of the equipment or buildings have high counts of surface radioactive contamination. The general conditions of the buildings are from fair to poor. Many should be boarded-up to prevent personnel entry and in some cases demolitions would be the safer alternative.

Thomas R.J., Blanchard R.D.

1988-06-13T23:59:59.000Z

331

Three-phase measurement evaluation using a high-speed processor with snapshot facility  

SciTech Connect (OSTI)

A homogeneous measurement evaluation system is presented which is able to provide all characteristic, electrical parameters in a HV substation. It can be applied to asymmetric and to distorted power systems. Its application software consists of four parts for each function: preprocessing, frequency shift, filtering, arithmetic functions. Its processor features the snapshot facility i.e. all voltage and current phases of one feeder can be picked up simultaneously thus eliminating interpolation errors. The accuracy of the evaluated parameters is C1.0.2 and C1.0.5 resp. including rms values of harmonics. Analog anti-aliasing filters are not required. Amplitude and phase errors of instrument transformers can be compensated. Since the applied processor is very fast, real-time results are obtained which meet even the stringent requirements of static Var compensators or other power electronics control equipment. An application for an EHV gas-insulated substation is described.

Brand, K.P.; Kopainsky, J.; Wittwer, F. (BBC Brown, Boveri and Cie., Ltd., CH-5401 Baden (CH))

1988-07-01T23:59:59.000Z

332

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CIMEL Sunphotometer Helps Researchers See the Light in Australia CIMEL Sunphotometer Helps Researchers See the Light in Australia Bookmark and Share A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. Science collaborators at the Australian Bureau of Meteorology (BOM) and the Australian Commonwealth Scientific and Industry Research Organization (CSIRO) are using the ARM Climate Research Facility Darwin site in Australia to evaluate aerosol optical properties during the tropical dry season. As part of the Darwin Aerosol Intensive Operational Period (IOP), a

333

Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

334

A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation .  

E-Print Network [OSTI]

??With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to (more)

Iamsumang, Chonlagarn

2010-01-01T23:59:59.000Z

335

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

336

Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A  

SciTech Connect (OSTI)

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS).

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

337

Evaluation of soil radioactivity data from the Nevada Test Site  

SciTech Connect (OSTI)

Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process.

NONE

1995-03-01T23:59:59.000Z

338

Voluntary Protection Program Onsite Review, Waste Sampling and Characterization Facility- May 2007  

Broader source: Energy.gov [DOE]

Evaluation of Waste Sampling and Characterization Facility to make the final decision regarding the companys continued participation in DOE-VPP as a Star site.

339

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

31, 2006 [Facility News] 31, 2006 [Facility News] Infrared Loss Study Underway at North Slope of Alaska Bookmark and Share At ARM's North Slope of Alaska site in Barrow, collocated sky radiometers are being evaluated to refine the methodology that accounts for infrared loss in polar conditions. At ARM's North Slope of Alaska site in Barrow, collocated sky radiometers are being evaluated to refine the methodology that accounts for infrared loss in polar conditions. In the far northern reaches of Alaska, extended periods of both darkness and daylight occur throughout the year. Additionally, extremely cold weather conditions contribute to a harsh operating environment for research equipment. Therefore, broadband radiometers at the ARM North Slope of Alaska (NSA) site are equipped with electric heaters inside the ventilators

340

Development of standard evaluation plan for survey and investigation of residual radioactivity on site  

Science Journals Connector (OSTI)

......standard evaluation plan for survey and investigation...site investigation plan are needed to ensure...under their control. Regulatory agencies need to...historical records review, process knowledge...Office of Nuclear Regulatory Research. NUREG-1640...standard evaluation plan for survey and investigation......

Sang Won Shin; Joo Ho Whang; Su Hong Lee; Jea Min Lee

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities  

Broader source: Energy.gov (indexed) [DOE]

0-2002 0-2002 January 2002 Superseding DOE-STD-1020-94 April 1994 DOE STANDARD NATURAL PHENOMENA HAZARDS DESIGN AND EVALUATION CRITERIA FOR DEPARTMENT OF ENERGY FACILITIES U.S. Department of Energy AREA NPHZ Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1020-2002 iii Foreword This revision provides information to help meet the requirements of 10 CFR Part 830, "Nuclear

342

Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input  

Broader source: Energy.gov (indexed) [DOE]

