National Library of Energy BETA

Sample records for facility readiness preparation

  1. Preparing A Vita Ready Reference E-13

    E-Print Network [OSTI]

    Preparing A Vita Ready Reference E-13 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  2. CRAD, Facility Safety- Readiness Review Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Readiness Review Program.

  3. Solar Ready Vets: Preparing Our Veterans to Join the Growing...

    Office of Environmental Management (EM)

    Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar Workforce April 6, 2015 - 2:27pm...

  4. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Adm Chg 1, dated 4-2-13, supersedes DOE O 425.1D.

  5. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  6. Key Facts About Hurricane Readiness Preparing for a Hurricane

    E-Print Network [OSTI]

    HURRICANES Key Facts About Hurricane Readiness Preparing for a Hurricane If you are under a hurricane watch or warning, here are some basic steps to take to prepare for the storm: · Learn about your. · Identify potential home hazards and know how to secure or protect them before the hurricane strikes

  7. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  8. HIGHER EDUCATION FACILITIES MANAGEMENT: READY FOR INTERNATIONALIZATION? 

    E-Print Network [OSTI]

    Aizuddin, N.; Yahya, M.

    2009-01-01

    The last ten years has seen dramatic growth in Facilities Management (FM) activities worldwide, including Malaysia. Facilities Management is responsible for coordinating all efforts related to planning, designing and managing physical structure...

  9. Mission and Readiness Assessment for Fusion Nuclear Facilities

    SciTech Connect (OSTI)

    G.H. Neilson, et. al.

    2012-12-12

    Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

  10. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-22

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with criteria identified in the RAP. The criteria are based upon the {open_quotes}Core Requirements{close_quotes} listed in DOE Order 5480.31, {open_quotes}Startup and Restart of Nuclear Facilities{close_quotes}.

  11. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

  12. Mission and Readiness Assessment for Fusion Nuclear Facilities

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory 20th ANS Topical Meeting on the Technology of Fusion Energy Nashville, TN U.S.A. 28 August 2012 #12;Background and Motivation 2 · Increased attention to DEMO planning") ­ ReNeW 2009 ­ Technology Readiness Levels application (Tillack, et al., FS&T 2009) ­ FNS Pathways

  13. Rough and Ready Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklinRohmRoshniRotokawa Geothermaland Ready

  14. Waste Treatment and Immobilation Plant Pretreatment Facility

    Office of Environmental Management (EM)

    7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by...

  15. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  16. Team leader`s preparation guide for Operational Readiness Reviews (ORR)

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document provides instructions, explanations, and examples for the performance of all phases of an Operational Readiness Review (ORR). Details pertinent to the team leader, team members, and review coordinator are outlined. Sample forms and correspondence are included in appendices. Although this document is for use by DOE ORR team leaders, it can be used by contractor ORR team leaders also.

  17. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  18. Standard Review Plan Preparation for Facility Operations Strengthening...

    Office of Environmental Management (EM)

    Facility Operations Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities August 2013 2 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan...

  19. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  20. Emergency Readiness Assurance Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-02-27

    To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

  1. Sandia Energy - SWiFT Facility Prepared for More-Efficient Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the DOESNL Scaled Wind-Farm Technology (SWiFT) facility picked up in preparation for an enhanced, more-efficient site-enabling advanced research to be executed with more rigor....

  2. Preparing for Ignition Experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E; Meier, W

    2007-08-28

    The National Ignition Facility (NIF) is a 192-beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light ({lambda} = 351 nm) making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities for producing and developing ICF. The ignition studies will be an essential step in developing inertial fusion energy (IFE). the NIF Project is over 93% complete and scheduled for completion in 2009. Experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Plans are under way to make NIF a national user facility for experiments on HED physics and nuclear science, including experiments relevant to the development of IFE.

  3. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

  4. Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes

    SciTech Connect (OSTI)

    Han, Dandan; Xu, Pengcheng; Jing, Xiaoyan; Wang, Jun; Song, Dalei; Liu, Jingyuan; Zhang, Milin

    2013-07-15

    A facile lamellar template method (see image) has been developed for the preparation of uniform hollow core–shell structure NiO (HCS–NiO) with a nanoarchitectured wall structure. The prepared NiO was found to be highly crystalline in uniform microstructures with high specific surface area and pore volume. The results indicated that ethanol interacted with trisodium citrate played an important role for the formation of hollow core–shell spheres. On the basis of the analysis of the composition and the morphology, a possible formation mechanism was investigated. NiO microspheres with hollow core–shell showed excellent capacitive properties. The exceptional cyclic, structural and electrochemical stability with ?95% coulombic efficiency, and very low ESR value from impedance measurements promised good utility value of hollow core–shell NiO material in fabricating a wide range of high-performance electrochemical supercapacitors. - The hollow core–shell NiO was prepared with a facile lamellar template method. The prepared NiO show higher capacitance, lower ion diffusion resistance and better electroactive surface utilization for Faradaic reactions. - Highlights: • Formation of hollow core–shell NiO via a novel and facile precipitation route. • Exhibited uniform feature sizes and high surface area of hollow core–shell NiO. • Synthesized NiO has high specific capacitance ( 448 F g{sup 1}) and very low ESR value. • Increased 20% of long life cycles capability after 500 charge–discharge cycles.

  5. Qualitative risk assessment of Sandia`s rocket preparation and launch facility at Barking Sands, Kauai

    SciTech Connect (OSTI)

    Mahn, J.A.

    1997-12-31

    This paper demonstrates the application of a qualitative methodology for performing risk assessments using the consequence and probability binning criteria of DOE Order 5481.1B. The particular application that is the subject of this paper is a facility risk assessment conducted for Sandia National Laboratories` Kauai Test Facility (KTF). The KTF is a rocket preparation and launch facility operated by Sandia National Laboratories for the Department of Energy and is located on the US Navy`s Pacific Missile Range Facility (PMRF) at Barking Sands on the western side of the island of Kauai, Hawaii. The KTF consists of an administrative compound and main launch facility located on the north end of the PMRF, as well as the small Kokole Point launch facility located on the south end of the PMRF. It is classified as a moderate hazard facility in accordance with DOE Order 5481.1B. As such, its authorization basis for operations necessitates a safety/risk assessment. This paper briefly addresses the hazards associated with KTF operations and the accidents selected for evaluation, introduces the principal elements of the accident assessment methodology, presents analysis details for two of the selected accidents, and provides a summary of results for all of the accidents evaluated.

  6. Building a Weather-Ready Nation noaa.gov/wrn Weather-Ready Nation &

    E-Print Network [OSTI]

    Building a Weather-Ready Nation noaa.gov/wrn Welcome Weather-Ready Nation & America's PrepareAthon! Webinar April 1, 2015 "Whole Community Approach to Building National Resilience " #12;Building a Weather-Ready Nation A word from... noaa.gov/wrn Dr. Kathryn Sullivan NOAA Administrator #12;Building a Weather

  7. A facile approach to prepare graphene via solvothermal reduction of graphite oxide

    SciTech Connect (OSTI)

    Yuan, Bihe [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123 (China); Bao, Chenlu [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Qian, Xiaodong; Wen, Panyue [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123 (China); Xing, Weiyi; Song, Lei [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123 (China)

    2014-07-01

    Highlights: • Graphene was prepared via a novel and facile solvothermal reduction method for graphite oxide. • Most of the oxygen functional groups of graphite oxide were removed. • The reduced graphene oxide obtained was featured with bilayer nanosheets. - Abstract: In this work, a facile reduction strategy is reported for the fabrication of graphene. Graphite oxide (GO) is reduced via a novel solvothermal reaction in a mixed solution of acetone and sodium hypochlorite (NaClO). The structure, surface chemistry, morphology and thermal stability of the as-prepared reduced graphene oxide (RGO) are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results indicate that most of the oxygenated groups in GO are effectively removed in this solvothermal reaction. The novel reduction method provides a simple, cost-effective and efficient strategy for the fabrication of graphene.

  8. Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES Order Module--DOE O 425.1D, VERIFICATION OF READINESS TO START UP OR RESTART NUCLEAR FACILITIES "The...

  9. The preparation for and survival of an EPA Title IV and Title V facility audit

    SciTech Connect (OSTI)

    Facca, G.L.; Faler, M.

    1999-07-01

    As part of the 1990 Clean Air Act Amendments, major facilities are required to obtain federally enforceable operating permits (Title V). In a separate permitting action, the electric utilities with units generating more then 25 megawatts are required to obtain permits for NO{sub x} and SO{sub x}, the emissions which contribute to acid rain (Title IV). The Title IV permit is included as part of the Title V permit. This paper will use an actual audit experience at a coal fired generation facility as a case study for the preparation for and outcome of an EPA Title IV Level 3 audit. The paper will document the procedures for preparation, the audit process, and the outcome. The audit is part of the EPA's process for review of the record keeping and instrument calibration methods outlined in Title IV. Both types of permits have many different record keeping and monitoring requirements as well as separate reporting requirements which are submitted to both federal; state and local regulatory agencies for review and evaluation. Title IV units include very specific instrument calibration/audit requirements, and Title V has compliance testing and monitoring requirements. Alliant Power was notified in August 1998 of the intent of EPA Region VII to conduct a Level 3 audit at the Lansing Generation Station. The US EPA and the State of Iowa intended to review all Title IV record keeping (Level 1), continuous emission monitoring calibrations and linearity testing (Level 2) and observe the annual Relative Accuracy Testing Audit performed by an outside contractor. In addition, during this facility site visit, the compliance with Title V permit requirements was also audited.

  10. Readiness Review Training- Member

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides used for November 10, 2010 Readiness Review Member Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team member.

  11. Roundtable on Sustainable Biofuels Certification Readiness Study

    E-Print Network [OSTI]

    Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

  12. Ready, set...go!

    SciTech Connect (OSTI)

    Alexandre, Melanie

    2010-06-16

    The objectives of this paper are: (1) Discuss organizational readiness for changes in an ergonomics program or intervention; (2) Assessing organizational readiness; (3) Benefits and challenges of change; and (4) Case studies of ergonomic programs that were 'not ready' and 'ready'.

  13. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  14. EIS-0236-S2: Supplemental Programmatic Environmental Impact Statement on Stockpile Stewardship and Management for a Modern Pit Facility

    Broader source: Energy.gov [DOE]

    DOE's NNSA is responsible for the safety and reliability of the U.S. nuclear weapons stockpile, including production readiness required to maintain that stockpile. Pursuant to National Environmental Policy Act of 1969, NNSA has prepared a Supplement to the Programmatic Environmental Impact Statement on: (1) whether to proceed with a Modern Pit Facility (MPF); and (2) if so, where to locate a MPF.

  15. DOE handbook: Guide to good practices for operational readiness reviews (ORR) team leader`s guide

    SciTech Connect (OSTI)

    1994-09-01

    This guidance section provides instructions, explanations and examples for the performance of all phases of an Operational Readiness Review (ORR). Details pertinent to the Team Leader (TL), Team Members (TM) and Review Coordinator (RC) are outlined. An appendix contains sample forms and correspondence which are typically used to initiate and perform the ORR. Although this document was written specifically for use by DOE ORR Team Leaders, its use may also be beneficial to contractor ORR Team Leaders. The handbook is also useful for Team Leaders of Readiness Assessments conducted in accordance with requirements of DOE O 425.1. Lessons learned, which are promulgated with this handbook, will benefit any line manager, particularly those preparing a facility or process for startup or restart.

  16. Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing...

  17. Readiness Review RM

    Office of Environmental Management (EM)

    the progress of tasks needed to attain operational readiness, conducting practice drills and evolutions, maintaining and reviewing evidence files, reviewing corrective...

  18. Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene

    SciTech Connect (OSTI)

    Shen, Yu; Wu, Yanbo; Xu, Hongfeng; Fu, Jie; Li, Xinyong; Zhao, Qidong; Hou, Yang

    2013-10-15

    Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalytic activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.

  19. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  20. 2015 Nuclear & Facility Safety Programs Workshop | Department...

    Office of Environmental Management (EM)

    featuring tracks for the Facility Representative (FR), Safety System Oversight (SSO), Fire Safety (FS) and Readiness communities. Distinguished speakers from inside and outside...

  1. Summary - SRS Salt Waste Processing Facility

    Office of Environmental Management (EM)

    key readiness of these te ntal Manage Facility hemistry - feed uired for proces le precipitation itator - provide of MST solids i Filter - retains ides) resulting e Solvent Extra...

  2. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  3. Facilely preparation and microwave absorption properties of Fe{sub 3}O{sub 4} nanoparticles

    SciTech Connect (OSTI)

    Wang, Guiqin, E-mail: wanggq@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China); Chang, Yongfeng; Wang, Lifang; Liu, Lidong; Liu, Chao [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085 (China)

    2013-03-15

    Highlights: ? A bran-new method is firstly used to fabricate Fe{sub 3}O{sub 4} nanoparticles. ? The detailed analysis of formation mechanism is discussed. ? The electromagnetic absorption properties are defined. ? The effect of nanometer-sized is considered for the excellent microwave absorption. - Abstract: The Fe{sub 3}O{sub 4} nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe{sub 3}O{sub 4} nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2–18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe{sub 3}O{sub 4} nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was ?21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe{sub 3}O{sub 4} nanoparticles.

  4. Readiness Review Training- Team Leader

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides used for November 10, 2010 Readiness Review Team Leader Training at the Idaho National Laboratory. Course provides tools and tips to be an effective readiness review team leader.

  5. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    sediment basin, installation of a vehicle arresting system gate, construction of a new portal, establishment of a concrete batch plant and building the construction support...

  6. Uranium Processing Facility Site Readiness Subproject Completed...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  7. Ready, set, go . . . well maybe

    SciTech Connect (OSTI)

    Alexandre, Melanie M; Bartolome, Terri-Lynn C

    2011-02-28

    The agenda for this presentation is: (1) understand organizational readiness for changes; (2) review benefits and challenges of change; (3) share case studies of ergonomic programs that were 'not ready' and some that were 'ready'; and (4) provide some ideas for facilitating change.

  8. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Solar Hot Water-Ready Checklist (Encouraged) DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist....

  9. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Kurt D. Gerdes Harry D. Harmon Herbert G. Sutter Major C. Thompson John R. Shultz Sahid C....

