Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Okeelanta Cogeneration Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Okeelanta Cogeneration Biomass Facility Okeelanta Cogeneration Biomass Facility Jump to: navigation, search Name Okeelanta Cogeneration Biomass Facility Facility Okeelanta Cogeneration Sector Biomass Location Palm Beach County, Florida Coordinates 26.6514503°, -80.2767327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6514503,"lon":-80.2767327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Alternate Energy Production, Cogeneration, and Small Hydro Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation aims to encourage the development of alternative energy, cogeneration, and small hydropower facilities. The statute requires utilities to enter into long-term contracts with these...

3

New cogeneration plant provides steam for Oxnard papermaking facility  

SciTech Connect

In January 1990, the Proctor and Gamble Co.'s Oxnard, Calif., papermaking facility started up Cogen Two, the newest of the company's four gas-turbine-based cogeneration plants. In addition to reviewing Cogen Two project specifics, this article demonstrates the success of state-of-the-art cogeneration systems and the important role these systems play in the pulp and paper industry.

Price, K.R. (Thermal Energy Systems, Engineering Div., Procter and Gamble Co., Winston Hill Technical Center, Cincinnati, OH (US)); Anderson, W.A. (Utilities Dept., Oxnard Plant, Procter and Gamble Co., Oxnard, CA (US))

1991-07-01T23:59:59.000Z

4

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Negotiating Rates and Contracts for Qualifying Facilities  

E-Print Network (OSTI)

The implementation of a cogeneration project or other qualifying facility (QF) requires the development of contractual relationships with one or more electric utilities. The relationships may involve the application of existing rates and contracts...

Collier, S. E.

6

Cogeneration  

E-Print Network (OSTI)

environment, that of the state of California. The panel for this tutorial session includes representative from a broad cross-section of the cogeneration industry including industrial users, engineering firms, developers and equipment manufacturers. 129...

Jenkins, S. C.

7

Commissioning and Start Up of a 110 MegaWatt Cogeneration Facility  

E-Print Network (OSTI)

operations. As a result of the Project Team's efforts, the cogeneration facility achieved 100% of design output on December 22, 1987 without any significant impact on the manufacturing facility."...

Good, R.

8

DOE/EA-1605: Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

605 605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE DOE/EA-1605 ENVIRONMENTAL ASSESSMENT FOR BIOMASS COGENERATION AND HEATING FACILITIES AT THE SAVANNAH RIVER SITE AUGUST 2008 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE This page intentionally left blank - i - TABLE OF CONTENTS Page 1.0 INTRODUCTION ...................................................................................................1 1.1 Background and Proposed Action ...............................................................1 1.2 Purpose and Need ........................................................................................4

9

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

10

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

11

Energy, environmental, health and cost benefits of cogeneration from fossil fuels and nuclear energy using the electrical utility facilities of a province  

Science Journals Connector (OSTI)

A method is investigated for increasing the utilization efficiency of energy resources and reducing environmental emissions, focusing on utility-scale cogeneration and the contributions of nuclear energy. A case study is presented for Ontario using the nuclear and fossil facilities of the main provincial electrical utility. Implementation of utility-based cogeneration in Ontario or a region with a similar energy system and attributes is seen to be able to reduce significantly annual and cumulative uranium and fossil fuel use and related emissions, provide economic benefits for the province and its electrical utility, and substitute nuclear energy for fossil fuels. The reduced emissions of greenhouse gases are significant, and indicate that utility-based cogeneration can contribute notably to efforts to combat climate change. Ontario and other regions with similar energy systems and characteristics would benefit from working with the regional electrical utilities and other relevant parties to implementing cogeneration in a careful and optimal manner. Implementation decisions need to balance the interests of the stakeholders when determining which cogeneration options to adopt and barriers to regional utility-based cogeneration need to be overcome.

Marc A. Rosen

2009-01-01T23:59:59.000Z

12

STATEMENT QF CONSIDERATIONS CLASS WAIVER OF THE GOVERNMENT'S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QF CONSIDERATIONS QF CONSIDERATIONS CLASS WAIVER OF THE GOVERNMENT'S U.S. AND FOREIGN PATENT RIGHTS IN INVENTIONS ARISING OUT OF THE RESEARCH AND DEVELOPMENT ACTIVITIES CONDUCTED UNDER CLAUSE H 28, JOINT RESEARCH PROJECTS, UNDER MANAGEMENT AND OPERATING CONTRACT NO. W-31-109-ENG-38 BETWEEN THE DEPARTMENT OF ENERGY AND THE UNIVERSITY OF CHICAGO, AS OPERATOR OF ARGONNE NATIONAL LABORATORY; W(C)-02-001, CH-1098 The University of Chicago (University), a nonprofit educational organization, manages and operates the Government-owned facilities of the Department of Energy's (DOE) Argonne National Laboratory (Laboratory) in Argonne, Illinois under Prime Contract W-31-109-ENG-38 (the Contract). Currently, the University has the right to retain title to inventions made in the performance

13

Industrial Cogeneration Application  

E-Print Network (OSTI)

the Public Service Commission that the correct cost of service study methodology was a marginal cost study based on a gas turbine. The effects of using the marginal cost study versus the utility's proposed study would have resulted in a 25%i ncrease... with conern for future reserve margins, had led us to develop our cogeneration strategy. Specifically, this strategy is to identify key facilities, evaluate the feasibility of cogenera ion, and construct and operate cogeneration systems when the economics...

Mozzo, M. A.

14

250 MW single train CFB cogeneration facility. Annual report, October 1993--September 1994  

SciTech Connect

This Technical Progress Report (Draft) is submitted pursuant to the Terms and Conditions of Cooperative Agreement No. DE-FC21-90MC27403 between the Department of Energy (Morgantown Energy Technology Center) and York County Energy Partners, L.P. a wholly owned project company of Air Products and Chemicals, Inc. covering the period from January 1994 to the present for the York County Energy Partners CFB Cogeneration Project. The Technical Progress Report summarizes the work performed during the most recent year of the Cooperative Agreement including technical and scientific results.

NONE

1995-02-01T23:59:59.000Z

15

DOE/EA-1605: Finding of No Significant Impact for the Environmental Assessment for Biomass Cogeneration and Heating Facilities at the Savannah River Site (August 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Cogeneration and Heating Facilities at the Savannah River Site Agency: U.S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1605) to analyze the potential environmental impacts of the proposed construction and operation of new biomass cogeneration and heating facilities located at the Savannah River Site (SRS). The draft EA was made available to the States of South Carolina and Georgia, and to the public, for a 30-day comment period. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the

16

Cogeneration in Texas  

E-Print Network (OSTI)

to dispatch the QF b) The reliability of the QF c) The terms of any legally enforceable obligations, especially the duration of the obligation d) The ability to coordinate scheduled outages of the QF with the utility 3. The relationship...'s power. The quality of firmness of a QF's power refers to the degree to which the capacity offered by the QF is an equivalent quality substitute for the utility's own generation or firm purchased power. Under the principles of economic dispatch...

Halicki, T.

1981-01-01T23:59:59.000Z

17

Record of Decision: York County Energy Partners Cogeneration Facility, York County, Pennsylvania  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37 37 Federal Register / Vol. 60, No. 161 / Monday, August 21, 1995 / Notices the 6-acre parcel for sale on a competitive basis to the private sector for industrial development similar to that in the surrounding Fort Holabird Industrial Park. It is anticipated up to three industrial/manufacturing operations could be located on the property, associated parking facilities, and infrastructure. Access to the facility would be through the Fort Holabird Industrial Park on South Road. Alternative 2 is to offer the 6-acre parcel for sale on a competitive bid basis to the private sector for development into a low density housing (4 units per acre) development, similar to that adjacent to the site. Under this alternative, approximately 24 homes and associated infrastructure would be

18

Cogeneration Planning  

E-Print Network (OSTI)

cogeneration projects for its plants. Of concern to us are rapidly escalating electrical costs plus concern about the future of some utilities to maintain reserve capacity. Our review to date revolves around (1) obtaining low-cost reliable fuel supplies...

Mozzo, M. A. Jr.

19

Western Regional Final Supplemental Environmental Impact Statement: Rulemaking for Small Power Production and Cogeneration Facilities - Exemptions for Geothermal Facilities  

SciTech Connect

Section 643 of the Energy Security Act of 1980 directed the Federal Energy Regulatory Commission to develop rules to further encourage geothermal development by Small Power Production Facilities. This rule amends rules previously established in Dockets No. RM79-54 and 55 under Section 201 and 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). The analysis shows that the rules are expected to stimulate the development of up to 1,200 MW of capacity for electrical generation from geothermal facilities by 1995--1,110 MW more than predicted in the original PURPA EIS. This Final Supplemental EIS to the DEIS, issued by FERC in June 1980, forecasts likely near term development and analyzes environmental effects anticipated to occur due to development of geothermal resources in the Western United States as a result of this additional rulemaking.

Heinemann, Jack M.; Nalder, Nan; Berger, Glen

1981-02-01T23:59:59.000Z

20

Cogeneration Rules (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) Cogeneration Rules (Arkansas) < Back Eligibility Commercial Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arkansas Program Type Generating Facility Rate-Making Interconnection Provider Arkansas Public Service Commission The Cogeneration Rules are enforced by the Arkansas Public Service Commission. These rules are designed to ensure that all power producers looking to sell their power to residents of Arkansas are necessary, benefit the public and are environmentally friendly. Under these rules new

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cogeneration Economics for Process Plants  

E-Print Network (OSTI)

This paper presents the incentives for cogeneration, describing pertinent legislation and qualification requirements for cogeneration benefits, and indicates the performance and economic characteristics of combined cycle cogeneration applications...

Ahner, D. J.

22

BP Cherry Point Cogeneration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers August 2004 EFSEC Washington State Energy Facility Site Evaluation Council July 12, 2004 Dear Reader: Enclosed for your reference is the abbreviated Final Environmental Impact Statement (FEIS) for the proposed BP Cherry Point Cogeneration Project. This document is designed to correct information and further explain what was provided in the Draft Environmental Impact Statement (DEIS). The proponent, BP West Coast Products, LLC, has requested to build a 720-megawatt gas-fired combined cycle cogeneration facility in Whatcom County, Washington, and interconnect this facility into the regional

23

QFDES(3) QFDES(3) qfDES -a library of DES utilities  

E-Print Network (OSTI)

DES_ECB_d(key, data, size) int qfDES_CBC_e(key, data, size, initVec), qfDES_CBC_d(key, data, size, initVec) int qfDES_CFB_e(key, data, size, initVec), qfDES_CFB_d(key, data, size, initVec) int qfDES_OFB_e(key, data, size, init (Electronic Code Book), CBC (Cipher Block Chaining), Cipher Feedback(CFB) or Ouput Feedback (OFB). CFB and OFB

Bhatti, Saleem N.

24

Cogeneration Operational Issues  

E-Print Network (OSTI)

important, however, are the operational Issues which impact the utility and the cogenerator. This paper addresses the utility perspective in regard to possible impact of cogeneration systems on utility service to other customer, safety and substation...

Williams, M.

25

Michigan utilities begin implementation of cogeneration programs  

SciTech Connect

Michigan's two major utilities, Consumers Power Corporation and Detroit Edison, are beginning to implement cogeneration and small power programs, although their approaches differ. Consumers Power is entering agreements to purchase cogenerated power at reasonable buyback rates to meet near-future capacity needs, while Detroit Edison is offering rate breaks to keep customers on the grid with an on-site cogeneration alternative rider because of excess capacity. Once its excess capacity is absorbed, Detroit Edison will encourage pursue the approach of Consumers Power. The latter recently filed to convert a Midland cancelled nuclear plant into a gas-fired cogeneration facility. The author reviews complications in this and other contracts and utility commission decisions. 2 tables.

Not Available

1987-02-01T23:59:59.000Z

26

cogeneration | OpenEI  

Open Energy Info (EERE)

cogeneration cogeneration Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are four electricity generation datasets: quarterly net electricity by fuel type from 1974 to 2010 (in both GWh and PJ); annual net electricity generation by fuel type- cogeneration separated (1975 - 2009); and estimated generation by fuel type for North Island, South Island and New Zealand (2009). The fuel types include: hydro, geothermal, biogas, wind, oil, coal, and gas. Source New Zealand Ministry of Economic Development Date Released July 03rd, 2009 (5 years ago) Date Updated Unknown Keywords biogas coal cogeneration Electricity Generation geothermal Hydro Natural Gas oil wind Data

27

EIS-0349: Cherry Point Co-generation Project  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

28

Cogeneration systems and processes for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

Vinegar, Harold J. (Bellaire, TX); Fowler, Thomas David (Houston, TX); Karanikas, John Michael (Houston, TX)

2009-12-29T23:59:59.000Z

29

A Utility-Affiliated Cogeneration Developer Perspective  

E-Print Network (OSTI)

This paper will address cogeneration from a utility-affiliated cogeneration developer perspective on cogeneration as it relates to the development and consumption of power available from a cogeneration project. It will also go beyond...

Ferrar, T. A.

30

SRS Marks Successful Operational Startup of New Biomass Cogeneration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Marks Successful Operational Startup of New Biomass SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the Department of Energy (DOE) and Ameresco, Inc.NYSE:AMRC), a leading energy efficiency and renewable energy company, to mark the successful operational startup of a new $795M renewable energy fueled facility at the Savannah River Site (SRS). The 34-acre SRS Biomass Cogeneration Facility is the culmination of

31

SRS Marks Successful Operational Startup of New Biomass Cogeneration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Marks Successful Operational Startup of New Biomass SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility SRS Marks Successful Operational Startup of New Biomass Cogeneration Facility March 12, 2012 - 12:00pm Addthis Media Contacts Amy Caver (803) 952-7213 March 12, 2012 amy.caver@srs.gov CarolAnn Hibbard, (508) 661-2264 news@ameresco.com AIKEN, S.C. - Today, Under Secretary of Energy Thomas D'Agostino joined U.S. Representative Joe Wilson (R-SC) and other senior officials from the Department of Energy (DOE) and Ameresco, Inc.NYSE:AMRC), a leading energy efficiency and renewable energy company, to mark the successful operational startup of a new $795M renewable energy fueled facility at the Savannah River Site (SRS). The 34-acre SRS Biomass Cogeneration Facility is the culmination of

32

Cogeneration for supermarkets  

SciTech Connect

The Gas Research Institute's supermarket dehumidification project and assessments of commercial cogeneration found that retail supermarkets represent an opportunity for packaged gas-fueled cogeneration systems. Although not currently large thermal users, supermarkets have several electrical loads that can be replaced with heat-driven absorption and adsorption if the cogeneration package is designed specifically for their needs. Field testing should verify the preliminary estimates of attractive paybacks combined with reliability and ease of operation that are required by supermarket operators. The system under examination provides all of the low and medium temperature refrigeration, most of the space heating, all of the water heating, and some of the electricity for lighting. 4 figures, 2 tables.

Walker, D.; Hynek, S.

1985-08-01T23:59:59.000Z

33

Small Power Production and Cogeneration (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Generating Facility Rate-Making Provider Maine Public Utilities Commission Maine's Small Power Production and Cogeneration statute says that any small

34

Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report  

SciTech Connect

Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

Not Available

1984-01-01T23:59:59.000Z

35

Definition: Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Cogeneration Cogeneration Jump to: navigation, search Dictionary.png Cogeneration The production of electric energy and another form of useful thermal energy through the sequential use of energy [as defined under the Public Utility Regulatory Policies Act (PURPA)].[1][2] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could the efficiency to produce electricity be just 20%, and the overall efficiency after heat extraction could reach be 85% for a cogeneration plant. It has to be considered that there is not always use for heat., Bioenergy cogeneration describes all technologies where heat as well as

36

Integrating district cooling with cogeneration  

SciTech Connect

Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

Spurr, M.

1996-11-01T23:59:59.000Z

37

1986 Cogeneration Market Assessment  

E-Print Network (OSTI)

implementation path such as changing energy general direction. prices, tax laws, FERC decisions, avoided costs, permitting etc., the cogeneration industry is What's missing is usually the meaning of th still strong. market assessment to the end user... increases and paper production which is basically a solid fuel fired steam turbine market will increase, thus increasing the application of steam turbines. Lastly, in the refuse market probably the least effect of lower oil prices will occur. Energy...

Wallace, D. G.

38

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network (OSTI)

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation...

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

39

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

40

Does Cogeneration Make Sense for Me? | Open Energy Information  

Open Energy Info (EERE)

Does Cogeneration Make Sense for Me? Does Cogeneration Make Sense for Me? Jump to: navigation, search Tool Summary Name: Does Cogeneration Make Sense for Me? Agency/Company /Organization: University of Illinois at Chicago Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.chpcentermw.org/pdfs/Toolbox__TechBrief.pdf This guide provides a few simple questions and calculations, including an example calculation, for facility owners who want to begin to understand

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

BP Cherry Point Cogeneration Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement Draft Environmental Impact Statement DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers September 5, 2003 EFSEC Washington State Energy Facility Site Evaluation Council September 5, 2003 Dear Reader: Enclosed for your review is the Draft Environmental Impact Statement (DEIS) for the proposed BP Cherry Point Cogeneration Project. The proponent, BP West Coast Products, LLC, has requested to build a 720-Megawatt Gas-Fired Combined Cycle Cogeneration Facility in Whatcom County, Washington, and interconnect this facility into the regional power transmission grid. To integrate the new power generation into the transmission grid, Bonneville Power Administration (Bonneville) may need to re-build 4.7 miles of an existing 230-kV

42

Performance assessment of cogeneration plants  

Science Journals Connector (OSTI)

In this paper, performance assessment of various building cogeneration systems is conducted through energy and exergy efficiencies. The cogeneration plants considered include steam-turbine system, gas-turbine system, diesel-engine system, and geothermal system. Here, the cogeneration operation refers to the simultaneous generation of electrical power and heating for buildings (especially for space heating and hot water). Selected actual operating data are employed for analysis and performance assessment. The same amount of electrical and thermal product outputs is considered for all systems, except the diesel, to facilitate comparisons. Also, the effects of certain operating parameters (e.g., steam pressure, water temperature) on the energy and exergy efficiencies are investigated. The diesel-engine and geothermal systems appear to be thermodynamically more attractive, in that they have higher exergy efficiencies, than steam-turbine and gas-turbine systems. The results demonstrate that exergy analysis is a useful tool in performance assessments of cogeneration systems and permits meaningful comparisons of different cogeneration systems based on their merits. Such results can allow the efficiency of cogeneration systems to be increased, and the applications of cogeneration in larger energy systems to be configured more beneficially, leading to reductions in fuel use and environmental emissions.

Mehmet Kanoglu; Ibrahim Dincer

2009-01-01T23:59:59.000Z

43

The Role of Feasibility Analysis in Successful Cogeneration  

E-Print Network (OSTI)

of cogeneration in the industrial sector. The cogeneration feasibility analysis methodology developed by the author is described. BACKGROUND Cogeneration has a long history, almost as long as the history of engines. In the industrial sector, cogeneration...

Wulfinghoff, D. R.

44

Mini cogeneration stations: Foreign experience  

Science Journals Connector (OSTI)

The prospects of using autonomous power and heat supply systems are analyzed. The economic advantages of mini cogeneration power stations equipped with gas piston, diesel, or gas turbine units are shown. Examples...

V. R. Kotler

2006-08-01T23:59:59.000Z

45

Cogeneration Assessment Methodology for Utilities  

E-Print Network (OSTI)

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

46

Electric Rate Alternatives to Cogeneration  

E-Print Network (OSTI)

"ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

Sandberg, K. R. Jr.

47

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

48

Negotiating a Favorable Cogeneration Contract with your Utility Company  

E-Print Network (OSTI)

A relatively small cogenerator may find it difficult to negotiate a favorable cogeneration contract with a relatively large utility. This paper will tell prospective cogenerators some things they can do to make sure the contract they negotiate meets...

Lark, D. H.; Flynn, J.

49

Anqiu Shengyuan Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Anqiu Shengyuan Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Anqiu Shengyuan Biomass Cogeneration Co Ltd Place: Anqiu, Shandong Province, China Zip: 262100 Sector:...

50

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity...  

Office of Environmental Management (EM)

SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste...

51

Operating experience with a daily-dispatched LM-5000 STIG cogeneration plant  

SciTech Connect

The Yuba City Cogeneration Plant is a unique facility as it is a daily-dispatched LM-5000 steam injected gas turbine (STIG) that operates only during the peak summer months. This paper discusses the unique design, operation and maintenance requirements of the LM-5000 STIG. Engine operating history and maintenance problems are discussed. Reliability and availability data for the first three summer peak seasons are presented and compared with other cogeneration plant performance data. Calculations are based on North American Reliability Council/Generating Availability Data System (NERC/GADS) as a basis for operating statistic comparisons (1990). The LM-5000 STIG has demonstrated operating reliability and availability under daily cycling operation that is comparable to other base loaded aero-derivative cogeneration plants.

Peltier, R.V. [Stewart and Stevenson Services, Inc., Houston, TX (United States). Gas Turbine Productions Division; Swanekamp, R.C. [Power Magazine, New York, NY (United States)

1994-12-31T23:59:59.000Z

52

Cogeneration: A key technology for energy saving  

Science Journals Connector (OSTI)

As dispersed and small-scale energy supply system, cogeneration technologies are receiving much attention world-wide. Two optimal planning problems are discussed for the fundamental design of cogeneration systems; i.e. gas turbine and fuel cell systems. The capacities of gas turbine or fuel cell cogeneration units and other auxiliary machinery are determined together with maximum demands so as to minimize the annual total cost in consideration of each system's annual operational strategy. These optimization problems are solved efficiently by considering the hierarchical relationship between the sizing and the operational planning problems. The system's capacity design, economics, and energy savings are investigated in detail through numerical studies on these systems.