:14 :14 Report number: 2013:14 ISSN: 2000-0456 Available at www.stralsakerhetsmyndigheten.se Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries Evaluation for Regulatory Input Robert A. Meck Author: SSM perspektiv SSM har nyligen beslutat om föreskrifter om friklassning av material, loka- ler, byggnader och mark vid verksamhet med joniserande strålning (SSMFS 201 1:2). Föreskrifterna innehåller bland annat krav på att tillståndshavare, vid avveckling av verksamhet med joniserande strålning, ska vidta åtgärder som möjliggör friklassning av lokaler, byggnader och mark. Föreskrifterna innehåller nuklidspecifika friklassningsnivåer i becquerel per m2 för lokaler och byggnader men ger ingen upplysning om vilka friklassningsnivåer som

343

A manual for applying the allowable residual contamination level method for decommissioning facilities on the Hanford Site  

SciTech Connect (OSTI)

This report describes the modifications that have been made to enhance the original Allowable Residual Contamination Level (ARCL) method to make it more applicable to site-specific analyses. This version considers the mixture of radionuclides present at the time of site characterization, the elapsed time after decommissioning when exposure to people could occur, and includes a calculation of the upper confidence limit of the potential dose based on sampling statistics that are developed during the site characterization efforts. The upper confidence limit of potential exposure can now be used for comparison against applicable radiation dose limits (i.e., 25 mrem/yr at Hanford). The level of confidence can be selected by the user. A wide range of exposure scenarios were evaluated; the rationale used to select the most limiting scenarios is explained. The radiation dose factors used for the inhalation and ingestion pathways were also updated to correspond with the radiation dosimetry methods utilized in the International Commission of Radiological Protection Publications 26 and 30 (ICRP 1977; 1979a,b, 1980, 1981, 1982a,b). This simplifies the calculations, since ''effective whole body'' doses are now calculated, and also brings the dosimetry methods used in the ARCL method in conformance with the rationale used by DOE in developing the 25 mrem/yr limit at Hanford. 46 refs., 21 figs., 15 tabs.

Napier, B.A.; Piepel, G.F.; Kennedy, W.E. Jr.; Schreckhise, R.G.

1988-08-01T23:59:59.000Z

344

AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA  

Broader source: Energy.gov [DOE]

An Application of the SSHAC Level 3 Process to the Probabilistic Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Kevin J. Coppersmith Coppersmith Consulting, Inc. Julian J. Bommer Consultant Robert W. Bryce Pacific Northwest National Laboratory U.S. Department of Energy Natural Phenomena Hazards Meeting October 21-22, 2014 Germantown, MD

345

Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility  

SciTech Connect (OSTI)

With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

Metz, Paul; Bolz, Patricia

2013-03-25T23:59:59.000Z

346

DOE Site List  

Office of Environmental Management (EM)

Links Links Central Internet Database CID Photo Banner DOE Site List Site Geo Site Code State Operations Office1 DOE Programs Generating Streams at Site DOE Programs Managing Facilities Associated Data2 Acid/Pueblo Canyons ACPC NM Oak Ridge Waste/Media, Facilities Airport Substation CA Western Area Power Administration Facilities Akron Hill Communication Site CO Western Area Power Administration Facilities Akron Substation CO Western Area Power Administration Facilities AL Complex NM Albuquerque DP Facilities Alba Craft ALCL OH Oak Ridge Facilities Albany Research Center AMRC OR Oak Ridge Facilities Alcova Switchyard WY Western Area Power Administration Facilities Aliquippa Forge ALFO PA Oak Ridge Facilities

347

A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation  

E-Print Network [OSTI]

With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to the inclusion of highly enriched material and reprocessing ...

Iamsumang, Chonlagarn

2010-01-01T23:59:59.000Z

348

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

28, 2005 [Facility News] 28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA)

349

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect (OSTI)

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

350

Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

351

Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

NSTec Environmental Restoration

2011-02-24T23:59:59.000Z

352

Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes  

SciTech Connect (OSTI)

The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

2003-11-15T23:59:59.000Z

353

Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site  

E-Print Network [OSTI]

Nuclear Facilities, DOE- HDBK-3010-94, Vol. 1 (1994). 8. T.in the DOE Handbook, DOE-HDBK-3010-94 (Ref. 7). According to

2009-01-01T23:59:59.000Z

354

Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. (Oak Ridge K-25 Site, TN (United States)); Kucsmas, D. (Oak Ridge National Lab., TN (United States))