  10. Ready, set, go . . . well maybe

    E-Print Network [OSTI]

    Alexandre, Melanie M

    2011-01-01

    at the 2011 Applied Ergonomics Conference By Melaniesustainable? Case study of ergonomics program that was ‘ notwas not! Case study of ergonomics program that was ‘ready’

  11. Student Design Competition Guide to Project Preparation and Submittal

    Broader source: Energy.gov [DOE]

    Student Design Competition Guide to Project Preparation and Submittal, from the U.S. Department of Energy's Zero Energy Ready Home program.

  12. TECHNICAL POLLUTION PREVENTION GUIDE FOR READY-MIXED CONCRETE OPERATIONS

    E-Print Network [OSTI]

    #12;TECHNICAL POLLUTION PREVENTION GUIDE FOR READY-MIXED CONCRETE OPERATIONS IN THE LOWER FRASER BASIN DOE FRAP 1997-13 Prepared for: Environment Canada Environmental Protection Fraser Pollution Action Plan through its Fraser Pollution Abatement Office. Environment Canada is not responsible

  13. ARM - Ingest Readiness Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENAField ParticipantsFieldFormsIngest Readiness Form Ingest Ingest

  14. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan Richmond Electric Vehicle Initiative Electric Vehicle Readiness Plan The REVi plan addresses the electric...

  15. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  16. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  17. Implementation plan for WRAP Module 1 operational readiness review

    SciTech Connect (OSTI)

    Irons, L.G.

    1994-11-04

    The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR.

  18. DOE Zero Energy Ready Home: Durable Energy Builders, Houston...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas This DOE Zero Energy Ready Home features...

  19. Facile preparation of apatite-type lanthanum silicate by a new water-based sol–gel process

    SciTech Connect (OSTI)

    Yamagata, Chieko, E-mail: yamagata@ipen.br [Nuclear and Energy Research Institute – Instituto de Pesquisas Energéticas e Nucleares – CCTM (Centro de Ciência e Tecnologia de Materiais), São Paulo (Brazil); Elias, Daniel R.; Paiva, Mayara R.S.; Misso, Agatha M.; Castanho, Sonia R.H. Mello [Nuclear and Energy Research Institute – Instituto de Pesquisas Energéticas e Nucleares – CCTM (Centro de Ciência e Tecnologia de Materiais), São Paulo (Brazil)

    2013-06-01

    Highlights: ? We use a Na{sub 2}SiO{sub 3} waste solution as source of Si. ? We present a simple, rapid and low temperature method of lanthanum silicate apatite preparation. ? TEOS, a high cost reagent, was successfully substituted by a cheap price Na{sub 2}SiO{sub 3}, to obtain pure La{sub 9.56}(SiO{sub 4})6O{sub 2.33} lanthanum silicate apatite. - Abstract: In recent years, apatite-type lanthanum silicates ([Ln{sub 10?x}(XO{sub 4})6O{sub 3–1.5x}] (X = Si or Ge)) have been studied for use in SOFC (solid oxide fuel cells), at low temperature (600–800 °C), due to its ionic conductivity which is higher than that of YSZ (Yttrium Stabilized Zirconia) electrolyte. For this reason they are very promising materials as solid electrolyte for SOFCs. Synthesis of functional nanoparticles is a challenge in the nanotechnology. In this work, apatite-type lanthanum silicate nanoparticles were synthesized by a water-based sol–gel process, i.e., sol–gel technique followed by chemical precipitation of lanthanum hydroxide on the gel of the silica. Na{sub 2}SiO{sub 3} waste solution was used as silica source. Spherical aerogel silica was prepared by acid catalyzed reaction, followed by precipitation of lanthanum hydroxide to obtain the precursor of apatite-type lanthanum silicate. Powders of apatite-type lanthanum silicate achieved from the precursor were characterized by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area measurements (BET). The apatite phase was formed at 900 °C.

  20. Bismuth(III) dialkyldithiophosphates: Facile single source precursors for the preparation of bismuth sulfide nanorods and bismuth phosphate thin films

    SciTech Connect (OSTI)

    Biswal, Jasmine B.; Garje, Shivram S.; Nuwad, Jitendra; Pillai, C.G.S.

    2013-08-15

    Two different phase pure materials (Bi{sub 2}S{sub 3} and Bi{sub 2}P{sub 4}O{sub 13}) have been prepared under different conditions using the same single source precursors. Solvothermal decomposition of the complexes, Bi(S{sub 2}P(OR){sub 2}){sub 3} [where, R=Methyl (Me) (1), Ethyl (Et) (2), n-Propyl (Pr{sup n}) (3) and iso-Propyl (Pr{sup i}) (4)] in ethylene glycol gave orthorhombic bismuth sulfide nanorods, whereas aerosol assisted chemical vapor deposition (AACVD) of the same precursors deposited monoclinic bismuth tetraphosphate (Bi{sub 2}P{sub 4}O{sub 13}) thin films on glass substrates. Surface study of the thin films using SEM illustrated the formation of variety of nanoscale morphologies (spherical-, wire-, pendent-, doughnut- and flower-like) at different temperatures. AFM studies were carried out to evaluate quality of the films in terms of uniformity and roughness. Thin films of average roughness as low as 1.4 nm were deposited using these precursors. Photoluminescence studies of Bi{sub 2}P{sub 4}O{sub 13} thin films were also carried out. - Graphical abstract: Solvothermal decomposition of bismuth(III) dialkyldithiophosphates in ethylene glycol gave Bi{sub 2}S{sub 3} nanoparticles, whereas aerosol assisted chemical vapor deposition of these single source precursors deposited Bi{sub 2}P{sub 4}O{sub 13} thin films. Display Omitted - Highlights: • Preparation of phase pure orthorhombic Bi{sub 2}S{sub 3} nanorods and monoclinic Bi{sub 2}P{sub 4}O{sub 13} thin films. • Use of single source precursors for deposition of bismuth phosphate thin films. • Use of solvothermal decomposition and AACVD methods. • Morphology controlled synthesis of Bi{sub 2}P{sub 4}O{sub 13} thin films. • Bi{sub 2}S{sub 3} nanorods and Bi{sub 2}P{sub 4}O{sub 13} thin films using same single source precursors.

  1. Early Childhood Education and School Readiness: Conceptual

    E-Print Network [OSTI]

    Rau, Don C.

    Early Childhood Education and School Readiness: Conceptual Models, Constructs, and Measures and Evaluation. #12;Early Childhood Education and School Readiness Workshop, June 17-18, 2002 TABLE OF CONTENTS .................................................................................................................................................13 Language and Early Literacy

  2. Zero Energy Ready Home | Department of Energy

    Office of Environmental Management (EM)

    Home Zero Energy Ready Home Look for the Label Look for the Label The DOE Zero Energy Ready Home label is a symbol of excellence. Learn what's behind this new level of performance....

  3. Weather Ready Nation: A Vital Conversation on

    E-Print Network [OSTI]

    Weather Ready Nation: A Vital Conversation on Tornadoes and Severe Weather A Community Report March;WeatherReady Nation: A Vital Conversation on Tornadoes and Severe Weather Report from the December 2011

  4. EM Performs Tenth Technology Readiness Assessment

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006.

  5. Solar Ready: An Overview of Implementation Practices

    SciTech Connect (OSTI)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  6. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Dan; Li, Yuexia; Liao, Shijun; Su, Dong; Song, Huiyu; Li, Yingwei; Yang, Lijun; Li, Can

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore »the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less

  7. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  8. Lead Coolant Test Facility - Design Concept and Requirements

    SciTech Connect (OSTI)

    Soli Khericha, Ph. D.

    2011-08-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements are identified in this paper: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing Across these five broad areas are supported by twenty-one specific requirements. The purpose of this facility is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  9. Technology Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    August 1, 2013 Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in conducting TRAs and developing...

  10. Internship Checklist Ready Reference C-3

    E-Print Network [OSTI]

    Internship Checklist Ready Reference C-3 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  11. Cover Letter Formula Ready Reference F-3

    E-Print Network [OSTI]

    Cover Letter Formula Ready Reference F-3 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  12. Letter of Refusal Ready Reference F-8

    E-Print Network [OSTI]

    Letter of Refusal Ready Reference F-8 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology Career

  13. Sample Withdrawal Letter Ready Reference F-11

    E-Print Network [OSTI]

    Sample Withdrawal Letter Ready Reference F-11 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  14. Sample Application Letter Ready Reference F-5

    E-Print Network [OSTI]

    Sample Application Letter Ready Reference F-5 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  15. Sample Networking Letter Ready Reference F-6

    E-Print Network [OSTI]

    Sample Networking Letter Ready Reference F-6 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  16. Sample Acceptance Letter Ready Reference F-10

    E-Print Network [OSTI]

    Sample Acceptance Letter Ready Reference F-10 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  17. Job Search Steps Ready Reference D-1

    E-Print Network [OSTI]

    Job Search Steps Ready Reference D-1 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office

  18. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

  19. Community Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Community Readiness Assessments, Call Slides and Discussion Summary, December 5, 2013. Call Slides and Discussion Summary More Documents & Publications Focus Series: Program Finds...

  20. Organizational Readiness in Specialty Mental Health Care

    E-Print Network [OSTI]

    Hamilton, Alison B.; Cohen, Amy N.; Young, Alexander S.

    2010-01-01

    readiness for change (ORC) measure, and key stake- holders43 clinical staff completed the ORC, and 38 key stakeholdersdeviations (SDs) of the ORC scores are also illuminating in

  1. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asset Readiness Management System (ARMS) Database tracks emergency response exercises and equipment to help DOE asses emergency preparedness Developed by the Oak Ridge Institute...

  2. Building Emergency Action Plan Facility Name: _____________________

    E-Print Network [OSTI]

    Powers, Robert

    Building Emergency Action Plan (Template) Facility Name: _____________________ Date Prepared .....................................................................................................................................................3 2. Building Description..................................................................................................................................3 3. Building Emergency Personnel

  3. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  4. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    E-Print Network [OSTI]

    Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic (2014) Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin

  5. ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools and Resources that Work...

  6. Designing and Building Houses that are Solar Ready | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    after initial construction is completed can save time and money by following new house Solar Ready design guidelines. Solar Ready houses are designed and built with integrated...

  7. DOE Zero Energy Ready Home National Program Requirements (Rev...

    Broader source: Energy.gov (indexed) [DOE]

    4) DOE Zero Energy Ready Home National Program Requirements Rev04.pdf More Documents & Publications DOE Zero Energy Ready Home National Program Requirements (Rev. 05) California...

  8. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Energy Savers [EERE]

    Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres 20, 26, 28, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Green Acres 20,...

  9. Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

  10. Preliminary Technology Readiness Assessment (TRA) for the Calcine...

    Office of Environmental Management (EM)

    Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP) Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition...

  11. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Energy Savers [EERE]

    Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

  12. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

  13. Energy Department Emergency Response Team Ready to Respond to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Response Team Ready to Respond to Hurricane Irene Energy Department Emergency Response Team Ready to Respond to Hurricane Irene August 26, 2011 - 12:15pm Addthis...

  14. TECHNOLOGY READINESS LEVELS A White Paper

    E-Print Network [OSTI]

    Rhoads, James

    028 TECHNOLOGY READINESS LEVELS A White Paper April 6, 1995 John C. Mankins Advanced Concepts Office Office of Space Access and Technology NASA Introduction Technology Readiness Levels (TRLs) are a systematic metric/measurement system that supports assessments of the maturity of a particular technology

  15. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect (OSTI)

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  16. OLCF Selects Application Readiness Projects to Prepare for Next...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and energy mission, advancing knowledge in areas critical to government, academia and industry. The CAAR program is focused on optimizing application codes for Summit's hybrid...

  17. Instructions for the Preparation of a CameraReady Manuscript

    E-Print Network [OSTI]

    Reiff-Marganiec, Stephan

    or other sans­serif fonts. Use Roman as default type and keep italics and/or bold for special text parts of the main text, use italics. Otherwise, use Roman. Start a new paragraph by indenting it from the left in pencil on the back (top right­hand corner) of each sheet (1) your name, and (2) the sheet number. Mark

  18. Instructions for the Preparation of a Camera-Ready Manuscript

    E-Print Network [OSTI]

    Reiff-Marganiec, Stephan

    or other sans-serif fonts. Use Roman as default type and keep italics and/or bold for special text parts of the main text, use italics. Otherwise, use Roman. Start a new paragraph by indenting it from the left in pencil on the back (top right-hand corner) of each sheet (1) your name, and (2) the sheet number. Mark

  19. REDD+ Country Readiness Preparation Proposals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ | RoadmapAK-abFD-aRAcell SolarRECCountry

  20. Solar Ready Vets: Preparing Veterans for the Solar Workforce | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley |Solar Powerof Energy Solar

  1. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    SciTech Connect (OSTI)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  2. Sandia National Laboratories' Readiness in Technical Base and Facilities Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment of Energy San FranciscoLargeAudit

  3. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6 5SecurityThiUnder Budget |

  4. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport forRetirementAdministration / Academic Alliances

  5. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing theSummary

  6. Lightning Arrestor Connectors Production Readiness

    SciTech Connect (OSTI)

    Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

    2008-10-20

    The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

  7. Salary Negotiation Ready ReferenceH-3

    E-Print Network [OSTI]

    Salary Negotiation Ready ReferenceH-3 College of Engineering, Architecture & Technology Career" salary on the top end of your range. Although this range may appear high because it is created from

  8. Writing Career Objectives Ready Reference E-5

    E-Print Network [OSTI]

    Writing Career Objectives Ready Reference E-5 College of Engineering, Architecture & Technology in pharmaceutical research" #12;Oklahoma State University College of Engineering, Architecture & Technology Career your practical skills. Examples: -"A position in a large, high tech organization requiring network

  9. Superconducting Partnership with Readiness Review Update

    E-Print Network [OSTI]

    1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

  10. Modeling Renewable Energy Readiness: The UAE Context

    E-Print Network [OSTI]

    Choucri, Nazli

    Modeling technology policy is becoming an increasingly important capability to steer states and societies toward sustainability. This paper presents a simulation-modeling approach to evaluate renewable energy readiness, ...

  11. Zero Energy Ready Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2-story, 1,650-ft2 cabin built by a custom home builder for his own family meets Passive House Standards with 5.5-in. ZERH Events ZERH Webinar: Selling Zero Energy Ready Homes...

  12. Proceedings of the international workshop on hadron facility technology

    SciTech Connect (OSTI)

    Thiessen, H.A.