Koichi Ito

1993-01-01T23:59:59.000Z

53

Microgy Cogeneration Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Cogeneration Systems Inc Cogeneration Systems Inc Jump to: navigation, search Name Microgy Cogeneration Systems Inc Place Tarrytown, New York Zip 10591 Product New York-based Microgy Cogeneration Systems develops, owns and operates anaerobic digester systems. Coordinates 41.080075°, -73.858649° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.080075,"lon":-73.858649,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Cogeneration Can Add To Your Profits  

E-Print Network (OSTI)

The predicted rapid escalation of gas and electric costs, particularly in those utility systems predominantly fired by gas, make it important for both industry and utilities to evaluate the role of cogeneration in their future plans. Industries...

Gerlaugh, H. E.

1983-01-01T23:59:59.000Z

55

Evaluating Sites for Industrial Cogeneration in Chicago  

E-Print Network (OSTI)

and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

Fowler, G. L.; Baugher, A. H.

1982-01-01T23:59:59.000Z

56

Mt Poso Cogeneration | Open Energy Information  

Open Energy Info (EERE)

Poso Cogeneration Poso Cogeneration Jump to: navigation, search Name Mt Poso Cogeneration Place Bakersfield, California Zip 93308 Product California-based project developer for the Mt Poso Cogeneration project near Bakersfield, California. Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

58

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network (OSTI)

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

59

Cogeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Cogeneration Technologies Place Houston, Texas Zip 77070 Sector Biomass, Solar Product Provides efficient systems in the fields of demand management, biofuel, biomass and solar CHP systems. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Cogeneration using a thermionic combustor  

SciTech Connect

Thermionic energy conversion is well adapted to cogeneration with high temperature processes which require direct heating. Such processes are found in the metals, glass and petroleum industries. A case study has been made for applying thermionic energy converters to a walking beam steel slab reheat furnace. The objective is to replace the present burners with thermionic combustors which provide electricity while supplying direct heat at the same temperature and heat release conditions as the original burners. The combustor utilizes a thermionic converter design which has demonstrated stable output for long periods using a natural gas burner. Combustion air is used to cool the collectors. A computer program was formulated to facilitate the analysis of the thermionic combustor. The design of the thermionic combustor is described. The performance of the thermionic modules is calculated based on varying furnace production rates.

Miskolczy, G.; Lieb, D.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Strategies for Facilities Renewal  

E-Print Network (OSTI)

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

62

Assessment of the Technical Potential for Micro-Cogeneration...  

Open Energy Info (EERE)

for micro-cogeneration for the commerical sector. Cogeneration is an efficient way to capture waste heat and redirect it. This aides in both energy efficiency measures as well as...

63

Optimal Operation for Cogenerating System of Micro-grid Network  

Science Journals Connector (OSTI)

This paper presents a mathematical model for optimal operating cogeneration of Micro-Grid Network. The electrical and thermal energy production ... solution of Optimal operation for cogenerating system of micro-grid

Phil-Hun Cho; Hak-Man Kim; Myong-Chul Shin

2005-01-01T23:59:59.000Z

64

Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001  

Energy.gov (U.S. Department of Energy (DOE))

This report provides a market assessment of innovative industrial DG cogeneration systems that are less than 1 MWe.

65

Use of combined-cycle power units at cogeneration plants  

Science Journals Connector (OSTI)

Indices of reconstructed and new cogeneration plants (CPs) using combined cycle units (CCPUs) are considered. The conclusions...

V. M. Batenin; Yu. A. Zeigarnik; V. M. Maslennikov; Yu. L. Shekhter

2008-12-01T23:59:59.000Z

66

Sycamore Cogeneration Company Box 80598, Bakersfield, CA 93380 (661) 615-4630 Neil E. Burgess, Executive Director  

E-Print Network (OSTI)

in Kern County, California. The facility consists of four (4) 75 MW (nominal) natural-gas fired General of the combustion gas turbine units at Sycamore Cogeneration Company in an extended startup mode. The petition Electric Frame 7EA combustion turbines equipped with enhanced Dry Low NOx (DLN1 +) combustors, four (4

67

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

CHP/Cogeneration Incentives CHP/Cogeneration Incentives Jump to: navigation, search The following contains the list of 279 CHP/Cogeneration Incentives. CSV (rows 1 - 279) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric Photovoltaics

68

The Integration of Cogeneration and Space Cooling  

E-Print Network (OSTI)

associated space cool- ing is essentially cost free. FIGURE B In hot and humid climates, both air conditioning and humidity control are required. The thermal out- put of a cogeneration unit provides the heat neces- sary to power an absorption chiller... absorption chiller/heaters are in operation within the U.S.; 10,000 tons are oper- ating in the Gulf Coast, a hot and humid climate area. Cogeneration saw a resurgence in the early 1980s, but its growth was limited mostly to in- dustrial plants...

Phillips, J.

1987-01-01T23:59:59.000Z

69

Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd | Open Energy  

Open Energy Info (EERE)

Jiansanjiang Nongkensanjiang Cogeneration Co Ltd Jiansanjiang Nongkensanjiang Cogeneration Co Ltd Jump to: navigation, search Name Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd. Place Heilongjiang Province, China Zip 156300 Sector Biomass Product China-based biomass project developer. References Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd. is a company located in Heilongjiang Province, China . References ↑ "[ Heilongjiang Jiansanjiang Nongkensanjiang Cogeneration Co Ltd.]" Retrieved from "http://en.openei.org/w/index.php?title=Heilongjiang_Jiansanjiang_Nongkensanjiang_Cogeneration_Co_Ltd&oldid=346437"

70

Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Lianyungang Baoxin Biomass Cogeneration Co Ltd Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name Lianyungang Baoxin Biomass Cogeneration Co Ltd Place Jiangsu Province, China Sector Biomass Product A biomass project developer in China. References Lianyungang Baoxin Biomass Cogeneration Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lianyungang Baoxin Biomass Cogeneration Co Ltd is a company located in Jiangsu Province, China . References ↑ "[ Lianyungang Baoxin Biomass Cogeneration Co Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Lianyungang_Baoxin_Biomass_Cogeneration_Co_Ltd&oldid=348336" Categories: Clean Energy Organizations Companies

71

BP Cherry Point Cogeneration Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendices Appendices DOE/EIS-0349 Lead Agencies: Energy Facility Site Evaluation Council Bonneville Power Administration Cooperating Agency: U.S. Army Corps of Engineers September 5, 2003 SITING AND WETLAND 404(b)1 ALTERNATIVES ANALYSIS BP CHERRY POINT COGENERATION PROJECT [REVISED] Prepared for: BP West Coast Products, LLC Submitted by: Golder Associates Inc. March 2003 013-1421.541 March 2003 i 013-1421.541 TABLE OF CONTENTS Page No. 1. INTRODUCTION 1 2. PURPOSE AND NEED 5 3. ALTERNATIVES 6 3.1 No Action Alternative 6 3.1.1 Self-Reliance 6 3.1.2 Efficiency 6 3.1.3 Reliability 6 3.1.4 Other Impacts of the No Action Alternative 7 3.2 Project Site Location Alternative Selection Process 7 3.2.1 Sufficient Acreage Available

72

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting High-Efficiency Solar Cogeneration with TPV & Fiber-Optic Daylighting Lead Performer: Creative Light Source,...

73

The Influence of Regulation on the Decision to Cogenerate  

E-Print Network (OSTI)

harming existing and future ratepayers. Discussion will focus on how the existing rules can directly influence the decision to cogenerate. Part One provides a brief history of the Section 23.66 rules. Part Two discusses the pricing methodology... on the decision to cogenerate. A discussion of the problems that may arise from traditional cost allocation methodologies for the design of standby rates is also provided. INTRODUCTION A large amount of industrial cogeneration capacity is availabl e...

King, J. L. II

74

An Assessment of Economic Analysis Methods for Cogeneration Systems  

E-Print Network (OSTI)

gas in this study) costs before and after cogeneration 3. Power plant operating and maintenance (O&M) cost before and after cogeneration 4. Initial investment 5. Discount rate 6. Differential escalation rates for the cost of electricity and fuel... electricity cost after cogener- ation ($) h = Differential escalation rate for the cost of electricity (escalation rate above inflation rate) (decimal) i = Discount rate (decimal) GB = Annual fuel cost before cogeneration ($1 GA = Annual fuel cost after...

Bolander, J. N.; Murphy, W. E.; Turner, W. D.

1985-01-01T23:59:59.000Z

75

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

76

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

77

Identifying Energy Systems that Maximize Cogeneration Savings  

E-Print Network (OSTI)

the method of Lagrange mult1pl1ers: 120 ESL-IE-88-09-24 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 aV/akW, + ~at1/akW1 ~ 0 (4) aO p/HR p1 a01 /HR c1 (11 ) aV/ aO p 1 + ~1 at2/aOp1 o (5...Igure 5 Indicates t e incremental cogeneratIon power cost trends for dependent cogeneratIon systems. for these systems the maxlmum benef1ts are achleved at condlt1on (11). The process heat to power ratio 1s constant, and thus, sIte cogenerat1on...

Ahner, D. J.

78

EPRI Cogeneration Models -- DEUS and COPE  

E-Print Network (OSTI)

process thermal requirement; under the user-specified-megawatt size, capacity matches both the specified electrical output and the maximum process needs. The third phase matches the steam and energy load profiles by dispatching the required... cogeneration units for both a thermal matched dispatch and an economic dispatch. A thermal dispatch is performed for therrnal-match size plants and an economic dispatch is performed for user-specified-MW-size plants. Under a thermal dispatch, the plant...

Mauro, R.; Hu, S. D.

1983-01-01T23:59:59.000Z

79

Cogeneration Opportunities in Texas State Agencies  

E-Print Network (OSTI)

million using escalation rates of 4% for electricity and 2% for gas. Since no one knows what prices will do, the no escalation case should be considered the more conservative figure. There are several arguments which could be made for cogeneration... to switch from steam turbines to electric motor drives. However with the stable and even decreasing gas prices of the past two years, combined with the steadily increasing electric rates, any further conversion may be delayed for some years...

Murphy, W. E.; Turner, W. D.; O'Neal, D. L.; Bolander, J. N.; Seshan, S.

80

EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network (OSTI)

hard surface overlays on their impellers and scrolls to prevent erosion. The use of linings was selected after a comprehensive study was performed investi gating the expected wear on unlined equipment, additional cost of linings, frequency of main... is provided fr the pump discharge head r for of the bypass steam e tering carbon steel steam sal s line line of the refine is feet long. The st am is metered by a primary venturi flow nozzle, essure transmitters, and temperature elements ne r...

Coles, R. L.

82

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network (OSTI)

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

83

Total Facility Control - Applying New Intelligent Technologies to Energy Efficient Green Buildings  

E-Print Network (OSTI)

lighting, co-generation stations, and much more. This paper will discuss some of the basic concepts, architectures, and technologies that are being used today to implement a Total Facility Control model....

Bernstein, R.

2010-01-01T23:59:59.000Z

84

The Utilities' Role in Conservation and Cogeneration  

E-Print Network (OSTI)

organization for the development of a cogeneration project. This is especially true if the company is considering a solid fuel such as coal, or a synthetic fuel. And, it is also a particularly important tactor for medium and smaller size firms. A third... of the environmental control requirements would be handled at the gasifier by removing practical y all sulfur and ash from the fuel. Combustion of the medium BTU gas at the dispersed cogenerat'on plants would then have minimal environmental impact. In fact...

Mitchell, R. C., III

1982-01-01T23:59:59.000Z

85

Cogeneration- The Rest of the Story  

E-Print Network (OSTI)

. Consequently, use of avera~e steam demand can be extremely misleading, yet IS often used in economic justification. An hour-by-hour steam simulation will provide a proper and conservative assessment. - Fuel Price Switch: Some proposals roll in a fuel... price switch and imply that this lower fuel price could not be obtained any other y. Be sure to ask the fuel supplier (or other fuel suppliers) if this is true. Otherwise, a lower price fuel could hide poor cogeneration economies in with fuel price...

Gilbert, J. S.

86

York County Energy Partners CFB Cogeneration Project. Annual report, [September 30, 1992--September 30, 1993  

SciTech Connect

The Department of Energy, under the Clean Coal Technology program, proposes to provide cost-shared financial assistance for the construction of a utility-scale circulating fluidized bed technology cogeneration facility by York County Energy Partners, L.P (YCEP). YCEP, a project company of ir Products and Chemicals, Inc., would design, construct and operate a 250 megawatt (gross) coal-fired cogeneration facility on a 38-acre parcel in North Codorus Township, York County, Pennsylvania. The facility would be located adjacent to the P. H. Glatfelter Company paper mill, the proposed steam host. Electricity would be delivered to Metropolitan Edison Company. The facility would demonstrate new technology designed to greatly increase energy efficiency and reduce air pollutant emissions over current generally available commercial technology which utilizes coal fuel. The facility would include a single train circulating fluidized bed boiler, a pollution control train consisting of limestone injection for reducing emissions of sulfur dioxide by greater than 92 percent, selective non-catalytic reduction for reducing emissions of nitrogen oxides, and a fabric filter (baghouse) for reducing emissions of particulates. Section II of this report provides a general description of the facility. Section III describes the site specifics associated with the facility when it was proposed to be located in West Manchester Township. After the Cooperative Agreement was signed, YCEP decided to move the proposed site to North Codorus Township. The reasons for the move and the site specifics of that site are detailed in Section IV. This section of the report also provides detailed descriptions of several key pieces of equipment. The circulating fluidized bed boiler (CFB), its design scale-up and testing is given particular emphasis.

Not Available

1994-03-01T23:59:59.000Z

87

Economic analysis of coal-fired cogeneration plants for Air Force bases  

SciTech Connect

The Defense Appropriations Act of 1986 requires the Department of Defense to use an additional 1,600,000 tons/year of coal at their US facilities by 1995 and also states that the most economical fuel should be used at each facility. In a previous study of Air Force heating plants burning gas or oil, Oak Ridge National Laboratory found that only a small fraction of this target 1,600,000 tons/year could be achieved by converting the plants where coal is economically viable. To identify projects that would use greater amounts of coal, the economic benefits of installing coal-fired cogeneration plants at 7 candidate Air Force bases were examined in this study. A life-cycle cost analysis was performed that included two types of financing (Air Force and private) and three levels of energy escalation for a total of six economic scenarios. Hill, McGuire, and Plattsburgh Air Force Bases were identified as the facilities with the best potential for coal-fired cogeneration, but the actual cost savings will depend strongly on how the projects are financed and to a lesser extent on future energy escalation rates. 10 refs., 11 figs., 27 tabs.

Holcomb, R.S.; Griffin, F.P.

1990-10-01T23:59:59.000Z

88

Record of Decision for the Electrical Interconnection of the BP Cherry Point Cogeneration Project (DOE/EIS-0349) (11/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Cherry Poi BP Cherry Poi nt Cogeneration Project DECISION The Bonneville Power Administration (Bonneville) has decided to implement the proposed action identified in the BP Cherry Point Cogeneration Project Final Environmental Impact Statement (FEIS) (DOE/EIS-0349, August 2004). Under the proposed action, Bonneville will offer contract terms for interconnection of the BP Cherry Point Cogeneration Project (Project) with the Federal Columbia River Transmission System (FCRTS), as requested by BP West Coast Products, LLC (BP) and proposed in the FEIS. The proposed Project involves constructing and operating a new 720-megawatt (MW) natural gas-fired, combined-cycle power generation facility at a 265-acre site adjacent to BP's existing Cherry Point Refinery between Ferndale and

89

Cogeneration Personal Property Tax Credit (District of Columbia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Program Info Start Date 07/25/2012 State District of Columbia Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Energy Division The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012. Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun

90

Cogeneration (Chp) as Alternative Energy Production To Ecological Neighborhoods  

Science Journals Connector (OSTI)

In addition to this, CHP is the key to reducing emissions. According...Boston Consulting Group (BCG) [2], cogeneration saved over 13 milliont of CO2 in Spain in 2008, which represents 3.2?% of nati...

I. Calama

2014-01-01T23:59:59.000Z

91

An Assessment of Industrial Cogeneration Potential in Pennsylvania  

E-Print Network (OSTI)

such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

1983-01-01T23:59:59.000Z

92

Case Studies of Industrial Cogeneration in the U. S.  

E-Print Network (OSTI)

This paper describes the results of a survey and evaluation of plant-specific information on industrial cogeneration. The study was performed as part of a project sponsored by the Electric Power Research Institute to evaluate Dual Energy Use Systems...

Limaye, D. R.; Isser, S.; Hinkle, B.; Hough, T.

1980-01-01T23:59:59.000Z

93

Co-Generation at a Practical Plant Level  

E-Print Network (OSTI)

The Steam Turbine: A basic description of how a steam turbine converts available heat into mechanical energy to define the formulae used for the cost comparisons in the subsequent examples. Co-Generation: Comparison between condensing cycle...

Feuell, J.

1980-01-01T23:59:59.000Z

94

Evaluating Benefits with Independent and Cogenerated Power Production  

E-Print Network (OSTI)

of "stakeholders", (e.g. IPP's, ?cogenerators, industrial hosts, utility shareholders and rate payers), and additional technical issues (e.g. generation dispatch, transmission, wheeling, etc.) associated with independent power generation. This paper...

Ahner, D. J.

95

Economic Efficiency of a Power Unit Adapted to Cogeneration  

Science Journals Connector (OSTI)

This chapter presents a number of alternatives concerning economic analysis of power unit with the rated capacity of 370MW operating in cogeneration for case of feeding heaters from A2 and A3 extractions of t...

Ryszard Bartnik; Zbigniew Buryn

2011-01-01T23:59:59.000Z

96

Simulation of an Industrial Rankine Cycle Cogeneration Plant  

E-Print Network (OSTI)

and transient loads and the resulting interactions between system components may be assessed. A thermal energy system simulation code is utilized and expanded to predict the performance of an industrial Rankine cycle (steam turbine) cogeneration plant having...

Carattie, G.; Wepfer, W. J.

1984-01-01T23:59:59.000Z

97

JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS  

SciTech Connect

Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

Darren D. Schmidt

2002-11-01T23:59:59.000Z

98

Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation  

E-Print Network (OSTI)

UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

Felak, R. P.

99

Klickitat Cogeneration Project : Final Environmental Assessment.  

SciTech Connect

To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

United States. Bonneville Power Administration; Klickitat Energy Partners

1994-09-01T23:59:59.000Z

100

Cogeneration from glass furnace waste heat recovery  

SciTech Connect

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?  

Science Journals Connector (OSTI)

Abstract A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil & solar/heat & power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio.

Gian Paolo Beretta; Paolo Iora; Ahmed F. Ghoniem

2014-01-01T23:59:59.000Z

102

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission First Quarter 1984  

SciTech Connect

At the end of the First Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 322, with a total estimated nominal capacity of 2,643 MW. Of these totals, 215 projects, capable of producing 640 MW, are operational. A map indicating the location of operational facilities under contract with PG and E is provided. Developers of cogeneration, solid waste, or biomass projects had signed 110 contracts with a potential of 1,467 MW. In total, 114 contracts and letter agreements had been signed with projects capable of producing 1,508 MW. PG and E also had under active discussion 35 cogeneration projects that could generate a total of 425 MW to 467 MW, and 11 solid waste or biomass projects with a potential of 94 MW to 114 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 5 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 32, with a generating capability of 848 MW. Also, discussions were being conducted with 18 wind farm projects, totaling 490 MW. There were 101 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 6 other small wind projects under active discussion. There were 64 hydroelectric projects with signed contracts and a potential of 148 MW, as well as 75 projects under active discussion for 316 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 187 MW, that Pg and E was planning to construct.

None

1984-01-01T23:59:59.000Z

103

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Fourth Quarter 1983  

SciTech Connect

At the end of 1983, the number of signed contracts and letter agreements for cogeneration and small power production projects was 305, with a total estimated nominal capacity of 2,389 MW. Of these totals, 202 projects, capable of producing 566 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration, solid waste, or biomass projects had signed 101 contracts with a potential of 1,408 MW. In total, 106 contracts and letter agreements had been signed with projects capable of producing 1,479 MW. PG and E also had under active discussion 29 cogeneration projects that could generate a total of 402 MW to 444 MW, and 13 solid waste or biomass projects with a potential of 84 MW to 89 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. There were 7 solar projects with signed contracts and a potential of 37 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 28, with a generating capability of 618 MW. Also, discussions were being conducted with 14 wind farm projects, totaling 365 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 8 other small wind projects under active discussion. There were 59 hydroelectric projects with signed contracts and a potential of 146 MW, as well as 72 projects under active discussion for 169 MW. In addition, there were 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E was planning to construct. Table B displays the above information. In tabular form, in Appendix A, are status reports of the projects as of December 31, 1983.

None

1983-01-01T23:59:59.000Z

104

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984  

SciTech Connect

At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

None

1984-01-01T23:59:59.000Z

105

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

106

Flexible approach to the Italian cogeneration market  

SciTech Connect

Demand for energy is growing in Italy under new regulations issued by the Italian government in 1991 and 1992. While the national electrical authority, ENEL, is in the process of being privatized, independent power producers (IPPs) and several companies using large amounts of energy in their production processes have been active in setting up cogeneration and combined-cycle plants based purely on economics. In order to minimize emissions and make best use of fuel energy, the law commonly known as CIP 6/92 states that ENEL will grant a premium rate for electric power handled to the national grid from plants having an annual `energetic index` above 0.6, i.e., an efficiency higher than 60% measured over a one-year period. In order to benefit from the high rates granted by the law, it is necessary to build very efficient plants. Very high reliability is also required so the plan can operate at full load the year around, with only short stops for planned maintenance. This paper describes the activities of the major manufacturers of turbines in Italy.

Chellini, R.

1996-01-01T23:59:59.000Z

107

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

108

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

109

Evaluation of Technology Risk in Project Cogeneration Project Returns  

E-Print Network (OSTI)

requirements neces sary to operate a cogeneration plant are strong functions of the type of system that is being con sidered. For example, for a small hydro plant or for individual small gas turbine plants oper ting in base load (a flat output over... requirements neces sary to operate a cogeneration plant are strong functions of the type of system that is being con sidered. For example, for a small hydro plant or for individual small gas turbine plants oper ting in base load (a flat output over...

Thoennes, C. M.