1991-10-01T23:59:59.000Z

355

Data evaluation technical memorandum on the K-1407C Retention Basin at the Oak Ridge K-25 Site, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The K-1407-C Retention Basin was a surface impoundment at the Oak Ridge K-25 Site. The basin was used primarily for storing potassium hydroxide scrubber sludge generated at the K-25 Site. In addition, from 1960 to 1973, metal hydroxide sludges that were removed from the K-1407-B Holding Pond were discharged to the K-1407-C Retention Basin. The sludge in the K-1407-B Pond contained discharge from the K-1420 Decontamination and Uranium Recovery, the K-1501 Steam Plant, the K-1413 Laboratory, and the K-1401 Maintenance Building. Radioactive material is also present in the K-1407-C Retention Basin, probably the result of cleaning and decontamination activities at some of the aforementioned facilities. The discharge of waste materials to K-1407-C was discontinued before November of 1988, and all sludge was removed from the retention basin. Some of the sludge was stored, and the remainder was fixed in concrete. This report is specific to the K-1407-C Retention Basin and includes information pertinent to the evaluation of soil contamination. The focus of this evaluation is the effectiveness of the Phase 1 investigation of the K-1407-C Retention Basin to define site conditions adequately to support decisions regarding appropriate closure alternatives. This includes the physical characterization of the site area and the characterization of the nature and extent of contamination at the site in relation to risk characterization and statistical evaluation.

Beal, D.; Bock, J.; Hatmaker, T.; Zolyniak, J.; Goddard, P. [Oak Ridge K-25 Site, TN (United States); Kucsmas, D. [Oak Ridge National Lab., TN (United States)

1991-10-01T23:59:59.000Z

356

Dose reconstruction for an occupational cohort at the Savannah River nuclear facility: evaluation of a hybrid method  

Science Journals Connector (OSTI)

......tritium dose estimation methods, including International...workers at a nuclear fuels production facility. Am. J...evaluation of a hybrid method. | The Savannah River...radioactive isotope of hydrogen. The purpose of the...matrix. The proposed method is unique in that along......

Ghassan Hamra; Leena A. Nylander-French; David Richardson

2008-08-01T23:59:59.000Z

357

SITE  

Office of Legacy Management (LM)

-@-Y? ALTERNATE -@-Y? ALTERNATE NfiME: --___---------------___________________N~ME:---------------------- CITY- - .---------------^---------- STATE: wz ------ OWNER(S) -------- Past: Current: ------------------------ _~~--___~~-----_~~----~~-- Owner contacted [3 yes 0 no; if yes, date contacted ------------- TYPE OF ' OPERATION ____-------~----- q Research & Development !zl Facility Type 0 Production scale testing 0 Manufactuiinq 0 Pilot Scale [7 University 0 Bench Scale Process 0 Research Organization 0 Theoretical Studies 0 Government Sponsored Faci 1 i ty 0 Sample & Analysis Cl Other ---_-~~----_~~---~-~ 0 Production 0 Disposal/Storage TYPE OF CONTRACT -_---------~~~~~ q Prime q Subcontract& 0 Purchase Order 0 Other information (i.e., c&t

358

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

359

Hierarchical MADM with fuzzy integral for evaluating enterprise intranet web sites  

Science Journals Connector (OSTI)

In the real world, most criteria have inter-dependent or interactive characteristics so they cannot be evaluated by conventional additive measures. Thus, to approximate the human subjective evaluation process, it would be more suitable to apply a fuzzy integral model, in which it is not necessary to assume additivity and independence. This research proposes an effective algorithm to determine the ?-value using the input data of fuzzy densities and the fuzzy integral based on ?-fuzzy measure to determine the overall evaluation. This research also gives an example of evaluating enterprise intranet web sites with illustrations of the hierarchical structure of ?-fuzzy measure for a Choquet integral model. The results show that the fuzzy integral is more suitable than a traditional multi-criteria evaluation method for human subjective evaluation, or when criteria are not mutually independent.

