National Library of Energy BETA

Sample records for facility quarterly value-added

  1. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Program Document: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  2. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added Product Report ...

  3. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  4. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1-September 30, 2012 Citation Details In-Document Search Title: ARM Climate Research Facility ...

  5. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  6. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  7. ARM Climate Research Facility Quarterly Value-Added Product Report, Fourth Quarter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  8. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. ... approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. ...

  9. ARM Climate Research Facility Quarterly Value-Added Product Report First Quarter: October 01-December 31, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-02-28

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  10. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1–September 30, 2012

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-11-13

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  11. ARM Climate Research Facility Quarterly Value-Added Product Report Third Quarter: April 01–June 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-08-18

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive

  12. ARM Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 01–September 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-11-02

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text.

  13. ARM Climate Research Facility Quarterly Value-Added Product Report January 1–March 30, 2011

    SciTech Connect (OSTI)

    Sivaraman, C

    2011-06-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

  14. ARM - Value-Added Product Status Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Reports Publications Journal Articles Conference Documents Program Documents & Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Value-Added Product Status Reports ARM Climate Research Facility Quarterly Value-Added Product Report July 1-September 30, 2015 (PDF, 1MB) ARM Climate Research Facility

  15. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    SciTech Connect (OSTI)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman April ... DOESC-ARM-14-009 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-14-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October ... DOESC-ARM-14-027 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-023 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 ... DOESC-ARM-15-038 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-15-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2014 ... DOESC-ARM-14-020 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February ... DOESC-ARM-12-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-021 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  5. ARM Climate Research Facility Data Management Facility Quarterly...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Government or any agency thereof. DOESC-ARM-15-023 ARM Climate Research Facility Data Management Facility Quarterly Report Second Quarter: January 1 to March 31, 2015 NN...

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  7. Doppler Lidar Wind Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Doppler Lidar Wind Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki ... DOESC-ARMTR-148 Doppler Lidar Wind Value-Added Product Version 1.0 RK Newsom C Sivaraman ...

  8. Vocational Rehabilitation -Value Added: Explaining What We Do,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vocational Rehabilitation -Value Added: Explaining What We Do, Craig Bock, MA, CRC Washington State IARP Quarterly Newsletter - June 2009 If you have an injury at work, do you know what happens next or how you would navigate the Workers' Compensation system should you need to? What does RCW 51.32.095 (state law) and WAC 296-19A-070 (administrative rules) mean to you? If you could not return to your job and had permanent physical or cognitive restrictions who would help you explore your return to

  9. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  10. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    2012-09-28

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  11. Merged Sounding Value-Added Product

    SciTech Connect (OSTI)

    Troyan, D

    2010-03-03

    The Merged Sounding value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), surface meteorological instruments, and European Centre for Medium-Range Weather Forecasts (ECMWF) model output with a sophisticated scaling/interpolation/smoothing scheme in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of 266 altitude levels.

  12. ARM - Value-Added Product (VAP) Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (VAP) Reports Publications Journal Articles Conference Documents Program Documents & Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Value-Added Product (VAP) Reports For proper viewing, technical reports should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader

  13. ARM - Value-Added Products - Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Status Report Expand Orange | Expand Blue | Expand Green | Collapse All See Legend for Data Availability explanation. ARM - Value-Added Products - Status Last Update: March 21 2016 19:00:50 +/- Vap Name Translator Developer Frequency Tier Producer Data Availability ACRED (ARM Cloud Retrieval Ensemble Data) Shaocheng Xie Chuanfeng Zhao, Renata Mc Coy Periodically Evaluation Developer ARM Overview: Developer Description: The ARM Cloud Retrieval Ensemble Dataset (ACRED) is a multi-year cloud

  14. Interpolated Sounding Value-Added Product

    SciTech Connect (OSTI)

    Troyan, D

    2013-04-01

    The Interpolated Sounding (INTERPSONDE) value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), and surface meteorological instruments in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of at least 266 altitude levels. This VAP is part of the Merged Sounding (MERGESONDE) suite of VAPs. INTERPSONDE is the profile of the atmospheric thermodynamic state created using the algorithms of MERGESONDE without including the model data from the European Centre for Medium-range Weather Forecasting (ECMWF). More specifically, INTERPSONDE VAP represents an intermediate step within the larger MERGESONDE process.