110

Cogeneration Leads to Major Aquaculture and Greenhouse Development in Canada  

E-Print Network (OSTI)

research and devefopment project which will see the supplemental heat re qui red by t he surface heat ed greenhouse cohvert ed from propane gas to cogeneraled ste m. Based on the pricing model outlined in Section 4.1, the cost of heating the greenhouse... with cogen erated steam from the nearby coal fired power sta tion is $1.62/MBTU. (Coa! @ $Z.18/MBTU.) This compares to $15.57 for self generated propane heat, or a difference of $13.95/MBTU. By splitting this difference, the s Ie price of cogenerated...

Mercer, J.

1984-01-01T23:59:59.000Z

111

Cogeneration handbook for the textile industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the textile industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Garrett-Price, B.A.; Fassbender, L.L.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

112

Cogeneration handbook for the food processing industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

1984-03-01T23:59:59.000Z

113

Cogeneration handbook for the chemical process industries. [Contains glossary  

SciTech Connect

The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

114

Cogeneration handbook for the pulp and paper industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

115

Cogeneration handbook for the petroleum refining industry. [Contains glossary  

SciTech Connect

The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

1984-03-01T23:59:59.000Z

116

Development status of coal-fired gas heaters for Brayton-cycle cogeneration systems  

SciTech Connect

Under contract from the Department of Energy, Rocketdyne is developing the technology of coal-fired gas heaters for utilization in Brayton-cycle cogeneration systems. The program encompasses both atmospheric fluidized bed and pulverized coal combustion systems; and it is directed toward the development of gas heater systems capable of delivering high pressure air or helium at 1550 F, when employing metallic heat exchangers, and 1750 F, when employing ceramic heat exchangers. This paper reports on the development status of the program, with discussions of the completed ''screening'' corrosion/erosion tests of candidate heat exchanger materials, a description and summary of the operating experience with the 6- by 6-foot AFB test facility and a projection of the potential for relatively near term commercialization of such heater systems.

Gunn, S.V.; McCarthy, J.R.

1983-01-01T23:59:59.000Z

117

High Efficiency Gas Turbines Overcome Cogeneration Project Feasibility Hurdles  

E-Print Network (OSTI)

steam injection, NOx control without selective catalytic reduction, (SCRl, reduced down time during maintenance and dispatchability. other factors influencing enhanced aeroderivative economics are complete generator set packaging at the factory... generation packages. EXTENDED ABSTRACT Competition, PURPA, Cogeneration, Independent Power Producers. Topics of mere conversation ten years ago are becoming our laws of today and for electrical generation. Before the next generation of power plants...

King, J.

118

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network (OSTI)

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

119

Technical assessment of an oil-fired residential cogeneration system  

SciTech Connect

The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

McDonald, R.J.

1993-01-01T23:59:59.000Z

120

Guidelines for Assessing the Feasibility of Small Cogeneration Systems  

E-Print Network (OSTI)

escalation of energy prices in the last decade and the passage of PURPA. Where electric rates are sufficiently high, cogeneration can be feasible for entities having energy bills as low as $500,000 per year, including small industrial firms, office buildings...

Whiting, M., Jr.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers  

E-Print Network (OSTI)

SMALL-SCALE INDUSTRIAL COGENERATION: DESIGN USING RECIPROCATING ENGINES AND ABSORPTION CHILLER Joseph R. Wagner Mechanical Technology Incorporated Latham, ABSTRACT This paper describes a packaged cogeneration system designed for light... industrial applications (i.e., situations where a user wants a maximum of 1 MW of cogenerated electricity). The design employs reci procating engines fueled with natural gas or liquid fuels. Waste heat from the engine exhaust and jacket water is used...

Wagner, J. R.

122

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Second Quarter 1983  

SciTech Connect

In the Second Quarter of 1983, the number of signed contracts and committed projects rose from 223 to 240, with a total estimated nominal capacity of these projects of 1,449 MW. Of this nominal capacity, about 361 MW is operational, and the balance is under contract for development. A map indicating the location of currently operating facilities is provided as Figure A. Of the 240 signed contracts and committed projects, 75 were cogeneration, solid waste, or biomass projects with a potential of 740 MW. PG and E also had under active discussion 32 cogeneration projects that could generate a total of 858 MW to 921 MW, and 10 solid waste/biomass projects with a potential of 113 MW to 121 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as another solar project under active discussion for 30 MW. Wind farm projects under contract number 19, with a generating capability of 471 MW. Also, discussions are being conducted with 12 wind farm projects, totaling 273 to 278 MW. There are 89 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 10 other projects under active discussion. There are 47 hydroelectric projects with signed contracts and a potential of 110 MW, as well as 65 projects under active discussion for 175 MW. In addition, there are 30 hydroelectric projects, with a nominal capacity of 291 MW, that PG and E is constructing or planning to construct. Table A displays the above information. In tabular form, in Appendix A, are status reports of the projects as of June 30, 1983.

None

1983-01-01T23:59:59.000Z

123

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter 1983  

SciTech Connect

In the Third Quarter of 1983, the number of signed contracts and committed projects rose from 240 to 258, with a total estimated nominal capacity of these projects of 1,547 MW. Of this nominal capacity, about 416 MW is operational, and the balance is under contract for development. A map indicating the location of operational facilities under contract with PG and E is provided. Of the 258 signed contracts and committed projects, 83 were cogeneration, solid waste, or biomass projects with a potential of 779 MW. PG and E also had under active discussion 38 cogeneration projects that could generate a total of 797 MW to 848 MW, and 19 solid waste/biomass projects with a potential of 152 MW to 159 MW. Two contracts have been signed with geothermal projects, capable of producing 83 MW. There are 6 solar projects with signed contracts and a potential of 36 MW, as well as 3 solar projects under active discussion for 31 MW. Wind farm projects under contract number 21, with a generating capability of 528 MW. Also, discussions are being conducted with 17 wind farm projects, totaling 257 to 262 MW. There are 94 wind projects of 100 kW or less with signed contracts and a potential of almost 1 MW, as well as 8 other small wind projects under active discussion. There are 50 hydroelectric projects with signed contracts and a potential of 112 MW, as well as 67 projects under active discussion for 175 MW. In addition, there are 31 hydroelectric projects, with a nominal capacity of 185 MW, that PG and E is planning to construct.

None

1983-01-01T23:59:59.000Z

124

Sweet-Talking the Climate? Evaluating Sugar Mill Cogeneration and Climate Change Financing in India  

E-Print Network (OSTI)

cogeneration and wind power plants because they areMWwind farminsteadofa20MWcoal?firedpowerplant.

Ranganathan, Malini; Haya, Barbara; Kirpekar, Sujit

2005-01-01T23:59:59.000Z

125

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

126

Computer-based gas accounting system at the TETs-26 Mosenergo cogeneration station  

Science Journals Connector (OSTI)

Experience gained from the introduction and operation of microprocessor systems for metering gas consumption and its heating value at Mosenergos cogeneration stations is considered.

A. V. Zakharenkov; V. N. Degterev; V. V. Usanov; A. A. Shkurin

2006-10-01T23:59:59.000Z

127

The efficiency of technical retrofitting of cogeneration stations using combined-cycle plants  

Science Journals Connector (OSTI)

We consider the problem of technical retrofitting of gas-and-oil fired steam-turbine cogeneration stations by converting them into combined-cycle plants...

L. S. Popyrin; M. D. Dilman; G. M. Belyaeva

2006-02-01T23:59:59.000Z

128

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

129

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network (OSTI)

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

130

Managing Abnormal Operation through Process Integration and Cogeneration Systems  

E-Print Network (OSTI)

area. Since it is found in deep reservoirs it may contain components such as hydrogen sulfide and carbon dioxide. These components due to their properties cause corrosion and are toxic therefore they should be separated from natural gas before... organizations (UNEP 2006). 19 De-aerator is also one of the units in cogeneration system. Since dissolved gases such as oxygen and carbon dioxide can cause corrosion, deaerator unit is responsible for separating them from condensate stream to steam...

Kamrava, Serveh

2014-08-05T23:59:59.000Z

131

Development of a knowledge-based system for cogeneration plant design: Verification, validation and lessons learned  

Science Journals Connector (OSTI)

This paper presents the development of a knowledge-based system (KBS) prototype able to design natural gas cogeneration plants, demonstrating new features for this field. The design of such power plants represents a synthesis problem, subject to thermodynamic ... Keywords: Cogeneration, Design, Knowledge-based system, Validation, Verification

Jonny Carlos Da Silva, Jos Alexandre Matelli, Edson Bazzo

2014-09-01T23:59:59.000Z

132

Cogeneration and community design: performance based model for optimization of the design of U.S. residential communities utilizing cogeneration systems in cold climates  

E-Print Network (OSTI)

utilized to assess the impact of each parameter on cogeneration system performance and to optimize the community design to improve that performance. Assessment procedures included: developing a base-line model representing typical design characteristics...

Rashed Ali Atta, Hazem Mohamed

2009-06-02T23:59:59.000Z

133

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network (OSTI)

expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers... waste heat from the gas I tur bine exhaust. The waste-heat recovery syste~ con sists of a Zurn dual-pressure, heat recovery bpiler, a Thermo Electron dual-pressure, extraction /conden sing steam turbine generator set, and four Tra~e ab sorption...

Michalowski, R. W.; Malloy, M. K.

134

Cogeneration - prepackaged systems: Tecogen used to fix aborted Firestone job  

SciTech Connect

A new 60-kW Thermo Electron Tecogen cogenerating system that will allow Vallejo, CA residents to use an outdoor pool in winter will also cut the city's heating and electricity costs by about $26,000 a year and have a less than four-year payback. After the project was abandoned by the now defunct Firestone Energy Systems Inc., the contract was awarded to a local firm. Thermo Electron bid its pre-packaged unit for $102,750 installed, with a maintenance offer of two cents per kilowatt hour of generator run-time. The city is contemplating legal action against Firestone.

Maggs, J.

1986-03-03T23:59:59.000Z

135

Waste-to-Energy Cogeneration Project, Centennial Park  

SciTech Connect

The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utilitys electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munsters Waste-to Energy Cogeneration Project at Centennial Park will reduce the communitys carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

2014-04-29T23:59:59.000Z

136

Economics of electric alternatives to cogeneration in commercial buildings: Final report  

SciTech Connect

The economics of packaged cogeneration systems are characterized for five typical commercial applications: office building with computer center, supermarket, fast food restaurant, hospital, and swimming pool/health club. The operation of these systems in each application is evaluated for three utility rate scenarios. Alternative high-efficiency electric technologies for the thermal energy application of each cogeneration package are identified, characterized, and evaluated. The economics of the packaged cogeneration systems are compared with the high-efficiency electric alternatives. 8 refs., 9 figs., 21 tabs.

Dobyns, J.; Estey, P.

1988-10-01T23:59:59.000Z

137

Decentralised optimisation of cogeneration in virtual power plants  

SciTech Connect

Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key functionality of a virtual power plant is to increase the value of the produced power by clustering different plants. The first step of the optimisation concerns the local operation of the individual power generator, the second step is to calculate the contribution to the virtual power plant. With small extensions the suggested MILP algorithm can be used for an overall EEX (European Energy Exchange) optimised management of clustered CHP systems in form of the virtual power plant. This algorithm has been used to control cogeneration plants within a distribution grid. (author)

Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany)

2010-04-15T23:59:59.000Z

138

Assessment of the Technical Potential for Micro-Cogeneration in Small  

Open Energy Info (EERE)

for Micro-Cogeneration in Small for Micro-Cogeneration in Small Commercial Buildings across the United States Jump to: navigation, search Name Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States Agency/Company /Organization National Renewable Energy Laboratory Partner B. Griffith Focus Area Buildings, Commercial, Energy Efficiency - Central Plant, Energy Efficiency Phase Evaluate Options Resource Type Case studies/examples Availability Publicly available--Free Publication Date 1/5/2008 Website http://www.nrel.gov/docs/fy08o Locality Not Applicable References Assessment of the Technical Potential for Micro-Cogeneration in Small Commercial Buildings across the United States[1] Overview This paper presents an assessment of the technical potential for

139

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

140

Prospects for constructing cogeneration stations equipped with back-pressure steam turbines  

Science Journals Connector (OSTI)

The possibilities of using back-pressure cogeneration turbines developed on the basis of serially produced ... with the thermal process circuits in which such turbines are applied. Design versions and advantages ...

A. A. Ivanovskii; A. Yu. Kultyshev; M. Yu. Stepanov

2014-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electric utility forecasting of customer cogeneration and the influence of special rates  

E-Print Network (OSTI)

Cogeneration, or the simultaneous production of heat and electric or mechanical power, emerged as one of the main components of the energy conservation strategies in the past decade. Special tax treatment, exemptions from ...

Pickel, Frederick H.

1979-01-01T23:59:59.000Z

142

Development of Practical Stirling Engine for Co-Generation System Using Woody Biomass Fuels  

Science Journals Connector (OSTI)

With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel suc...

Akira Hoshi; Nobutoshi Tezuka; Seizi Sasaki

2009-01-01T23:59:59.000Z

143

Maximum Profit of a Cogeneration System Based on Stirling Thermodynamic Cycle  

Science Journals Connector (OSTI)

Stirling engine technologies have been applied to cogeneration systems mainly for residential applications. The performance of Stirling engines has been evaluated considering different operational conditions, which include the electrical and thermal ... Keywords: Numerical Optimisation, Thermo-economic Analysis, Stirling Engine

Ana Cristina Ferreira, Manuel Nunes, Lus Martins, Senhorinha Teixeira

2014-06-01T23:59:59.000Z

144

Analysis of the fuel efficiency of gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A technique for evaluating the fuel efficiency of the combined generation of electricity and heat at a gas-turbine cogeneration station is presented. The effects the regeneration degree of the gas-turbine cycle a...

V. I. Evenko; A. S. Strebkov

2006-10-01T23:59:59.000Z

145

A mini cogeneration station constructed on the basis of a inverted gasifier  

Science Journals Connector (OSTI)

The basic process circuit of a mini cogeneration station constructed on the basis of an internal combustion engine and a inverted gasifier operating on coal fuel is developed. The optimal mode of gasifier operati...

A. M. Dubinin; E. V. Cherepanova; V. G. Tuponogov; O. A. Obozhin

2010-06-01T23:59:59.000Z

146

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

147

Simplified thermoeconomic approach to cost allocation in acombined cycle cogeneration and district energy system  

E-Print Network (OSTI)

of the requirements for the degree of MASTER OF SCIENCE May 1997 Major Subject: Mechanical Engineering SIMPLIFIED THERMOECONOMIC APPROACH TO COST ALLOCATION IN A COMBINED CYCLE COGENERATION AND DISTRICT ENERGY SYSTEM A Thesis By JASON GRAHAM FLEMING... (Member) Jerald Caton (Head of Department) May 1997 lviajor Sui&ject: lviechanical Engineering ABSTRACT Simplified Thermoeconomic Approach to Cost Allocation in a Combined Cycle Cogeneration and District Energy System. (May 1997) Jason Graham...

Fleming, Jason Graham

1997-01-01T23:59:59.000Z

148

Marginal Cost of Steam and Power from Cogeneration Systems Using a Rational Value-Allocation Procedure  

E-Print Network (OSTI)

-Gwaiz, BS EE Energy Conservation Engineer Saudi Aramco, Ras Tanura, Saudi Arabia majid.gwaiz@aramco.com ABSTRACT The problem of pricing steam and power from cogeneration systems has confounded engineers, economists, and accountants for a very... MARGINAL COST OF STEAM AND POWER FROM COGENERATION SYSTEMS USING A RATIONAL VALUE-ALLOCATION PROCEDURE Jimmy D Kumana, MS ChE Energy Conservation Specialist Saudi Aramco, Dhahran, Saudi Arabia jimmy.kumana@aramco.com Majid M Al...

Kumana, J. D.; Al-Gwaiz, M. M.

2004-01-01T23:59:59.000Z

149

Co-generation at CERN Beneficial or not?  

E-Print Network (OSTI)

A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

Wilhelmsson, M

1998-01-01T23:59:59.000Z

150

Combustion converter development for topping and cogeneration applications  

SciTech Connect

This paper discusses the development of combustion-heated thermionic converters. Combustion applications pose a materials problem that does not exist for thermionic converters used in the vacuum of outer space. The high-temperature components of a thermionic converter must be protected from the oxidizing terrestrial environment. A layer of silicon carbide provides the most satisfactory protective coating, or ''hot shell,'' for the emitter and lead of a combustion-heated thermionic converter. Four areas of work aimed at developing combustion heated thermionic converters will be discussed: improving the performance of the two-inch torispherical converter, modifications to the converter so that it may be used in multi-converter modules, the construction of a thermionic cogeneration test furnace, and a converter life test in an oil-fired furnace.

Goodale, D.; Lieb, D.; Miskolczy, G.; Moffat, A.

1983-08-01T23:59:59.000Z

151

Novel integrated gas turbine solar cogeneration power plant  

Science Journals Connector (OSTI)

Concentrating solar cogeneration power plants (CSCPP) may provide a key solution for the pressing freshwater deficits in the Middle East and North Africa (MENA) region and could be used in the future for export electricity to Europe. From this standpoint the current study was undertaken to include proposed schemes of CSCPP, that would fully exploit the potential of hybrid reverse osmosis (RO)/multi effect distillation (MED) seawater desalination. Thereby, the primary objective of the present study was to identify and investigate the effectiveness and thermodynamic performance of CSCPP schemes. To satisfy this objective, detailed computational model for key components in the plant has been developed and implemented on simulation computer code. The thermal effectiveness in the computational model was characterized by the condition of attaining a maximum fuel saving in the electrical power grid (EPG). The study result shows the effectiveness of proposed CSCPP schemes. Especially the integrated gas turbine solar cogeneration power plant (IGSCP) scheme seems to be an alternative of the most effective technologies in terms of technical, economic and environmental sustainability. For the case study (IGSCP and the design number of effects 10 for low-temperature MED unit) the economical effect amount 172.3 ton fuel/year for each MW design thermal energy of parabolic solar collector array (PSCA). The corresponding decrease in exhaust gases emission (nitrogen oxides (NOx) 0.681 ton/year MW, carbon dioxides (CO2) 539.5 ton/year MW). Moreover, the increase in the output of PSCA and, subsequently, in solar power generation, will also be useful to offset the normal reduction in performance experienced by gas turbine unit during the summer season. Hence, the influence of the most important design parameters on the effectiveness of ISGPP has been discussed in this paper.

Hussain Alrobaei

2008-01-01T23:59:59.000Z

152

Coal combustion and cogeneration at New York Institute of Technology, Central Islip campus. Final report. [NYIT CI campus  

SciTech Connect

The purpose of this project is to study the technical and economic feasibility of conversion to coal with possible implementation of cogeneration at the central power plant of the New York Institute of Technology Central Islip (NYIT CI) campus. The existing facility contains five moderate pressure (155 psig) 60,000 pph boilers installed in 1953-1954 which were originally designed for coal firing. Among the several systems assessed, three potential projects were identified as having economic merit and conceptual designs for their implementation were developed. The final decision as to which should be pursued must await a final determination of environmental issues related to sulfur dioxide emissions and manufacturer recommendations on the ability to reconvert one of the existing boilers back to coal. The three projects, in order of economic merit, are as follows: (1) reconversion of one of the existing 60,000 pph stoker boilers back to firing coal; (2) installation of a new 60,000 pph stoker fired, high pressure coal boiler with a 2300 kW backpressure steam turbine, the turbine to provide some cogeneration capability. Compliance, low sulfur, coal is to be burned; (3) installation of a new 50,000 pph, low pressure, firetube, fluidized bed combustion (FBC), boiler burning high sulfur coal but including sulfur dioxide capture. The first two projects are predicated on the burning of a compliance, low sulfur, coal. This may be allowed under ''grandfather'' clauses in the regulations that permit such burning in boilers that once fired coal. If not permitted, the installation of the low pressure FBC boiler would be the only remaining viable coal conversion option. Though it has a smaller payback, it still provides significant savings to the college.

Not Available

1984-04-01T23:59:59.000Z

153

A proportional method for calculating the efficiency and specific consumption of fuel at gas-turbine cogeneration stations  

Science Journals Connector (OSTI)

A new proportional method for calculating the indicators characterizing the energy efficiency of gas-turbine cogeneration stations is presented. The data obtained are compared...

G. P. Chitashvili

2006-12-01T23:59:59.000Z

154

Promotion of Biomass Cogeneration With Power Export in the Indian Sugar  

NLE Websites -- All DOE Office Websites (Extended Search)

Promotion of Biomass Cogeneration With Power Export in the Indian Sugar Industry Promotion of Biomass Cogeneration With Power Export in the Indian Sugar Industry India Helping Reduce the Risk of Global Warming Greenhouse Gas Pollution Prevention (GEP) Project in India India is the world’s fifth largest, and second fastest growing, source of greenhouse gas emissions. The GEP Project, conducted under an agreement with USAID-India and NETL, has helped to reduce greenhouse gas emissions from coal- and biomass-fired power plants. The Project has directly contributed to reducing emissions of CO2 by 6 to 10 million tons per year. India is the largest producer of sugar and also contains vast reserves of coal. Under the Project’s Advanced Bagasse Cogeneration Component, cogeneration (production of electricity and steam) using biomass fuels year-round in high efficiency boilers in sugar mills is promoted. Experts feel that, using the concept of sugar mill cogeneration, that as much as 5,000 megawatts of electricity can be generated through efficient combustion of bagasse in Indian sugar mills.

155

Optimal Operation Scheme for a Cogeneration System Promoted from an Emergency Standby System Combined with Absorption Chiller  

Science Journals Connector (OSTI)

A novel optimal operation scheme for a cogeneration system that is promoted from an emergency standby system combined with absorption chiller is introduced. The fuel cost, Time-of-use (TOU) tariff and various operational constrains are taken into account ... Keywords: cogeneration system, Time-of-use tariff, optimal operation scheme

Shyi-Wen Wang

2010-12-01T23:59:59.000Z

156

The Current and Future Marketplace for Waste-To-Energy Cogeneration Facilities in the United States  

E-Print Network (OSTI)

control systems. The more sophisticated control systems provide plant operators with ~tate-of-the-art monitoring and control capabilities. It also appears that fluidized bed incineration tech nology will find wider ap"lication within the waste...