Gwo-Hshiung Tzeng; Yu-Ping Ou Yang; Chin-Tsai Lin; Chie-Bein Chen

2005-01-01T23:59:59.000Z

360

Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order with ROTC 1, Revision No. 0  

SciTech Connect (OSTI)

Many Federal Facility Agreement and Consent Order (FFACO) Use Restrictions (URs) have been established at various corrective action sites (CASs) as part of FFACO corrective actions (FFACO, 1996; as amended January 2007). Since the signing of the FFACO in 1996, practices and procedures relating to the implementation of risk-based corrective action (RBCA) have evolved. This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). Based on this evaluation, the URs were sorted into the following categories: 1. Where sufficient information exists to determine that the current UR is consistent with the RCBA criteria 2. Where sufficient information exists to determine that the current UR may be removed or downgraded based on RCBA criteria. 3. Where sufficient information does not exist to evaluate the current UR against the RCBA criteria. After reviewing all the existing FFACO URs, the 49 URs addressed in this document have sufficient information to determine that these current URs may be removed or downgraded based on RCBA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RCBA criteria.

Lynn Kidman

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE/EA-1605: Finding of No Significant Impact for the Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)  

Broader source: Energy.gov (indexed) [DOE]

Biomass Cogeneration and Heating Facilities at the Savannah River Site Agency: U.S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1605) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities located at the Savannah River Site (SRS). The draft EA was made available to the States of South Carolina and Georgia, and to the public, for a 30-day comment period. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the

362

DOE/EA-1660: Combined Community Communications Facility and Infrastructure Cleanup on the Fitzner/Eberhardt Arid Land's Ecology Reserve, Hanford Site, Richland, WA (07/20/09)  

Broader source: Energy.gov (indexed) [DOE]

July 2009 July 2009 DOE/EA-1660F Environmental Assessment Combined Community Communications Facility and Infrastructure Cleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland, Washington U.S. Department of Energy Richland Operations Office Richland, Washington 99352 Final Environmental Assessment July 2009 Sum-1 Summary Introduction. This Environmental Assessment (EA) provides information and analyses of proposed U.S. Department of Energy (DOE) activities associated with consolidating existing communications operations and removing excess facilities and infrastructure within the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) at the Hanford Site near the City of Richland, Washington. Purpose and Need. To meet long-term federal agency missions, DOE needs to reduce indirect costs and

363

Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon-Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA`s National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impacts associated with the proposed action.

MacDonell, M M; Peterson, J M

1989-05-01T23:59:59.000Z

364

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network [OSTI]

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with data from the offshore field measurement Rødsand by extrapolating the measured 10 m wind

Heinemann, Detlev

365

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES  

E-Print Network [OSTI]

EVALUATION OF MODELS FOR THE VERTICAL EXTRAPOLATION OF WIND SPEED MEASUREMENTS AT OFFSHORE SITES important for offshore wind energy utilisation are discussed and tested: Four models for the surface tested with measurements from the offshore field measurement Rødsand by extrapolating the measured 10 m

Heinemann, Detlev

366

Multi-site clinical evaluation of a rapid test for Entamoeba histolytica in stool  

Science Journals Connector (OSTI)

...research-article Multi-site clinical evaluation of a rapid test for Entamoeba histolytica in stool Hans P. Verkerke a Blake...We compared the performance of this recently released rapid test to those of the commercially available ProSpecTTM Entamoeba histolytica...

Hans P. Verkerke; Blake Hanbury; Abdullah Siddique; Amidou Samie; Rashidul Haque; Joel Herbein; William A. Petri Jr.

2014-11-26T23:59:59.000Z

367

SUBJECT: Documents Pertaining to Sites Being Evaluated in the Formerly Utilized  

Office of Legacy Management (LM)

kJriited States Governmcht DepartGent of Energy kJriited States Governmcht DepartGent of Energy ' -~ ' ---~~~ 1 DATE: JAN 2 4 19% lE$;E EM-421 (IL A. Yilli,ams. 427-1719) SUBJECT: Documents Pertaining to Sites Being Evaluated in the Formerly Utilized Sites Remedial Action Program I To: E. Osheim, OH - The Formerly Utilized Sites Remedial Action Program (FUSRAP) is evaluating the activities of a number of companies which may have been involved with radiological activities for the Manhattan Engineer District (MED) or the Atomic Energy Commission (AEC) in the early years of the atomic energy program. You previously provided (through Jane Greeowalt) a large volume of records concerning the former Alba Craft Laboratory in Oxford, Ohio. The purpose of this memorandum is to provide feedback on the materials

368

Facility effluent monitoring plan for the tank farm facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

Crummel, G.M.