    1987-12-01

    The conference included papers on facility plans, beam dynamics, accelerator hardware, and experimental facilities. Individual abstracts were prepared for 43 papers in the conference proceedings. (LEW)

  13. Facile preparation and improved photocatalytic H{sub 2}-production of Pt-decorated CdS/TiO{sub 2} nanorods

    SciTech Connect (OSTI)

    Yu, Qi; Xu, Jie; Wang, Wenzhong; Lu, Chunli

    2014-03-01

    Graphical abstract: - Highlights: • Pt-CdS/TiO{sub 2} nanorods were firstly realized by electrospinning. • They exhibited high photocatalytic H{sub 2} production activity. • The mechanism of the high performance was discussed. - Abstract: Pt-CdS/TiO{sub 2} nanorods with different molar ratios of Cd:Ti were prepared through an electrospinning method followed by sulfidation treatment and photodeposition. The nanorod-like samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence spectra (PL), and UV–vis diffuse reflectance spectroscopy (DRS). The results indicated that the as-prepared samples exhibited wider light absorption range and lower recombination rate of photogenerated electron–hole pairs after the introduction of Pt and CdS. The photocatalysis experiments showed that Pt-modified CdS/TiO{sub 2} nanorods exhibited much higher activities than pure TiO{sub 2} in the evolution of hydrogen under simulated solar light irradiation.

  14. Technology Readiness and the Smart Grid

    SciTech Connect (OSTI)

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  15. DOE Zero Energy Ready Home Newsletter February 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Newsletter February 2015 DOE Zero Energy Ready Home Newsletter February 2015 Table of Contents A note from Sam Rashkin: "If you don't tell your story, you...

  16. ZERH Webinar: Sales and Value Recognition of Zero Energy Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes ZERH Webinar: Sales and Value Recognition of Zero Energy Ready Homes December 18, 2014 12:00PM to 1:15PM EST...

  17. An assessment of the value of retail ready packaging

    E-Print Network [OSTI]

    Jackson, Kathleen Anne

    2008-01-01

    Use of retail-ready packaging reduces the costs of replenishing store shelves by eliminating the labor of removing packaging materials and stocking individual items on shelves. While reducing costs for retailers, retail-ready ...

  18. University of Michigan Gets Offshore Wind Ready for Winter on...

    Office of Environmental Management (EM)

    University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan University of Michigan Gets Offshore Wind Ready for Winter on Lake Michigan April 16, 2013 - 12:00am...

  19. Building America Top Innovations 2013 Profile - Zero Energy-Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many...

  20. Building America Top Innovations 2013 Profile - Zero Energy-Ready...

    Energy Savers [EERE]

    Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Building America Top Innovations 2013 Profile - Zero Energy-Ready Single-Family Homes Many Building America...

  1. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Energy Savers [EERE]

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case...

  2. Building America Zero Energy Ready Home Case Study: Imery Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case...

  3. Energy Efficiency First, Zero Energy Ready Homes, and Solar PV...

    Office of Environmental Management (EM)

    Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates April 29, 2015 11:00AM to 12:30PM MDT...

  4. DOE Zero Energy Ready Home Partner Central | Department of Energy

    Office of Environmental Management (EM)

    Central DOE Zero Energy Ready Home Partner Central The DOE Zero Energy Ready Home label is the symbol of excellence for new homes. Join the ranks of leading edge builders who...

  5. ENERGY STAR Webinar: Zero Energy Ready Home Program

    Broader source: Energy.gov [DOE]

    Once a home is as good as ENERGY STAR, the modest added “lift” to bring a home up to DOE’s Zero Energy Ready specs unleashes a wave of powerful value messages.  DOE Zero Energy Ready Homes live...

  6. NHI Component Technical Readiness Evaluation System

    SciTech Connect (OSTI)

    Steven R. Sherman; Dane F. Wilson; Steven J. Pawel

    2007-09-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R&D decisions.

  7. Fast Track Troubleshooting Using the SMART BoardTM 600 Series Interactive Whiteboard's Ready Light

    E-Print Network [OSTI]

    Matrajt, Graciela

    Fast Track Troubleshooting Using the SMART BoardTM 600 Series Interactive Whiteboard's Ready Light Start Is the Ready light on? Is the Ready light red or alternating red/green? Is the Ready light flashing green? Is the Ready light solid green? Is the Ready light amber? No Yes No No No Go to Flowchart 2

  8. Building a Weather-Ready Nation Fall Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Fall Weather Safety www.weather.gov/safety Wildfire ­ Drought ­ Hurricanes ­ Wind ­ Early Season Winter ­ Flood #12;Building a Weather-Ready Nation Wildfire Safety smoking materials. weather.gov/wildfire www.weather.gov/safety #12;Building a Weather-Ready Nation

  9. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  10. Professional References Ready Reference E-11

    E-Print Network [OSTI]

    Professional References Ready Reference E-11 College of Engineering, Architecture & Technology College of Engineering, Architecture & Technology Career Services Office ATRC 109E Stillwater, OK 74078 requested to do so. Create a separate sheet entitled "References." Print it on the same high quality papers

  11. The Behavioral Interview Ready Reference G-7

    E-Print Network [OSTI]

    The Behavioral Interview Ready Reference G-7 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology in technical and high tech industries within the last 10 years. Behavioral interviews are designed to focus

  12. Questioning Yourself Ready Reference B-2

    E-Print Network [OSTI]

    Questioning Yourself Ready Reference B-2 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career Services Office set my own hours? Do I thrive in a high-stress atmosphere, or would I prefer something a bit more

  13. Human Resources Organizational Readiness Project: An Overview

    E-Print Network [OSTI]

    Finzi, Adrien

    and easily interface with SAP software Managed by a special Human Resources project team Will be undertaken in close coordination with the BUworks program team HR Organizational Readiness Project BUworks / SAP of SAP Enhanced data security within the new system Current job "system" is 30 years old ­ it must

  14. Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process

    SciTech Connect (OSTI)

    Baldwin, D.P.; Zamzow, D.S.

    1998-11-10

    Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

  15. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  16. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect (OSTI)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)] [Atomic Energy of Canada Limited, Ara Mooradian Way, Pinawa, Manitoba (Canada)

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)

  17. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    SciTech Connect (OSTI)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem.

  18. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  19. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    SciTech Connect (OSTI)

    George Rizeq; Janice West; Arnaldo Frydman; Vladimir Zamansky; Linda Denton; Hana Loreth; Tomasz Wiltowski

    2001-07-01

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2001 and ending June 30, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of program activities covering program management and progress in first year tasks including lab- and bench-scale design, facilities preparation, and engineering studies.

  20. NGNP Infrastructure Readiness Assessment: Consolidation Report

    SciTech Connect (OSTI)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  1. Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-08-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

  2. A PUBLICATION OF THE TEXAS TRANSPORTATION INSTITUTE MEMBER OF THE TEXAS A&M UNIVERSITY SYSTEM VOL. 41 NO. 3 2005 Is Texas ready for

    E-Print Network [OSTI]

    . 41 NO. 3 2005 Is Texas ready for high-speed rail? PAGE 2 Pecos facility open for business PAGE 6 Hall background research to determine the feasibility of high- speed rail in Texas. TTI is serving as a resource agency providing expertise and analytical capabilities to the Texas High- speed Rail and Transportation

  3. Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon

    SciTech Connect (OSTI)

    Metzger, I.; Van Geet, O.

    2014-06-01

    This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

  4. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  5. CRAD, Radiological Controls- Idaho MF-628 Drum Treatment Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Radiation Protection Program at the Advanced Mixed Waste Treatment Project.

  6. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Energy Savers [EERE]

    (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

  7. Marketing and Sales Solutions for Zero Energy Ready Homes Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014. Lindsay Parker: ... the Department of Energy Zero...

  8. DOE Zero Energy Ready Home Second Production Builder Round Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solidify the Zero Energy Ready definition DOE will continue participating in the Net-Zero Energy coalition to secure a definition with all stakeholders. Expand DOE Challenge...

  9. Ten Steps for Career Success Ready Reference A-4

    E-Print Network [OSTI]

    Ten Steps for Career Success Ready Reference A-4 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career

  10. Sample Letter of Inquiry Ready Reference F-4

    E-Print Network [OSTI]

    Sample Letter of Inquiry Ready Reference F-4 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of Engineering, Architecture & Technology Career

  11. First Impressions on Job Interviews Ready Reference G-2

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyFirst Impressions on Job Interviews Ready Reference G-2 College of Engineering, Architecture

  12. Sample Status Inquiry Letter Ready Reference F-9

    E-Print Network [OSTI]

    Sample Status Inquiry Letter Ready Reference F-9 College of Engineering, Architecture & Technology Career Services Oklahoma State University College of College of Engineering, Architecture & Technology

  13. DOE Zero Energy Ready Home Webinar: Building Energy Optimization...

    Energy Savers [EERE]

    Webinar: Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014...

  14. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter...

  15. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute Brian Seal, Tom Key, Aminul Huque, Lindsey Rogers Technical Contact Brian...

  16. Module Embedded Microninverter Smart Grid Ready Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including VoltVAR support Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System RUI ZHOU GE GLOBAL RESEARCH Develop and demonstrate power electronics...

  17. DOE Zero Energy Ready Home: Lighting Efficiency Webinar (Text...

    Broader source: Energy.gov (indexed) [DOE]

    webinar, DOE Zero Energy Ready Home: Lighting Efficiency, presented in May 2015. Alex Krowka: Presentation cover slide: ... join us today for this session on LED lighting design...

  18. Readiness Review Training- Development of Criteria And Review Approach Documents

    Broader source: Energy.gov [DOE]

    Slides used for November 8-9, 2010 Readiness Review Training - Development of Criteria And Review Approach Documents at the Idaho National Laboratory.

  19. DOE Zero Energy Ready Home National Program Requirements (Rev...

    Broader source: Energy.gov (indexed) [DOE]

    5), May, 11, 2015. DOE Zero Energy Ready Home National Program Requirements Rev05 - Final.pdf More Documents & Publications California DOE ZERH Program Requiremets DOE Zero Energy...

  20. DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER APRIL 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Awards: Lasting Legacies ZERH Update July 2015.pdf More Documents & Publications DOE ZERO ENERGY READY HOME UPDATE NEWSLETTER MAY 2015 Building America Building Science Translator...

  1. DOE Zero Energy Ready Home Case Study: Transformation Inc., Production...

    Energy Savers [EERE]

    spray foam on basement walls, triple-pane windows, and one mini-split ductless heat pump. BAZeroEnergyReadyTransformationProduction062414.pdf More Documents &...

  2. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer...

  3. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries Larry Atkins Exide Technologies June 7, 2010 Project ID ARRAVT004 This...

  4. ZERH Webinar: Selling Zero Energy Ready Homes Made Easy: Tools...

    Broader source: Energy.gov (indexed) [DOE]

    been watching closely, the Zero Energy Ready Home now has an impressive array of tools that can help builder partners effectively communicate the value of their certified...

  5. DOE Zero Energy Ready Home Resources | Department of Energy

    Office of Environmental Management (EM)

    look up their case studies in the Building America Program Publication and Product Library, or search the Building America Solution Center. DOE Zero Energy Ready Home Sales and...

  6. Independent Oversight Review of the NNSA Production Office Readiness...

    Energy Savers [EERE]

    Independent Oversight Review of the NNSA Production Office Readiness Review Program February 2014 Office of Safety and Emergency Management Evaluations Office of Enforcement and...

  7. CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  8. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  9. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  10. CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  11. CRAD, Training- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  12. CRAD, Safety Basis- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  13. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  14. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  15. CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  16. CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  17. CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  18. CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  19. CRAD, Maintenance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  20. Using ReadyTalk Teleconference Service (Audio and Web) Summary: Learn how to sign up for ReadyTalk teleconference service and how to set up a

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    Using ReadyTalk Teleconference Service (Audio and Web) Summary: Learn how to sign up for Ready guides. Services tab: #12; Brief descriptions of ReadyTalk's services. Note that prices on the Web siteTalk teleconference service and how to set up a conference call using ReadyTalk. Note: UC has signed a system

  1. Ohio-Kentucky-Indiana Regional Council of Governments Solar Ready Construction Guidelines

    Broader source: Energy.gov [DOE]

    These voluntary guidelines are developed for the local governments of the OKI region to provide guidance for residential developers, home builders, and architects in the design and construction of new residential buildings. These guidelines are intended to guide a developer, architect, or other interested party through the components of building design required to prepare a building for future solar installation. These guidelines include best practices for solar-ready building design to minimize the costs of future solar installation while maximizing potential system efficiency and apply to site selection, building design, and building construction.

  2. PRT FACILITIES MASTER PLAN PREPARED FOR

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Surveys and Stakeholder Meetings Section 1 ­ Drop-In Survey Section 2 ­ Web-Based Travel Survey Section 3, Respondents Comments and Development of Survey Weights A-1 APPENDIX B Web-Based Survey Questionnaire B-1

  3. Community Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercial Grade DedicationaOfficeto theifReadiness

  4. Readiness Review RM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget ||Department ofRequest7ofPlanEO-05-01:NationalReadiness

  5. ORISE: Asset Readiness Management System (ARMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHowAsset Readiness Management

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  8. Introduction Preparation

    E-Print Network [OSTI]

    Introduction Motivation Preparation Notos' Components Results Conclusions and Future Work Building Problem Description and Motivation Preparation Notation, Passive DNS trends and Anchor Classes Notos Reputation Results Conclusions and Future Work Special thanks to: Damballa Passive DNS data, Malware and BL

  9. Capture-ready power plants : options, technologies and economics

    E-Print Network [OSTI]

    Bohm, Mark (Mark C.)

    2006-01-01

    A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

  10. Building a Weather-Ready Nation Winter Weather Safety

    E-Print Network [OSTI]

    Building a Weather-Ready Nation Winter Weather Safety NOAA/NWS Winter Weather Safety Seasonal Campaign www.weather.gov #12;Building a Weather-Ready Nation Winter Weather Hazards Winter Weather Safety www.weather.gov · Snow/Ice · Blizzards · Flooding · Cold Temperatures #12;Building a Weather

  11. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect (OSTI)

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

  12. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  13. p-Type transparent conducting oxides and methods for preparation

    DOE Patents [OSTI]

    Shahriari, Dean Y. (Evanston, IL); Barnabe, Antoine (Toulouse, FR); Mason, Thomas O. (Evanston, IL); Poeppelmeier, Kenneth R. (Evanston, IL)

    2011-05-31

    A facile, low temperature and low pressure method for the preparation of a wide range of phase pure ABO.sub.2 compositions.