  15. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect (OSTI)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  16. Sonde Adjust Value-Added Product Technical Report

    SciTech Connect (OSTI)

    Troyan, D

    2012-01-09

    The Sonde Adjust (SONDEADJUST) value-added product (VAP) creates a file that includes all fields from original Atmospheric Radiation Measurement Climate Research Facility (ARM Facility) radiosonde files and contains several value-added fields that provide adjustments related to well-known humidity issues. SONDEADJUST produces data that correct documented biases in radiosonde humidity measurements. Previous efforts towards applying some of these corrections are available via the discontinued PI product sgpsondecorr1miloC1. Unique fields contained within this datastream include smoothed original relative humidity, dry bias corrected relative humidity, and final corrected relative humidity. The smoothed RH field refines the relative humidity from integers-the resolution of the instrument-to fractions of a percent. This profile is then used to calculate the dry bias corrected field. The final correction fixes the time-lag problem and uses the dry-bias field as input into the algorithm. In addition to dry bias, solar heating is another correction that is encompassed in the final corrected RH field. Output from SONDEADJUST differs from the previous RH-corrected datastreams in important ways. First, all three types of ARM radiosondes-Vaisala RS-80, RS-90, and RS-92-are corrected using dedicated procedures and/or parameters. Second, the output variables include all of those found in the original radiosonde file: dry bulb temperature, dewpoint temperature, wind speed, wind direction, eastward wind component, northward wind component, wind status (a Vaisala-produced field used in conjunction with the Loran system), ascent rate, and original relative humidity. Additional humidity fields are smoothed relative humidity, dry biased corrected relative humidity, final ambient relative humidity, and scaled adjusted relative humidity. Third, quality control (QC) flags of the fields from the original radiosonde datastream are brought into the SONDEADJUST output file. Additional QC

  17. 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field...

  18. 4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field...

  19. 3Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representative Program Indicators (Pis) Quarterly Report attached, covering the period from July to September 2000. Data for these indicators are gathered by the Field elements...

  20. 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements...

  1. 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field...

  2. 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were...

  3. 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field...

  4. 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these...

  5. 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements...

  6. 1Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2007. Data for these indicators are gathered by Field elements...

  7. 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these...

  8. 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were...

  9. 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field...

  10. 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field...

  11. 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements...

  12. 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered...

  13. 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered...

  14. 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were...

  15. 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July  through September 2011. Data for these indicators were gathered...

  16. 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per...

  17. 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Attached is the Facility Representative (FR) Program Performance Indicators QuarterlyReport covering the period from October to December 2007. Data for these indicators aregathered by Field...

  18. 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements...

  19. 3Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2001. Data for these indicators are gathered by the Field...

  20. 1Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from January to March 2001. Data for these indicators are gathered by the Field...

  1. 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field...

  2. 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators QuarterlyReport covering the period from April to June 2008. Data for these indicators aregathered by Field elements...

  3. Bioenergy Demonstration Project: Value-Added Products from Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Demonstration Project: Value-Added Products from Renewable Fuels May 23, 2013 Technology Area Review: Biochemical Conversion Paul Blum University of Nebraska 2 Goal ...

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  5. Power Systems Development Facility. Quarterly report, July--September 1995

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a fimction of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and hot gas cleanup units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is nearing completion. Nearly all equipment are set in its place and the FW equipment and the PCDs are being set in the structure.

  6. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Doppler Lidar Vertical Velocity Statistics Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki July 2015 DISCLAIMER This report was prepared as an account of work...

  7. Value-added agriculture offers small agribusinesses additional income

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential Value-added agriculture Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Value-added agriculture offers small agribusinesses additional income potential Closing the gap between raw product and end user September 1, 2015 Las Nueve Niñas Winery wine label. Las Nueve Niñas Winery wine label. Contact Community Programs Director Kathy Keith Email Editor Ute Haker Email Instead

  8. INCITE Quarterly Report Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooley Policies Accounts Policy Account Sponsorship & Retention Policy ALCC Quarterly Report Policy ALCF Acknowledgment Policy Data Policy INCITE Quarterly Report Policy Job Scheduling Policy on BG/Q Job Scheduling Policies on Cooley Pullback Policy Refund Policy Software Policy User Authentication Policy Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] INCITE Quarterly Report Policy

  9. 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June  2004. Data for these indicators are gathered by Field elements...

  10. 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December  2003. Data for these indicators are gathered by Field...

  11. 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September  2004. Data for these indicators are gathered by Field...

  12. 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from April to June  2009. Data for these indicators are gathered by Field elements...

  13. 2Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from April 2000 to June 2000. Data for these indicators are gathered by the Field...

  14. 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from January to March2010. Data for these indicators are gathered by Field...

  15. 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December  2004. Data for these indicators are gathered by Field...

  16. 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January  to March 2006. Data for these indicators are gathered by Field...