1998-05-18T23:59:59.000Z

369

Engineering evaluation/cost analysis for decontamination at the St. Louis Downtown Site, St. Louis, Missouri  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is implementing a cleanup program for three groups of properties in the St. Louis, Missouri, area: the St. Louis Downtown Site (SLDS), the St. Louis Airport Site (SLAPS) and vicinity properties, and the Latty Avenue Properties, including the Hazelwood Interim Storage Site (HISS). The general location of these properties is shown in Figure 1; the properties are referred to collectively as the St. Louis Site. None of the properties are owned by DOE, but each property contains radioactive residues from federal uranium processing activities conducted at the SLDS during and after World War 2. The activities addressed in this environmental evaluation/cost analysis (EE/CA) report are being proposed as interim components of a comprehensive cleanup strategy for the St. Louis Site. As part of the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP), DOE is proposing to conduct limited decontamination in support of proprietor-initiated activities at the SLDS, commonly referred to as the Mallinckrodt Chemical Works. The primary goal of FUSRAP activity at the SLDS is to eliminate potential environmental hazards associated with residual contamination resulting from the site's use for government-funded uranium processing activities. 17 refs., 3 figs., 5 tabs.

Picel, M.H.; Hartmann, H.M.; Nimmagadda, M.R. (Argonne National Lab., IL (USA)); Williams, M.J. (Bechtel National, Inc., Oak Ridge, TN (USA))

1991-05-01T23:59:59.000Z

370

Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA  

SciTech Connect (OSTI)

This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain.

Bjerstedt, T.W.

1996-12-31T23:59:59.000Z

371

Finding of No Significant Impact Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site  

Broader source: Energy.gov (indexed) [DOE]

RADIOLOGICAL/NUCLEAR COUNTERMEASURES TEST AND EVALUATION COMPLEX, NEVADA TEST SITE The U.S. Department of Homeland Security (DHS) is the Federal organization charged with defending the borders of the United States under the authority the Homeland Security Act of 2002 (Public Law 107-296). The DHS requested the National Nuclear Security Administration (NNSA) to develop at the Nevada Test Site (NTS) a complex for testing and evaluating countermeasures for interdicting potential terrorist attacks using radiological and/or nuclear weapons of mass destruction. In response to that request, NNSA proposes to construct, operate, and maintain the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC). NNSA has prepared an Environmental Assessment (DOE/EA-1499) (EA) which analyzes the potential

372

An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm  

SciTech Connect (OSTI)

The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and pipeline removal or treatment technologies. The evaluation accounted for the potential high worker risk, high cost, and schedule impacts associated with characterization, removal, or treatment of pipelines within Waste Management Area C for closure. This assessment was compared to the unknown, but estimated low, long-term impacts to groundwater associated with remaining waste residuals should the pipelines be left "as is" and an engineered surface barrier or landfill cap be placed. This study also recommended that no characterization or closure actions be assumed or started for the pipelines within Waste Management Area C, likewise with the premise that a surface barrier or landfill cap be placed over the pipelines.

Badden, Janet W. [Washington River Protection Solutions, LLC, Richland, WA (United States); Connelly, Michael P. [Washington River Protection Solutions, LLC, Richland, WA (United States); Seeley, Paul N. [Cenibark International, Inc., Kennewick (United States); Hendrickson, Michelle L. [Washington State Univ., Richland (United States). Dept. of Ecology

2013-01-10T23:59:59.000Z

373

Evaluation methodology for fixed-site physical protection systems. [Safeguards Upgrade Rule  

SciTech Connect (OSTI)

A system performance evaluation methodology has been developed to aid the Nuclear Regulatory Commission (NRC) in the implementation of new regulations designed to upgrade the physical protection of nuclear fuel cycle facilities. The evaluation methodology, called Safeguards Upgrade Rule Evaluation (SURE), provides a means of explicitly incorporating measures for highly important and often difficult to quantify performance factors, e.g., installation, maintenance, training and proficiency levels, compatibility of components in subsystems, etc. This is achieved by aggregating responses to component and system questionaires through successive levels of a functional hierarchy developed for each primary performance capability specified in the regulations, 10 CFR 73.45. An overall measure of performance for each capability is the result of this aggregation process. This paper provides a descripton of SURE.

Bennett, H.A.; Olascoaga, M.T.

