National Library of Energy BETA

Sample records for facility project newport

  1. EA-1917: Wave Energy Test Facility Project, Newport, OR

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

  2. Newport Nearshore Windpark | Open Energy Information

    Open Energy Info (EERE)

    Nearshore Windpark Facility Newport Nearshore Windpark Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Delsea Energy Developer Delsea Energy...

  3. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  4. ORP Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 222-S Laboratory 242-A Evaporator Newsroom Contracts &...

  5. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building Canyon ...

  6. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  7. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Station Newport Wind Resource Assessment A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center Robi Robichaud, Jason Fields, and Joseph Owen Roberts Technical Report NREL/TP-6A20-52801 February 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency &

  8. Renewable Energy Projects at Federal Facilities | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal Energy Management Program (FEMP) tracks the following examples of renewable energy projects at federal facilities. To find a federal renewable energy project, browse the ...

  9. Newport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424, -69.2739365 Show Map Loading map... "minzoom":false,"mappingservice...

  10. MHK Projects/Bonnybrook Wastewater Facility Project 2 | Open...

    Open Energy Info (EERE)

    Bonnybrook Wastewater Facility Project 2 < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlem...

  11. Newport County, Rhode Island: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    5 Climate Zone Subtype A. Registered Energy Companies in Newport County, Rhode Island Forbes Energy LLC Places in Newport County, Rhode Island Jamestown, Rhode Island Little...

  12. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  13. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  14. Manhattan Project Signature Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manhattan Project » Manhattan Project Signature Facilities Manhattan Project Signature Facilities The "Gadget" device fully assembled atop the 100-foot firing tower, shortly before the Trinity test. July 15, 1945. The "Gadget" device fully assembled atop the 100-foot firing tower, shortly before the Trinity test. July 15, 1945. New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy, in the mid-1990s, developed a list of eight

  15. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  16. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  17. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  18. Cyclotron Institute Upgrade Project - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Overview / K150 Cyclotron / Light Ion Guide / Heavy Ion Guide / Negative Ion Source / CB-ECRIS Facility Upgrade White Paper Overview Picture of the experimental set up to measure beta-decay half-lives. On January 3, 2005 the Cyclotron Institute Upgrade Project (CIUP) began with the approval of the CIUP management plan by the Department of Energy Nuclear Physics Office. The project will extend to the first quarter of calendar year 2011. When completed, the upgraded facility will provide

  19. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  20. Tribal Renewable Energy Advanced Course: Facility Scale Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course ...

  1. Community- and Facility-Scale Tribal Renewable Energy Project...

    Energy Savers [EERE]

    and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance ...

  2. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline ...

  3. Projects | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects bgclang Compiler Hal Finkel Cobalt Scheduler Bill Allcock, Paul Rich, Brian Toonen, Tom Uram GLEAN: Scalable In Situ Analysis and I/O Acceleration on Leadership Computing Systems Michael E. Papka, Venkat Vishwanath, Mark Hereld, Preeti Malakar, Joe Insley, Silvio Rizzi, Tom Uram Petrel: Data Management and Sharing Pilot Ian Foster, Michael E. Papka, Bill Allcock, Ben Allen, Rachana Ananthakrishnan, Lukasz Lacinski The Swift Parallel Scripting Language for ALCF Systems Michael Wilde,

  4. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  5. EIS-0214: Northwest Regional Power Facility Project

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes the WA Power LLC proposal to construct and operate a 838 megawatt gas-fired combustion turbine facility near the town of Creston, Washington. The project site is approtiately 1,200 acres, of which less than 140 acres be impacted.

  6. Fast Flux Test Facility Closure Project - Project Management Plan

    SciTech Connect (OSTI)

    BEACH, R.R.

    2002-09-26

    The Fast Flux Test Facility (FFTF) Closure Project, Project Management Plan, Revision 5, provides the scope, cost, and schedule to achieve the most cost effective and expeditious closure of the FFTF to an assumed final end-state with the reactor vessel and the containment building, below the 5504 grade level, being entombed in place. Closure will be completed by December 2009 at a cost of $547 million.

  7. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  8. Key Energy-Saving Projects for Smaller Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Energy-Saving Projects for Smaller Facilities This presentation discusses how smaller industrial facilities can save energy and how the Industrial Assessment Centers can help. ...

  9. Projects | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Thomas Jefferson Site Office (TJSO) TJSO Home About Projects Contract Management NEPA Documents Resources Contact Information Thomas Jefferson Site Office U.S. Department of Energy 12000 Jefferson Avenue Newport News, VA 23606 P: (757) 269-7140 Projects Print Text Size: A A A FeedbackShare Page 12 GeV Upgrade Project Link to Website External link Technology Engineering Development Facility Project .pdf file (29KB) Utilities Infrastructure Modernization Project .pdf file (25KB) Last

  10. Recovery Act Workers Demolish Facility Tied to Project Pluto History |

    Office of Environmental Management (EM)

    Department of Energy Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11.