  14. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  15. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  16. Structural and magnetic characterization of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles prepared via a facile microwave-assisted method

    SciTech Connect (OSTI)

    Moradi, J.; Ghazi, M.E.; Ehsani, M.H.; Kameli, P.

    2014-07-01

    Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) with different particle sizes are synthesized by a very fast, inexpensive, reproducible, and environmentally friendly method: the microwave irradiation of the corresponding mixture of nitrates. The structural and magnetic properties of the samples are investigated by the X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and magnetic (DC magnetization and AC susceptibility) measurements. The XRD study coupled with the Rietveld refinement show that all samples crystallize in a rhombohedral structure with the space group of R?3C. The FT-IR spectroscopy and FE-SEM images indicate formation of the perovskite structure of LSMO. The DC magnetization measurements confirm the decrease in the particle size effects on the magnetic properties, e.g. reduction in the ferromagnetic (FM) moment and increase in the surface spin disorder. Magnetic dynamics of the samples studied by AC magnetic susceptibility shows that the magnetic behavior of the nanometer-sized samples is well-described by the Vogel-Fulcher and critical slowing down laws. Strong interaction between magnetic nanoparticles of LSMO was detected by fitting the experimental data with the mentioned models. - Graphical abstract: Temperature dependence of the magnetization M(T) was measured in the zero-field-cooling (ZFC) and field-cooling (FC) modes at the applied magnetic field of 100 Oe for the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} with different size prepared via a facile microwave-assisted method. - Highlights: • Nanoparticles of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} were synthesized by the microwave irradiation process. • The structural studies show that all samples crystallize in a rhombohedral structure with space group of R?3C. • The DC magnetic studies confirm tuning of the magnetic properties due to the particle size effects. • Magnetic dynamic studied by AC magnetic susceptibility indicate strong interaction between magnetic nanoparticles.

  17. Performing Energy Security Assessments: A How-To Guide for Federal Facility Managers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes the best practices and recommended process for federal facility managers to prepare for the following sections of a facility’s energy security plan: vulnerability assessments, energy preparedness and operations plans, and remedial action plans.

  18. Using ISMS Principles and Functions in Developing an ARRA Readiness Review Process

    Broader source: Energy.gov [DOE]

    Presenter: Linda K. Rogers, Assessments & Readiness Programs Manager, Bechtel Jacobs Company, LLC Track 8-8

  19. Idaho High-Level Waste & Facilities Disposition, Final Environmental...

    Office of Environmental Management (EM)

    must prepare an Environmental Impact Statement (EIS). Copies of the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement are available at the...

  20. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  1. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  3. 324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3

    SciTech Connect (OSTI)

    HUMPHREYS, D C

    2002-08-01

    A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

  4. EIS-0014: Mound Facility, Miamisburg, Ohio

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to assess the environmental implications of its continuing and future programs at the Mound Facility (formerly designated Mound Laboratory), located in Miamisburg, Ohio.

  5. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  6. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  7. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  8. DOE Zero Energy Ready Home Webinar: Ducts in Conditioned Space

    Broader source: Energy.gov [DOE]

    DOE Challenge Home is a blueprint for zero energy ready homes.  When we make that statement – it’s impossible to justify huge thermal losses from ducts in unconditioned spaces.  That’s why one of...

  9. DOE Challenge Home (Now Zero Energy Ready Home) - Building America...

    Broader source: Energy.gov (indexed) [DOE]

    a much more rigorous set of guidelines that establish a national definition for Zero Net-Energy Ready performance. Read about this Top Innovation. See an example of a DOE...

  10. DOE Zero Energy Ready Home Ducts in Conditioned Space Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    is design strategies for locating the ductwork within the conditioned envelope of the building. And this is sort of a must-have for zero energy ready homes, because if these homes...

  11. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed...

  12. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Ready Home in Downers Grove, IL, that scored HERS 35 without PV. This 3,600-square-foot custom home has advanced framed walls with R-23 dense-packed fiberglass plus R-13...

  13. DOE Zero Energy Ready Home Case Study: Weiss Building & Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a sealed attic with open-cell spray foam, a pier foundation, and 95% efficient gas furnace. BAZeroEnergyReadyWeissCustom062414.pdf More Documents & Publications DOE Zero...

  14. Smart Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE)

    Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full...

  15. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young...

  16. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Energy Savers [EERE]

    vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders,...

  17. DOE Zero Energy Ready Home Case Study: Sunroc Builders, Bates...

    Office of Environmental Management (EM)

    8.25" SIP roof; uninsulated slab foundation; fresh air intake; SEER 16 ducted air source heat pump. DOE Zero Energy Ready Home Case Study: Sunroc Builders, Lakeland, FL More...

  18. DOE Zero Energy Ready Home Case Study: Manatee County Habitat...

    Energy Savers [EERE]

    has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. BAZeroEnergyReadyManateeHabitatForHumanity062414.pdf More Documents &...

  19. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Energy Savers [EERE]

    under slab; a vented attic with R-100 blown cellulose; 95% AFUE furnace, 14 SEER AC, ERV; heat pump water heater. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

  20. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Energy Savers [EERE]

    R-15 unfaced batt on walls, sealed attic with R-49 ocsf under roof deck; ground source heat pump COP 4.4. DOE Zero Energy Ready Home Case Study: High Performance Homes,...

  1. DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers...

    Energy Savers [EERE]

    and around slab, a vented attic with with 2" ccsf plus R-15 blown cellulose, a central heat pump and HRV. DOE Zero Energy Ready Home Case Study: Amaris Homes, Vadnais Heights,...

  2. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith...

    Energy Savers [EERE]

    unvented attic with 5" ccsf and 6.5" blown fiberglass under the roof deck; ground source heat pump COP 4.4. DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, South...

  3. DOE Zero Energy Ready Home Case Study: Heirloom Design Build...

    Energy Savers [EERE]

    rigid foam under slab; sealed attic with R-28 ocsf under roof deck; 22.8 SEER; 12.5 HSPF heat pump. DOE Zero Energy Ready Home Case Study: Heirloom Design Build, Atlanta, GA More...

  4. DOE Zero Energy Ready Home Case Study: Addison Homes, Cobbler...

    Energy Savers [EERE]

    on inside with 2 inches poly iso, a vented attic with R-38 blown fiberglass, a central heat pump with fresh air intake. DOE Zero Energy Ready Home Case Study: Addison Homes,...

  5. EV Community Readiness projects: New York City and Lower Hudson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

  6. DOE Zero Energy Ready Home Case Study: Preferred Builders, Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-13 closed-cell spray foam under the slab and on basement walls, an ERV, and a gas boiler for forced air and radiant floor heat. BAZeroEnergyReadyPreferredBuilders062414.pdf...

  7. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  8. DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland...

    Energy Savers [EERE]

    Case study of a DOE Zero Energy Ready home in Midland, MI, that scored HERS 49 without PV or HERS 44 with 1.4 kW of PV. The custom home served as a prototype and energy...

  9. DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...

    Energy Savers [EERE]

    Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

  10. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Energy Savers [EERE]

    Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an identical manufactured home...

  11. DOE Zero Energy Ready Home Case Study: Brookside Development...

    Broader source: Energy.gov (indexed) [DOE]

    of a DOE Zero Energy Ready home in Derby, CT, that achieves a HERS score of 45 without PV or HERS 26 with PV. The production home is one of a development of 7 two-story,...

  12. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...

    Energy Savers [EERE]

    of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam...

  13. Is Your Community Ready for Economic Development? 

    E-Print Network [OSTI]

    Saldana, Luis

    2003-03-30

    A critical step in initiating or facilitating an effective economic development project is to determine if the community is actually prepared to take on such a difficult task. This publication can help community leaders ...

  14. Preparation of RCRA contingency plans

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The purpose of this guidance is to assist Department of Energy (DOE) field personnel in the preparation of Resource Conservation and Recovery Act (RCRA) contingency plans as set forth in 40 CFR 264/265 Subpart D and 270.42. The guidance will assist personnel in evaluating and ensuring facility compliance with the contingency plan requirements.

  15. Modeling and simulation technology readiness levels.

    SciTech Connect (OSTI)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we conducted four ''field trials'' to examine how this would work in practice. The results varied substantially, but did indicate that establishing the capability dependencies and making the TRL assignments was manageable and not particularly time consuming. The key differences arose in perceptions of how this information might be used, and what value it would have (opinions ranged from negative to positive value). The use cases and field trial results are included in this report. Taken together, the results suggest that we can make reasonably reliable TRL assignments, but that using those without the context of the information that led to those results (i.e., examining the measures suggested by the PCMM table, and extended for ModSim TRL purposes) produces an oversimplified result--that is, you cannot really boil things down to just a scalar value without losing critical information.

  16. Facilities Management March 23, 2004

    E-Print Network [OSTI]

    Capogna, Luca

    estimates prepared in the future for such projects will reflect the A&E hours required, if any, as wellFacilities Management March 23, 2004 Charges for Design (Architectural & Engineering) Services and/or design services directly in support of maintenance projects or alteration/renovation (i

  17. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  19. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  3. U.S. Offshore Wind Port Readiness

    SciTech Connect (OSTI)

    C. Elkinton, A. Blatiak, H. Ameen

    2013-10-13

    This study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations.

  4. The Second Interview Ready Reference G-11

    E-Print Network [OSTI]

    . Use this information to your advantage during the second interview. · Be prepared to discuss salary. Research the average salary for someone with your education and qualifications. Give a salary range (i.e. $60,000 to $65,000) instead of an exact number (i.e. $65,000). Resources such as www.salary.com, www

  5. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  8. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs- Rev05

    Broader source: Energy.gov [DOE]

    TitleUpdates to the DOE Zero Energy Ready Home Specs - Rev05DescriptionIn the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and...

  9. Computer vs. Video Game System: Ready to Rumble in the #EnergyFaceoff...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle November 4, 2014 - 10:20am...

  10. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero...

  11. DOE Zero Energy Ready Home Case Study: Carl Franklin Homes, L...

    Energy Savers [EERE]

    Zero Energy Ready Home Case Study: Carl Franklin Homes, L.C.Green Extreme Homes, CDC, McKinley Project, Garland TX DOE Zero Energy Ready Home Case Study: Carl Franklin Homes,...

  12. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...

    Energy Savers [EERE]

    BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case...

  13. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

  14. EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014

    SciTech Connect (OSTI)

    Bush, Shane

    2014-09-01

    This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

  15. ApplicationReadinessLunchNP.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicant IApplication

  16. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  17. CCSI Technology Readiness Levels Likelihood Model (TRL-LM) User’s Guide

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2013-03-26

    This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

  18. DOE Zero Energy Ready Home Case Study: Shore Road Project- Old Greenwich, Connecticut

    Broader source: Energy.gov [DOE]

    This case study describes the builder Murphy Brothers' first DOE Zero Energy Ready Home in Old Greenwich, CT.

  19. Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text-alternative version of the ENERGY STAR® for SSL: Getting Ready for September 30 webcast.

  20. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – Officials with the EM program at Savannah River Site (SRS) recently announced a key milestone in preparation for the startup of the Salt Waste Processing Facility (SWPF): workers installed more than 1,200 feet of new transfer lines that will eventually connect existing liquid waste facilities to SWPF.

  1. Process improvement to the inspection readiness plan in chemical weapons convention challenge inspections. Master`s thesis

    SciTech Connect (OSTI)

    Triplett, W.M.

    1997-09-01

    This thesis identified current Information Technology initiatives to help improve the Navy`s Inspection Readiness Plan for Chemical Warfare Convention (CWC) Challenge Inspection. The CWC is an intensive inspection. The Challenge Inspection allows for a team of international inspectors to inspect a naval facility suspected of violating the CWC on very short notice. This thesis begins with a review of the CWC Challenge Inspection timeline. It then describes the Navy`s Inspection Readiness Plan for CWC Challenge Inspections as well as the Navy Tiger Team that is sent to naval facilities to assist the Commanding Officer and base personnel during inspections. One of the initiatives evaluated by this analysis is the use of videoconferencing. To ascertain the feasibility of using videoconferencing in the CWC Challenge Inspection process, this thesis reviews the current videoconferencing systems and standards, and the results of a questionnaire that was sent to various naval commands. This thesis concludes with recommendations for inclusion of videoconferencing and various other Information Technology initiatives in the CWC Challenge Inspection process.

  2. Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm

    E-Print Network [OSTI]

    1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants ­ Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

  3. Creating a Professional Portfolio Ready ReferenceE-12

    E-Print Network [OSTI]

    Creating a Professional Portfolio Ready ReferenceE-12 College of Engineering, Architecture & Technology Career Services Portfolios aren't just for artists anymore. Long regarded as an essential job effort and time. The Low and High Tech Alternatives You may design a high tech or low tech portfolio

  4. Researching a Company Online Ready Reference D-13

    E-Print Network [OSTI]

    Researching a Company Online Ready Reference D-13 College of Engineering, Architecture & Technology information on over 50,000 public and private companies (www.hoovers.com). · CorpTech Database of High and private high-tech organizations (www.corptech.com). · Companies Online from Dun & Bradstreet and Lycos

  5. FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83

    E-Print Network [OSTI]

    Tullos, Desiree

    - rupted--electricity, telephone, natural gas, gasoline pumps, cash registers, ATM machines, and internetFEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83 National Security Emergencies I n addition to the natural and tech- nological hazards described in this publication, Americans face threats posed by hostile

  6. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  7. Ready to eat breakfast cereals from food-grade sorghums 

    E-Print Network [OSTI]

    Cruz y Celis Ehlinger, Laura Penelope

    1993-01-01

    Two food-grade sorghum hybrids, ATx63 I *Tx436 (non waxy), and B.BON 34, (waxy), were micronized and evaluated for their potential use in ready to eat breakfast cereals (RTE-BC). Whole and decorticated grains were exposed to infra-red burners...