1980-01-01T23:59:59.000Z

374

Waste Encapsulation Storage Facility, January 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

375

Waste Encapsulation Storage Facility, January 2011  

Broader source: Energy.gov (indexed) [DOE]

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

376

DUF6 Conversion Facility EIS Alternatives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

377

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal-to-stack basis, was 53%. The average Hg concentration in the stack flue gas was 4.09 {micro}g/m{sup 3}. The average stack mercury emission was 3.47 Ib/TBtu. The mercury material balance closures ranged from 87% to 108%, with an average of 97%. A sampling program similar to this one was performed on a similar unit (at the same plant) that was equipped with an SCR for NOx control. Comparison of the results from the two units show that the SCR increases the percentage of mercury that is in the oxidized form, which, in turn, lends to more of the total mercury being removed in the wet scrubber. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal.

J.A. Withum; S.C. Tseng; J.E. Locke

2005-11-01T23:59:59.000Z

378

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Four sampling tests were performed in August 2004 during ozone season with the SCR operating; flue gas mercury speciation and concentrations were determined at the SCR inlet, SCR outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Three sampling tests were also performed in November 2004 during non-ozone season with the SCR bypassed; flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet). Process samples for material balances were collected during the flue gas measurements. The results show that, at the point where the flue gas enters the FGD, a greater percentage of the mercury was in the oxidized form when the SCR was operating compared to when the SCR was bypassed (97% vs 91%). This higher level of oxidation resulted in higher mercury removals in the FGD because the FGD removed 90-94% of the oxidized mercury in both cases. Total coal-to-stack mercury removal was 86% with the SCR operating, and 73% with the SCR bypassed. The average mercury mass balance closure was 81% during the ozone season tests and 87% during the non-ozone season tests.

J. A. Withum; S. C. Tseng; J. E. Locke

2006-01-31T23:59:59.000Z

379

EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a coal-to-stack basis, was 87%. The mercury material balance closures for the four tests conducted at the plant ranged from 89% to 114%, with an average of 100%. These results appear to show that the SCR had a positive effect on mercury removal. In earlier programs, CONSOL sampled mercury at six plants with wet FGDs for SO{sub 2} control without SCR catalysts. At those plants, an average of 61 {+-} 15% of the mercury was in the oxidized form at the air heater outlet. The principal purpose of this work is to develop a better understanding of the potential Hg removal ''co-benefits'' achieved by NOx, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of Hg chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize Hg removal.

J. A. Withum; S.C. Tseng; J. E. Locke

2004-10-31T23:59:59.000Z

380

Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems  

SciTech Connect (OSTI)

CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1 is similar to Unit 2, except that Unit 1 has no SCR for NOx control. Four sampling tests were performed on both units in January 2005; flue gas mercury speciation and concentrations were determined at the economizer outlet, air heater outlet (ESP inlet), ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process samples for material balances were collected with the flue gas measurements. The results show that the SCR increased the oxidation of the mercury at the air heater outlet. At the exit of the air heater, a greater percentage of the mercury was in the oxidized and particulate forms on the unit equipped with an SCR compared to the unit without an SCR (97.4% vs 91%). This higher level of oxidation resulted in higher mercury removals in the scrubber. Total mercury removal averaged 97% on the unit with the SCR, and 87% on the unit without the SCR. The average mercury mass balance closure was 84% on Unit 1 and 103% on Unit 2.

J. A. Withum; J. E. Locke

2006-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect (OSTI)

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

382

Design, construction and evaluation of a facility for the simulation of fast reactor blankets  

E-Print Network [OSTI]

A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

Forbes, Ian Alexander

1970-01-01T23:59:59.000Z

383

Source Characterization and Pretreatment Evaluation of Pharmaceuticals and Personal Care Products in Healthcare Facility Wastewater  

E-Print Network [OSTI]

Healthcare facility wastewaters are a potentially important and under characterized source of pharmaceuticals and personal care products to the environment. In this study the composition and magnitude of pharmaceuticals and personal care products...

Nagarnaik, Pranav Mukund

2012-07-16T23:59:59.000Z

384

Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Opportunities in Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Technical Report NREL/TP-7A20-55415 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis E. Lantz, A. Warren, J.O. Roberts, and V. Gevorgian Prepared under Task No. IDVI.1020 Technical Report NREL/TP-7A20-55415 September 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

385

Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility  

SciTech Connect (OSTI)

Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a ''go/no-go'' CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the ''go/no-go'' decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the ''go/no-go'' criteria developed from the sludge simulant testing was conservative for these samples taken from Sludge Batch 7b (SB7b), the sludge batch currently being processed. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R. N.; Edwards, T. B.