Jacobs, S.

157

VEE-0088 - In the Matter of CPKelco Cogeneration, et al. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

88 - In the Matter of CPKelco Cogeneration, et al. 88 - In the Matter of CPKelco Cogeneration, et al. VEE-0088 - In the Matter of CPKelco Cogeneration, et al. This Decision decides the merits of five Applications for Exception filed with the Office of Hearings and Appeals (OHA) of the U.S. Department of Energy (DOE) under the provisions of 10 C.F.R. § 1003.20. See infra Appendix. These Applications concern annual revenues and sales data pertaining to each firm's sale of electricity that the DOE Energy Information Administration (EIA) collects through Form EIA-861, "Annual Electric Power Industry Report." EIA publishes this data, by state, in firm-specific form. The present exception request seeks to have the Applicants' data withheld as confidential. In their Applications for Exception, the Applicants

158

European energy policy and the potential impact of HTR and nuclear cogeneration  

Science Journals Connector (OSTI)

Abstract This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically.

Michael A. Ftterer; Johan Carlsson; Sander de Groot; Marc Deffrennes; Alexandre Bredimas

2014-01-01T23:59:59.000Z

159

A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems  

E-Print Network (OSTI)

applications for buildings are best served by small-scale systems such as a combustion turbine or engine coupled with a generator and a waste heat boiler. Natural gas and light fuel oils are the fuels best suited to these systems. Gas-fired Cogeneration systems... Cogeneration systems, which use a wide range of conventional fuels (natural gas, diesel fuel, gasoline or propane) and well-developed engines and generator sets. The packaged units are skid-mounted with appropriate controls and electrical switchgear included...

Somasundaram, S.; Turner, W. D.

1987-01-01T23:59:59.000Z

160

LANSCE | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Number of Establishments by Usage of Cogeneration Technologies, 2006; 3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297 99 11,338 2,691 51 11,217 2,860 10 11,333 2,786 164 11,129 2,836 9 11,235 2,884 3112 Grain and Oilseed Milling 580 53 Q 499 38 5 532 42 W 533 W Q 533 44 5 530 45 311221 Wet Corn Milling 47 11 W 35 W W 43 W W 39 W 0 44 3 0 41 6 31131 Sugar Manufacturing

162

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment,  

E-Print Network (OSTI)

Biomass cogeneration, Port Townsend, Washington Study by Honors 220c, Energy & Environment, Humans Townsend Biomass Power Plant When considering the slash sources that will be used to fuel the Port Townsend from the current 84,000 dry tons to 184,000 dry tons with the new biomass plant addition (Wise, 2012

163

Stability analysis of permanent magnet synchronous generator used in micro-cogeneration systems  

Science Journals Connector (OSTI)

This paper has a dual purpose: on the one hand the technical-economic analysis of cogeneration microplants (also emphasizing the producers' preferences for certain classes of electric generators in terms of using the same type of prime mover, respectively ... Keywords: electrical generators, m-CHP, renewable energies, stirling engine

Ion Voncil?; Nicolae Badea

2010-10-01T23:59:59.000Z

164

A design approach to a risk review for fuel cell-based distributed cogeneration systems  

E-Print Network (OSTI)

A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

Luthringer, Kristin Lyn

2004-09-30T23:59:59.000Z

165

Diagrams of regimes of cogeneration steam turbines for combined-cycle power plants  

Science Journals Connector (OSTI)

General considerations regarding the form of the steam-consumption diagram for a three-loop cogeneration-type combined-cycle plant are formulated on the basis of ... 12.4 steam turbine for the PGU-410 combined-cycle

A. Yu. Kultyshev; M. Yu. Stepanov; T. Yu. Linder

2012-12-01T23:59:59.000Z

166

Cogeneration Partnerships -- A "Win-Win" Approach for All Parties  

E-Print Network (OSTI)

, and perhaps compressed air) to manufacturing businesses operating within a specific geographic area. Some non-manufacturing facilities in the same area may also be served. The ""energy products"" would be supplied via a local District Energy piping network...

Steigelmann, W.; Campbell, V.

167

Integrated facility for municipal solid waste disposal, electrical generation, and desalination. Master`s thesis  

SciTech Connect

A preliminary design was completed for a facility that uses municipal solid waste as fuel for generating electricity and cogeneration steam for a seawater desalination unit. An average city of 100,000 population is the basis of the design. The design showed that heat from the combustion of municipal solid waste will provide nearly 2% of per capita electrical power needs and 7% of fresh water requirements. This thesis proposes a new arrangement of known technologies for use in Public Works.

Hanby, G.F.

1995-12-31T23:59:59.000Z

168

Estimating the efficiency of the vacuum deaerators used for treating network water at the Samara cogeneration station and their modernization  

Science Journals Connector (OSTI)

Results from experimental studies on analyzing the operating conditions of the vacuum deaerators used to treat makeup water for the heat supply network connected to the Samara cogeneration station are presente...

A. A. Kudinov; D. V. Obukhov; S. K. Ziganshina

2010-08-01T23:59:59.000Z

169

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

SciTech Connect

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

170

Efficiency and Emissions Study of a Residential Microcogeneration System Based on a Stirling Engine and Fuelled by Diesel and Ethanol.  

E-Print Network (OSTI)

??This study examined the performance of a residential microcogeneration system based on a Stirling engine and fuelled by diesel and ethanol. An extensive number of (more)

Farra, Nicolas

2010-01-01T23:59:59.000Z

171

Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008  

Energy.gov (U.S. Department of Energy (DOE))

Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

172

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

173

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

174

Certified Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance (SEP).

175

Success Story: Naval Medical Center San Diego Co-Generation Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Success Story Success Story Success Story Naval Medical Center San Diego Naval Medical Center San Diego Co-Generation Project Co-Generation Project Karen Jackson, SDG&E Karen Jackson, SDG&E Project Manager Project Manager Edward Thibodo, NAVFAC SW Edward Thibodo, NAVFAC SW Energy Team Contract Energy Team Contract ' ' s Lead s Lead NAVFAC Contractor NAVFAC Contractor ' ' s Guide: s Guide:   Partnering Philosophy Partnering Philosophy - - " " We W are partners e are partners in every contract we award. Partnering is in every contract we award. Partnering is an attitude that we both work hard to an attitude that we both work hard to develop, an it requires both of us to take develop, an it requires both of us to take some extra risk and trust one another. some extra risk and trust one another.

176

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Cogeneration Systems for Powering and Cooling Data Centers: The Green Data Center at Syracuse University Speaker(s): Dustin W. Demetriou Date: October 28, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: William Tschudi In the near future, nearly 30 percent of data centers will run out of space, power or cooling capacity. The demand for these resources has brought energy efficiency to the forefront and driven creative thinking when considering data center construction. Syracuse University, IBM and GEM Energy opened a state-of-the-art data center composed of several innovative features that promised to reduce primary energy consumption by as much as 50 percent compared to a conventional utility-powered data center. Much of the advantage stems from the use of an on-site natural gas

177

Coyote Springs Cogeneration Project - Final Environmental Impact Statement and Record of Decision (DOE/EIS-0201)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coyote Springs Cogeneration Project - Final Environmental Impact Statement Coyote Springs Cogeneration Project - Final Environmental Impact Statement Summary-1 Summary Bonneville Power Administration (BPA) is a Federal power marketing agency in the U.S. Department of Energy. BPA is considering whether to transmit (wheel) electrical power from a proposed privately-owned, gas-fired combustion turbine power generation plant in Morrow County, Oregon. The proposed power plant would have two combustion turbines that would generate 440 average megawatts (aMW) of energy when completed. The proposed plant would be built in phases. The first combustion turbine would be built as quickly as possible. Timing for the second combustion turbine is uncertain. As a Federal agency subject to the Nation Environ- mental Policy Act, BPA must complete a review of environmental impacts before it makes a

178

Electric co-generation units equipped with wood gasifier and Stirling engine  

SciTech Connect

The disposal of industrial waste such as oil sludges, waste plastic, lubricant oils, paper and wood poses serious problems due to the ever increasing amount of material to be disposed of and to the difficulty in finding new dumping sites. The interest in energy recovery technologies is accordingly on the increase. In particular, large amounts of waste wood are simply burned or thrown away causing considerable environmental damage. In this context the co-generation technique represents one of the possible solutions for efficient energy conversion. The present paper proposes the employment of a Stirling engine as prime mover in a co-generation set equipped with a wood gasifier. A Stirling engine prototype previously developed in a joint project with Mase Generators, an Italian manufacturer of fixed and portable electrogenerators, is illustrated and its design is described.

Bartolini, C.M.; Caresana, F.; Pelagalli, L.

1998-07-01T23:59:59.000Z

179

Energy Value vs. Energy Cost: A Fundamental Concept of Economics Applied to Cogeneration  

E-Print Network (OSTI)

known as MESA (Modular Energy System Analyzer).* CONCLUSIONS Economic cogeneration by any reasonable def ini tion is a desirable practice. The effective application of principles and concepts that lead to minimum expenditure of resources... been very accurately calculated by the use of MESA. The value of the shaft power has been estab lished by the alternative option of pur chased elec tr ical energy at a known incremental cost. These examples do not aPl?ly universally to all steam...

Viar, W. L.

1983-01-01T23:59:59.000Z

180

$18.7 Million Paid From Savings Variable Load Mechanical Cogeneration Project at Louisiana State University  

E-Print Network (OSTI)

traditional gas turbine applications in that most available have been channeled into new buildings. In electrical cogeneration jobs run "flat out" all the time. the mid-1980's it became apparent !.hat unless some A distinctive feature of this project.... The overall objective of this project was to generate chilled water To help remedy this situation, a state law was and steam as efficiently as possible within the demand passed in Louisiana in 1987 allowing for energy parameters of the campus, and provide...

Leach, M. D.; Colburn, B. K.

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An experimental investigation of CI engine operated micro-cogeneration system for power and space cooling  

Science Journals Connector (OSTI)

Abstract This paper describes the performance and emission characteristics of a micro cogeneration system based on a single cylinder diesel engine. In this cogeneration system, in addition to the electricity generated from the genset, waste heat from hot exhaust gas of diesel engine was used to drive a combination of four units of Electrolux vapor absorption (VA) system for space cooling. The capacity and heat input of each unit of VA system was 51l and 95W respectively. A cabin of 900mm width, 1500mm length and 1800mm height made of ply wood was fabricated as a space for air conditioning. A temperature drop of 5C was obtained in cabin at full engine load about 6h after system start up. The reduction of CO2 emission in kg per kWh of useful energy output was 19.49% compared to that of single generation (power generation only) at full load. The decrease in specific fuel consumption in case of cogeneration compared to that in single generation was 2.95% at full load. The test results show that micro capacity (3.7kW) stationary single cylinder diesel engine can be successfully modified to simultaneously produce power and space cooling.

Rahul Goyal; Dilip Sharma; S.L. Soni; Pradeep Kumar Gupta; Dheeraj Johar

2015-01-01T23:59:59.000Z

182

Science Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

183

Facility Safety  

Directives, Delegations, and Requirements

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

184

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

185

Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II  

SciTech Connect

Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

Vasenda, S.K.; Hassler, C.C.

1992-06-01T23:59:59.000Z

186

Assessment of the Technical Potential for Micro-Cogeneration in Small Commerical Buildings across the United States: Preprint  

SciTech Connect

This paper presents an assessment of the technical potential for micro-cogeneration in small commercial buildings throughout the United States. The cogeneration devices are simulated with the computer program EnergyPlus using models developed by Annex 42, a working group of the International Energy Agency's Energy Efficiency in Buildings and Community Systems (IEA/ECBCS). Although the Annex 42 models were developed for residential applications, this study applies them to small commercial buildings, assumed to have a total floor area of 500 m2 or less. The potential for micro-cogeneration is examined for the entire existing stock of small U.S. commercial buildings using a bottom-up method based on 1,236 EnergyPlus models.

Griffith, B.

2008-05-01T23:59:59.000Z

187

Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report  

SciTech Connect

The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

1996-04-01T23:59:59.000Z

188

Project financing for cogeneration and other large-scale energy efficient improvements  

SciTech Connect

Financing for the installation of cogeneration systems is outlined. A feasibility study must consider completion risks, operating risks, marketing risks, management risks, political/regulatory risks, and financing risks--all of which are specified. After the risks are allocated, the question becomes, ''Where will the capital come from.'' Limited or non-recourse ''project financing'' is considered. Transfer of tax benefits through leasing, third party ownership, and insurance are also discussed. As the cost for arranging project financing is high (it can amount to several hundred thousand dollars), a project should be several million dollars in size to justify the incurred expense.

Weinress, J.B.

1983-06-01T23:59:59.000Z

189

Design and Economic Evaluation of Thermionic Cogeneration in a Chlorine-Caustic Plant  

E-Print Network (OSTI)

-callsti~ plant with therm ion ie Cl)gf~neration. Thermion i.e combustors replace the exi.sting hllrners of the boilers uSI!d to raise stp.am for th(~ evaporators, Rnd are capable of generating approximately 2.6 MW of de power. This satisfies about 5 percent... BURNER BOILER AUX I ..> BUS AND SWITCH GEAR THERMIONIC COMBUSTOR CELL f--- ROOM TO EVAPORATORS BOILER F==:> Figure 1. Block Diagram of Cogeneration System D STANDBY CELL ROOMS EVAPORATORS THEAMtOMC MODULES Figure 2. Schematic Layout...

Miskolezy, G.; Morgan, D.; Turner, R.

190

Improving the Thermal Output Availability of Reciprocating Engine Cogeneration Systems by Mechanical Vapor Compression  

E-Print Network (OSTI)

LOW?PRESSURE I WASTE STEAM r ... IMPROVING THE THERMAL OUTPUT AVAILABILITY OF RECIPROCATING ENGINE COGENERATION SYSTEMS BY MECHANICAL VAPOR COMPRESSION F.E. Becker and F.A. DiBella Tecogen, Inc., a Subsidiary of Thermo El~ctron Corporation...-user with electric power and process heat that is totally in the form of high-pressure steam. Current recipro cating engine systems can now provide only low pressure steam or hot water from the engine jacket, and this often is not needed or not the most appro...

Becker, F. E.; DiBella, F. A.; Lamphere, F.

191

Gas-fueled cogeneration for supermarkets. Phase 1 final report, March-December 1984  

SciTech Connect

Supermarkets offer a unique application for a packaged cogeneration system because of the large and continuous need for shaft power to drive refrigeration compressors. Waste heat from the engine can be used efficiently to drive an absorption chiller for additional refrigeration capacity, and to provide space and water heating. In Phase I of this project, such a system was designed and analyzed. The analysis first considered several alternate configurations. Based on these results, the optimized system was then considered for five different geographic locations. In general it was found that a payback of three years or less could be achieved.

Walker, D.H.; Krepchin, I.P.; Poulin, E.C.; Demler, R.L.; Hynek, S.J.

1985-04-01T23:59:59.000Z

192

Facility Safety  

Directives, Delegations, and Requirements

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

193

Facility Safety  

Directives, Delegations, and Requirements

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

194

Facility Safety  

Directives, Delegations, and Requirements

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

195

Facility Safety  

Directives, Delegations, and Requirements

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

196

Technical and economic analysis of different cogeneration systems for energy production from biomass  

Science Journals Connector (OSTI)

This paper compares the results of a techno-economic performance analysis of seven plants for energy production from biomass with the aim of identifying the most effective solution. Small (?250 KWe) and micro (?100 KWe) size plants were investigated: 50 kWe diesel internal combustion engine coupled with a gasifier and 35 kWe Stirling engine coupled with a gasifier with an overall efficiency of 41.1% and 87.5% respectively, two biomass cogenerators, one of 25 kWe and the other of 100 kWe, 250 kWe Otto internal combustion engine coupled with a gasifier and 250 kWe diesel internal combustion engine coupled with a gasifier and 238 kWe biomass ORC plant. The technical analysis provided calculations for specific biomass consumption, electricity generation, heat produced and overall system efficiency. The economic evaluation was carried on through a discounted cash flow analysis. Data were provided by literature, analysis of case study at Italian and European level, and directly by the manufacturers of cogeneration systems. The results showed that a combined heat and power (CHP) generator is the best solution because it is economically viable with a high NPV and a PBP of five years and also technically performing with a global efficiency of 78.2% and a low biomass consumption.

Giancarlo Giacchetta; Mariella Leporini; Barbara Marchetti

2014-01-01T23:59:59.000Z

197

Performance investigation of a cogeneration plant with the efficient and compact heat recovery system  

Science Journals Connector (OSTI)

This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity (ii) steam (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator (ii) an absorption chiller (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments both part load and full load of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

2012-01-01T23:59:59.000Z

198

High Temperature Gas-Cooled Reactor Program. Modular HTGR systems design and cost summary. [Methane reforming; steam cycle-cogeneration  

SciTech Connect

This report provides a summary description of the preconceptual design and energy product costs of the modular High Temperature Gas-Cooled Reactor (HTGR). The reactor system was studied for two applications: (1) reforming of methane to produce synthesis gas and (2) steam cycle/cogeneration to produce process steam and electricity.

Not Available

1983-09-01T23:59:59.000Z

199

An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry  

E-Print Network (OSTI)

, economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical...

Cooke, D. H.; McCue, R. H.

200

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Facility Safety  

Directives, Delegations, and Requirements

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

202

Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator  

Science Journals Connector (OSTI)

We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply ...

L. Miao; M. Zhang; S. Tanemura; T. Tanaka; Y. P. Kang

2012-06-01T23:59:59.000Z

203

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

204

Eco-operation of co-generation systems optimized by environmental load value  

SciTech Connect

In this paper the authors introduce a life cycle assessment scheme with the aid of the environmental load value (ELV) as a numerical measure to estimate the quantitative load of any industrial activity on the environment. The value is calculated from the total summation of the respective environmental load indexes through the life cycle activity from cradle to grave. An algorithm and a software using a combined simplex and branch-bound technique are accomplished to give the numerical ELV and its optimization. This ELV scheme is applied to co-generation energy systems consisting of gas turbines, waste-heat boilers, auxiliary boilers, steam turbines, electricity operated turbo refrigerators, steam absorption refrigerators and heat exchangers, which can be easily set up on the computer display in an ICON and Q and A style, including various kinds of parameters. The two kinds of environmental loads respecting the fossil fuel depletion and the CO{sub 2} global warming due to electricity generation from power stations in Japan are chosen as the ELV criterion. The ELV optimization is calculated corresponding to the hourly energy demands for electricity, air cooling, air heating, and hot water from a district consisting eight office buildings and four hotels. As a result, the ELV scheme constructed here is found to be an attractive and powerful tool to quantitatively estimate the LCA environmental loads of any industrial activity like co-generation energy systems and to propose the eco-operation of the industrial activity of interest. The cost estimation can be made as well.

Kato, Seizo; Nomura, Nobukazu; Maruyama, Naoki

1998-07-01T23:59:59.000Z

205

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

206

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

207

NREL: Energy Systems Integration Facility - Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the...

208

4858 recreation facility [n  

Science Journals Connector (OSTI)

plan. recr. (Installation and equipment provided for recreation; ? simply-provided recreation facility , ? well-provided recreation facility ...

2010-01-01T23:59:59.000Z

209

Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

210

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

211

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

212

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

213

Research Facility,  

NLE Websites -- All DOE Office Websites (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

214

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Exergy analysis of a cogeneration system through Artificial Neural Network (ANN) method  

Science Journals Connector (OSTI)

The main objective of this study is to apply the Artificial Neural Network (ANN) method to a cogeneration system, located in Izmir, Turkey, for exergetic evaluation purposes. The data used are based on the actual operational conditions and the results obtained from this system, which was exergetically analysed by the authors. It consists of three turbines with a total capacity of 13 MW, six spray dryers and two heat exchangers. A comparison between the exergy destruction values obtained from exergy analysis calculations and the ANN method is made. Fast ANN (FANN) package (library) has been chosen as an ANN application to implement into the C+ + code named CogeNNExT, which has been written and developed by the authors. From the single output of the ANN (FANN) results, the main exergy destruction rate with 60.96 MW in the exergetic analysis is found to be 61.001 MW with an error of 0.075%. From the two outputs of another ANN result, the mean input and output exergy values are found with errors of 0.438% and 2.211%, respectively.

Yilmaz Yoru; T. Hikmet Karakoc; Arif Hepbasli

2010-01-01T23:59:59.000Z

217

High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan  

SciTech Connect

The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

None

1982-03-01T23:59:59.000Z

218

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

219

Cogeneration system with low NO sub x combustion of fuel gas  

SciTech Connect

This patent describes a cogeneration system for the production of electricity and refrigeration with low NO{sub x} combustion of fuel gas supplied at a high pressure. It comprises a heat exchanger to heat the fuel gas at high pressure; a turbo-expander connected to receive and expand the heated fuel gas from the heat exchanger; a centrifugal compressor driven by the turbo-expander the compressor being the refrigerant compressor of a refrigeration system; a porous fiber burner connected to receive the expanded fuel gas from the turbo-expander together with the requisite combustion air; a high-pressure steam boiler heated by the combustion of the expanded fuel gas on the outer surface of the porous fiber burner, the boiler being connected to pass the resulting flue gas with low NO{sub x} content through the heat exchanger to heat the fuel gas at high pressure; a steam turbine connected to receive and expand highpressure steam from the boiler and to return expanded and condensed steam to the boiler; and an electric generator driven by the steam turbine.

Garbo, P.W.