  17. 3Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from July to September 2009. Data for these indicators are gathered by Field...

  18. 4Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from October to December 2009. Data for these indicators are gathered by Field...

  19. 2Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2001. Data for these indicators are gathered by the Field elements...

  20. 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December  2001. Data for these indicators are gathered by the Field...

  1. 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July  to September  2002. Data for these indicators are gathered by the Field...

  2. 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September  2003. Data for these indicators are gathered by Field...

  3. 1Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from January  to March  2002. Data for these indicators are gathered by the Field...

  4. 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June  2003. Data for these indicators are gathered by Field elements...

  5. 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March  2003. Data for these indicators are gathered by Field...

  6. 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April  to June 2002. Data for these indicators are gathered by the Field...

  7. 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from January to March 2009. Data for these indicators are gathered by Field...

  8. 3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from July to September   2008. Data for these indicators aregathered by Field...

  9. 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report

    Broader source: Energy.gov [DOE]

    "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly  Report covering the period from October to December   2008. Data for these indicators are  gathered by Field...

  10. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  11. ALCC Quarterly Report Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These penalties will be removed within three business days after the late quarterly or EOP report is submitted. Appeals A PI or user may appeal a project or account suspension to ...

  12. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect (OSTI)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  13. 2D Gridded Surface Data Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 2D Gridded Surface Data Value-Added Product Q Tang S Xie July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

  14. Metallurgical Laboratory Hazardous Waste Management Facility (HWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-09-01

    During second quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter.

  15. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year`s data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B.

  16. Doppler Lidar Wind Value-Added Product (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Wind Value-Added Product Citation Details In-Document Search Title: Doppler Lidar Wind Value-Added Product Wind speed and direction, together with pressure, temperature, and ...

  17. Top Value-Added Chemicals from Biomass - Volume II„Results of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value-Added Chemicals from Biomass - Volume IIResults of Screening for Potential Candidates from Biorefinery Lignin Top Value-Added Chemicals from Biomass - Volume IIResults of ...

  18. 2D Gridded Surface Data Value-Added Product

    SciTech Connect (OSTI)

    Tang, Q; Xie, S

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  19. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  20. Station-based Surface Data Value-Added Product

    SciTech Connect (OSTI)

    Tang, Q.; Xie, S.

    2015-07-01

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) station-based surface data (ARMBESTNS) value-added product. It is a twin data product of the ARMBE 2-Dimensional gridded (ARMBE2DGRID) data set. Unlike the ARMBE2DGRID data set, ARMBESTNS data are reported at the original site locations and show the original information (except for the interpolation over time). Therefore, the users have the flexibility to process the data with the approach more suitable for their applications. This document provides information about the input data, quality control (QC) method, and output format of this data set. As much of the information is identical to that of the ARMBE2DGRID data, this document will emphasize more on the different aspects of these two data sets.

  1. Prototype indicators of value added through public involvement

    SciTech Connect (OSTI)

    Lach, D.; Hixson, P.; Ramonas, L.

    1995-12-01

    As more managers realize that public input in public sector decision making is a given in the current political and social climate, many are turning to public involvement as a way to manage input so that it is beneficial to their decisions and projects. Public involvement is starting to become a familiar way of doing business for many Federal agencies and its contractors. Yet, many, if not most agency and contractor managers are still unclear about the value and costs that public involvement adds to their projects. Proponents claim that public involvement increases the acceptability of project goals by increasing stakeholders` knowledge about and involvement in decisions of importance to them. In spite of these assertions avowing the benefits of public involvement, proponents have not generated methods that demonstrate or provide evidence of such value added through incorporating public involvement into projects. As these questions about the value and costs of public involvement efforts increase, there is a pressing need to document the value and costs of public involvement for the participants in these processes--the stakeholders--and to present this information to decision makers in ways that help them assess the value and costs of managing public input through a public involvement program.

  2. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    SciTech Connect (OSTI)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  3. Doppler Lidar Vertical Velocity Statistics Value-Added Product...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Doppler Lidar Vertical Velocity Statistics ... Facility operates coherent Doppler lidar systems at several sites around the globe. ...

  4. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  7. Power Systems Development Facility. Quarterly report, July 1--September 30, 1996

    SciTech Connect (OSTI)

    1996-12-31

    This quarterly technical progress report summarizes the work completed during the third quarter of a project entitled Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phase expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  9. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument...

    Office of Scientific and Technical Information (OSTI)

    Aerosol Optical Depth Value-Added Product for the SAS-He Instrument Citation Details In-Document Search Title: Aerosol Optical Depth Value-Added Product for the SAS-He Instrument ...