  8. IBM Watson Group Recruiting Event Ready to Work with Watson?

    E-Print Network [OSTI]

    IBM Watson Group Recruiting Event Ready to Work with Watson? Attend this session to learn about Watson opportunities INTERESTED YET? IBM is leading the real-world success of cognitive systems. Together and resources of IBM. Gates & Hillman 6115 LOCATION February, 18 2014 DATE 4PM - 7PM TIME WHO SHOULD ATTEND? 4

  9. Richard C. Ready Department of Agricultural Economics and Economics

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Richard C. Ready Department of Agricultural Economics and Economics Montana State University, University of Wisconsin, Madison: Agricultural Economics Major Field: Environmental and Resource Economics 2. M.A. - 1985, University of Wisconsin, Madison: Agricultural Economics 3. B.S - 1981, Cornell

  10. Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles

    E-Print Network [OSTI]

    ]. The limited range of EVs implicates a new importance of information about stored energy, estimated rangeEnergy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound compared to a conventional car with a combustion engine. Most EVs provide a visual feedback about

  11. NOAA's National Weather Service Building a Weather-Ready Nation

    E-Print Network [OSTI]

    NOAA's National Weather Service Building a Weather-Ready Nation For more information, please visit: www.noaa.gov and www.nws.noaa.gov NOAA's National Weather Service (NWS) is the Nation's official source for weather and water data, forecasts, and warnings. From information accessed on your smartphone

  12. DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Broader source: Energy.gov (indexed) [DOE]

    a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of...

  13. DOE Zero Energy Ready Home Case Study: John Hubert Associates...

    Broader source: Energy.gov (indexed) [DOE]

    of a DOE Zero Energy Ready home in North Cape May, NJ, that scored a HERS 46 without PV or HERS 9 with 6.5 kW of PV. The two-story, 1,871-ft2 home has advanced-framed...

  14. Preparing Your

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½tankSurfaceSciTechenergyand*Prepare

  15. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  16. DOE Zero Energy Ready Home Case Study: Southern Energy Homes — First DOE Zero Energy Ready Manufactured Home, Russellville, AL

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This home is the first manufactured home built to the DOE Zero Energy Ready Home standard and won an Affordable Builder award in the 2014 Housing Innovations Awards. This manufactured home achieved a HERS score of 57 without photovoltaics and includes superior insulation and air sealing.

  17. Are You Ready? Assessing Whether Organisations are Prepared for Digital Preservation

    E-Print Network [OSTI]

    2009-01-01

    undertook a survey of national libraries, archives and othersurveyed 172 national libraries, archives, researchCouncil of European National Libraries (CENL), International

  18. Are You Ready? Assessing Whether Organisations are Prepared for Digital Preservation

    E-Print Network [OSTI]

    2009-01-01

    maintenance of digital information, in libraries, archivessurveyed national libraries include digital preservation in43 percent of libraries have a digital preservation policy (

  19. Mathematics from High School to Community College: Preparation, Articulation, and College Un-readiness

    E-Print Network [OSTI]

    Jaffe, Louise

    2012-01-01

    college- preparatory mathematics for students with diverseWhat community college developmental mathematics studentsunderstand about mathematics, Part 2: The interviews.

  20. Information Technology Solutions In the event of an emergency, are you standing, ready, and prepared?

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Playbook such as what to do during acts of violence, medical emergencies, fires & hazardous materials, hazardous material release, medical, active shooter, or bomb threat Identify emergency preparedness resources DATES AND LOCATIONS: This session will be offered twice during Campus Safety Awareness Week

  1. Mathematics from High School to Community College: Preparation, Articulation, and College Un-readiness

    E-Print Network [OSTI]

    Jaffe, Louise

    2012-01-01

    10 Pre Algebra or Gen Math Algebra 1 Algebra 1 GeometryEd Algebra RSP Below Algebra Math 6 Below Alg: Acceleratedre-routing occurs in Pre-Algebra Math 84 3-levels below Math

  2. Mathematics from High School to Community College: Preparation, Articulation, and College Un-readiness

    E-Print Network [OSTI]

    Jaffe, Louise

    2012-01-01

    top two quintiles of the curriculum measure and completing a high school mathematics course beyond Algebra

  3. DOE-HDBK-3012-96; Team Leader's Preparation Guide for Operational Readiness Reviews (ORR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY6.1viii ACRONYMS,4-97 January

  4. Solar Ready Vets: Preparing Our Veterans to Join the Growing Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley |Solar Power

  5. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  6. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  7. A Review of the World Bank Forest Carbon Partnership Facility Readiness

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |Recent Exploration Well Drillingand

  8. Facility effluent monitoring plan for 242-A Evaporator facility. Revision 1

    SciTech Connect (OSTI)

    Crummel, G.M.; Gustavson, R.D.

    1993-03-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1* for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility effluent Monitoring Plans, WHC-EP-0438-1**. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements.

  9. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01

    Underground Powerhouse - Pumped Storage Project Idaho Dworshak Damunderground crushing facil­ ity for preparation of concrete aggregate from dam-Underground Powerhouse Pumped Storage Project Idaho 58. Dworshak Dam

  10. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  11. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  12. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  13. WSU Research Core Facilities (last updated Jan 2011)

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    recently announced the operational status of its new 700MHz Biomolecular NMR Facility, located as well as for ensuring that planned statistical analyses are suitable to the experimental design, cell line maintenance, centrifugal elutriation, media preparation, mycoplasma testing, technical

  14. Know before you go. Don't get left out in the cold. Prepare your vehicle for winter weather.

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Know before you go. Don't get left out in the cold. Prepare your vehicle for winter weather. Do you drive during winter? Winter weather is hard on your vehicle and its engine. Here are some tips to help tire air pressure frequently, as it decreases in cold weather. 2. Get your car winter ready

  15. Oak Ridge Office of Environmental Management Pursues Vision of...

    Energy Savers [EERE]

    colors note sites where facilities have been demolished, demolition is under way, or structures are ready or being prepared for demolition. It also identifies buildings that will...

  16. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  17. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  18. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: • Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. • Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. • Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  19. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  20. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  1. Hydrogen Production via a Commercially Ready Inorganic membrane Reactor

    SciTech Connect (OSTI)

    Paul K.T. Liu

    2005-08-23

    Single stage low-temperature-shift water-gas-shift (WGS-LTS) via a membrane reactor (MR) process was studied through both mathematical simulation and experimental verification in this quarter. Our proposed MR yields a reactor size that is 10 to >55% smaller than the comparable conventional reactor for a CO conversion of 80 to 90%. In addition, the CO contaminant level in the hydrogen produced via MR ranges from 1,000 to 4,000 ppm vs 40,000 to >70,000 ppm via the conventional reactor. The advantages of the reduced WGS reactor size and the reduced CO contaminant level provide an excellent opportunity for intensification of the hydrogen production process by the proposed MR. To prepare for the field test planned in Yr III, a significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during this first production trial. In addition, an innovative full-scale membrane module has been designed, which can potentially deliver >20 to 30 m{sup 2}/module making it suitable for large-scale applications, such as power generation. Finally, we have verified our membrane performance and stability in a refinery pilot testing facility on a hydrocracker purge gas. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The high stability of these membranes opens the door for the use of our membrane in the WGS environment with significantly reduced pretreatment burden.

  2. DOE Zero Energy Ready Home Low Load High Efficiency HVAC Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the DOE Zero Energy Ready Home webinar, Low Load High Efficiency HVAC, presented in May 2014.

  3. How do I Apply for Graduate School...? Ready Reference D-18

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyHow do I Apply for Graduate School...? Ready Reference D-18 College of Engineering, Architecture

  4. Zero Energy-Ready Single-Family Homes - Building America Top...

    Broader source: Energy.gov (indexed) [DOE]

    program, the Challenge Home (now Zero Energy Ready Home) program. This Top Innovation highlights Building America research teams who have worked directly with builders to...

  5. Marketing and Sales Solutions for Zero Energy Ready Homes Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Marketing and Sales Solutions for Zero Energy Ready Homes, presented in June 2014.

  6. HIA 2015 DOE Zero Energy Ready Home Case Study: Hammer and Hand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eerebuildingszero-energy-ready-home PNNL-SA-113527, September 2015 One minisplit heat pump provides all of the heating and cooling the highly efficient home needs. While...

  7. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    presented in May 2015. Watch the presentation. Lindsay Parker: Presentation cover slide: Hi, everyone. Welcome to the Department of Energy Zero Energy Ready Home Technical Training...

  8. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    SciTech Connect (OSTI)

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  9. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  10. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  11. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T. [BMH Claudius Peters AG, Buxtehude (Germany); Dake, S.H.; Wagner, E.D.; Brown, G.S. [Raytheon Engineers and Constructors, Pittsburgh, PA (United States)

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  12. Safety of magnetic fusion facilities: Guidance

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  13. El Salvador-Climate Finance Readiness Programme | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimate Finance Readiness Programme Jump to:

  14. Ghana-REDD Readiness Requires Radical Reform | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <Silver Peak AreaForestREDD Readiness

  15. EECBG Success Story: LEDs Ready for Takeoff at Louisiana Airport |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartment ofDepartment of Energy LEDs Ready

  16. Zero Energy Ready Home Update Newsletter | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize »EvePlantEnergy YuccaZero Energy Ready

  17. DOE Zero Energy Ready Home Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zero Energy Ready Home provides

  18. Phased Demolition of an Occupied Facility

    SciTech Connect (OSTI)

    Brede, Lawrence M.; Lauterbach, Merl J.; Witt, Brandon W.; McCague, James [Bechtel Jacobs Co., LLC, P.O. Box 4699, Oak Ridge, Tennessee 37831 (United States)

    2008-01-15

    The U.S. government constructed the K-1401 facility in the late 1940's as a support building for various projects supporting the uranium gaseous diffusion process. In 2004 the U.S. Department of Energy authorized Bechtel Jacobs Company, LLC (BJC) to decontaminate and demolish the facility. The K-1401 facility was used for a variety of industrial purposes supporting the gaseous diffusion process. Many different substances were used to support these processes over the years and as a result different parts of the facility were contaminated with fluorine, chlorine trifluoride, uranium and technetium radiological contamination, asbestos, and mercury. The total facility area is 46,015 m{sup 2} (495,000 sf) including a 6,800 m{sup 2} basement (73,200 sf). In addition to the contamination areas in the facility, a large portion was leased to businesses for re-industrialization when the D and D activities began. The work scope associated with the facility included purging and steam cleaning the former fluorine and chlorine trifluoride systems, decontaminating loose radiologically contaminated and mercury spill areas, dismantling former radiological lines contaminated with uranium oxide compounds and technetium, abating all asbestos containing material, and demolishing the facility. These various situations contributed to the challenge of successfully conducting D and D tasks on the facility. In order to efficiently utilize the work force, demolition equipment, and waste hauling trucks the normal approach of decontaminating the facility of the hazardous materials, and then conducting demolition in series required a project schedule of five years, which is not cost effective. The entire project was planned with continuous demolition as the goal end state. As a result, the first activities, Phase 1, required to prepare sections for demolition, including steam cleaning fluorine and chlorine trifluoride process lines in basement and facility asbestos abatement, were conducted while the tenants who were leasing floor space in the facility moved out. Upon completion of this phase the facility was turned over to the demolition project and the most hazardous materials were removed from the facility. Phase 2 activities included removing the process gas lines from sections C/D/E while decontaminating and preparing sections A and B for demolition. Demolition preparation activities include removing transit siding and universal waste from the area. Phase 3 began with demolition activities in sections A and B1 while continuing process gas line removal from sections C/D/E, as well as conducting demolition preparation activities to these sections. Area B was split into two sections, allowing demolition activities to occur in section B1 while personnel could still access the upper floor in sections C, D, and E. Once demolition began in section B2, personnel entry was only authorized in the basement. This timeline initiated phase 4, and the project completed cleaning the process components from the basement while section B2 demolition began. The final phase, phase 5, began once the basement was cleared. Final demolition activities began on sections C, D, E, and the basement. This material will ship for disposal and is scheduled for completion during FY07. Because the project was able to successfully phase demolition activities, the total facility demolition schedule was reduced by half to 2-1/2 years. The project was able to move portions of the demolition schedule from working in series to working in parallel, allowing the job to deliver facility demolition debris to ship for disposal 'just in time' as the facility was demolished.

  19. Scale-Up of Palladium Powder Production Process for Use in the Tritium Facility at Westinghouse, Savannah River, SC/Summary of FY99-FY01 Results for the Preparation of Palladium Using the Sandia/LANL Process

    SciTech Connect (OSTI)

    David P. Baldwin; Daniel S. Zamzow; R. Dennis Vigil; Jesse T. Pikturna

    2001-08-24

    Palladium used at Savannah River (SR) for process tritium storage is currently obtained from a commercial source. In order to understand the processes involved in preparing this material, SR is supporting investigations into the chemical reactions used to synthesize this material. The material specifications are shown in Table 1. An improved understanding of the chemical processes should help to guarantee a continued reliable source of Pd in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and Ames Laboratory (AL) was initiated. During FY98, the process for producing Pd powder developed in 1986 by Dan Grove of Mound Applied Technologies, USDOE (the Mound muddy water process) was studied to understand the processing conditions that lead to changes in morphology in the final product. During FY99 and FY00, the process for producing Pd powder that has been used previously at Sandia and Los Alamos National Laboratories (the Sandia/LANL process) was studied to understand the processing conditions that lead to changes in the morphology of the final Pd product. During FY01, scale-up of the process to batch sizes greater than 600 grams of Pd using a 20-gallon Pfaudler reactor was conducted by the Iowa State University (ISU) Chemical Engineering Department. This report summarizes the results of FY99-FY01 Pd processing work done at AL and ISU using the Sandia/LANL process. In the Sandia/LANL process, Pd is dissolved in a mixture of nitric and hydrochloric acids. A number of chemical processing steps are performed to yield an intermediate species, diamminedichloropalladium (Pd(NH{sub 3}){sub 2}Cl{sub 2}, or DADC-Pd), which is isolated. In the final step of the process, the Pd(NH{sub 3}){sub 2}Cl{sub 2} intermediate is subsequently redissolved, and Pd is precipitated by the addition of a reducing agent (RA) mixture of formic acid and sodium formate. It is at this point that the morphology of the Pd product is determined. During FY99 and FY00, a study of how the characteristics of the Pd are affected by changes in processing conditions including the RA/Pd molar ratio, Pd concentration, mole fraction of formic acid (mf-FA) in the RA solution, reaction temperature, and mixing was performed. These parameters all had significant effects on the resulting values of the tap density (TD), BET surface area (SA), and Microtrac particle size (PS) distribution for the Pd samples. These effects were statistically modeled and fit in order to determine ranges of predicted experimental conditions that resulted in material that meets the requirements for the Pd powder to be used at SR. Although not statistically modeled, the method and rate of addition of the RA and the method and duration of stirring were shown to be significant factors affecting the product morphology. Instead of producing an additional statistical fit and due to the likely changes anticipated during scale-up of this processing procedure, these latter conditions were incorporated into a reproducible practical method of synthesis. Palladium powder that met the SR specifications for TD, BET SA, and Microtrac PS was reliably produced at batch sizes ranging from 25-100 grams. In FY01, scale-up of the Sandia/LANL process was investigated by the ISU Chemical Engineering Department for the production of 600-gram batches of Pd. Palladium that meets the SR specifications for TD, BET SA, and Microtrac PS has been produced using the Pfaudler reactor, and additional processing batches will be done during the remainder of FY01 to investigate the range of conditions that can be used to produce Pd powder within specifications. Palladium product samples were analyzed at AL and SR to determine TD and at SR to determine BET SA, Microtrac PS distribution, and Pd nodule size and morphology by scanning electron microscopy (SEM).