2013-01-15T23:59:59.000Z

386

EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

Savannah River Remediations (SRRs) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a peanut vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A go/no-go decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a go decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a no-go determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the go/no-go CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a go/no-go CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the go/no-go decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the go/no-go criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R.; Edwards, T.

2013-06-04T23:59:59.000Z

387

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

388

Outdoor field evaluation of passive tritiated water vapor samplers at Canadian power reactor sites  

SciTech Connect (OSTI)

Tritium is one of several radioactive nuclides routinely monitored in and around CANDU{reg_sign} (CANada Deuterium Uranium) power reactor facilities. Over the last ten years, passive samplers have replaced active sampling devices for sampling tritiated water vapor in the workplace at many CANDU stations. The potential of passive samplers for outdoor monitoring has also been realized. This paper presents the result of a 1-y field trial carried out at all five Canadian CANDU reactor sites. The results indicate that passive samplers can be used at most sampling locations to measure tritiated water vapor in air concentrations as low as 1 Bq m{sup -3} over a 30-d sampling period. Only in one of the five sampling locations was poor agreement observed between active and passive monitoring data. This location, however, was very windy and it is suspected that the gusty winds were the source of the discrepancies observed. 15 refs., 8 figs., 1 tab.

Wood, M.J. [Chalk River Lab., Chalk River, Ontario (Canada)

1996-02-01T23:59:59.000Z

389

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

390

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

David Strand

2006-09-01T23:59:59.000Z

391

Mobile Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

392

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

393

Biological Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Biological Evaluation Biological Evaluation for the Proposed United States Army Military Training Activities on the Savannah River Site Department of the Army - Fort Gordon Range Control - Directorate of Plans, Training, Mobilization, and Security Location: Aiken, Allendale, and Barnwell Counties, SC., Savannah River Site Contact Person: Donald S. McLean, 706-840-5522 / 706-791-2422 Submitted by Fort Gordon Range Control Training Facility Coordinator (DPTMS) Prepared By: ___________________________________________________________________ Donald S. McLean, Training Facility Coordinator Fort Gordon Georgia Date: 2 Table of Contents Summary, Page 4 Introduction, Page 6 Project Description, Page 6 Purpose and Need for Proposed Action, Page 7

394

Ecological evaluation of proposed reference sites in the New York Bight, Great South Bay, and Ambrose Light, New York  

SciTech Connect (OSTI)

The current reference site used in evaluations of dredged material proposed for open water disposal in the New York Bight is the Mud Dump Reference Site. The sediment at this reference site is predominantly sand. The US Army Corps of Engineers New York District is considering designation of a new reference site that (1) includes a fine-grained component, believed to be necessary for adequate amphipod survival in laboratory tests, (2) better reflects the physical characteristics of the fine-grained sediment dredged from the New York/New Jersey Harbor and (3) is further removed from the Mud Dump Site than the current Mud Dump Reference Site. The Battelle Marine Science Laboratory was requested to characterize sediment collected from seven candidate reference sites during two study phases. This report presents the results of physical, chemical, and toxicological characterizations of sediment from these sites in comparisons with those of the original Mud Dump Reference Site.

Gardiner, W.W.; Barrows, E.S.; Word, J.Q. [Battelle Marine Research Lab., Sequim, WA (United States)

1996-10-01T23:59:59.000Z

395

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1  

SciTech Connect (OSTI)

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

2003-02-24T23:59:59.000Z

396

Evaluation of Heliostat Characterization System for use at the Central Receiver Test Facility  

SciTech Connect (OSTI)

The Heliostat Characterization System is a new system that has been used to align and focus heliostats at the Central Receiver Test Facility, Sandia National Laboratories. This system produces results comparable to those obtained with the original focus and alignment system but is faster and requires less labor.

Maxwell, C.; Otts, J.V.

1986-06-01T23:59:59.000Z

397

Closure Report for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada with ROTC 1, Revision 0  

SciTech Connect (OSTI)

This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met as specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).