1991-06-25T23:59:59.000Z

220

Theoretical study on a novel ammoniawater cogeneration system with adjustable cooling to power ratios  

Science Journals Connector (OSTI)

Abstract A novel ammoniawater cogeneration system with adjustable cooling to power ratios is proposed and investigated. In the combined system, a modified Kalina subcycle and an ammonia absorption cooling subcycle are interconnected by mixers, splitters, absorbers and heat exchangers. The proposed system can adjust its cooling to power ratios from the separate mode without splitting/mixing processes in the two subcycles to the combined operation modes which can produce different ratios of cooling and power. Simulation analysis is conducted to investigate the effects of operation parameter on system performance. The results indicate that the combined system efficiency can reach the maximum values of 37.79% as SR1 (split ratio 1) is equal to 1. Compared with the separate system, the combined efficiency and COP values of the proposed system can increase by 6.6% and 100% with the same heat input, respectively. In addition, the cooling to power ratios of the proposed system can be adjusted in the range of 1.83.6 under the given operating conditions.

Zeting Yu; Jitian Han; Hai Liu; Hongxia Zhao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy recovery and cogeneration from an existing municipal incinerator: Phase IIA progress report on final design  

SciTech Connect

A feasibility study was prepared on energy recovery and cogeneration from and existing municipal incinerator in Wayne County, Michigan. The mechanical, electrical, structural, and instruments an controls equipment designs were established in sufficient depth to arrive at a construction cost estimate. The designs are described. All of the flue gas generated from each incinerator is directed into a waste heat boiler that will generate steam. A waste heat boiler will be provided for each of the three incinerators. Steam from these waste heat boilers will supply energy to two turbine-generators, which, in turn, will supply auxiliary power to the incinerator plant; the balance of the power will be sold to Detroit Edison Company (DEC). Exhaust steam from each turbine will be directed into a surface condenser operating under vacuum. The water to be supplied to each condenser will be recirculated water that has been cooled by means of a cooling tower. Other cooling water that could be subjected to oil contamination will be supplied from a separate recirculating water system. The water in this system will be cooled by an evaporative condenser. The main steam, boiler feedwater, and condensate systems will be similar to those used in central power stations. Flow diagrams for all systems, together with heat balances, electrical one-line diagrams, and plant layouts, are included in the Appendix. Also included in the Appendix are instruments and controls logic diagrams. (MCW)

Not Available

1982-02-01T23:59:59.000Z

222

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01T23:59:59.000Z

223

International Facility Management Association Strategic Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

224

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 11, 2011 Facility News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa...

225

Facilities Services Overview & Discussion  

E-Print Network (OSTI)

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

226

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

227

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

228

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

229

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

230

Programs & User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Programs & User Facilities Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

231

Facility Data Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Data Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Facility Data Policy Career Opportunities...

232

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 15, 2005 Facility News More Server Power Improves Performance at the ARM Data Management Facility Bookmark and Share Recently, several new Sun servers joined the...

233

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

234

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa Bookmark and Share ARM operations staff prepare the ARM Mobile Facility in Point Reyes, California, for...

235

Nuclear Facilities | Department of Energy  

Energy Savers (EERE)

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

236

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

237

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

238

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

239

Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler  

Science Journals Connector (OSTI)

A cogenerating thermophotovoltaic (TPV) device for hot water hydronic space heating and electric power generation was developed designed fabricated and tested under a Department of Energy contracted program. The device utilizes a cylindrical ytterbia superemissive ceramic fiber burner (SCFB) and is designed for a nominal capacity of 80 kBtu/hr. The burner is fired with premixed natural gas and air. Narrow band emission from the SCFB is converted to electricity by single crystal silicon (Si) photovoltaic (PV) arrays arranged concentrically around the burner. A three-way mixing valve is used to direct heated water to either the portable water storage tank radiant baseboard heaters or both. As part of this program QGI developed a microprocessor-based control system to address the safety issues as well as photovoltaic power management. Flame sensing is accomplished via the photovoltaics a technology borrowed from QGIs Quantum Control safety shut-off system. Device testing demonstrated a nominal photovoltaic power output of 200 W. Power consumed during steady state operation was 33 W with power drawn from the combustion air blower hydronic system pump three-way switching valve and the control system resulting in a net power surplus of 142 W. Power drawn during the ignition sequence was 55 W and a battery recharge time of 1 minute 30 seconds was recorded. System efficiency was measured and found to be more than 83%. Pollutant emissions at determined operating conditions were below the South Coast Air Quality Management Districts (California) limit of 40 ng/J for NOx and carbon monoxide emissions were measured at less than 50 dppm.

Aleksandr S. Kushch; Steven M. Skinner; Richard Brennan; Pedro A. Sarmiento

1997-01-01T23:59:59.000Z

240

Commissioning for Federal Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities.

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

242

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

243

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

244

Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission Third Quarter - September 1982  

SciTech Connect

In the Third Quarter of 1982, the number of signed contracts and committed projects rose from 148 to 173, with a total estimated nominal capacity of these projects of 922 MW. Of this nominal capacity, about 168 MW is operational, and the balance is under contract for development. Of the 173 signed contracts and committed projects, 61 were cogeneration and solid waste projects with a potential of 643 MW. PG and E also had under active discussion 28 cogeneration projects that could generate a total of 968 MW to 1,049 MW, and 10 solid waste projects with a potential of 90 MW to 95 MW. Wind projects under contract number 84, with a generating capability of 85 MW. Also, discussions are being conducted with 17 wind projects, totaling 83 MW. There are 23 hydroelectric projects with signed contracts and a potential of 95 MW, as well as 63 projects under active discussion for 169 MW. In addition, there are 25 hydroelectric projects, with a nominal capacity of 278 MW, that PG and E is constructing or planning to construct. Five contracts have been signed with projects, using other types of electric power generation, capable of producing 100 MW.

None

1982-09-01T23:59:59.000Z

245

Demonstration of an on-site PAFC cogeneration system with waste heat utilization by a new gas absorption chiller  

SciTech Connect

Analysis and cost reduction of fuel cells is being promoted to achieve commercial on-site phosphoric acid fuel cells (on-site FC). However, for such cells to be effectively utilized, a cogeneration system designed to use the heat generated must be developed at low cost. Room heating and hot-water supply are the most simple and efficient uses of the waste heat of fuel cells. However, due to the short room-heating period of about 4 months in most areas in Japan, the sites having demand for waste heat of fuel cells throughout the year will be limited to hotels and hospitals Tokyo Gas has therefore been developing an on-site FC and the technology to utilize tile waste heat of fuel cells for room cooling by means of an absorption refrigerator. The paper describes the results of fuel cell cogeneration tests conducted on a double effect gas absorption chiller heater with auxiliary waste heat recovery (WGAR) that Tokyo Gas developed in its Energy Technology Research Laboratory.

Urata, Tatsuo [Tokyo Gas Company, LTD, Tokyo (Japan)

1996-12-31T23:59:59.000Z

246

Dynamic performance estimation of small-scale solar cogeneration with an organic Rankine cycle using a scroll expander  

Science Journals Connector (OSTI)

Small-scale solar thermal cogeneration shows promise as an effective way to get increased benefit out of a given solar availability, since it does not waste potential during summer after the water capacity is heated. In this paper a scroll expander is tested in a small organic Rankine cycle (ORC) and used to calibrate a static expander model. Validation of the scroll expander model shows agreement generally within 10% for the shaft power, 5% for the rotational speed and 6K for the exhaust temperature, with some outliers at very low pressure ratios. This calibrated model is then incorporated into a larger dynamic model of a solar thermal cogeneration system, designed for some larger dwelling unit or small commercial establishment that requires a larger volume of hot water. An annual simulation is conducted using a collector area of 50m2, and the scroll expander shows a maximum isentropic efficiency of 59% while the ORC efficiency is 3.47%. The total energy produced is 1710kWh and the hot water available is on average 2540L/day. The maximum instantaneous power that can be produced by the system is 676W, and it is possible to shift the time period that the system is producing power to match the peak demand period by adjusting the solar store volume.

B. Twomey; P.A. Jacobs; H. Gurgenci

2013-01-01T23:59:59.000Z

247

Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986  

SciTech Connect

A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

Kubasco, A.J.

1986-07-01T23:59:59.000Z

248

Local government guide to the emerging technologies of cogeneration and photovoltaics. Energy technology report of the energy task force of the urban consortium  

SciTech Connect

An overview of cogeneration and photovoltaics systems is presented to provide local government managers a basic understanding of the technologies. Issues and considerations associated with applications are presented. Discussions cover installation and maintenance requirements, equipment availability, costs, and risks/benefits. Data describing demonstration sites and contacts for further information are provided. (MCW)

None

1980-01-01T23:59:59.000Z

249

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

250

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01T23:59:59.000Z

251

High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests  

SciTech Connect

As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

Duffy, T.; Schneider, P.

1996-01-01T23:59:59.000Z

252

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

253

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

254

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

255

Impact on energy requirements and emissions of heat pumps and micro-cogenerators participating in demand side management  

Science Journals Connector (OSTI)

Abstract The potential impacts of participating in demand side management (DSM) on the performance of air source heat pumps (ASHP) and micro-combined heat and power (mCHP) units are considered by this study. As significant consumers and generators of electricity at the distribution level, large numbers of heat pumps and micro-cogenerators would provide considerable scope for participation in DSM systems. However, it is possible that operating regimes which are optimised for grid considerations will not achieve the maximum performance that is possible from the units. Modelling has been conducted to investigate the significance of this effect, considering the case where local distribution constraints are the main driver for demand side interventions. A model of domestic electrical demand has been adapted to consider a neighbourhood of 128 dwellings in order to identify when interventions are necessary. This has been combined with dynamic models of two combustion engine micro-cogenerators, a solid oxide fuel cell micro-cogenerator and two ASHPs. A simple thermal model of each building is combined with a range of user preferences in order to determine the preferred operating profiles of the heating units. The DSM scheme analysed here is likely to have minimal impact on the emissions and energy requirements associated with each heating unit. Its effect is similar to that which occurs without DSM if the control system gain is relaxed such that equivalent thermal comfort is achieved. DSM can reduce the peak electrical demand of the neighbourhood. However, in the scenarios investigated, it is unlikely that the peaks can be reduced sufficiently such that they do not exceed the capacity of the local distribution transformer if \\{ASHPs\\} are used in all dwellings. By using a combination of mCHP units with ASHPs, it is possible to supply heating to all dwellings without exceeding this capacity. In this case, the use of DSM can increase the ratio of \\{ASHPs\\} used. In the context of a low carbon grid electricity supply, this will reduce the average carbon emissions associated with the neighbourhood.

Samuel J.G. Cooper; Geoffrey P. Hammond; Marcelle C. McManus; John G. Rogers

2014-01-01T23:59:59.000Z

256

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

257

FACET User Facility  

NLE Websites -- All DOE Office Websites

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

258

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

259

Jupiter Laser Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class...

260

Facilities | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend.  

E-Print Network (OSTI)

??A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized (more)

Khan, Umer

2012-01-01T23:59:59.000Z

262

The digital preservation facility  

Science Journals Connector (OSTI)

Critical listening should be an essential part of all archiving and restoration facilities quality control. We review the priorities and requirements for listening spaces ranging from the individual collector and small community archives to large?scale facilities. Examples discussed include the Library of Congress Culpepper facility university libraries and commercial facilities. Adapting listening rooms to the requirements of n?channel audio are discussed. Public recommendations of the Sound Preservation Board of the Library of Congress will be reviewed.

2006-01-01T23:59:59.000Z

263

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

DETL, Energy, Facilities, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, Systems Analysis Sandia...

264

ORAU South Campus Facility  

Energy.gov (U.S. Department of Energy (DOE))

This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

265

DOE Designated Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National...

266

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

267

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

268

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

269

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

270

Exergoeconomic analysis of high concentration photovoltaic thermal co-generation system for space cooling  

Science Journals Connector (OSTI)

Abstract This paper provides an exergetic analysis of a 10MW high concentration photovoltaic thermal (HCPVT) power plant case study located in Hammam Bou Hadjar, Algeria. The novel HCPVT multi-energy carrier plant converts 25% of the direct normal irradiance (DNI) into electrical energy and 62.5% to low grade heat for a combined efficiency of 87.5%. The HCPVT system employs a point focus dish concentrator with a cooled PV receiver module. The novel hot-water cooling approach is used for energy reuse purposes and is enabled by our state-of-the-art substrate integrated micro-cooling technology. The high performance cooler of the receiver with a thermal resistance of <0.12cm2K/W enables the receiver module to handle concentrations of up to 5000suns. In the present study, a concentration of 2000suns allows using coolant fluid temperatures of up to 80C. This key innovation ensures reliable operation of the triple junction PV (3JPV) cells used and also allows heat recovery for utilization in other thermal applications such as space cooling, heating, and desalination. Within this context, an exergoeconomics analysis of photovoltaic thermal co-generation for space cooling is presented in this manuscript. The valuation method presented here for the HCPVT multi-energy carrier plant comprises both the technical and economic perspectives. The proposed model determines how the cost structure is evolving in four different scenarios by quantifying the potential thermal energy demand in Hammam Bou Hadjar. The model pins down the influence of technical details such as the exergetic efficiency to the economic value of the otherwise wasted heat. The thermal energy reuse boosts the power station?s overall yield, reduces total average costs and optimizes power supply as fixed capital is deployed more efficiently. It is observed that even though potential cooling demand can be substantial (19,490MWh per household), prices for cooling should be 3 times lower than those of electricity in Algeria (18USD/MWh) to be competitive. This implies a need to reach economies of scale in the production of individual key components of the HCPVT system. The net present value (NPV) is calculated taking growth rates and the system?s modular efficiencies into account, discounted over 25 years. Scenario 1 shows that even though Algeria currently has no market for thermal energy, a break-even quantity (49,728MWh) can be deduced by taking into account the relation between fixed costs and the marginal profit. Scenario 2 focuses on the national growth rate needed to break even, i.e. +10.92%. Scenario 3 illustrates thermal price variations given an increase in the Coefficient of Performance (COP) of a thermally driven adsorption chiller after year 10. In this case, the price for cooling will decrease from 18USD/MWh to 14USD/MWh. Finally, scenario 4 depicts Hammam Bou Hadjar?s potential cooling demand per household and the growth rate needed to break even if a market for heat would exist.

Veronica Garcia-Heller; Stephan Paredes; Chin Lee Ong; Patrick Ruch; Bruno Michel

2014-01-01T23:59:59.000Z

271

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

272

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

273

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

274

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

275

224-T Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

T Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T Facility 242-A Evaporator 300 Area 324...

276

Cold Test Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects & Facilities > Cold Test Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T...

277

RMOTCTrainingFacilityNEW.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

* Field Laboratory with surface outcrops of Cretaceous fluvial and marine units * Gas Processing Facilities * Production Facilities * Tanks & Pipelines * Aquaculture &...

278

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

279

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

280

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

282

WIPP - Public Reading Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

283

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

284

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

285

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

286

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

287

340 Facility compliance assessment  

SciTech Connect

This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility.

English, S.L. [Pacific Northwest Lab., Richland, WA (United States)

1993-10-01T23:59:59.000Z

288

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

289

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

290

Poultry Facility Biosecurity  

E-Print Network (OSTI)

of organic materials on tires and shoes. Design features should include a one-way traff_ic system for all poultry facilities. The system should route personnel, vehicles and poultry from youngest birds to oldest birds, from ?clean? areas to ?dirty? areas... from waterways used by migra - tory waterfowl. Locate new facilities as far as possible from roads handling high volumes of poultry vehicles such as feed trucks or live-haul vehicles. Poultry facilities also need adequate amounts of potable water...

Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

2005-12-21T23:59:59.000Z

291

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

292

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2008 Facility News ARM Scientists Lead International Radiation Symposium in Brazil Bookmark and Share The ARM Science Team showed up in force at the 2008 International...

293

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation,...

294

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Method Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science,...

295

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2007 Facility News New Radar Wind Profiler Joins AMF Instrument Suite in Germany Bookmark and Share The 1290 MHz wind profiler (foreground) joins the eddy correlation...

296

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

297

AMF ARM Mobile FAcility  

NLE Websites -- All DOE Office Websites (Extended Search)

AMF ARM Mobile FAcility Details on the AMF proposal process can be found at http:www.arm.govacrfsubmitproposals.stm. For more information, contact: Mark Miller Mary Jane...

298

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Facility News Field Campaigns Generate Interest from Aviation Aficionados in Oklahoma Bookmark and Share Dr. Pete Lamb On November 13, Dr. Pete Lamb attended a meeting of...

299

Lighting Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

300

ARM Mobile Facilities  

SciTech Connect

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2010-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

302

Neutron Scattering Facilities  

Science Journals Connector (OSTI)

The past history, present performance and future prospects for neutron scattering facilities will be discussed. Special features of neutron scattering techniques applicable to biological problems will be ... . Th...

D. L. Price

1996-01-01T23:59:59.000Z

303

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2014, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable...

304

Science and Technology Facility  

Office of Environmental Management (EM)

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

305

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

306

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

the website still features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now...

307

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

(left) and 2-channel (right) NFOV radiometers are collocated with the infrared thermometer (green stripe) at the SGP Central Facility. Numerous other instruments are situated...

308

Development of a dry low-NOx gas turbine combustor for a natural-gas fueled 2MW co-generation system  

SciTech Connect

A dry low-NOx gas turbine combustor has been developed for natural-gas fueled co-generation systems in the power range of 1--4MW. The combustor. called the Double Swirler Combustor, uses the lean premixed combustion to reduce NOx emission. The combustor is characterized by two staged lean premixed combustion with two coaxial annular burners and a simple fuel control system without the complex variable geometry. Substantially low NOx level has been achieved to meet the strict NOx regulation to co-generation systems in Japan. High combustion efficiency has been obtained for a wide operating range. In 1994, Tokyo Gas and Ishikawajima-Harima Heavy Industries initiated a collaborative program to develop a natural-gas fueled low NOx gas turbine engine for new 2MW class co-generation system, named IM270. The Double Swirler Combustor, originally developed by Tokyo Gas, was introduced into the natural gas fueled version of the IM270. Engine test of the first production unit was successfully conducted to confirm substantially low NOx level of less than 15 ppm (O{sub 2} = 16%) with the output power of more than 2MW. Test for the durability and the reliability of the system is being conducted at Tokyo Gas Negishi LNG Terminal in Kanagawa, Japan and successful results have been so far obtained.

Mori, Masaaki; Sato, Hiroshi

1998-07-01T23:59:59.000Z

309

Science &Technology Facilities Council  

E-Print Network (OSTI)

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

310

Nanotechnology User Facility for  

E-Print Network (OSTI)

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

311

Facilities Management CAD Standards  

E-Print Network (OSTI)

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

312

Cornell University Facilities Services  

E-Print Network (OSTI)

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

313

Emergency Facilities and Equipment  

Directives, Delegations, and Requirements

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

314

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network (OSTI)

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

315

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2007 [Facility News] 30, 2007 [Facility News] High-Speed Internet Deflects Information Overload Bookmark and Share Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. A little more room in the internet link at the ARM Southern Great Plains site is providing needed relief to the crowded lines that keep data flowing from the site. In July 2007, the internet service from the SGP Central Facility was switched to a higher speed (6 megabits) link, increasing the

316

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2009 [Facility News] , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended deployment will obtain seasonal statistics to improve climate models Today marks the beginning of a 20-month field campaign on Graciosa Island in the Azores to study the seasonal life cycle of marine clouds and how they modulate the global climate system. Sponsored by the U.S. Department

317

BNL | Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

318

ARM Aerial Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesAerial Facility govSitesAerial Facility AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. As an integral measurement capability of the ARM Climate Research Facility, the ARM Aerial Facility (AAF) provides airborne measurements required to answer science questions proposed by the ARM Science Team and the external

319

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

320

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2005 [Facility News] 30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field campaign are to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

322

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2013 [Education, Facility News] 25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. School break means vacation, and around Cape Cod, that often means a trip to the seashore. On April 17, families looking for fun and educational outdoor activities spent several hours at Cape Cod National Seashore's

323

ARM - NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

324

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2004 [Facility News] May 15, 2004 [Facility News] Mid-latitude Cirrus Cloud Experiment Underway Bookmark and Share NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. In late April, scientific collaborators at the National Aeronautics and Space Administration (NASA) carried out two high-altitude flights over the ARM Climate Research Facility Southern Great Plains (SGP) central facility. The purpose of these flights was to use a new suite of cloud property probes on the WB-57F aircraft to more accurately characterize the properties of mid-latitude cirrus clouds-which are composed solely of ice crystals-than has previously been possible. Eight flights over the SGP central facility were originally planned, but the expected cirrus clouds

325

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

326

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

327

Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984  

SciTech Connect

Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

1984-08-01T23:59:59.000Z

328

Calibration Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards for calibrating borehole fission neutron devices are also available, but are used infrequently. Radiation standards are constructed of concrete with elevated, uniform concentrations of naturally occurring potassium, uranium, and/or thorium. Pad standards have large, flat surfaces suitable for calibration

329

RCRA facility assessments  

SciTech Connect

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

330

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

331

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 10, 2012 [Facility News] July 10, 2012 [Facility News] Collaborations in Atmospheric Science and Observations Discussed in Germany Bookmark and Share Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the university's Jülich ObservatorY for Cloud Evolution (JOYCE) site. Crewell explained that JOYCE, like ARM facilities, was designed for long-term continuous measurements of cloud, radiation, boundary humidity, and precipitation, using active and passive remote sensing instruments. Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the

332

QF751010105O 1/2 December 2013  

E-Print Network (OSTI)

own share of the rent (including rates, utilities etc.) per month $ ______________ Others (e.g. Non-Hall Housing), please specify ________________________________________________________________ Government government financial aid and should not be seen as an alternative to government financial support: Emergency

Tam, Vincent W. L.

333

EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

Unknown

2002-07-01T23:59:59.000Z

334

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

335

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01T23:59:59.000Z

336

Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas  

Science Journals Connector (OSTI)

Abstract The thermodynamic analysis and the coupling and optimization between chemical synthesis and power generation in a polygeneration system are presented. Unlike full conversion of syngas into chemicals in the traditional SNG (synthetic natural gas) production system, by moderate conversion the sharp increase in energy consumption for SNG synthesis can be avoided in the new system. Also, by recovering the chemical unconverted gas for combined cycle, electricity is cogenerated efficiently. Results show that the overall efficiency of the novel system can be as high as 59%65%. And compared to single production systems, the (energy saving ratio) ESRof the new system is over 11.0% and the energy consumption for SNG production can be decreased by around 12%. Sensitivity analysis shows that an optimized conversion ratio of SNG, (chemicals to power output ratio) CPOR, recycle ratio of the unconverted gas Ru, and pressure ratio of gas turbine can lead to the maximum of ESR. Abolishing the syngas composition adjustment and improving the inlet temperature of gas turbine both can help to enhance the system efficiency. Under low Ru, improving the H2/CO mole ratio in the syngas helps to improve system efficiency, while under high Ru, an optimized H2/CO can lead to the maximum of ESR.