  20. Superior Energy Performance: New Website Live and Ready for Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to facilities of all sizes in all manufacturing sectors. Built on the ISO 50001 energy management standard, SEP creates value by helping companies establish energy...

  1. Hispanic Preschoolers' School Readiness: A Study Examining the Impact of Cultural, Social-Emotional, and Sociodemographic Factors 

    E-Print Network [OSTI]

    Avila Brizuela, Leonor

    2012-02-14

    of the literature by examining factors that impact school readiness among Hispanic preschoolers. The goal of this study was to determine the extent to which cultural variables can predict school readiness and social-emotional competence, above and beyond...

  2. Building America Top Innovations 2013 Profile – Zero Energy-Ready Single-Family Homes

    SciTech Connect (OSTI)

    none,

    2013-09-01

    Building homes that are zero energy-ready is a goal of the U.S. Department of Energy’s Building America program and one embodied in Building America’s premier home certification program, the Challenge Home program. This case study describes several examples of successful zero energy-ready home projects completed by Building America teams and partner builders.

  3. Weed Management Costs, Weed Best Management Practices, and The Roundup Ready Weed Management Program

    E-Print Network [OSTI]

    Mitchell, Paul D.

    Weed Management Costs, Weed Best Management Practices, and The Roundup Ready® Weed Management-commercial purposes by any means, provide that this copyright notice appears on all such copies. #12;1 Weed Management Costs, Weed Best Management Practices, and The Roundup Ready® Weed Management Program T.M. Hurley

  4. CLAS12 Software Readiness Review Jerry Gilfoyle (for the CLAS12 Software Group)

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    CLAS12 Software Readiness Review Jerry Gilfoyle (for the CLAS12 Software Group) Physics Department, University of Richmond, Virginia Outline: 1. Introduction 2. Software Framework 3. Management 4. Requirements by a factor of ten over CLAS6 (L = 1035 cm-2s-1). Software Goal: Ready to analyze data at turn on (October

  5. Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    E-Print Network [OSTI]

    Aickelin, Uwe

    Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

  6. `Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology

    E-Print Network [OSTI]

    Haszeldine, Stuart

    power stations licensed in 2009 have had to set off land adjacent to the power plant as a capture ready`Capture ready' regulation of fossil fuel power plants ­ Betting the UK's carbon emissions interest in investing in new fossil fuelled power plants. The question is whether capture ready policy can

  7. Social Media: Weather-Ready Wednesday Please help the NWS spread these important safety messages on social media! Everyone is

    E-Print Network [OSTI]

    Social Media: Weather-Ready Wednesday #WRW Please help the NWS spread these important safety build a WeatherReady Nation. WeatherReady Wednesday is a National Weather Service initiative to help spread weather safety messages each week. Each week you can pick a different topic to share. It can

  8. HiRadMat at CERN SPS: A dedicated inbeam test facility

    E-Print Network [OSTI]

    McDonald, Kirk

    HiRadMat at CERN SPS: A dedicated inbeam test facility http://cern.ch/hiradmat Adrian Fabich 5th accelerator studies and applications. HighRadiation to Materials · Dedicated facility · Moving away from adhoc. Fabich 8 #12;Facility services Provision of dedicated irradiation infrastructure · Preparation lab

  9. The Strategic Petroleum Reserves Drawdown Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be prepared to promptly commence operations and schedule the flow of crude oil to refineries, even in the midst of a major disaster. According to the Department's Strategic...

  10. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  11. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  12. Interim safety basis for fuel supply shutdown facility

    SciTech Connect (OSTI)

    Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

    1995-05-23

    This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings.

  13. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility...

    Office of Environmental Management (EM)

    the use of the original version. The DOE-STD-3009-2014 training team (led by Garrett Smith: garrett.smith@hq.doe.gov (AU-31), and supported by David Compton, Jeff Woody, and...

  14. Preparation of Nonreactor Nuclear Facility Documented Safety Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONAL CHAIRS MEETINGof2015 |Industry | DOE-STD-3009-2014

  15. Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONAL CHAIRS MEETINGof2015 |Industry |

  16. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½tankSurfaceSciTechenergy and

  17. Preparation for Facility Operations RM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energyDepartmentNEA-2011-03 |Disposition Project

  18. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | Department of EnergyofWASHINGTON, DC

  19. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  20. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  1. Use of Air Modeling to Reduce Facility Demolition Costs

    SciTech Connect (OSTI)

    Smith, Dennis; Sanford, Peter; Parsons, Duane A.

    2003-02-26

    DOE faces the problem of decommissioning facilities contaminated with plutonium, uranium, and beryllium. The standard process has been to remove the contaminated process equipment from a facility, and then decontaminate the residual radiological and hazardous contamination from the facility structure to an ''unconditional release'' level. The facility would then be taken down as a clean demolition. Several beryllium-contaminated facilities were identified that will be particularly difficult to decontaminate to these release levels. A number of alternative decommissioning approaches were investigated that would require less decontamination, and thus reduced cost and schedule. Initial alternative approaches proposed erection of barriers (i.e. building-size tent structures with ventilation controls) to minimize the release of contamination to the environment. More recently we have investigated methods to control contamination at the structure surfaces before and during demolition, and model the risk posed to the workers, public, and the environment by the small residual material actually dispersed. This approach promises to minimize decontamination by removing only the highest contamination levels, and eliminates the need for erecting large contamination control structures along with the attendant ventilation equipment and administrative controls. The modeling has demonstrated the regulatory acceptability of this approach, and the approach is ready to be discussed with the regulators and the public.

  2. Better building: LEEDing new facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

  3. Computing Facilities Orientation

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Computing Facilities Orientation September, 2014 #12;Introductions Jason Simpson ­ Manager Computing Facilities Use Policy The Computing facilities are a shared resource for all Bren MESM students Respect the work environment of other students Protect the computer equipment and resources provided You

  4. DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs-- Revision 05

    Broader source: Energy.gov [DOE]

    In the year since DOE last updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which changes the solar hot water ready provisions to "recommended", incorporates a phase-in period for the new ENERGY STAR window specs, and spells out how the program works in states where the 2012 IECC is in place. This one-hour webinar will cover the key changes in the DOE Zero Energy Ready Homes specs and explain their significance to our builder, rater, and designer partners.

  5. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    periods 122015 Facility Mgmt 2009 http:www.hanford.govpage.cfmDOEORPContracts Marc McCusker 509-376-2760 Susan E. Bechtol 509-376-3388 Strategic Petroleum Reserve FE Dyn...

  6. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  7. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  8. Advanced Materials Facilities & Capabilites | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Building Battery Processing Facility Battery and Capacitor Test Facility Nuclear Analytical Chemistry and Isotopics Laboratories Manufacturing Manufacturing Demonstration...

  9. U.S. Department of Energy Zero Energy Ready Home? LENDER PARTNER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Zero Energy Ready Home(tm) LENDER PARTNER AGREEMENT This agreement is administered by the U.S. Department of Energy (DOE) in support of DOE Zero Energy...

  10. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Energy Savers [EERE]

    ventilator. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. DOE Zero Energy Ready Home: Murphy Brothers Contracting,...

  11. Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    E-Print Network [OSTI]

    Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

    investors diversify risk, and offer global warming investors an alternative investment opportunity. As a detailed case study, we assess the value of a Capture Option and Capture Ready plant for a 600 MW supercritical pulverized coal power plant in China...

  12. DOE Zero Energy Ready Home Case Study: New Town Builders, Denver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home in Denver, CO, that scored HERS 41 without PV, HERS 3 with PV. This 3,560-square-foot production home has R-36 double-stud walls, a vented attic with R-50 blown...

  13. DOE Zero Energy Ready Home Case Study: Ferguson Design and Constructio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home in Long Island, NY, that scored HERS 43 without PV. This 5,088-square-foot custom home has R-25 double-stud walls, a vaulted roof with R-40 blown cellulose,...

  14. Influence of Agricultural Dual Credit on Student College Readiness Self-Efficacy 

    E-Print Network [OSTI]

    Neely, Alanna L.

    2013-07-12

    The purpose of this correlational and descriptive study was to examine the influence of an agricultural dual credit course curriculum on student self-efficacy of college readiness as students matriculate to post-secondary education. To evaluate...

  15. DOE Zero Energy Ready Home Case Study: StreetScape Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    foam, R-49 open-cell spray-foam sealed attic, an HRV, and a tankless water heater for hydro coil furnace with high-velocity, small-diameter ducts. BAZeroEnergyReadyStreetScape...

  16. DOE Zero Energy Ready Home Case Study: StreetScape Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    open-cell spray-foam sealed attic, an HRV, and a tankless water heater for hydro coil furnace with high-velocity, small-diameter ducts. BAZeroEnergyReadyStreetScape062414.pdf...

  17. Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

  18. Application of the cumulative risk model in predicting school readiness in Head Start children 

    E-Print Network [OSTI]

    Rodriguez-Escobar, Olga Lydia

    2009-05-15

    This study investigates the degree to which the cumulative risk index predicted school readiness in a Head Start population. In general, the reviewed studies indicated the cumulative risk model was efficacious in predicting adverse developmental...

  19. HIA 2015 DOE Zero Energy Ready Home Case Study: Greenhill Contracting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Acres 20, 26, 28 New Paltz, NY DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of...

  20. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taft School, Watertown, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Taft School, Watertown, CT Case study of a DOE 2015 Housing Innovation Award winning custom...

  1. HIA 2015 DOE Zero Energy Ready Home Case Study: Carl Franklin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Franklin Homes, L.C. Green Extreme Homes, CDC McKinley Project Garland, TX DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to...

  2. DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Green Extreme Homes and Carl Franklin Homes DOE Tour of Zero: The First DOE Zero Energy Ready Retrofit by Green Extreme Homes and Carl Franklin Homes Addthis 1 of 11 Green...

  3. DOE Zero Energy Ready Home Case Study: BPC Green Builders, Custom...

    Energy Savers [EERE]

    Study: BPC Green Builders, Custom Home, New Fairfield, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Custom Home, New Fairfield, CT Case study of a DOE Zero Energy...

  4. DOE Zero Energy Ready Home Case Study: Amerisips Homes — Miller-Bloch Residence, Johns Island, SC

    SciTech Connect (OSTI)

    none,

    2014-09-01

    For this DOE Zero Energy Ready Home that won a Custom Builder award in the 2014 Housing Innovation Awards, the builder uses structural insulated panels to construct the entire building shell, including the roof, walls, and floor of the home.

  5. DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes

    Broader source: Energy.gov [DOE]

    Plan review… energy modeling… field inspections… certification…done!  Right?  If only it were that simple to successfully transition to Zero Energy Ready Homes.  The reality is that there’s a lot...

  6. DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Via del...

    Energy Savers [EERE]

    and R-5rigid foam at slab edge; vented attic with R-75 blown fiberglass; ducted minisplit heat pump 16.5 SEER, 9.5 HSPF. DOE Zero Energy Ready Home Case Study: Palo Duro Homes,...

  7. DOE Zero Energy Ready Home Case Study: Hammer and Hand, Pumpkin...

    Energy Savers [EERE]

    with R-29 rigid EPS foam under slab; vented attic with R-86 blown cellulose; minisplit heat pump; ducted with HRV; 15.5 SEER; 10 HSPF. DOE Zero Energy Ready Home Case Study:...

  8. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...

    Energy Savers [EERE]

    on interior walls; R-20 ocsf in roof of sealed attic, uninsulated slab, 15 SEER 8.0 HSPF heat pump walls for heating and cooling, heat pump water heater. DOE Zero Energy Ready...

  9. DOE Zero Ready Home Case Study: Green Extreme Homes & Carl Franklin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    certifi ed to the high performance requirements of the U.S. Department of Energy's Zero Energy Ready Home program, thanks to a successful collaboration between the non-profi t...

  10. User readiness to interact with information systems - a human activity perspective 

    E-Print Network [OSTI]

    Sun, Jun

    2006-10-30

    This study focuses on how and why people become ready to interact with certain information systems (IS) based on their previous experiences with the same and/or similar systems. User-system interaction can be regarded as ...

  11. Envisioning a Bright Future for New Braunfels Children: A Community-Based Approach to School Readiness 

    E-Print Network [OSTI]

    Fanomezantsoa, Herilala; Hopkins, Elizabeth; Tooley, Kathryn

    2015-05-20

    Consulting Capstone Group (MCCG) mission was to provide the McKenna Foundation with informed recommendations regarding school readiness, so that they could effectively serve and advance the well-being of the New Braunfels community....

  12. DOE Zero Energy Ready Home Going Green and Building Strong: Building...

    Broader source: Energy.gov (indexed) [DOE]

    require participation in the FORTIFIED Home program for certification under the DOE Zero Energy Ready Home program, we do strongly encourage it, and we think that there's a lot of...

  13. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Marine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Drive and Port Hadlcok, Coupeville and Port Hadlock WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Marine Drive and Port Hadlcok, Coupeville and Port Hadlock...

  14. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park...

    Energy Savers [EERE]

    study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete...

  15. Development of a culturally appropriate process for assessing distance learning readiness in Latin America 

    E-Print Network [OSTI]

    Villalobos Peñ alosa, Patricia

    2009-05-15

    The purpose of this study was to develop an instrument for assessing distance learning readiness of institutions in Latin America for international projects of food and agriculture with higher education institutions in the ...

  16. Are You Ready for Fall? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    week, Andrea talked about insulating her water heater tank in preparation for cooler weather (of course, that's something you can do any time of year to save money and energy at...

  17. Hanford facility dangerous waste permit application

    SciTech Connect (OSTI)

    none,

    1991-09-18

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit.