Mark Burmeister

2007-09-01T23:59:59.000Z

398

Oak Ridge Reservation site evaluation report for the Advanced Neutron Source  

SciTech Connect (OSTI)

The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. (Science Applications International Corp., Oak Ridge, TN (United States))

1990-03-01T23:59:59.000Z

399

FACET User Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

400

Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300  

SciTech Connect (OSTI)

This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

Mathews, S.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility site evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site Lead TQP Standard  

Broader source: Energy.gov (indexed) [DOE]

Qualification Standard for the Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program May 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy 1 Qualification Standard for the Office of Safety and Emergency Management Evaluations Site Lead Program A Site Lead is an individual, normally at a senior General Schedule (GS) level or Excepted Service, who is assigned the responsibility to assess and evaluate management systems, safety and health programs, and technical activities associated with U.S. Department of Energy (DOE) nuclear and non-nuclear facilities. Typically, a Site Lead has previously qualified as a Nuclear Safety Specialist or a Senior Technical Safety Manager. For exceptionally qualified individuals,

402

Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008  

SciTech Connect (OSTI)

In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridge fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.

Chamness, Mickie A. [Pacific Northwest National Laboratory

2008-08-29T23:59:59.000Z

403

Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

Greager, E.M.

1997-12-11T23:59:59.000Z

404

NETL: News Release - Drilling Begins to Evaluate West Virginia Site for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 15, 2003 July 15, 2003 Drilling Begins to Evaluate West Virginia Site for Carbon Sequestration Tests will Determine Region's Capability to Permanently Store CO2 Underground NEW HAVEN, WV - Drilling has begun on a 10,000-foot well to evaluate underground rock layers in New Haven, W. Va., as part of a Department of Energy carbon sequestration research project now underway at the American Electric Power (AEP) Mountaineer plant there. Sequestration, the capture and storage of carbon dioxide produced by burning fossil fuels, is one of several climate change mitigation technologies currently being studied by the Department of Energy (DOE) and scientists worldwide. The goal is to reduce carbon dioxide and other emissions believed to contribute to global climate change in support President Bush's initiatives on national climate change technology.

405

Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting, Meeting, 12 March 2008 Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site Larry K. Berg, William I. Gustafson Jr., and Evgueni I. Kassianov Pacific Northwest National Laboratory ARM Science Team Meeting, 12 March 2008 Where are We Going? Development Simulation Evaluation Observations ARM Science Team Meeting, 12 March 2008 Development: Coupling Clouds to the Convective Boundary Layer * Shallow cumuli are turbulently coupled to the planetary boundary layer 4 3 2 1 0 Height (km) 6 5 4 3 2 1 0 Distance (km) Simulation courtesy of M. Ovtchinnikov ARM Science Team Meeting, 12 March 2008 Development: Coupling Clouds to the Convective Boundary Layer * Parameterization should represent this coupling * The Cumulus Potential (CuP) scheme is one way - Accounts for sub-grid

406

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site: 25-41-03, EMAD Facility 25-99-20, EMAD Facility Exterior Releases This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 114. The following text summarizes the SAFER activities that will support the closure of CAU 114: Perform site preparation activities (e.g., utilities clearances, radiological surveys). Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Confirm the selected closure option is sufficient to protect human health and the environment.

Mark Burmeister

2009-08-01T23:59:59.000Z

407

Independent Oversight Review, DOE/NNSA Nuclear Facilities - April 2013 |  

Broader source: Energy.gov (indexed) [DOE]

DOE/NNSA Nuclear Facilities - April DOE/NNSA Nuclear Facilities - April 2013 Independent Oversight Review, DOE/NNSA Nuclear Facilities - April 2013 April 2013 Lessons Learned from the 2012 Targeted Reviews of Emergency Preparedness for Severe Natural Phenomena Events at Select DOE/NNSA Nuclear Facilities This report provides lessons learned from the 2012 reviews performed by Independent Oversight. The reviews performed during the fall of 2011 and throughout 2012 were at DOE/NNSA sites with hazard category 1 and 2 nuclear facilities, some of which also have significant quantities of hazardous chemicals on site. The purpose of the Independent Oversight review was to determine the state of emergency preparedness of selected sites by examining the sites' processes for evaluating plausible severe NPEs;

408

RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

Not Available

1993-06-01T23:59:59.000Z

409

Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

1992-06-01T23:59:59.000Z

410

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the website still features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now...

411

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program -12184  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: ? Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. ? DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. ? DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.

Clayton, Christopher [U.S Department of Energy Office of Legacy Management, Washington, DC; Kothari, Vijendra [U.S Department of Energy Office of Legacy Management, Morgantown, West Virginia; Starr, Ken [U.S Department of Energy Office of Legacy Management, Westminster, Colorado; Widdop, Michael; Gillespie, Joey [SM Stoller Corporation, Grand Junction, Colorado

2012-02-26T23:59:59.000Z

412

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26T23:59:59.000Z

413

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communi