  10. Top Value Added Chemicals from Biomass: Volume I--Results of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals from Biomass: Volume I--Results ...

  11. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  12. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  13. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  17. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  18. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  20. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  1. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  6. MWRRET Value-Added Product: The Retrieval of Liquid Water Path...

    Office of Scientific and Technical Information (OSTI)

    MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2) Citation Details In-Document ...

  7. MWRRET Value-Added Product: The Retrieval of Liquid Water Path...

    Office of Scientific and Technical Information (OSTI)

    public from the National Technical Information Service, Springfield, VA at www.ntis.gov. ... microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. ...

  8. Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies

    SciTech Connect (OSTI)

    Auburn Machinery, Inc.

    2004-07-15

    This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this

  12. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  16. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility (Metlab HWMF) at Savannah River Plant were visited for sampling. Groundwater samples were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. This report describes the results that exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) and the Savannah River Site flagging criteria during the quarter. Tetrachloroethylene exceeded the PDWS in wells AMB 4A, 5, and 7A; trichloroethylene exceeded the PDWS in wells AMB 4A, 4B, 4D, 5, and 7A; and total alpha-emitting radium (radium-224 and radium-226) exceeded the PDWS in well AMB 5. Total organic halogens exceeded the Flag 2 criterion in wells AMB 4A, 5, 6, 7A, 7B, and IODD; manganese was elevated in wells AMB 4D and TODD; iron was elevated in well AMB TODD; and pH was elevated in well AMB 10A.

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  18. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  1. EIA Energy Efficiency-Table 3d. Value Added by Selected Industries...

    Gasoline and Diesel Fuel Update (EIA)

    d Page Last Modified: May 2010 Table 3d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Current Brillion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  2. EIA Energy Efficiency-Table 4d. Value Added by Selected Industries...

    Gasoline and Diesel Fuel Update (EIA)

    d Page Last Modified: May 2010 Table 4d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  3. DOE/SC-ARM/TR-100 Raman Lidar Profiles Best Estimate Value-Added...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Raman Lidar Profiles Best Estimate Value-Added Product Technical Report R Newsom January 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. ...

  4. Top Value Added Chemicals from Biomass: Volume I--Results of Screening for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Candidates from Sugars and Synthesis Gas | Department of Energy Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas Top Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. 35523.pdf (1.41 MB) More Documents &

  5. Top Value-Added Chemicals from Biomass - Volume II„Results of Screening

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Potential Candidates from Biorefinery Lignin | Department of Energy Value-Added Chemicals from Biomass - Volume II„Results of Screening for Potential Candidates from Biorefinery Lignin Top Value-Added Chemicals from Biomass - Volume II„Results of Screening for Potential Candidates from Biorefinery Lignin This report evaluates lignins role as a renewable raw material resource. pnnl-16983.pdf (1006.18 KB) More Documents & Publications Low Cost Carbon Fiber from Renewable Resources

  6. Hanford Federal Facility Agreement and Consent Order quarterly progress report for the period ending June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This is the ninth quarterly report as required by the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1990), also known as the Tri-Party Agreement, established between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology). The Tri-Party Agreement sets the plan and schedule for achieving regulatory compliance and cleanup of waste sites at the Hanford Site. This report covers progress for the quarter that ended June 30, 1991. A total of 87 milestones have been completed to date. 39 refs., 1 fig.

  7. MHD Coal-Fired Flow Facility. Quarterly/annual technical progress report, October-December 1979

    SciTech Connect (OSTI)

    Dicks, J. B.; Chapman, J. N.; Crawford, L. W.

    1980-02-01

    In this Fourth Quarterly/Annual Report submitted under DOE contracts EX-76-C-01-1760 and DE-AC02-79ET10815, the University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, and development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Facility (CFFF) and the Research and Development Laboratory. Work on the CFFF progressed with only minor problems. Total construction activity for all site work presently awarded is nearly 98% complete. Water analysis shows that Woods Reservoir baseline conditions are within EPA or Tennessee drinking water standards. For the primary combustor, the vitiation heater and primary combustor fabrication drawings were completed and the nozzle design was completed. The drum module for the radiant slagging furnace was awarded. On the MHD Power Generator, development continued in several areas of advanced analysis including development of time-dependent models for use with the one-dimensional code. For seed regeneration, the tentative determination is that the Tomlinson Tampella is the most economically viable method. With regard to capped electrode erosion, investigations have shown that the major degradation of the cladding still present is at the leading edge of the capped anode. To alleviate this, plans are to hot work the noble metal in the bending operation. In resolving another problem, a system employing the modified line-reversal method has been assembled and successfully tested to measure absolute plasma temperatures.