  18. Variance analysis in the quality control of ready mixed concrete in a major structure 

    E-Print Network [OSTI]

    Valle Aguilar, Jorge Luis

    1984-01-01

    of strength variations in concrete Fly ash in ready mixed concrete Statistical Inference Hypothesis testing . Analysis of variance Duality control charts Linear regression and correlation Page 10 12 15 17 18 19 20 22 24 24 24 26 27 CHAPTER... Comparison of variances (o') for different ready mixed plants Comparison of means (X) and variances (o'). Comparison of means (7J) and variances (o') for various mix designs, f'c = 3000 psi Comparison of means (X) and variances (o') for mix designs...

  19. Vehicle Technologies Office: AVTA- Evaluating Military Bases and Fleet Readiness for Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. Through the AVTA, Idaho National Laboratory also does fleet and other analysis to evaluate readiness for plug-in electric vehicles and other advanced technology vehicles. The following reports describe analysis studies Idaho National Laboratory conducted for the military to evaluate readiness for plug-in electric vehicles.

  20. Facility Effluent Monitoring Plan for the 3720 Building

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the Environmental Science Laboratory (3720 Facility) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs'' This FEMP has been prepared for the 3720 Facility primarily because it has a major (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The 3720 Facility provides office and laboratory space for PNNL scientific and engineering staff conducting multidisciplinary research in the areas of materials characterization and testing and waste management. The facility is designed to accommodate the use of radioactive and hazardous materials to conduct these activities. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, and dispersible particulate. The facility is in the process of being vacated for shutdown, but is considered a Major Emission Point as of the date of this document approval.

  1. Poultry Facility Biosecurity 

    E-Print Network [OSTI]

    Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

    2005-12-21

    . When teamed with disinfection and sanitation pro - cedures, biosecurity practices can eradicate or reduce pathogens to noninfectious levels. Such preventive measures as vaccination and sero- logic monitoring also help ensure good f_lock health... economically, reducing production over the life of the facility without overt signs of disease. Once contaminated with pathogens, poultry facilities are extremely diff_icult and expensive to clean, sanitize and disinfect. Facility location and design...

  2. EA-2023: Crossman Peak Communications Facility; Mohave County, Arizona

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is preparing an EA that assesses the potential environmental impacts of a proposed new microwave communication facility to be located adjacent to a privately-owned one near Crossman Peak, east of Lake Havasu City in Mohave County, Arizona. The proposal would consist of a microwave communication facility, an access road, and an approximately 8-mile electrical service distribution line across private land and land administered by the Bureau of Land Management.

  3. ARM Mobile Facilities

    SciTech Connect (OSTI)

    Orr, Brad; Coulter, Rich

    2010-12-13

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  4. ARM Mobile Facilities

    ScienceCinema (OSTI)

    Orr, Brad; Coulter, Rich

    2014-09-15

    This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

  5. Presented by FACILITIES MANAGEMENT

    E-Print Network [OSTI]

    Meyers, Steven D.

    Presented by FACILITIES MANAGEMENT TRANSFORMING USF'S TAMPA CAMPUS SUMMER 2011 #12; WELCOME Facili:es Management #12; Facili:es Management #12; NEW CONSTRUCTION Facili

  6. Facility Survey & Transfer

    Broader source: Energy.gov [DOE]

    As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

  7. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  8. Preparation of acetaldehyde

    DOE Patents [OSTI]

    Tustin, G.C.; Depew, L.S.

    1997-10-21

    Disclosed is a process for the preparation of acetaldehyde by the hydrogenation of ketene in the presence of a transition metal hydrogenation catalyst.

  9. Readiness review plan for the in situ vitrification demonstration of Seepage Pit 1 in Waste Area Grouping 7

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    A treatability study is planned that encompasses the application of in situ vitrification (ISV) to at least two segments of the Oak Ridge National Laboratory Seepage Pit I during the third quarter of fiscal year 1995. Before the treatability study can be initiated, the proposed activity must be subjected to an Operational Readiness Review (ORR). ORR is a structured methodology of determining readiness to proceed as outlined in Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration Waste Management Procedure ER/C-P1610, which provides Energy Systems organizations assurance that the work to be performed is consistent with management`s expectations and that the subject activity is ready to proceed safely. The readiness review plan provides details of the review plan overview and the scope of work to be performed. The plan also identifies individuals and position responsibilities for implementing the activity. The management appointed Readiness Review Board (RRB) has been identified. A Field Readiness Review Team (FRT), a management appointed multidisciplinary group, has been established (1) to evaluate the ISV treatability study, (2) to identify and assemble supporting objective evidences of the readiness to proceed, and (3) to assist the team leader in presenting the evidences to the RRB. A major component of RRB is the formulation of readiness review criteria months before the operation. A comprehensive readiness review tree (a positive logic tree) is included, which identifies the activities required for the development of the readiness criteria. The readiness review tree serves as a tool to prevent the omission of an item that could affect system performance. All deficiencies identified in the review will be determined as prestart findings and must be resolved before the project is permitted to proceed. The final approval of the readiness to proceed will be the decision of RRB.

  10. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    Questionnaires. Update the data that pertaining to MIT's contacts worldwide. #12;BOJNOURD CEMENT PLANT Location a database using the Structural Table of Mineral Industry, which includes the location of main mineral The mineral facilities database included: Type of facility: Mine (open pit, underground) Plant ( refineries

  11. Geophysical InversionFacility

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils · Geophysical Proveouts · Geonics EM63 Data · First model parameters: · Location · Orientation · Polarizabilities 4 #12;UBC Geophysical Inversion Facility

  12. Nanotechnology User Facility for

    E-Print Network [OSTI]

    A National Nanotechnology User Facility for Industry Academia Government #12;In the NanoFab, you measurement and fabrication methods in response to national nanotechnology needs. www.nist.gov/cnst Robert) is the Department of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access

  13. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  14. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  15. EIS-0238: Withdrawal of Notice of Intent to Prepare an Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Intent to Prepare an Environmental Impact Statement Proposed Minnesota Agri-Power Plant and Associated Facilities On October 7, 1998 (63 FR 53885), U.S. Department of...

  16. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  17. Are Wireless Sensors and Controls Ready for the Building Automation Industry? Selected Case Studies and Technology Development Activities

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Brambley, Michael R.

    2006-09-13

    This paper discusses whether or not today’s wireless sensors are ready for building controls and energy efficiency monitoring applications.

  18. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01

    and underground crushing facil­ ity for preparation of concrete aggregate from dam-Underground Powerhouse - Pumped Storage Project Idaho Dworshak DamUnderground Powerhouse Pumped Storage Project Idaho 58. Dworshak Dam

  19. The Magnetohydrodynamics Coal-Fired Flow Facility

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Progress continued at MHD coal-fired flow facility. UTSI reports on progress in developing the technology for the steam bottoming portion of the MHD Steam Combined Cycle Power Plant. No Proof-of-Concept (POC) testing was conducted during the quarter but data analyses are reported from the test conducted during the prior quarter. Major results include corrosion data from the first 500 hours of testing on candidate tube materials in the superheater test module (SHTM). Solids mass balance data, electrostatic precipitator (ESP) and baghouse (BH) performance data, diagnostic systems and environmental data results from previous POC tests are included. The major activities this quarter were in facility modifications required to complete the scheduled POC test program. Activities reported include the installation of an automatic ash/seed removal system on the SHTM, the BH, and ESP hoppers. Also, a higher pressure compressor (350 psi) is being installed to provide additional blowing pressure to remove solids deposits on the convective heat transfer tubes in the high temperature zone where the deposits are molten. These activities are scheduled to be completed and ready for the next test, which is scheduled for late May 1990. Also, experiments on drying western coal are reported. The recommended system for modifying the CFFF coal system to permit processing of western coal is described. Finally, a new effort to test portions of the TRW combustor during tests in the CFFF is described. The status of system analyses being conducted under subcontract by the Westinghouse Electric Corporation is also described. 2 refs., 18 figs., 3 tabs.

  20. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  1. Operational Status and Power Upgrade Prospects of the Neutrino Experimental Facility at J-PARC

    E-Print Network [OSTI]

    Taku Ishida; for the T2K Beam Group

    2015-03-08

    In order to explore CP asymmetry in the lepton sector, a power upgrade to the neutrino experimental facility at J-PARC is a key requirement for both the Tokai to Kamioka (T2K) long-baseline neutrino oscillation experiment and a future project with Hyper-Kamiokande. Based on five years of operational experience, the facility has achieved stable operation with 230 kW beam power without significant problems on the beam-line apparatus. After successful maintenance works in 2013-2014 to replace all electromagnetic horns and a production target, the facility is now ready to accomodate a 750-kW-rated beam. Also, the possibility of achieving a few to multi-MW beam operation is discussed in detail.

  2. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  3. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  4. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  5. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  6. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Industrial facilities seeking...

  7. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  8. Sandia Energy - About the Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility About the FacilityTara Camacho-Lopez2015-05-11T19:38:37+00:00 Test-Bed Wind Turbines Allow Facility Flexibility While Providing Reliable Data in Many Regimes SWiFT will...

  9. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  10. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect (OSTI)

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  11. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  12. Pollution Control Facilities (South Carolina)

    Broader source: Energy.gov [DOE]

    For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

  13. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los...

  14. TECHNICAL POLLUTION PREVENTION GUIDE FOR PRESSURE WOOD PRESERVATION FACILITIES

    E-Print Network [OSTI]

    #12;TECHNICAL POLLUTION PREVENTION GUIDE FOR PRESSURE WOOD PRESERVATION FACILITIES IN THE LOWER FRASER BASIN DOE FRAP 1997-14 Prepared for: Environment Canada Environmental Protection Fraser Pollution Action Plan through its Fraser Pollution Abatement Office. Environment Canada is not responsible

  15. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  16. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  17. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  18. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  19. User Facilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prior to granting access to a user facility. User Office User Program Manager Laura Morris Edwards 865.574.2966 Email User Office User Office User Program Manager Laura Morris...

  20. Photovoltaic Research Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  1. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  2. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  3. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  4. Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering

    E-Print Network [OSTI]

    Painter Greenhouse Guidelines Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell for the Painter Greenhouses must be generated through Shane Merrell. Keep doors locked at all times. Repairs

  5. EXPORT CONTROLS PREPARED BY

    E-Print Network [OSTI]

    Sorin, Eric J.

    EXPORT CONTROLS MANUAL PREPARED BY: Office of General Counsel The California State University SEPTEMBER 2012 #12; Export Controls Manual Table of Contents I. INTRODUCTION ......................................................................................................... 1 II. HISTORY OF EXPORT CONTROLS

  6. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  7. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  8. AN EVALUATION OF FUSION ENERGY R&D GAPS USING TECHNOLOGY READINESS LEVELS M. S. Tillack1

    E-Print Network [OSTI]

    Raffray, A. René

    in the science and technology, or "laboratory" environment almost invariably leads to cost and schedule overAN EVALUATION OF FUSION ENERGY R&D GAPS USING TECHNOLOGY READINESS LEVELS M. S. Tillack1 , A. D and remaining R&D needs, we adopted a methodology called "Technology Readiness Levels". We defined

  9. The purpose of NOAA's Weather-Ready Nation initiative is first and foremost to save lives and

    E-Print Network [OSTI]

    The purpose of NOAA's Weather-Ready Nation initiative is first and foremost to save lives public. The Weather-Ready Nation initiative will help America meet the challenges that come with increased extreme weather events by more actively engaging the public on preparedness and resiliency. What

  10. Fast pandemic detection tool ready to fight flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL|FacilityAboutHeat & CoolSpunFast

  11. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  12. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  13. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  14. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  15. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  16. Environmental assessment: South microwave communication facilities

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

  17. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes — First DOE Zero Energy Ready Home Retrofit, Garland, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder was honored with an Affordable Builder award in the 2014 Housing Innovation Awards, for the first retrofit home certified to the DOE Zero Energy Ready home requirements.The 60-year-old, three-bedroom ranch home is expected to save its homeowner more than $1,000 a year in utility bills compared to a home built to the current 2009 International Energy Conservation Code.

  18. Facility effluent monitoring plan for the 222-S Laboratory

    SciTech Connect (OSTI)

    Nickels, J.M.; Warwick, G.J.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable Federal, State, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

  19. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect (OSTI)

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Groundwater Treatment Facility Readies for Operation New Groundwater Treatment Facility Readies for Operation New Groundwater Treatment Facility Readies for Operation New...

  1. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in1: ModelGlovebox Facilities

  2. Review: Preparing for Climate Change

    E-Print Network [OSTI]

    Kunnas, Jan

    2013-01-01

    Review: Preparing for Climate Change By Michael D.Stephen, Preparing for Climate Change. A Boston Review Book.alkaline paper. “Climate change is inevitable, but disaster

  3. Facility Environmental Vulnerability Assessment

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor facility and infrastructure drawings. The assessment team believes that the information, experience, and insight gained through FEVA will help in the planning and prioritization of ongoing efforts to resolve environmental vulnerabilities at UT-Battelle--managed ORNL facilities.

  4. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  5. Facilities Management Services Policy

    E-Print Network [OSTI]

    to perform the work in accordance with FM standards, Building Codes, mandated Energy & Greening State and other consultants to prepare plans, program documents, life-cycle cost studies, energy analysis, code

  6. Facilities Management Services Policy

    E-Print Network [OSTI]

    Energy & Greening State Government requirements, and Health and Safety Regulations established by State and other consultants to prepare plans, program documents, life-cycle cost studies, energy analysis, code

  7. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

  8. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  9. DOE Zero Energy Ready Home Case Study: Boulder ZED Design Build - Boulder, Colorado

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Boulder, Colorado, that scored HERS 38 without PV and 0 with PV. This 2,504 ft2 custom home has advanced framed walls, superior insulation a ground-source heat pump, ERV, and triple-pane windows.

  10. Questions to Ask During Employer Research Ready ReferenceD-14

    E-Print Network [OSTI]

    & Technology Career Services Oklahoma State University College of Engineering, Architecture & TechnologyQuestions to Ask During Employer Research Ready ReferenceD-14 College of Engineering, Architecture the organization offer its employees? · How high is the employee turnover rate for the organization? · What

  11. Original Article Human readiness to throw: the sizeweight illusion is not an illusion when

    E-Print Network [OSTI]

    Indiana University

    are equivalent. Thus, the illusion is functional, not a misperception: optimal objects for throwing are picked that the illusion is a perceptual bias that reflects readiness to acquire fully functional throwing ability food. The ability to throw objects long distance is known to have been of central importance

  12. Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1

    E-Print Network [OSTI]

    1 Capture-Ready Coal Plants - Options, Technologies and Economics Mark C. Bohm1 , Howard J. Herzog1 be employed during the initial design and construction of a both pulverized coal and integrated gasification the Internet in the summer of 2006 [7]. Introduction Interest in the construction of coal-fired power

  13. Phase 5 storage (Project W-112) Central Waste Complex operational readiness review, final report

    SciTech Connect (OSTI)

    Wight, R.H.