Sheng Li; Hongguang Jin; Lin Gao

2013-01-01T23:59:59.000Z

337

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

338

NREL: Research Facilities - Laboratories and Facilities by Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratories and Facilities by Technology The following NREL research programs have laboratory, andor test and user facility capabilities for researching, developing, and testing...

339

NREL: Research Facilities Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Research Facilities Here you'll find information about the National Renewable Energy Laboratory's R&D facility and laboratory capabilities. These state-of-the-art facilities...

340

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

27, 2009 [Facility News] 27, 2009 [Facility News] Arrival of Recovery Act Funds Sets Wheels In Motion Bookmark and Share So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. Through the American Recovery and Reinvestment Act of 2009 (aka stimulus), the Department of Energy's Office of Science received $1.2 billion. In late May, DOE released approximately $54 million-90 percent-of the $60 million allocated to the ARM Climate Research Facility. During the next 18 months, the ARM Climate Research Facility will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2005 [Facility News] 28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA)

342

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Quality Improvement Inspections Take Place Annual Quality Improvement Inspections Take Place Bookmark and Share During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. The Continuous Quality Improvement Program (CQIP) implemented by the ARM Program in 1998 requires annual audits and inspection visits to each of the ARM Climate Research Facility Southern Great Plains (SGP) site's 27 field facilities located in Oklahoma and Kansas. A small team of scientists and engineers conduct the inspections each year to evaluate the field

343

PNNL: About PNNL - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Facilities Scientific Facilities At PNNL, we offer scientific researchers access to unique equipment housed in state-of-the-art facilities as well as onsite experts to help visiting researchers take advantage of and make best use of the capabilities. You also have the opportunity to collaborate with our world-renowned scientists and engineers who can help you advance your scientific research and publish your results. Take a virtual tour of some of our laboratories. William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) EMSL EMSL is a U.S. Department of Energy (DOE) national user facility currently shared and used by researchers from around the world. Research at EMSL focuses principally on developing a molecular-level understanding of the physical, chemical, and biological processes that underlie the most

344

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

New Backup Software Improves Processing, Reliability at Data Management New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated experimental calculations. With continual advances in computer technology, keeping up with the volume and pace of incoming data is a daunting challenge. And because the remote sites do not provide backups, reliable backups of these data at the DMF are critical. In addition, significant numbers of value-added datasets are

345

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility Beta Testing Complete; System Headed to California Seashore Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the microphysical characteristics of marine stratus clouds, and in particular, marine stratus drizzle processes. Throughout the deployment, the AMF will accommodate aerosol observing equipment for National Oceanic and Atmospheric Administration (NOAA) researchers co-sponsored by ARM and the DOE Aerosol Science Program.

346

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of ARM Infrastructure Completed Review of ARM Infrastructure Completed Bookmark and Share In May, the Department of Energy's Biological and Environmental Research Advisory Committee (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on a review of total user requests, the BERAC concluded that ARM was being effectively used by the broader scientific community, not just the ARM Program. They also stated that cost cutting measures had achieved the desired efficiency goals, but further cuts could impair the Facility's operations. The subcommittee reinforced the importance of the scientific impacts of this facility (including publications), and the value it has had for the international

347

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 1, 2012 [Facility News] March 1, 2012 [Facility News] Arctic Storm Samples Show Relationship Between Sea Ice and Precipitation Over Land Bookmark and Share Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. As an important component of Earth's climate system, sea ice has a particularly strong influence on the Arctic sea surface temperature, evaporation, and reflectivity, or "albedo." The critical relationship among sea ice, evaporation, and precipitation is linked to a number of

348

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Earth Day is officially honored each year on April 22, however, many groups sponsor activities throughout the entire month of April. At DOE Headquarters in Washington DC, two ARM posters were selected to join a poster display representing programs from numerous DOE offices. The display was featured in the Forrestal Building's ground-level and first floor lobby areas throughout the week of April 21. The posters were then displayed at

349

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. Microwave radiometers (MWRs) are instruments used to measure emissions of water vapor and liquid water molecules in the atmosphere at specific microwave frequencies. Different MWRs are used to measure various frequencies, but the accuracy of all their retrievals is somewhat suspect,

350

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

351

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Commercial Infrared Sky Imagers Compared Bookmark and Share Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Four infrared imaging instruments were installed and operated at the ARM

352

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 [Facility News] 1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. A paper published in a special issue of the Quarterly Journal of the Royal Meteorological Society describing the scientific strategy, field phase, and

353

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

354

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2006 [Facility News] April 30, 2006 [Facility News] Disdrometer Joins Tipping Bucket to Improve Precipitation Measurements Bookmark and Share At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. This spring, a pair of new distrometers began collecting data at the ARM Southern Great Plains (SGP) site and the ARM Darwin site in the Tropical

355

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

356

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2013 [Facility News] 9, 2013 [Facility News] ARM Facility Shares Return on Science Investments Bookmark and Share The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. To quote Ben Franklin, "If a man empties his purse into his head, no man can take it away from him. An investment in knowledge always pays the best interest." ARM Climate Research Facility staff who attended the fourth annual Atmospheric System Research (ASR) Science Team Meeting in April received a healthy dose of interest in March! With over 350 attendees presenting nearly 250 posters, the wealth of atmospheric climate science knowledge

357

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2011 [Facility News] May 20, 2011 [Facility News] From Snow to Sand; Mobile Facility Headed to the Maldives Bookmark and Share AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. After spending six very snowy months at Steamboat Springs, Colorado, the second ARM Mobile Facility (AMF2) is switching gears and heading to the tropical climes of the Maldives in the Indian Ocean. In mid-April, the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) came to a close, ending the final chapter of the AMF2's maiden deployment. After packing up the instruments and data systems, the AMF2 team is now preparing

358

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Service Conserves Cash Satellite Service Conserves Cash Bookmark and Share In April, operations personnel completed a series of cost-saving data communication changes at the ARM Climate Research Facility Southern Great Plains (SGP) locale. The T-1 telephone lines at the four SGP boundary facilities were replaced with satellite dish technology. This change still allows large data sets to be transferred at acceptable bandwidth but at substantial savings. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Huge amounts of data are collected daily by SGP site instruments. These data must be transmitted rapidly and reliably from remote measurement

359

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2012 [Data Announcements, Facility News] 2, 2012 [Data Announcements, Facility News] Toolkit for ARM Radar Data Previewed at Workshop Bookmark and Share This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge. This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge.

360

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2009 [Facility News] March 31, 2009 [Facility News] New Sensors Installed for Cloud Radar Calibration at North Slope Bookmark and Share Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Cloud radars at the ARM sites provide important information about cloud properties and continue to evolve in providing climate researchers more complex data. This creates a greater need to know the absolute calibration of the radar reflectivity measurement. However, the large and immobile antenna for the millimeter wavelength cloud radar (MMCR) is impossible to point directly at a calibration target. At the ARM North Slope of Alaska

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2006 [Facility News] May 15, 2006 [Facility News] New Micropulse Lidars to Replace Old Ones; Deployments Begin at SGP Bookmark and Share A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. On May 3, the first of seven new and upgraded micropulse lidars (MPLs) was deployed at the ARM Southern Great Plains (SGP) site's Central Facility. These seven identical systems (including one spare) will replace the existing MPLs deployed at facilities throughout the SGP site and include new polarization capability. The MPLs provide critical backscatter

362

Nuclear Facility Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design FUNCTIONAL AREA GOAL: Headquarters and Field organizations and their contractors ensure that nuclear facilities are designed to assure adequate protection for the public, workers, and the environment from nuclear hazards. REQUIREMENTS:  10 CFR 830.120  10 CFR 830 subpart B  DOE O 413.3  DOE O 420.1B  DOE O 414.1C  DOE O 226.1  DOE M 426.1  DEAR 970-5404-2 Guidance:  DOE G 420.1-1  Project Management Practices, Integrated Quality ( Rev E, June 2003)  DOE Implementation Plan for DNSB Recommendation 2004-2 Performance Objective 1: Contractor Program Documentation Contracts between and the contractors who operate nuclear facilities contain adequate requirements concerning the conduct of nuclear facility safety design for nuclear facility capital projects and major modifications and the

363

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

field campaign are now open. GOAMAZON is a deployment of the ARM Mobile Facility to Brazil beginning in 2014. The three calls are being issued in coordination by the U.S....

364

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 16, 2008 Facility News 21st Century "Paper Boy" Begins Delivering ARM News Bookmark and Share A reorganized ARM News Center now offers RSS feeds-subscription services...

365

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparations Underway for 2007 ARM Mobile Facility Deployment in Germany Bookmark and Share In the Black Forest region of Germany, the COPS field campaign will cover an area of...

366

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2008 Facility News CLASIC Discussed at Workshop in Oklahoma Bookmark and Share Participants at the CLASIC workshop in March 2008 listen intently to one of the many...

367

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

368

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

369

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

and Share Researchers installed a continuous 222Rn monitor at the base of the 60-meter tower at the SGP Central Facility. A sampling tube connected to the tower supplies air...

370

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

371

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2014 Facility News New 3D Tour Brings Users to the Southern Great Plains Site...Virtually Bookmark and Share The virtual tour home page illustrates the full magnitude of the...

372

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

373

Photovoltaic Research Facilities  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

374

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

at the SGP Central Facility. Radar wind profilers (RWPs) provide hourly measurements of wind speed and direction from 100 m to 5 km above the ground. Between 1992 and 1996, four...

375

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2007 Facility News Kelle Smith Replaces Jan Gunter as ExtraView Administrator Bookmark and Share Kelle Smith assumed the duties of ExtraView administrator after Jan...

376

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

377

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 [Facility News] 5, 2009 [Facility News] Turning a New Page with Facebook; Are You a Fan? Bookmark and Share Keep up with the ARM Climate Research Facilty via Facebook! Keep up with the ARM Climate Research Facilty via Facebook! As a scientific user facility for the global change research community, the ARM Climate Research Facility strives to provide data and share its climate observation capabilities with researchers around the world. In a continuing effort to reach new users, ARM is turning another page in its outreach strategy with a presence on Facebook. (You must have a Facebook account to access the page; if you don't have one, it is free and easy to create one.) Savvy Internet users of all ages increasingly use these types of communication tools to track topics of interest and share information with

378

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 28, 2006 [Facility News] February 28, 2006 [Facility News] Network of Infrared Thermometers Nearly Complete at SGP Bookmark and Share Red dots indicate extended facilities at SGP with the new IRTs installed; green dots indicate future installations. Red dots indicate extended facilities at SGP with the new IRTs installed; green dots indicate future installations. As reported in April 2005, a network of infrared thermometers (IRT) is being installed throughout the ARM Southern Great Plains (SGP) site for the purpose of measuring cloud base temperature and inferring cloud base height across the domain. These measurements will enhance existing SGP surface and satellite cloud measurements to help scientists improve their calculations of heating rate profiles on the scale of global climate models. The first

379

Light-Source Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility, P.R. China CANDLE, Armenia HSRC - Hiroshima Synchrotron Radiation Center, Japan iFEL - Institute of Free Electron Laser, Japan INDUS 1 INDUS 2, India IR FEL...

380

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear Power Facilities (2008) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) More Documents & Publications Financial Institution Partnership Program - Commercial...

382

Personnel Support Facility (PSF)  

Virginia Beach, VA The Personnel Support Facility (PSF) provides space for a library, the Navy Marine Corps Relief Society, the Substance Abuse Rehabilitation Program, St. Leo College, and the Navy College Program. A design-build project of brick, masonry, and steel, PSF is part of a post-occupancy evaluation study run by Naval Facilities Engineering Command. The study is being used to determine the benefits of green design.

383

Ultrafast Laser Facility | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast Laser Facility Ultrafast Laser Facility Click for an Overview of the Ultrafast Laser Facility The PARC Ultrafast Laser Facility, under the direction of Associate Director...

384

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

385

Santa Clara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Jump to: navigation, search Name Santa Clara Biomass Facility Facility Santa Clara Sector Biomass Facility Type Landfill Gas Location Santa Clara County,...

386

Hutchins LFG Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Hutchins LFG Biomass Facility Jump to: navigation, search Name Hutchins LFG Biomass Facility Facility Hutchins LFG Sector Biomass Facility Type Landfill Gas Location Dallas County,...

387

Cold Vacuum Drying Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Facility U Plant Vitrification Plant Waste Encapsulation and Storage Facility Waste Receiving and Processing Facility Waste Sampling and Characterization Facility Waste...

388

Hanford facility contingency plan  

SciTech Connect

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

389

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

390

Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells  

Science Journals Connector (OSTI)

Abstract This work discusses the design and the development of a Laboratory of Micro-Cogeneration (LMC) atPolitecnico di Milano. The LMC laboratory is a unique structure devoted to small-scale power generation, with the main goals of testing and improving the performance of systems that produce or utilize electric and thermal (hot and/or cold) power in a very general sense, spanning from combined heat and power (CHP) units to heaters, from absorption chillers to heat pumps, but also able to perform tests on fuel processors and electrolyzers. The laboratory features a supply of natural gas as well as H2 and O2 from a high pressure electrolyzer and of CO, CO2 and N2 from bottles, permitting to carry out experiments with simulated synthesis fuels. The maximum allowable electrical power produced, exported to the grid or to an electronic loadbank, or consumed by the system under test is 100kW; maximum allowable thermal power is roughly 200kW with variable temperature water circuits (from chilled water up to a 150C at 8bar superheated water loop). This work outlines also the instruments used for on-line recording of thermodynamic properties, emissions and power, aiming at monitoring and reconstructing mass and energy balances. One of the first experimental campaign has been carried out on a CHP system based on polymer electrolyte membrane fuel cells (PEM), a promising candidate for distributed CHP thanks to low pollutant emissions and good efficiency, rapid startup and flexibility, although affected by a rather complex fuel processing section to provide the appropriate fuel to the PEM. This work presents the experimental analysis of a 20kW prototype PEM CHP system complete of natural gas processor. The prototype is operated at LMC to characterize the processing section and the thermodynamic performances of the overall system. Despite its non-optimized layout, the unit has shown encouraging total efficiency (76%) and primary energy saving index (6%).

S. Campanari; G. Valenti; E. Macchi; G. Lozza; N. Ravid

2014-01-01T23:59:59.000Z

391

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

392

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facility Improvements Continue at North Slope of Alaska Locale User Facility Improvements Continue at North Slope of Alaska Locale Bookmark and Share The "skydeck" at Barrow shows how the instrument platforms can get very crowded during peak experimental periods. The "skydeck" at Barrow shows how the instrument platforms can get very crowded during peak experimental periods. Two things are critical for conducting scientific research: adequate equipment and power. This is especially true in the Arctic, where average winter temperatures hover around -30 degrees Celsius, and access to additional resources is limited. After experiencing crowded working conditions during complex field campaigns last year, followed by several power outages this past winter, operations staff at the ARM Climate Research Facility's North Slope of Alaska (NSA) locale began implementing

393

Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

394

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2011 [Facility News] 5, 2011 [Facility News] Atmospheric System Research Announces Funding Opportunity Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. Successful applications will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve fundamental

395

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 15, 2010 [Facility News] August 15, 2010 [Facility News] Micropulse Lidars Get Boost from Recovery Act Bookmark and Share Shown here during installation on the aft deck of the RV Connecticut, the upgraded MPL includes a sleek new computer that can fit into smaller spaces. The laser window at the top is covered by a cone until the instrument is turned on. Shown here during installation on the aft deck of the RV Connecticut, the upgraded MPL includes a sleek new computer that can fit into smaller spaces. The laser window at the top is covered by a cone until the instrument is turned on. Through funding from the American Recovery and Reinvestment Act of 2009, ARM is upgrading the micropulse lidars (MPL) throughout the user facility. Similar to a radar, the MPL sends pulses of energy into the atmosphere.

396

SEU Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo The SEU Test Facility Logo The SEU Test Facility 1. Introduction The uninterrupted and progressive miniaturization of microelectronic devices while resulting in more powerful computers, has also made these computers more susceptible to the effects of ionizing radiation. This is of particular concern for space applications due to the radiation fields encountered outside the protective terrestrial atmosphere and magnetosphere. Starting in 1987, a coalition of US government agencies (NSA, NASA, NRL and USASSDC ) collaborated with BNL to develop a powerful and user-friendly test facility for investigating space-radiation effects on micro-electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where ionization caused by the passage of

397

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 11, 2007 [Facility News] January 11, 2007 [Facility News] ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) China generates exceptionally high amounts of aerosol particles whose influence on the atmosphere has been detected across the Pacific Rim. In the Yangtze River delta in southeast China, these high aerosol loadings

398

AWA Facility Expansion  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Upgrade Facility Upgrade Wei Gai High Energy Physics Division June 16, 2009 Background * AWA Group has been receiving very positive DOE Review evaluations in the last several years. * DOE funding has been constant or increasing, even in years with general budget cuts. * Outstanding scientific results have been achieved in recent years using the unique AWA electron beam capabilities (100 MV/m accelerating gradient). * General infrastructure in building 366 has improved in recent years (air-conditioner, better lighting, new laboratory space), creating a much better environment for conducting the AWA research program. * Additional RF power station (a second klystron) is being commissioned and it will improve the capabilities of the facility. Recent Budget Increase * Very positive DOE review (Dec. 2008) and

399

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

The Tale of the Tapes-No More Boxes of Data! The Tale of the Tapes-No More Boxes of Data! Bookmark and Share In October 1997, the ARM Program entered into a contract with the University of Alaska-Fairbanks to obtain image data covering the ARM Climate Research Facility's North Slope of Alaska (NSA) locale. Image data taken by an advanced very high resolution radiometer (AVHRR) are collected by a satellite receiver at Fairbanks and, up until February 2004, were stored on 4mm tapes. These boxes were then shipped by the boxful to the ARM Climate Research Facility External Data Center every six months. Once at the External Data Center, the data was processed into standard "hierarchical data format" or HDF files and transferred to the ARM Climate Research Facility Data Archive for use by ARM researchers. All data from

400

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 8, 2012 [Facility News] October 8, 2012 [Facility News] Near Miss at Barrow Due to Beach Erosion Bookmark and Share With a little help from his friends, Walter Brower (hidden by the ECOR) moves the system away from the ocean's edge as an early September storm pounds away at the beach. With a little help from his friends, Walter Brower (hidden by the ECOR) moves the system away from the ocean's edge as an early September storm pounds away at the beach. On a stormy Friday evening in early September, Walter Brower received an urgent message: "Beach erosion very close to ECOR Point." Brower is the local facility manager for ARM's North Slope of Alaska site in Barrow. His duties extend to Point Barrow at the coastline of the Arctic Ocean, where ARM operates an eddy correlation flux measurement system, or

402

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

403

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2010 [Facility News] April 15, 2010 [Facility News] Second Phase of African Scientific Exchange Underway Bookmark and Share Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Continuing an international collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma for a six-month scientific exchange. Under the guidance of Dr. Zewdu Segele, a

404

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Bookmark and Share The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field campaign, the Marine Stratus Radiation Aerosol and Drizzle (MASRAD) Intensive Operational Period, is well underway at Point Reyes National Seashore on the northern

405

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

406

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 24, 2013 [Education, Facility News] April 24, 2013 [Education, Facility News] A Twist on TwisterTM: ARM Educational Outreach Participates in Community Science Nights Bookmark and Share This week, the U.S. Department of Energy begins its National Science Bowl competition, a nationwide academic competition that tests students' knowledge in all areas of science. Created 22 years ago in 1991, the DOE National Science Bowl strives to encourage students to excel in mathematics and science and to pursue careers in these fields and is an important part of DOE's STEM (science, technology, engineering and math) education efforts today. The ARM Climate Research Facility supports STEM by participating in public science nights and developing climate related lesson plans to share at these events and via the ARM website.