  8. Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January-March 2016

    Office of Legacy Management (LM)

    6 April 2016 LMS/MNT/S14013 This page intentionally left blank U.S. Department of Energy Monticello NPL Sites FFA Quarterly Report: January-March 2016 April 2016 Doc. No. S14013 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction ............................................................................................................................1 1.1 Quarterly

  9. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  10. DOE/SC-ARM-TR-140 Droplet Number Concentration Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Droplet Number Concentration Value-Added Product L Riihimaki S McFarlane C Sivaraman June 2014 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its

  11. DOE/SC-ARM/TR-087 Merged Sounding Value-Added Product D Troyan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    87 Merged Sounding Value-Added Product D Troyan March 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

  12. DOE/SC-ARM/TR-098 Micropulse Lidar Cloud Mask Value-Added Product Technical Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Micropulse Lidar Cloud Mask Value-Added Product Technical Report C Sivaraman J Comstock July 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  13. DOE/SC-ARM/TR-115 Aerosol Best Estimate (AEROSOLBE) Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Aerosol Best Estimate (AEROSOLBE) Value-Added Product C Flynn D Turner A Koontz D Chand C Sivaraman July 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  14. DOE/SC-ARM/TR-129 Aerosol Optical Depth Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Aerosol Optical Depth Value-Added Product A Koontz C Flynn G Hodges J Michalsky J Barnard March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  15. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals

    DOE Patents [OSTI]

    Zhao, Haibo; Holladay, Johnathan E.

    2011-05-10

    Methods are described for converting carbohydrates including, e.g., monosaccharides, disaccharides, and polysaccharides in ionic liquids to value-added chemicals including furans, useful as chemical intermediates and/or feedstocks. Fructose is converted to 5-hydroxylmethylfurfural (HMF) in the presence of metal halide and acid catalysts. Glucose is effectively converted to HMF in the presence of chromium chloride catalysts. Yields of up to about 70% are achieved with low levels of impurities such as levulinic acid.

  16. Method for conversion of carbohydrate polymers to value-added chemical products

    DOE Patents [OSTI]

    Zhang, Zongchao C.; Brown, Heather M.; Su, Yu

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  17. Recent Developments on the Broadband Heating Rate Profile Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Developments on the Broadband Heating Rate Profile Value-Added Product E. J. Mlawer, J. S. Delamere, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York T. R. Shippert and C. N. Long Pacific Northwest National Laboratory Richland, Washington R. G. Ellingson Florida State University Tallahassee, Florida M. H. Zhang State University of New York - Stony Brook Albany, New York R.

  18. Microsoft Word - ARM Value-Added Product_tech_rpt_v2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    77 An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar October 2006 Chaomei Lo Jennifer M. Comstock Connor Flynn Pacific Northwest National Laboratory Richland, Washington Work supported by the U.S. Department of Energy, Office of Energy Research, Office of Biological and Environmental Research C Lo, JM Comstock, C Flynn, October 2006, ARM TR-077 iii Contents 1 Introduction

  19. Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemicals and Biofuels - Energy Innovation Portal Industrial Technologies Industrial Technologies Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Catalytic Conversion of Biomass-derived Feedstock (HMF) into Value Added Chemicals and Biofuels Colorado State University Contact CSU About This Technology Technology Marketing Summary A catalytic reaction system by which the biomass-derived feedstock chemical HMF can be upgraded into a higher carbon content

  20. DOE/SC-ARM/TR-133 Aerosol Optical Depth Value-Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Aerosol Optical Depth Value-Added Product for the SAS-He Instrument B Ermold CJ Flynn J Barnard September 2013 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  1. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  2. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  3. Atmospheric Radiation Measurement (ARM) Value-Added Data Products (Including Evaluated Data Sets)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many of the scientific needs of the ARM Program are met through the analysis and processing of existing data products into "value-added" products or VAPs. Despite extensive instrumentation deployed at the ARM sites, there will always be quantities of interest that are either impractical or impossible to measure directly or routinely. Physical models using ARM instrument data as inputs are implemented as VAPs and can help fill some of the unmet measurement needs of the Program. Conversely, ARM produces some VAPs not in order to fill unmet measurement needs, but instead to improve the quality of existing measurements. In addition, when more than one measurement is available, ARM also produces "best estimate" VAPs. A special class of VAP called a Quality Measurement Experiment (QME) adds value to the input data streams by providing for continuous assessment of the quality of the input data. [taken from http://www.arm.gov/data/vaps_all.php] One of the ARM data centers, the External Data Center or XDC at Brookhaven National Laboratory, also adds value to ARM information by identifying sources and acquiring external data to augment the data being generated within the program. These external data sets are converted, processed, and carefully evaluated for their value to the overall ARM program. /. Data Plots are also value-added products from ARM.