    1997-05-30

    This document is the final report for the RFSH conducted, Contractor Operational Readiness Review (ORR) for the Central Waste Complex (CWC) Project W-112 and Interim Safety Basis implementation. As appendices, all findings, observations, lines of inquiry and the implementation plan are included.

  14. MEASURING READINESS FOR CAREER-DECISION MAKING WITH THE CAREER THOUGHTS INVENTORY IN FINLAND

    E-Print Network [OSTI]

    McQuade, D. Tyler

    1 MEASURING READINESS FOR CAREER-DECISION MAKING WITH THE CAREER THOUGHTS INVENTORY IN FINLAND University of Applied Sciences, Jyväskylä, Finland. James Sampson, Ph.D., is Associate Dean, College of Educational Research Methodology, the Institute for Educational Research, University of Jyväskylä, Finland

  15. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  16. Physics and Astronomy Department San Francisco State University Physics Readiness Exam

    E-Print Network [OSTI]

    Golterman, Maarten

    Physics and Astronomy Department San Francisco State University Physics Readiness Exam Math Qualification Test for Introductory Physics ­ Physics 111 or Physics 220 In addition to meeting course prerequisites, students wishing to enroll in Physics 111 or Physics 220 must demonstrate adequate competence

  17. DOE Zero Energy Ready Home Case Study: Promethean Homes — Gross-Shepard Residence, Charlottesville, VA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This is the first DOE Zero Energy Ready Home for this builder, who earned a Custom Builder honor in the 2014 Housing Innovation Awards. The home included rigid mineral wool board insulation over house wrap and plywood on the 2x6 advanced framed walls, achieving HERS 33 without PV.

  18. DOE Zero Energy Ready Home Case Study: Mandalay Homes — Pronghorn Ranch, Prescott Valley, AZ

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The builder has certified 20 homes to DOE Zero Energy Ready Home program and plans are underway for 50 more. Winner of a Production Builder prize in the 2014 Housing Innovation Awards, the homes achieved a HERS score of 48 without photovoltaics (PV) or HERS 25 with 3.5 kW PV included.

  19. DOE Zero Energy Ready Home Case Study: Cobblestone Homes — 2014 Model Home, Midland, MI

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder's first DOE Zero Energy Ready Home won a Custom Builder award in the 2014 Housing Innovation Awards, scored HERS 49 without PV or HERS 44 with 1.4 kW of PV, and served as a prototype and energy efficiency demonstration model while performance testing was conducted.

  20. IsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs

    E-Print Network [OSTI]

    Greenberg, Albert

    -enabled cloud that is highly-secure and reliable. It is critical for enterprises to evaluate a network, but the high level of shared infrastructure creates concerns about security risks.As a result, the public cloudIsYour Network Cloud Ready? Network EnableYour Cloud With MPLSVPNs A FROST & SULLIVAN EXECUTIVE

  1. Exploring Factors of Readiness to Learn about Infant Feeding in Mothers of NICU Infants

    E-Print Network [OSTI]

    Hadsell, Christine Ann

    2013-08-31

    Abstract Teaching the postpartum mother who has an infant in the Neonatal Intensive Care Unit (NICU) about infant feeding may be delayed if the nurse does not determine readiness to learn (RTL) and confidence to feed (CTF) and/or makes assumptions...

  2. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  3. Is RPL Ready for Actuation? A Comparative Evaluation in a Smart City Scenario

    E-Print Network [OSTI]

    Picco, Gian Pietro

    Is RPL Ready for Actuation? A Comparative Evaluation in a Smart City Scenario Timofei Istomin1 of a large-scale infrastructure for smart city applications, which directly informs our evaluation, where we infrastructure of 860+ IEEE 802.15.4 nodes, for monitoring and control of public lighting and other "smart city

  4. CLAS12 Software Readiness Review -Replay Jerry Gilfoyle (for the CLAS12 Software Group)

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    CLAS12 Software Readiness Review - Replay Jerry Gilfoyle (for the CLAS12 Software Group) Physics Department, University of Richmond, Virginia Outline: 0. History 1. Introduction 2. Software Framework 3 spectrometer based on CLAS6. Luminosity increases by a factor of ten over CLAS6 (L = 1035 cm-2s-1). Software

  5. DOE Zero Energy Ready Home Case Study: Brookside Development — Singer Village, Derby, CT

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This DOE Zero Energy Ready Home is one of a development of seven two-story homes that garnered a Production Builder award in the 2014 Housing Innovation Awards. Exceptional construction quality allowed the home to achieve a HERS score of 45 without photovoltaic, or HERS 26 with a 7-kW photovoltaic system included.

  6. DOE Zero Energy Ready Home Case Study: M Street Homes — Smartlux on Greenpark, Houston, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder certified its first DOE Zero Energy Ready Home and won a Production Builder honor in the 2014 Housing Innovation Awards. It is the first home in the world to use a tri-generation system to supply electricity, heating, and cooling on site.

  7. Personal Internet Presence: Job Seeker Self-Audit Ready Reference D-17

    E-Print Network [OSTI]

    Personal Internet Presence: Job Seeker Self-Audit Ready Reference D-17 College of Engineering Internet Presence Job Seeker Self-Audit to evaluate your e-image on a regular basis. Personal Internet your resume been posted on the internet by your academic department? Yes No I don't know Do you belong

  8. An evaluation of fusion energy R&D gaps using Technology Readiness Levels

    E-Print Network [OSTI]

    An evaluation of fusion energy R&D gaps using Technology Readiness Levels M. S. Tillack for prioritization. #12;The topic of fusion energy R&D gaps is receiving increased attention page 2 of 16 In EU&D needs that is widely recognized and utilized outside of the fusion community. Initial efforts

  9. VALUE OF A WEATHER-READY NATION LAST REVISED 10/13/2011

    E-Print Network [OSTI]

    1 VALUE OF A WEATHER-READY NATION LAST REVISED 10/13/2011 NOAA activities support science, service value of our work as it relates to the National Weather Service (NWS). Here we provide data on: What and by product or service type. If you find data about weather that may be useful in your work

  10. DOE Zero Energy Ready Home Case Study: Clifton View Homes — Kaltenbach Residence, Clinton, WA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This home on Whidbey Island won a Custom Builder award in the 2014 Housing Innovation Awards. The DOE Zero Energy Ready Home scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car.

  11. DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY...

    Energy Savers [EERE]

    study of a DOE Zero Energy Ready home in Ithaca, NY, that achieves a HERS 56 without PV or HERS 15 with 4-kW of PV. The two-story, 1,664-ft2 home is one of 17 single-family and...

  12. DOE Zero Energy Ready Home Case Study: One Sky Homes, San Jose...

    Broader source: Energy.gov (indexed) [DOE]

    Ready home in San Jose, CA, that achieved a HERS 69 on the California HERS score without PV, or HERS -1 with 6.4 kW of PV. The custom home has 2x6 advanced framed walls dense...

  13. DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA...

    Energy Savers [EERE]

    study of a DOE Zero Energy Ready home in Lancaster, CA, that achieved a HERS 43 without PV 43 or HERS 0 with 6.9-kW PV. The two-story, 2,537ft2 home serves as a model for the...

  14. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Energy Savers [EERE]

    study of a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers...

  15. Preparation of ethylenediamine dinitrate

    DOE Patents [OSTI]

    Lee, K.

    1984-05-17

    Method for the preparation of ethylenediamine dinitrate. Ethylenediamine dinitrate, a useful explosive, may readily be prepared by solvent extraction of nitrate ion from an acidic aqueous solution thereof using a high-molecular-weight, water-insoluble amine dissolved in an organic solvent, and reacting the resulting oraganic solution with ethylenediamine. The process of the instant invention avoids the use of concentrated nitric acid, as is currently practiced, resulting in a synthesis which is far less hazardous, especially for large quantities of the explosive, and more efficient.

  16. Preparation of ethylenediamine dinitrate

    DOE Patents [OSTI]

    Lee, Kien-yin (Los Alamos, NM)

    1985-01-01

    Method for the preparation of ethylenediamine dinitrate. Ethylenediamine dinitrate, a useful explosive, may readily be prepared by solvent extraction of nitrate ion from an acidic aqueous solution thereof using a high-molecular-weight, water-insoluble amine dissolved in an organic solvent, and reacting the resulting organic solution with ethylenediamine. The process of the instant invention avoids the use of concentrated nitric acid, as is currently practiced, resulting in a synthesis which is far less hazardous especially for large quantities of the explosive, and more efficient.

  17. Preparation of hydrophobic coatings

    DOE Patents [OSTI]

    Branson, Eric D. (Albuquerque, NM); Shah, Pratik B. (Albuquerque, NM); Singh, Seema (Rio Rancho, NM); Brinker, C. Jeffrey (Albuquerque, NM)

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  18. RCRA facility stabilization initiative

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

  19. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah861 ANNUAL ELECTRICRashiFacilitiesFacilities

  20. Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » Program ManagementAct4 DOE/CF-0074Facilities Facilities

  1. P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone

    SciTech Connect (OSTI)

    Deyoung, Anemarie [Los Alamos National Laboratory; Smith, John R. [Los Alamos National Laboratory

    2012-05-03

    A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items were delayed due to programmatic requirements. It is anticipated that Cygnus will be in service at U1a for another 5 years. With this assumption, it was realized that significant resources and effort should be allotted to bring the hardware back to its original condition, or even to improve elements when appropriate. The Cygnus Refurbishment and Enhancement Project started in April, 2011 with the intent to encompass a major overhaul of Cygnus.

  2. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  3. ARTICULATION AGREEMENT Teacher Preparation

    E-Print Network [OSTI]

    Hammack, Richard

    ARTICULATION AGREEMENT For Teacher Preparation Between J. Sargeant Reynolds Community College of Interdisciplinary Studies degree in Liberal Studies for Early and Elementary Education (LSEE) and Master of Teaching degree in Elementary Education; · Bachelor of Arts degree in English or History and the Master

  4. Experiments: Preparation and Measurement

    E-Print Network [OSTI]

    Neumaier, Arnold

    the experimental set­up und the results of performing the experiment. Again, this is part of human cultureExperiments: Preparation and Measurement by Arnold Neumaier, Vienna March 1996 Abstract Introduction Experiments, properly arranged, provide information about a physical system by suitable

  5. Preparation of graphitic articles

    DOE Patents [OSTI]

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  6. Preparation of vinyl acetate

    DOE Patents [OSTI]

    Tustin, G.C.; Zoeller, J.R.; Depew, L.S.

    1998-03-24

    This invention pertains to the preparation of vinyl acetate by contacting a mixture of hydrogen and ketene with a heterogeneous catalyst containing a transition metal to produce acetaldehyde, which is then reacted with ketene in the presence of an acid catalyst to produce vinyl acetate.

  7. Prepared for Outlook 2020

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Northern British Columbia: A Vision for Prosperity Prepared for Outlook 2020: Shaping BC Trust #12;2 Northern British Columbia's Vision for Prosperity Outlook 2020: Shaping BC's Economic and the emerging bio-energy industry..................................... 15 2.2 Mining, oil and gas

  8. Stakeholder Interview Prepared for

    E-Print Network [OSTI]

    Interviews By GE Global Research For University of Hawaii Hawaii Natural Energy Institute 1680 East-West RoadStakeholder Interview Report Prepared for U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847 Task 1. Deliverable #1 ­ Results of Stakeholder

  9. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  10. NISCO Cogeneration Facility 

    E-Print Network [OSTI]

    Zierold, D. M.

    1994-01-01

    The NISCO Cogeneration facility utilizes two fluidized bed boilers to generate 200 MW of electricity and up to 80,000 LBS/HR of steam for process use. The partnership, of three industrial electricity users, Citgo, Conoco, and Vista Chemical...

  11. ORNL is ready with ORNLReady ORNLReady, a Web-based, data-driven interactive

    E-Print Network [OSTI]

    . It includes detailed maps of all ORNL and nearby facilities, employee populations, locations of hazardous

  12. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect (OSTI)

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

  13. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  14. Enhancing the science return of Mars missions via sample preparation, robotic surface exploration and in orbit fuel production

    E-Print Network [OSTI]

    Lamamy, Julien-Alexandre, 1978-

    2004-01-01

    The future of Mars exploration is challenging from multiple points of view. To enhance their science return, future surface probes will most likely be equipped with complex Sample Preparation And Transfer (SPAT) facilities. ...

  15. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  16. Thermal oxidation technology ready for tougher paint finishing regs

    SciTech Connect (OSTI)

    Brooks, J.

    1995-04-01

    There is good news and bad news in the air for commercial paint finishers. The bad news is that future local and federal clean-air regulations are almost certain to require control of volatile organic compound emissions from spray booths and drying ovens. The good news is that one of the most effective systems for meeting such requirements also can help cut operations and maintenance costs. There are as many solutions to VOC emissions problems in paint finishing as there are types of paint-spraying facilities. However, despite the range of choices, regenerative thermal oxidation systems are gaining favor among plant managers, for whom performance and maximum application flexibility are key considerations. Compared to other VOC-destruction approaches, RTO systems are more forgiving and reliable. Although RTO systems involve somewhat higher capital investments than alternative approaches, such costs typically are offset by lower long-term fuel and maintenance requirements. In addition, RTO systems can convert pollutants into usable energy sources, helping minimize operating costs of abatement equipment.

  17. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  18. EA-1605: Biomass Cogeneration and Heating Facilities at the Savannah River Site; Aiken, Allendale and Barnwell Counties, South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities at the Savannah River Site (SRS).

  19. Development of the Write Process for Pipeline-Ready Heavy Oil

    SciTech Connect (OSTI)

    Lee Brecher; Charles Mones; Frank Guffey

    2009-03-07

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

  20. Virginia Commonwealth University Facilities Management

    E-Print Network [OSTI]

    Hammack, Richard

    .3 Solid Waste Management 14 018.4 Pest Management Plan 14 Facilities Management Construction & Design Virginia Commonwealth University Facilities Management Construction & Design Construction Management (804) 6285199 VCU Construction & Inspection Management jghosh