407

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 10, 2010 [Facility News] March 10, 2010 [Facility News] Atmospheric System Research Funding Opportunity Announced Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. If the application is successful, the research will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve

408

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

409

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 23, 2008 [Data Announcements, Facility News] July 23, 2008 [Data Announcements, Facility News] Second Version of Long-Term Climate Modeling Best Estimate Data Released Bookmark and Share Version 2 of the Climate Modeling Best Estimate includes the data source information for cloud fraction, as depicted in this data plot. Version 2 of the Climate Modeling Best Estimate includes the data source information for cloud fraction, as depicted in this data plot. With major improvements in the cloud fraction, cloud liquid water path (LWP), precipitable water vapor (PWV), and surface radiative fluxes, a new version of the "Climate Modeling Best Estimate" (CMBE) is now available from the ARM Climate Research Facility Archive. This data set, specifically tailored for use in evaluating global climate models, includes long-term

410

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2007 [Facility News] October 15, 2007 [Facility News] ARM Joins National Science Foundation Remote Sensing Collaboration Bookmark and Share In September, the ARM Climate Research Facility became an official member of the National Science Foundation's Center for Collaborative Adaptive Sensing of the Atmosphere, or CASA. Initial discussions for partnering began nearly a year ago. After a series of informative visits and presentations, the decision was made to move forward with membership process. The transfer of interagency funds was completed on September 18, 2007, solidifying the partnership. In the meantime, CASA dedicated a significant effort to support the CLASIC field campaign in June 2007 by providing a network of four scanning X-band radars. CASA is a multi-sector partnership among academia, industry, and government

411

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

CIMEL Sunphotometer Helps Researchers See the Light in Australia CIMEL Sunphotometer Helps Researchers See the Light in Australia Bookmark and Share A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. Science collaborators at the Australian Bureau of Meteorology (BOM) and the Australian Commonwealth Scientific and Industry Research Organization (CSIRO) are using the ARM Climate Research Facility Darwin site in Australia to evaluate aerosol optical properties during the tropical dry season. As part of the Darwin Aerosol Intensive Operational Period (IOP), a

412

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2006 [Facility News] June 15, 2006 [Facility News] Data From Rotating Shadowband Spectroradiometer Now Available in Data Archive Bookmark and Share The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. After refinements based on a series of successful field trials, the latest Rotating Shadowband Spectroradiometer (RSS) joins the collection of permanent ARM instruments at the ARM Southern Great Plains (SGP) site. The current RSS-known as the RSS105-is deployed at the SGP Central Facility and is the first commercially built RSS manufactured by Yankee Environmental Systems, Inc. Since its deployment in May 2003, the RSS has

413

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 11, 2011 [Facility News] October 11, 2011 [Facility News] Final Recovery Act Milestone Complete! Bookmark and Share To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. For the past year and a half, ARM scientists, engineers, operations, and data systems staff have been working tirelessly to support the installation and operation of nearly 150 new and upgraded instruments throughout the user facility. In September, ARM received its final three instruments - a radar wind profiler; a micropulse lidar for the Darwin, Australia site; and

414

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2013 [Facility News] April 30, 2013 [Facility News] Gearing Up for Science in Amazon Rainforest Bookmark and Share In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. Preparing for the biggest and most complex deployment of field resources to date, the ARM Mobile Facility operations team from Los Alamos National Laboratory spent three weeks in Brazil in early March tackling a range of protocol and logistics tasks for next year's GOAMAZON field campaign. Between ARM and Brazilian collaborators, about 80 instruments will obtain

415

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 [Data Announcements, Facility News] May 15, 2008 [Data Announcements, Facility News] Announcing the Release of the Radiative Flux Analysis PI Product Bookmark and Share Developed by Dr. Chuck Long, Radiative Flux Analysis PI Product data are now available from the ARM Climate Research Facility Archive. The current release includes data for all of the ARM fixed sites (except Darwin, which requires manual processing because of the monsoon season) plus data for the AMF deployments at Pt. Reyes and the COPS Black Forest site. Future releases will include data for Darwin, the COPS Hornisgrinde and Rhine Valley sites, and the AMF Niamey deployment. The Radiative Flux Analysis is a technique for using surface shortwave (SW) and longwave (LW) broadband radiation measurements for detecting periods of

416

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band Cloud Radar Added to ARM Mobile Facility in Africa W-Band Cloud Radar Added to ARM Mobile Facility in Africa Bookmark and Share Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. A W-band ARM Cloud Radar (WACR) recently joined the suite of baseline capabilities offered by the ARM Mobile Facility (AMF). The term "W-band" refers to the specific radio frequency range of this radar, which is a 95 gigahertz pulse Doppler zenith pointing radar, providing profiles of cloud

417

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Climate Research Facility Communication Products Garner Awards in ARM Climate Research Facility Communication Products Garner Awards in Competition Bookmark and Share Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Trying to describe the ARM Climate Research Facility to an educated audience is hard enough; imagine explaining it to someone who knows next to nothing about atmospheric science! Judges of the 2005 Communicator Awards print media competition apparently got the message, as they gave awards to

418

Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites

area area Contact Us | Careers | Staff Directory | User Support Search form Search Search Argonne Leadership Computing Facility an Office of Science user facility Home . About Overview History Staff Directory Careers Visiting Us Contact Us Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council Science at ALCF INCITE 2014 Projects ALCC 2013 Projects ESP Projects View All Projects Allocation Programs Early Science Program Publications Industry Collaborations News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries User Services User Support Machine Status Presentations Training & Outreach User Survey Getting Started How to Get an Allocation New User Guide

419

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 [Facility News] 16, 2008 [Facility News] Revised Convective Triggering Mechanism Improves Precipitation Forecast Bookmark and Share Example of Global Spectral Model (GSM) at the Japan Meteorological Agency (JMA). Example of Global Spectral Model (GSM) at the Japan Meteorological Agency (JMA). An improved convective triggering mechanism developed by ARM scientists based on ARM observations was implemented recently in the Global Spectral Model at the Japan Meteorological Agency (JMA) to improve surface precipitation forecasts. The revised triggering mechanism uses a dynamic convective available potential energy generation rate (DCAPE) to control the onset of deep convection. It assumes that deep convection occurs only when the large-scale dynamic forcing makes a positive

420

MPA-11 Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Cleanroom Facility is available for use by LANL researchers MPA-11 Facilities Fuel cell testing, acoustics laboratories, and a wide spectrum of characterization equipment are essential to the research conducted in our group. Fuel Cell Testing. ........Acoustics. ........Characterization . ........ Many other multi-disciplinary staff and experimental/computational capabilities throughout Los Alamos National Laboratory are available to support our research. Access to enabling capabilities for the Fuel Cell Program is facilitated by the Laboratory's Institute for Hydrogen and Fuel Cell Research. Fuel Cell Testing Experimental equipment that is essential to our fuel cell efforts is housed in 24 laboratories at the Los Alamos National Laboratory. A partial list of

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RCRA facility stabilization initiative  

SciTech Connect

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

422

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Stockton Regional Water Control Facility Biomass Facility Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional Water Control Facility Sector Biomass Facility Type Non-Fossil Waste Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Middlesex Generating Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Middlesex Generating Facility Biomass Facility Middlesex Generating Facility Biomass Facility Jump to: navigation, search Name Middlesex Generating Facility Biomass Facility Facility Middlesex Generating Facility Sector Biomass Facility Type Non-Fossil Waste Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Wheelabrator Millbury Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Millbury Facility Biomass Facility Wheelabrator Millbury Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Millbury Facility Biomass Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528°, -71.8571331° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4096528,"lon":-71.8571331,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

North City Cogen Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

City Cogen Facility Biomass Facility City Cogen Facility Biomass Facility Jump to: navigation, search Name North City Cogen Facility Biomass Facility Facility North City Cogen Facility Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423°, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge  

E-Print Network (OSTI)

tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool, Indoor swimming pool (25 m), Japanese archery training facility, Playground, Common facility in Sea

Banbara, Mutsunori

433

RAPID/Roadmap/7-FD-c | Open Energy Information  

Open Energy Info (EERE)

Facilities include both cogeneration facilities and small power production facilities. A small power production facility is a facility generating 80 MW or less with a primary...

434

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

435

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

436

Facility Representative Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

437

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: Operation with the steam-injection temperature at 300C (45C resuperheated from 255C) increased the efficiency of the gasturbine by 0.7%. The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340C (85C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

438

NREL: Technology Transfer - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

439

Wheelabrator Sherman Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Sherman Energy Facility Biomass Facility Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector Biomass Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Facility effluent monitoring plan for the 3720 facility  

SciTech Connect

This report describes the effluent monitoring plan for the 3720 facility. Airborne and liquid effluents are monitored.

Ballinger, M.Y.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

442

Micro gas turbine cogeneration system with latent heat storage at the University: Part III: Temperature control schedule  

Science Journals Connector (OSTI)

Abstract The latent heat storage system is a novel heat storage system. At the University under service conditions, it was demonstrated with a micro gas turbine (MGT) cogeneration system (CGS). Expanding the latent heat storage system into new applications is expected to save energy economically with high density energy storage and reduce exhaust emissions and reduce operational costs. This is the first demonstration of using a latent heat storage system with CGS under service condition and its characteristics are very important. In Part I, a fixed operating schedule of the system was planned and demonstrated at the University. The charge/discharge cycles of the latent heat storage system were repeated for 407 times. The energy flow test of the system shows the importance of the heat release source and total system design. In Part II, an irregular charge case of the latent heat storage system was discussed when the prime mover of the system was operated at a part load and thermal priority mode. A highly sophisticated system design that solves these problems was necessary for extending the applications of the latent heat storage system. In Part III, a temperature control schedule of the system was demonstrated during winter mornings using a new programmable logic controller (PLC). Using a fixed schedule, the MGT-CGS with latent heat storage reduced the CO2 emission when the energy utilization factor was above 50%. The temperature control schedule was considered to be better than the fixed schedule, both in terms of the operational efficiency of the overall system and CO2 reduction. The temperature control schedule was executed using an empirical formula for the temperature rise in a classroom. The restriction on the operation time by the contract with the gas supplier and the low heating capacity of the CGS affected the heating time and temperature rise. The temperature rise in the classroom was almost proportional to the integrated temperature difference across the hot water header of the heating system. On cold days, the rate of temperature rise produced by the CGS was very slow, therefore, additional heat supplied by the original boiler was used to increase the temperature rise. If larger latent heat storage systems will be developed in future, it will be expected that the temperature of the classrooms are kept more comfortable with less energy consumptions and lower CO2 emission.

Osamu Kurata; Norihiko Iki; Takayuki Matsunuma; Tetsuhiko Maeda; Satoshi Hirano; Katsuhiko Kadoguchi; Hiromi Takeuchi; Hiro Yoshida

2014-01-01T23:59:59.000Z

443

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 19, 2012 [Facility News] June 19, 2012 [Facility News] Storm Chasers Take a Break at the Southern Great Plains Site Bookmark and Share Scientist Gunnar Senum (far left) from Brookhaven National Laboratory describes the aerosol observing system to a group of visiting meteorology students from Rutgers University. Scientist Gunnar Senum (far left) from Brookhaven National Laboratory describes the aerosol observing system to a group of visiting meteorology students from Rutgers University. Taking a break from storm chasing due to "good weather," a group of 16 meteorology students from Rutgers University visited the ARM Southern Great Plains site in early June. The students, ranging from juniors to recent graduates, are participating in an inaugural severe weather class taught by

444

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2010 [Facility News] 31, 2010 [Facility News] Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. Located high on Mount Pico in the Azores, the University of the Azores, the University of Colorado, and Michigan Technological University operate an instrumented observation station, the Pico Observatory. In May, a small team of local volunteers from Pico Island helped install a set of ARM

445

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 [Facility News] 31, 2006 [Facility News] Comprehensive Instrument Validation Campaign Concludes Bookmark and Share As the Aqua satellite moves along, the AIRS mirror scans a "swath" across the Earth's surface and directs infrared energy into the instrument. This energy is separated into wavelengths, which are transferred from Aqua to computers on the ground for additional processing. (Source: http://airs.jpl.nasa.gov As the Aqua satellite moves along, the AIRS mirror scans a "swath" across the Earth's surface and directs infrared energy into the instrument. This energy is separated into wavelengths, which are transferred from Aqua to computers on the ground for additional processing. (Source: http://airs.jpl.nasa.gov After almost four years, the last soundings in the final phase of the

446

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 2013 [Facility News] June 28, 2013 [Facility News] What's a Little Helium Among Friends? Bookmark and Share In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. What is white and blue, can hold 55,000 standard cubic feet (scf) of gas, and looks like it could attach to the International Space Station? A helium storage system, of course. This impressive contraption arrived at the ARM Southern Great Plains site in early June, along with 18,000 scf of helium inside-valuable stuff,

447

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Upgrades to Darwin Radar Double Data Delivery Bookmark and Share The new processor for the MMCR at Darwin collects spectral data in four different modes, resulting in approximately 3.4 gigabytes of signal output per day. The new processor for the MMCR at Darwin collects spectral data in four different modes, resulting in approximately 3.4 gigabytes of signal output per day. Virtually all cloud studies within the ARM Program involve the Millimeter Wavelength Cloud Radar (MMCR). This instrument is the only source for obtaining detailed information about cloud location and internal structure in the atmospheric columns above the ARM sites, and can be operated in almost any atmospheric condition. In November, a major upgrade to the 35

448

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] Location, Location, Location... Field Campaign Focuses on Latitude Effects Bookmark and Share A scintillometer was used to detect atmospheric optical disturbances-called scintillations-caused by temperature, pressure and humidity. The instrument emits light from two transmitters, shown at left. The light traverses the local atmosphere, perturbed by density fluctuations. Some of the light enters the receiver, shown at right. (Image from Scintec at www.scintec.com.) A scintillometer was used to detect atmospheric optical disturbances-called scintillations-caused by temperature, pressure and humidity. The instrument emits light from two transmitters, shown at left. The light traverses the local atmosphere, perturbed by density fluctuations. Some of the light

449

Science and Technology Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBRF Project Lessons Learned Report IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This document contains lessons learned for the Integrated Biorefinery Research Facility (IBRF) project. The period covered by these lessons learned is IBRF"s Stage I acquisition through Stage II construction completion. The lessons learned presented are specific for construction line item type projects at the National Renewable Energy Laboratory (NREL) typically with a total project cost (TPC) in excess of $20M. Lessons Learned - IBRF-001 Lessons Learned Statement: Incorporate a strong safety culture early and into all phases of the project, from developing the RFP through construction and commissioning.

450

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 11, 2012 [Education, Facility News] May 11, 2012 [Education, Facility News] Fairbanks Middle Schoolers Enjoy Field Trip to Barrow Bookmark and Share Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! In April, the 8th grade class from Watershed School in Fairbanks, Alaska, made the long trek to the North Slope for a week-long field trip filled

451

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Radiosonde Temperature Sensor Benefits from Stronger Structure Bookmark and Share The new temperature sensor (front and back shown above) for the RS92 radiosonde sports an integrated fiber-reinforced structure that improves durability while maintaining the needed measurement accuracy and response. The new temperature sensor (front and back shown above) for the RS92 radiosonde sports an integrated fiber-reinforced structure that improves durability while maintaining the needed measurement accuracy and response. Small sensor packages called radiosondes (or "sondes") are used to transmit atmospheric information from weather balloons as they rise through the air. Vaisala, the supplier of sondes used at all the ARM sites, has introduced

452

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 31, 2006 [Facility News] May 31, 2006 [Facility News] New Shortwave Spectroradiometer Deployed at SGP Bookmark and Share A ceiling port in the SGP Optical Trailer houses the optic element of the SWS, which connects to the spectrometer inside the trailer via fiber optic cable. A ceiling port in the SGP Optical Trailer houses the optic element of the SWS, which connects to the spectrometer inside the trailer via fiber optic cable. In late April, a new Shortwave Spectroradiometer (SWS) began operating at the ARM Southern Great Plains (SGP) site. The instrument measures the zenith solar spectral radiance (1.4° field of view) between 300-2200 nm. The SWS incorporates two Zeiss miniature monolithic spectrometers having a spectral resolution of 8 nm in the range 300-975 nm, and 12 nm in the range

453

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2011 [Facility News] , 2011 [Facility News] Methane Monitor Joins Surface Flux Instruments at North Slope Bookmark and Share The new ECOR/SEBS Tower at the NSA site in Barrow includes greenhouse gas flux instruments. At the top of the tower, left to right, are the methane sensor, sonic anemometer, and carbon dioxide and water vapor sensor. The horizontal arm below and to the left of these instruments is a net radiometer. The new ECOR/SEBS Tower at the NSA site in Barrow includes greenhouse gas flux instruments. At the top of the tower, left to right, are the methane sensor, sonic anemometer, and carbon dioxide and water vapor sensor. The horizontal arm below and to the left of these instruments is a net radiometer. In October 2011, the ARM North Slope of Alaska site in Barrow welcomed a

454

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 30, 2009 [Facility News] November 30, 2009 [Facility News] ARM Joins Global Reference Upper-Air Network Bookmark and Share Similar to a standard radiosonde, the frost point hygrometer is a digitally-controlled instrument attached to a weather balloon. As it rises through the air, atmospheric data collected by the sensor is recorded on the ground. This photo shows the computer chips, battery pack, and connector that make up the instrument package. Similar to a standard radiosonde, the frost point hygrometer is a digitally-controlled instrument attached to a weather balloon. As it rises through the air, atmospheric data collected by the sensor is recorded on the ground. This photo shows the computer chips, battery pack, and connector that make up the instrument package. One of the largest challenges from a global climate observations

455

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 2012 [Facility News] 29, 2012 [Facility News] Workshop Identifies Critical Climate Science Challenges Bookmark and Share This DOE report summarizes a two-and-a-half day workshop held between U.S. and European collaborators to review outstanding climate change science questions related to clouds, aerosols and precipitation, and the observational strategies for addressing them. This DOE report summarizes a two-and-a-half day workshop held between U.S. and European collaborators to review outstanding climate change science questions related to clouds, aerosols and precipitation, and the observational strategies for addressing them. Clouds and aerosols remain as major sources of uncertainty in computer models of Earth systems. In large part, this uncertainty is due to a lack

456

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 [Facility News] 31, 2006 [Facility News] Infrared Loss Study Underway at North Slope of Alaska Bookmark and Share At ARM's North Slope of Alaska site in Barrow, collocated sky radiometers are being evaluated to refine the methodology that accounts for infrared loss in polar conditions. At ARM's North Slope of Alaska site in Barrow, collocated sky radiometers are being evaluated to refine the methodology that accounts for infrared loss in polar conditions. In the far northern reaches of Alaska, extended periods of both darkness and daylight occur throughout the year. Additionally, extremely cold weather conditions contribute to a harsh operating environment for research equipment. Therefore, broadband radiometers at the ARM North Slope of Alaska (NSA) site are equipped with electric heaters inside the ventilators

457

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2008 [Facility News] January 31, 2008 [Facility News] ARM Exhibit Showcases Continuous Data at American Meteorological Society Annual Meeting Bookmark and Share During the 88th annual AMS meeting, interested participants stop by the ARM exhibit where ARM researchers answered their questions. During the 88th annual AMS meeting, interested participants stop by the ARM exhibit where ARM researchers answered their questions. In January, ARM joined nearly 100 other exhibitors at the 88th American Meteorological Society annual meeting in New Orleans. This year's meeting was organized around the broad theme of "Enhancing the Connectivity between Research and Applications for the Benefit of Society." More than 3000 attendees from academia, the private sector, and government attended

458

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 31, 2008 [Facility News] August 31, 2008 [Facility News] Phase 2 of Orbiting Carbon Observatory Field Campaign Begins Bookmark and Share A camera, weather station, and sun tracker with a protective dome are located on the roof of the fully automated FTS mobile laboratory. Inside the shelter, the spectrometer receives the reflected solar beam from the sun tracker, while the main computer system operates all the instruments and acquires the data. A camera, weather station, and sun tracker with a protective dome are located on the roof of the fully automated FTS mobile laboratory. Inside the shelter, the spectrometer receives the reflected solar beam from the sun tracker, while the main computer system operates all the instruments and acquires the data. The Orbiting Carbon Observatory, or OCO, is a National Aeronautics and

459

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2006 [Facility News] 18, 2006 [Facility News] ARM External Data Center Celebrates Ten Years of Service Bookmark and Share External Data Center was recognized for 10 years of service External Data Center was recognized for 10 years of service In celebration of its tenth year of operation, the ARM External Data Center (XDC), which is managed by Brookhaven National Laboratory, was recently recognized for its outstanding contribution to the scientific user community. The XDC collects and processes data from other climate monitoring and research programs to supplement the data collected at the ARM sites. ARM provides these data from external sources because they are usually not easily accessible from their original source. ARM Program Director Wanda Ferrell presented XDC manager Richard Wagener

460

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Disaster Plan Deflects Problems During Downpour Disaster Plan Deflects Problems During Downpour Bookmark and Share A late-winter storm in the Midwest could have wreaked havoc at the ARM Program's Southern Great Plains (SGP) site in northern Oklahoma. Fortunately, the site's Disaster Plan was successfully implemented. SGP's 160-acre Central Facility, the heart of the site, is heavily instrumented to collect and monitor atmospheric data collected from in situ and remote-sensing instrument clusters arrayed throughout the 55,000 square mile site. Although the Central Facility is on the highest point of land in the county, extreme rainfall and flooding on March 4 rendered access roads from the East impassable to vehicular traffic, and the West access road through Lamont was submerged in several locations. Local rainfall amounts

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Arctic Aerosol Study Flies By Bookmark and Share Ending its mission with a final flight on April 30, 2008, the Indirect and Semi-Direct Aerosol Campaign (ISDAC) flew a total of 103 research hours, completing 27 science flights primarily in the region around the ARM North Slope of Alaska site in Barrow. These flights included several golden cases where both cloud and aerosol measurements were obtained above, within, and below mixed-phase cloud layers. In addition, the campaign successfully demonstrated first-time airborne deployments of key instruments for measuring aerosol properties. All of the campaign's primary objectives were met, plus some secondary objectives, to help answer the team's science questions related to Arctic cloud and aerosol interactions.