  4. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    SciTech Connect (OSTI)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  5. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    SciTech Connect (OSTI)

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  7. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect (OSTI)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  8. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July ... DOESC-ARM-14-023 ARM Climate Research Facility Quarterly Ingest Report Third Quarter: ...

  9. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  10. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Process for Converting Waste Glass Fiber into Value-Added Products

    Broader source: Energy.gov [DOE]

    Solid wastes are generated at glass fiber manufacturing facilities. With the help of a grant from DOE’s Inventions and Innovation Program, Albacem, LLC, developed a new process that converts these...

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  9. Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: July 1…September 30, 2015

    Office of Legacy Management (LM)

    (FFA) Quarterly Report: July 1-September 30, 2015 October 2015 LMS/MNT/S13350 This page intentionally left blank U.S. Department of Energy Monticello NPL Sites FFA Quarterly Report: July-September 2015 October 2015 Doc. No. S13350 Page i Contents Abbreviations .................................................................................................................................. ii 1.0 Introduction

  10. ARM Operations Quarterly Report October 1-December 31, 2013 ...

    Office of Scientific and Technical Information (OSTI)

    This quarterly report is written to comply with this requirement. This reports on the first quarter facility statistics. Authors: Voyles, Jimmy W. 1 + Show Author Affiliations ...

  11. Top Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass Program (EERE) For the Office of the Biomass Program T. Werpy and G. Petersen, Editors U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

  12. DOE/SC-ARM/TR-095 The Microbase Value-Added Product: A Baseline Retrieval of Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties M Dunn K Johnson M Jensen May 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  14. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III

    SciTech Connect (OSTI)

    Chase, J.

    1998-10-30

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

  15. Top Value-Added Chemicals from Biomass - Volume II„Results of Screening for Potential Candidates from Biorefinery Lignin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Value-Added Chemicals from Biomass Volume II-Results of Screening for Potential Candidates from Biorefinery Lignin 1 JE Holladay 2 JJ Bozell 1 JF White 3 D Johnson 1 Pacific Northwest National Laboratory 2 University of Tennessee 3 National Renewable Energy Laboratory October 2007 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-16983 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  16. DOE/SC-ARM/P-07-005.1 ARM Value-Added Product (VAP) Monthly Status Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Value-Added Product (VAP) Monthly Status Report ARM Translator Team J. Comstock C. Flynn M. Jensen C. Long D. Turner S. Xie March 13, 2007 Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  17. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-stepmore » in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.« less

  18. Microalgae as a feedstock for biofuel precursors and value-added products: Green fuels and golden opportunities

    SciTech Connect (OSTI)

    Tang, Yuting; Rosenberg, Julian N.; Bohutskyi, Pavlo; Yu, Geng; Betenbaugh, Michael J.; Wang, Fei

    2015-11-16

    In this study, the prospects of biofuel production from microalgal carbohydrates and lipids coupled with greenhouse gas mitigation due to photosynthetic assimilation of CO2 have ushered in a renewed interest in algal feedstock. Furthermore, microalgae (including cyanobacteria) have become established as commercial sources of value-added biochemicals such as polyunsaturated fatty acids and carotenoid pigments used as antioxidants in nutritional supplements and cosmetics. This article presents a comprehensive synopsis of the metabolic basis for accumulating lipids as well as applicable methods of lipid and cellulose bioconversion and final applications of these natural or refined products from microalgal biomass. For lipids, one-step in situ transesterification offers a new and more accurate approach to quantify oil content. As a complement to microalgal oil fractions, the utilization of cellulosic biomass from microalgae to produce bioethanol by fermentation, biogas by anaerobic digestion, and bio-oil by hydrothermal liquefaction are discussed. Collectively, a compendium of information spanning green renewable fuels and value-added nutritional compounds is provided.

  19. ARM Operations Quarterly Report October 1-December 31, 2013

    SciTech Connect (OSTI)

    Voyles, Jimmy W.

    2013-12-31

    The U.S. Department of Energy requires national user facilities to report time-based operating data. This quarterly report is written to comply with this requirement. This reports on the first quarter facility statistics.

  20. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  1. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  2. 3Q CY2005 (PDF), Facility Representative Program Performance...

    Office of Environmental Management (EM)

    3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report...

  3. 4Q CY2000 (PDF), Facility Representative Program Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report ...

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-04-08

    The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime.

  7. F-Area Hazardous Waste Management Facility Correction Action Report, Third and Fourth Quarter 1998, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-23

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF), also known as the F-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  8. Quarterly EMS Performance: FY 2012 First Quarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly EMS Performance: FY 2012 First Quarter Quarterly EMS Performance: FY 2012 First Quarter Quarterly EMS Performance Assurance Summary October 1, 2011-December 31,2011 FY 2012 First Quarter (189.84 KB) More Documents & Publications Quarterly EMS Performance: FY 2011 First Quarter Quarterly EMS Performance FY 2013 First Quarter Quarterly EMS Performance: FY 2012 Second Quarter

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. F-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    SciTech Connect (OSTI)

    1997-03-01

    SRS monitors groundwater quality at the F-Area HWMF as mandated by the permit and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the permit. The facility is describes in the introduction to Module III, Section C, of the permit. The F-Area HWMF well network monitors three district hydrostratigraphic units in the uppermost aquifer beneath the facility. The hydrostratigraphy at the F-Area HWMF is described in permit section IIIC.H.2, and the groundwater monitoring system is described in IIIC.H.4 and Appendix IIIC-B. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act (RCRA) Part B post-closure care permit application for the F-Area HWMF submitted to SCDHEC in December 1990. Sampling and analysis are conducted as required by section IIIC.H.6 at the intervals specified in permit sections IIIC.H.10 and Appendix IIIC-D for the constituents specified in Appendix IIIC-D. Groundwater quality is compared to the GWPS list in section IIIC.H.1 and Appendix IIIC-A.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  14. ARM Operations Quarterly Report July 1 - September 30 2013 (Program...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM Operations Quarterly Report July 1 - September 30 2013 This reports on the fourth quarter facility statistics. Authors: Voyles, Jimmy W Publication Date: 2013-10-14 OSTI ...

  15. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    SciTech Connect (OSTI)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB{sub 2}), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

  16. RESEARCH QUARTERLY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH QUARTERLY First Quarter 2015 Th 90 Ac 89 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Glenn T. Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Actinide Research Quarterly About the cover The crystalline structure of plutonium in its elemental form, and in molecules and compounds with other elements, is the basis for understanding the intriguing chemistry, physics, and engineering of plutonium molecules and compounds. Colored

  17. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  18. Quarterly Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2009 Federal Columbia River Power System (FCRPS) FY 2009 FIRST QUARTER REVIEW Projection for FY 2009 Net Revenues and Reserves A B C D FY 2008 Audited Actuals without FAS 133 &...

  19. Quarterly Progress Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2016 Quarterly Nuclear Deployment Scorecard - April 2016 News Updates On April 12 NRC held a public meeting in Oak Ridge, Tennessee to discuss Tennessee Valley Authority's (TVA) plans to submit an Early Site Permit (ESP) application to potentially site a small modular reactor at their Clinch River Site.TVA's ESP application will use a Plant Parameter Envelope approach to provide sufficient bounding parameters and characteristics of the reactors and the associated facilities so that

  20. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  1. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  2. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2015 1st Quarter 2016 2nd quarter 2016 Anfield Resources Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating-Processing Alternate Feed

  3. 1Q CY2000 (PDF), Facility Representative Program Performance Indicators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly Report | Department of Energy Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1

  4. A Principal Component Analysis Noise Filter Value-Added Procedure to Remove Uncorrelated Noise from Atmospheric Emitted Radiance Interferometer (AERI) Observations

    SciTech Connect (OSTI)

    C. Lo D. D. Turner R. O. Knuteson

    2006-01-31

    This technical report provide a short description of the application of the principle component analysis techniques to remove uncorrelated random noise from ground-based high spectral resolution infrared radiance observations collected by the atmospheric emitted radiance interferometers (AERIs) deployed by the Atmospheric Radiation Measurement (ARM) Program. A general overview of the technique, the input, and output datastreams of the newly generated value-added product, and the data quality checks used are provided. A more complete discussion of the theory and results is given in Turner et al. (2006).

  5. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  10. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  11. SPEAR 3 Quarterly Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    through December 2000 TABLE OF CONTENTS A. Project Summary 1. Technical Progress 2. Cost Reporting B. Detailed Reports 1.1 Magnets & Supports 1.2 Vacuum System 1.3 Power Supplies 1.4 RF System 1.5 Instrumentation & Controls 1.6 Cable Plant 1.8 Facilities 2.1 Accelerator Physics 2.2 Environmental Health and Safety A. SPEAR 3 PROJECT SUMMARY 1. Technical Progress Some staff changes have occurred during this quarter as shown in the organization chart (Fig. A1). The Project Management

  12. Quarterly Progress Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarterly Progress Reports Quarterly Progress Reports Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter,...