462

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2011 [Education, Facility News] 25, 2011 [Education, Facility News] Remote Schools Welcome Much-Needed Resources Bookmark and Share Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko, Teacher-in-Charge at the school, gratefully receives the donation of a new copier. Students at the Children's Academy Centre in Lorengau gather as Jacklyn Soko, Teacher-in-Charge at the school, gratefully receives the donation of a new copier. Seven schools on Manus Island recently welcomed new copiers donated through ARM's Education and Outreach program. Hymson Waffi, officer-in-charge for the ARM's Tropical Western Pacific site on Manus Island, enjoyed the happy task of delivering the equipment to the various schools, including elementary, primary, secondary, and an academy. Each copier was accompanied

463

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2006 [Facility News] April 30, 2006 [Facility News] HydroKansas Follows Water Flowing Through Space and Time Bookmark and Share Sets of rain and stream gauges like this one will provide information about water level and flow rates from 14 different sites throughout the Whitewater River watershed during the HydroKansas field campaign. Sets of rain and stream gauges like this one will provide information about water level and flow rates from 14 different sites throughout the Whitewater River watershed during the HydroKansas field campaign. Beginning in May, the Whitewater River watershed in south-central Kansas is the setting for a 3-year field campaign hosted by the ARM's Southern Great Plains (SGP) site. Called "HydroKansas," the goal of this research project is to develop a predictive understanding of floods on multiple spatial and

464

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2007 [Facility News] 30, 2007 [Facility News] Improved Instrument Calibration Capabilities Benefit All Sites, Users Bookmark and Share To ensure that ARM precipitation measurements are as accurate as possible, the SGP rain gauges (white cylinder above left) are inspected every two weeks, are statically calibrated in the field every six months, and will now be dynamically calibrated on an annual basis using the system shown above. To ensure that ARM precipitation measurements are as accurate as possible, the SGP rain gauges (white cylinder above left) are inspected every two weeks, are statically calibrated in the field every six months, and will now be dynamically calibrated on an annual basis using the system shown above. The ARM fills a unique position in the scientific community by obtaining

465

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2006 [Facility News] 30, 2006 [Facility News] Precipitation Sensor on Duty at North Slope of Alaska Bookmark and Share The precipitation sensor was installed about 5 feet above the surface on the piling in the foreground, with power connected through a nearby Climate Reference Network box (background). The precipitation sensor was installed about 5 feet above the surface on the piling in the foreground, with power connected through a nearby Climate Reference Network box (background). Extremely low temperatures and humidity in the northern hemisphere make it very difficult to obtain accurate precipitation measurements. However, because the impacts of climate change are shown to occur most rapidly in the sensitive Arctic environment, these measurements are needed for characterizing boundary layer (surface to 1000-m altitude) conditions and

466

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 [Facility News] 31, 2006 [Facility News] New Operations Status System Improves Tracking, Reporting Bookmark and Share Environmental conditions at the ARM sites, like this one in Alaska, contribute to the challenge of managing an extensive array of sophisticated instruments. Environmental conditions at the ARM sites, like this one in Alaska, contribute to the challenge of managing an extensive array of sophisticated instruments. With heavily instrumented research sites around the globe, the ARM faces a daunting operations and reporting challenge. To better track and report the status of the capabilities at these widely disbursed sites, ARM operations staff recently completed the development of a comprehensive Operations Status System (OSS). By serving as a central collection point for all ARM

467

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2010 [Facility News] September 30, 2010 [Facility News] Measurements of Total Surface Energy Now Available from Australia Bookmark and Share As shown in this photo at the wharf in Darwin, Australia, the new ECOR/SEBS station includes solar panels for power. As shown in this photo at the wharf in Darwin, Australia, the new ECOR/SEBS station includes solar panels for power. Measurements of sensible, latent, and carbon dioxide fluxes are valuable for refining both regional and global climate models. Since 1997, only ARM's Southern Great Plains site provided these continuous measurements using eddy correlation flux (ECOR) and energy balance Bowen ratio (EBBR) stations. Now, ARM's tropical site in Darwin, Australia, is also providing these measurements, thanks to the American Recovery and

468

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 6, 2009 [Facility News] August 6, 2009 [Facility News] Research Team Publishes Results from In-Depth Study of Sahel Climate System Bookmark and Share The Sahel region of West Africa has experienced long-term drought accompanied by profound socioeconomic consequences over the past 30 years. It is a favored location for the development of tropical easterly waves that may generate hurricanes. The Sahel region of West Africa has experienced long-term drought accompanied by profound socioeconomic consequences over the past 30 years. It is a favored location for the development of tropical easterly waves that may generate hurricanes. In a series of eight papers published between 2008 and 2009 in the Journal of Geophysical Research-Atmospheres, an international team of researchers

469

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2010 [Facility News] January 15, 2010 [Facility News] Radiometer Powered Up Down Under for Field Campaign at Gunn Point Bookmark and Share Near the tip of Australia's Northern Territory, Gunn Point is the location for the Darwin ARM Representativeness Experiment, or DARE. This offsite field campaign is obtaining measurements of solar and thermal energy and cloud properties, to compare against similar measurements collected at the permanent ARM site in Darwin, about 25 kilometers to the southwest of Gunn Point. Data collected by instruments at both sites will be compared to help scientists quantify local influences and variability that affect how representative measurements at the Darwin site are compared to the wider area. Radiometers (right) mounted on the roof of a shelter near the C-POL radar (left) confirmed loss of data due to shadowing effects.

470

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 16, 2007 [Facility News] October 16, 2007 [Facility News] ARM Education and Outreach Program Awarded Funding by National Science Foundation Bookmark and Share Andrea Maestas, ARM Education and Outreach Coordinator, was part of a team awarded National Science Foundation funding to engage Native Alaskans in the geosciences through the WGBH Teachers' Domain website. Andrea Maestas, ARM Education and Outreach Coordinator, was part of a team awarded National Science Foundation funding to engage Native Alaskans in the geosciences through the WGBH Teachers' Domain website. In July 2007, the National Science Foundation awarded funding to a proposal developed by ARM Education and Outreach and WGBH Boston-public television's pre-eminent production house. The winning project, titled "Engaging Alaska Natives with the Geosciences," will add digital media and

471

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Convene in Australia to Plan International Cloud Experiment Scientists Convene in Australia to Plan International Cloud Experiment Bookmark and Share During TWP-ICE, cloud property data will be obtained from numerous research aircraft and a network of surface-based remote sensing sites, including a ship operating in the Timor Sea and numerous ground sites in a 200 km diameter around the ARM Climate Research Facility site in Darwin, Australia. During TWP-ICE, cloud property data will be obtained from numerous research aircraft and a network of surface-based remote sensing sites, including a ship operating in the Timor Sea and numerous ground sites in a 200 km diameter around the ARM Climate Research Facility site in Darwin, Australia. Coming from as far away as Italy, Switzerland, and the United States, a 45 member team gathered in Darwin, Australia, in mid-November to discuss plans

472

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Website Integration Effort Delivers One-Stop Shopping for Data Bookmark and Share The ARM website was upgraded with a new capability in September. ARM data users now have the ability to order data using the data cart from www.arm.gov. The ARM website was upgraded with a new capability in September. ARM data users now have the ability to order data using the data cart from www.arm.gov. On September 27, a new way to browse and order ARM data became available on the ARM website after nine months of development. ARM infrastructure staff from three national laboratories-Brookhaven National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory-teamed together to integrate the ARM web pages with the ARM

473

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2007 [Facility News] March 31, 2007 [Facility News] Radiometers Operate in Low Water Vapor Conditions in Barrow, Alaska Bookmark and Share A researcher checks the GVR antennae on a cold, crisp day at the ARM site in Barrow, Alaska. The radiometer is inside the insulated box beneath the antenna; the data is collected and displayed on the computer inside the instrument shelter. A researcher checks the GVR antennae on a cold, crisp day at the ARM site in Barrow, Alaska. The radiometer is inside the insulated box beneath the antenna; the data is collected and displayed on the computer inside the instrument shelter. To provide more accurate ground-based measurements of water vapor in extremely arid environments, three types of 183.3-GHz radiometers operated simultaneously in February and March at the ARM North Slope of Alaska site

474

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2012 [Education, Facility News] 14, 2012 [Education, Facility News] ARM Education Receives Seal of Approval Bookmark and Share Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must pass an extensive peer-review process to verify the accuracy and currency of the science. Resources selected by the Climate Literacy and Energy Awareness Network (CLEAN) must pass an extensive peer-review process to verify the accuracy and currency of the science. ARM's lesson plan, "Effects of Solar Radiation on Land and Sea" was recently selected for inclusion in the NSF-funded Climate Literacy and Energy Awareness Network's (CLEAN) collection of educational resources. Receipt of the prestigious CLEAN seal means that the selected resource passed an extensive peer-review by educators and scientists to ensure

475

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 31, 2008 [Facility News] December 31, 2008 [Facility News] Arctic Field Campaign Data and Instrument Performance Reviewed at Workshop Bookmark and Share Both wings of the Canadian National Research Council's Convair-580 aircraft were equipped with numerous cloud and aerosol probes during ISDAC. Both wings of the Canadian National Research Council's Convair-580 aircraft were equipped with numerous cloud and aerosol probes during ISDAC. In April 2008, the month-long Indirect and Semi-Direct Aerosol Campaign (ISDAC) obtained cloud and aerosol data from above, within, and below clouds in the vicinity of the ARM site in Barrow, Alaska. In mid-November, about 50 members of the ISDAC science team gathered in Lansdowne, Maryland, for a 1-day workshop to review and assess data quality and instrument

476

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 25, 2007 [Data Announcements, Facility News] April 25, 2007 [Data Announcements, Facility News] New, Improved Algorithm for Retrieving Liquid Water Path Now Available at the ARM Data Archive Bookmark and Share The MWRRET product uses an improved retrieval technique and a method to identify and remove biases from the data to greatly improve the retrieved LWP (blue). It also performs so-called physical retrievals at each radiosonde launch time (black dots)-physical retrievals are the best possible retrieval that can be performed. The MWRRET product uses an improved retrieval technique and a method to identify and remove biases from the data to greatly improve the retrieved LWP (blue). It also performs so-called physical retrievals at each radiosonde launch time (black dots)-physical retrievals are the best

477

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2007 [Facility News] December 15, 2007 [Facility News] Radar Antenna Replacement Effort Begins at Barrow Bookmark and Share On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! For estimates of cloud boundaries, there is no better capability than the millimeter wave cloud radar (MMCR). This sophisticated radar is part of the

478

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 15, 2008 [Facility News] September 15, 2008 [Facility News] Global Earth Observations Portal Provides Gateway to ARM Data Bookmark and Share The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting sustainable agriculture to improving weather forecasts and responding to climate change and its impacts. The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting sustainable agriculture to improving weather forecasts and responding to climate change and its impacts. Data obtained at the ARM sites are freely available to users worldwide through the ARM Data Archive. In August, ARM added another entry point to its data collection by registering the ARM Program and Data Archive as

479

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2010 [Facility News] November 3, 2010 [Facility News] Arctic Campaign Cut Short; Spring Restart A Possibility Bookmark and Share An unfortunate incident in the early stages of the Arctic Lower Troposphere Observed Structure (ALTOS) field campaign at Oliktok Point on the North Slope of Alaska has resulted in the campaign being terminated. The primary in situ measurement platform for the campaign was a tethered balloon for making ascents through the clouds with instruments that measure cloud microphysical properties, while ground-based instruments simultaneously collect additional data. During one of the balloon's initial flights, its primary and secondary tethers broke. A radio-controlled cut-down device was activated to bring down the balloon, which landed with its instrument

480

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act Learn about ARM's efforts. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world. [ Live Data Displays ] Featured Data 09.19.2013 New ARM Best Estimate Land Product Contains Critical Soil Quantities for Describing Land Properties 09.12.2013 Value-Added Product Estimates Planetary Boundary Layer Height from Radiosondes 08.29.2013 New Data Available for Precipitation Value-Added Product Feature12.30.2013 Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere For the first time, ARM ventures to Antarctica for one of several newly

Note: This page contains sample records for the topic "facility qf cogenerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2011 [Facility News] 9, 2011 [Facility News] Forecasting Exercise Begins Oklahoma Storm Study Count Down Bookmark and Share Clouds like this, called by the name "anvil" for its shape, are one type of cloud system researchers hope to encounter during MC3E. Clouds like this, called by the name "anvil" for its shape, are one type of cloud system researchers hope to encounter during MC3E. Beginning April 2011, the ARM Southern Great Plains (SGP) site in north-central Oklahoma will host the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation installed throughout the site with funding from the American Recovery and Reinvestment Act. The Midlatitude Continental Convective Clouds Experiment (MC3E) will use two aircraft and a comprehensive array of ground-based

482

User Facility Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

user-facilities/highlights/ The Office of Science user-facilities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {611EDD39-818D-4CBA-BFD7-9568495C1566}http://science.energy.gov/bes/highlights/2013/bes-2013-09-a/ The Role of Stripes in Superconducting Behavior Using neutron diffraction, movement of charged atoms arranged as "stripes"

483

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2007 [Facility News] 6, 2007 [Facility News] Radiative Heating in Unexplored Bands Campaign Begins Today Bookmark and Share This chart shows the spectral and height dependence of the infrared cooling rates for a mid-latitude summer profile. Note that the majority of the infrared cooling in the middle and upper tropsphere occurs in spectral regions that RHUBC will investigate. This chart shows the spectral and height dependence of the infrared cooling rates for a mid-latitude summer profile. Note that the majority of the infrared cooling in the middle and upper tropsphere occurs in spectral regions that RHUBC will investigate. In conjunction with other scientific activities taking place during International Polar Year 2007-2008, today (February 26) an international research team begins a three-week field campaign in Barrow, Alaska. The

484

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 6, 2010 [Facility News] October 6, 2010 [Facility News] New Raman Lidar En Route to Australia Bookmark and Share Since 1996, the ARM Southern Great Plains site has maintained one of the few operational Raman lidars in the world. Now, thanks to funding from the American Recovery and Reinvestment Act, the ARM Tropical Western Pacific site is about to join that exclusive group. A new Raman lidar, built by Sandia National Laboratories in New Mexico, is on its way to Darwin, Australia. Optics contained inside the Raman lidar shelter guide backscattered laser radiation in order to measure signals collected by the telescope. Optics contained inside the Raman lidar shelter guide backscattered laser radiation in order to measure signals collected by the telescope. The Raman lidar (light detection and ranging) uses pulses of laser

485

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 [Facility News] 31, 2004 [Facility News] New Technique Used to Measure Ice and Liquid in Clouds Bookmark and Share A mirror angled at 45 degrees inside the "winglet" viewing port deflects sunlight to the optical fiber and into the detector housed inside the "Great White" shelter at Barrow. A mirror angled at 45 degrees inside the "winglet" viewing port deflects sunlight to the optical fiber and into the detector housed inside the "Great White" shelter at Barrow. Difficulties in modeling the effects of clouds on climate arise largely from the insufficient number of observations needed to sufficiently understand cloud processes. Science collaborators at the National Oceanic and Atmospheric Administrations (NOAA) Aeronomy Laboratory have developed a

486

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 28, 2011 [Facility News] July 28, 2011 [Facility News] A Giant Lift for Arctic Climate Data Bookmark and Share A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. Ushering in the first operational precipitation radar on the U.S. Arctic Coast, engineers completed acceptance testing for the new X-band scanning ARM precipitation radar (X-SAPR) on June 21 at its location atop the Barrow Arctic Research Center in Alaska. Data from the radar are transmitted through a wireless connection to the ARM site data system. With the radar up and running, signal returns on June 24 provided an indication of the

487

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2009 [Facility News] 30, 2009 [Facility News] Smart Filter Clears the Way for Speedy Data Transfer Bookmark and Share These data plots illustrate the results of the smart filter in reducing the volume of MMCR data. The left column shows the full reflectivity data for individual radar data collection modes: cirrus, precipitation, general, and boundary layer. The right column shows the data retained after applying the clear-sky filter. These data plots illustrate the results of the smart filter in reducing the volume of MMCR data. The left column shows the full reflectivity data for individual radar data collection modes: cirrus, precipitation, general, and boundary layer. The right column shows the data retained after applying the clear-sky filter. As reported in mid-February, data transfer from the ARM Tropical Western

488

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2012 [Facility News] 9, 2012 [Facility News] Unmanned Aircraft Test Flights Completed at Oliktok Point Bookmark and Share Because of its small size and light weight (72-inch wingspan and weighing about 22 pounds), the Bat-3 is launched using a bungee-powered catapult from the roof of a vehicle and can land autonomously on fixed wheels. Its modular design fits into two suitcase-sized containers. Because of its small size and light weight (72-inch wingspan and weighing about 22 pounds), the Bat-3 is launched using a bungee-powered catapult from the roof of a vehicle and can land autonomously on fixed wheels. Its modular design fits into two suitcase-sized containers. On October 22, a small flight team from New Mexico State University (NMSU) began the first in a series of test flights (see YouTube video) for the ARM

489

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2010 [Facility News] January 31, 2010 [Facility News] STORMVEX Science Team Confirms Site Plans; Outreach Begins at Weather Summit Bookmark and Share Dr. Ashley Williamson introduces the STORMVEX campaign to Weather Summit attendees. Dr. Ashley Williamson introduces the STORMVEX campaign to Weather Summit attendees. In late January, meteorologists from a dozen major news markets across the country gathered in Steamboat Springs, Colorado, for an annual event called the "Weather Summit" where they received a preview of the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX, field campaign scheduled to begin next fall. Meanwhile, down the hall, the STORMVEX science team reviewed the status of the campaign components thus far, discussed remaining instrument issues, and made assignments to complete a

490

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Experiment Bookmark and Share As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) After more than a year and a half of planning, proposals, and paperwork,

491

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 31, 2006 [Facility News] August 31, 2006 [Facility News] New Lidars Installed at Tropical Western Pacific Site Bookmark and Share A representative from Sigma Space Corporation trains ARM operations staff in Darwin, Australia, on various components of the new micropulse lidar. The lidar, shown at left, will be placed in one of the outdoor instrument shelters, below a hole in the roof for the laser to pulse through. A representative from Sigma Space Corporation trains ARM operations staff in Darwin, Australia, on various components of the new micropulse lidar. The lidar, shown at left, will be placed in one of the outdoor instrument shelters, below a hole in the roof for the laser to pulse through. As reported in May, all the ARM sites are benefiting from new and upgraded micropulse lidars. This month, the new lidar was received in Darwin,

492

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2010 [Data Announcements, Facility News] 5, 2010 [Data Announcements, Facility News] New Datastream Identifies Nauru Data Influenced by Clouds Bookmark and Share A new data set that identifies periods when Nauru data may be affected by island-influenced clouds has been produced by Chuck Long, site scientist for the ARM Tropical Western Pacific site. The Nauru island effect (NIE) data set currently covers the period from September 2005 to May 2010 and will be updated periodically as new data are obtained. This data set will help scientists in their analysis of cloud and radiation data at Nauru and will enable them to perform more relevant comparisons of observations and model results. This conceptual model of the Nauru island effect phenomenon shows the location of the ARM and auxiliary Licor shortwave radiometer sites.

493

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 18, 2012 [Facility News] January 18, 2012 [Facility News] Wind Profiler Completes Offsite Campaign Bookmark and Share The radar wind profiler operates by sending pulses of energy into the sky and measuring the strength and frequency of returned energy. The radar wind profiler operates by sending pulses of energy into the sky and measuring the strength and frequency of returned energy. Between November 2010 and November 2011, a handful of meteorological instruments-including Doppler sodar, ultrasonic anemometers, and one of ARM's radar wind profilers-gathered massive amounts of data for the Columbia Basin Wind Energy Study. To ensure that the data collected represent conditions experienced by real wind plants, the instruments were placed next to an operating wind farm on the eastern border of Washington

494

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2010 [Facility News] July 31, 2010 [Facility News] Containers for Aerosol Observing Systems Pass Acceptance Testing Bookmark and Share Left to right: Pat Maloy, Stephen Springston, and Mike Ritsche inspect the AMF2 AOS container. They checked for proper locations of unistrut on the ceiling, walls and floor for connecting racks and other equipment, as well as functioning of HVAC units and infrared heaters (above Mike's head). Red lights are required for nighttime ship operations, and the hatch in ceiling will accommodate the aerosol stack. Left to right: Pat Maloy, Stephen Springston, and Mike Ritsche inspect the AMF2 AOS container. They checked for proper locations of unistrut on the ceiling, walls and floor for connecting racks and other equipment, as well as functioning of HVAC units and infrared heaters (above Mike's head). Red

495

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2006 [Facility News] January 31, 2006 [Facility News] Media Day Kicks Off Tropical Cloud Study in Australia Bookmark and Share While on the ground, the Twin Otter (left) and Proteus (right) are sharing hangar space at the Royal Australian Air Force base for the duration of TWP-ICE field operations. While on the ground, the Twin Otter (left) and Proteus (right) are sharing hangar space at the Royal Australian Air Force base for the duration of TWP-ICE field operations. Two days after a highly successful media day, January 21 marked the official start of flight operations for the Tropical Warm Pool International Cloud Experiment in Darwin, Australia. Science team members are guiding the aircraft missions from the Bureau of Meteorology's Forecast Center in Darwin; the rest of the experiment activities are being managed

496

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2007 [Facility News] 31, 2007 [Facility News] Long-term Radiosonde Validation Campaign Concludes Bookmark and Share In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency) In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency)

497

Facilities evaluation report  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

498

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2006 [Facility News] April 15, 2006 [Facility News] TWP Site Hosts Preliminary Study for Long Term Measurements of Greenhouse Gases Bookmark and Share To validate the space-based carbon dioxide retrievals by the Orbiting Carbon Observatory (OCO) through comparative carbon dioxide measurements, ARM's Tropical Western Pacific site in Darwin, Australia, is hosting a ground-based solar-viewing Fourier transform spectrometer (FTS) mobile laboratory, sponsored by the OCO Science Team. Between January 15 and February 7, 2006, overflights of the FTS site, as well as "flights of opportunity" by ARM's Proteus aircraft during the Tropical Warm Pool International Cloud Experiment, were completed. Additional flights from the European Union's Geophysica aircraft over the site in November and December

499

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 25, 2010 [Facility News] October 25, 2010 [Facility News] Testing Underway for New Doppler Lidars Bookmark and Share Two of the three new Doppler lidars are shown here during testing at the Southern Great Plains site in October. Two of the three new Doppler lidars are shown here during testing at the Southern Great Plains site in October. To improve climate models, the scientific community needs accurate and routine measurements of atmospheric winds with high vertical and temporal resolution under clear-air conditions. In particular, measurements of clear-air vertical air velocities will compliment in-cloud vertical velocity measurements from existing 35 and 95 gigahertz ARM cloud radars. In response to this need, three new Doppler lidars were purchased with funds from the American Recovery and Reinvestment Act and began a test

500

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2007 [Facility News] September 30, 2007 [Facility News] Atqasuk Joins International Network of Meteorological Stations Bookmark and Share On the skydeck at Atqasuk, the new met pack (above right) and GPS receiver (circled at left) acquire data for the SuomiNet. On the skydeck at Atqasuk, the new met pack (above right) and GPS receiver (circled at left) acquire data for the SuomiNet. At the North Slope of Alaska, the ARM operates a research site in the remote town of Atqasuk, Alaska, to provide continental Arctic data to the climate research community. The Atqasuk site is proving useful to climate modelers since this inland site is more homogenous and uniform than coastal sites during summer months. Enhancements to the instrument suite in Atqasuk last year led to a recent addition that solidified Atqasuk's position on