  13. Genepool Quarterly Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Quarterly Maintenance Genepool Quarterly Maintenance November 7, 2012 by Kirsten Fagnan The Genepool cluster will be offline for maintenance next Tuesday, November 13th ...

  14. Quarterly Progress Report

    Broader source: Energy.gov [DOE]

    Quarterly Progress Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  15. Strategic Petroleum Reserve: Annual/quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-16

    Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

  16. Data Management Facility Operations Plan

    SciTech Connect (OSTI)

    Keck, Nicole N

    2014-06-30

    The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.

  17. NNSA's Stockpile Stewardship Program Quarterly Experiments summary now

    National Nuclear Security Administration (NNSA)

    available | National Nuclear Security Administration | (NNSA) Stockpile Stewardship Program Quarterly Experiments summary now available Thursday, June 5, 2014 - 1:06pm NNSA's current quarterly summary of experiments conducted as part of its science-based stockpile stewardship program is now available here. The quarterly summary prepared by NNSA's Office of Defense Programs provides descriptions of key NNSA facilities that conduct stockpile stewardship experiments. These include some of the

  18. Quarterly Reports 2016 as Required by Admin Orders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarterly Report 2016 Quarterly Report for the Reporting Period between April 1, 2016, through June 30, 2016, as required by NMED Administrative Orders dated February 27, 2014, and May 12, 2014, as amended by NMED Directives dated August 29, 2014, December 9, 2014, July 15, 2015, and February 26, 2016 Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Todd Shrader/CBFO and Phillp J. Breidenbach/NWP dated July 29, 2016. Quarterly Report for the Reporting Period

  19. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  20. Quarterly VAP Report - April to June

    SciTech Connect (OSTI)

    Sivaraman, C

    2012-08-20

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the Data Archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  1. Quarterly VAP Report - January to March

    SciTech Connect (OSTI)

    C Sivaraman

    2012-06-07

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. New information is highlighted in blue text. New information about processed data by the developer is highlighted in red text. The upcoming milestones and dates are highlighted in green.

  2. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  3. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  4. 3Q/4Q99 F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    2000-05-12

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application.

  5. Quarterly geotechnical field data report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The purpose of the Quarterly Geotechnical Field Data Reports is to meet the US Department of Energy intent to provide geotechnical and related information from WIPP underground activities to interested persons or groups in a timely manner. This Quarterly Geotechnical Field Data Report (GFDR) presents information obtained from the geotechnical studies at the WIPP site underground facilities from April 1 through June 30, 1985, as well as all previous data collected from the geomechanical instruments. During this period, the geotechnical activities at the site included maintaining and repairing instruments and monitoring previously installed geomechanical instruments in shafts, underground drifts, and test rooms. The data presented in this GFDR reflect the update of continuing measurements and monitoring. Also continuing and included in this report are preliminary geotechnical and structural analyses and interpretations of the data.

  6. Quarterly Cybersecurity Awareness Campaigns and Toolkits | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly Cybersecurity Awareness Campaigns and Toolkits Quarterly Cybersecurity Awareness Campaigns and Toolkits The OCIO coordinates quarterly cybersecurity awareness campaigns ...

  7. Program Update: 2nd Quarter 2012 | Department of Energy

    Energy Savers [EERE]

    Program Update: 2nd Quarter 2012 Inside this Update: U.S. Representative Scott Tipton Visits Grand Junction Facility; LM Management and Staff Tour the Weldon Spring Site Joined by ...

  8. Cloud Occurrence Frequency at the Barrow, Alaska, ARM Climate Research Facility for 2008 Third Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect (OSTI)

    M Jensen; K Johnson; JH Mather

    2009-07-14

    Clouds represent a critical component of the Earth’s atmospheric energy balance as a result of their interactions with solar and terrestrial radiation and a redistribution of heat through convective processes and latent heating. Despite their importance, clouds and the processes that control their development, evolution and lifecycle remain poorly understood. Consequently, the simulation of clouds and their associated feedbacks is a primary source of inter-model differences in equilibrium climate sensitivity. An important step in improving the representation of cloud process simulations is an improved high-resolution observational data set of the cloud systems including their time evolution. The first order quantity needed to understand the important role of clouds is the height of cloud occurrence and how it changes as a function of time. To this end, the Atmospheric Radiation Measurement (ARM) Climate Research Facilities (ACRF) suite of instrumentation has been developed to make the observations required to improve the representation of cloud systems in atmospheric models.

  9. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  10. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.