  11. Tribal Renewable Energy Advanced Course: Facility Scale Project Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Facility Scale Project Development Tribal Renewable Energy Advanced Course: Facility Scale Project Development Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development and Financing: Facility Scale" by clicking on the .swf file below. You can also download a PDF of the PPT slides. This course provides in-depth information on the process for developing facility-scale renewable energy projects on tribal

  12. Newport News in Review, ch. 47, segment includes TEDF groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnewport-news-review-ch-47-segment-includes-tedf-groundbreaking-event Newport News in Review, ch. 47, segment includes TEDF groundbreaking event...

  13. Newport Beach, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Newport Beach, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6189101, -117.9289469 Show Map Loading map... "minzoom":false,"mappingser...

  14. Renewable Energy Project Development and Financing: Facility Scale

    Energy Savers [EERE]

    Facility Scale Detailed Hypothetical Example of How to Use Renewable Power in Your Small to Medium-Sized Tribal Facilities Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Facility-Scale Process: Hypothetical Example - Project development and financing concepts - Project development and financing process and decision points - Facility-scale project as an investment (or commitment to an alternative utility payment) - How to pay for

  15. Long-Baseline Neutrino Facility / Deep Underground Neutrino Project

    Energy Savers [EERE]

    (LBNF-DUNE) | Department of Energy Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Long-Baseline Neutrino Facility / Deep Underground Neutrino Project (LBNF-DUNE) Chris Mossey, Deputy Lab Director (Fermi) and Project Director for LBNF-DUNE March 23, 2016 PDF icon Presentation More Documents & Publications EA-1943: Final Environmental Assessment EA-1943: Draft Environmental

  16. Jefferson Lab Project Team Receives Department of Energy Award | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Pictured are office, meeting and work center areas in the Technology and Engineering Development Facility. Jefferson Lab Project Team Receives Department of Energy Award Newport News, Va., April 29, 2014 - A project team at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility - or Jefferson Lab - recently received a DOE Secretary's Achievement Award for creating a new building complex that will advance the lab's unique capabilities in superconducting

  17. National Ignition Facility project acquisition plan revision 1

    SciTech Connect (OSTI)

    Clobes, A.R.

    1996-10-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  18. Education & Collection Facility GSHP Demonstration Project

    SciTech Connect (OSTI)

    Joplin, Jeff

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.

  19. Community- and Facility-Scale Tribal Renewable Energy Project Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Finance Workshop: Colorado | Department of Energy and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop: Colorado September 18, 2013 - 2:20pm Addthis September 18-20, 2013 Golden, Colorado National Renewable Energy Laboratory The Office of Indian Energy held a Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

  20. 2013 Community- and Facility-Scale Tribal Renewable Energy Project

    Energy Savers [EERE]

    Development and Finance Workshop Presentations and Agenda | Department of Energy Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda 2013 Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Presentations and Agenda Download the agenda and available presentations from guest speakers at the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project

  1. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  2. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  3. Facility Software Quality Assurance (SQA) for Captal Project Critical

    Energy Savers [EERE]

    Decisions RM | Department of Energy Software Quality Assurance (SQA) for Captal Project Critical Decisions RM Facility Software Quality Assurance (SQA) for Captal Project Critical Decisions RM The purpose of this Software Quality Assurance for Capital Project Critical Decision Review Module (SQA RM) is to identify, integrate, and clarify, in one EM document, the SQA performance objectives, criteria, and guidance needed to review project documents and activities. PDF icon Facility Software

  4. Pyrotek Graphitization Facility Expansion Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt016_es_sekedat_2011_p.pdf More Documents & Publications Pyrotek Graphitization Facility Expansion Project Pyrotek Graphitization Facility Expansion Project EA-1720: Finding of No Significant Impact

  5. Renewable Energy Project Development and Financing: Facility...

    Energy Savers [EERE]

    ... * Review tribal facility electric cost data, regulations for permitting, and interconnection requirements * Assemble or communicate with the right team-those in positions or ...

  6. Fast flux test facility, transition project plan

    SciTech Connect (OSTI)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  7. National Biomedical Tracer Facility. Project definition study

    SciTech Connect (OSTI)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  8. Community Water Pump and Treatment Facility PV Solar Power Project

    Energy Savers [EERE]

    200,000 kWhyear PROJECT LOCATION SITE DETAILS Water Pump and Treatment Facility Sole provider of water to Pueblo and its 5,000 residents 1 pump house, 2 water ...

  9. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect (OSTI)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  10. Workers Make History by Demolishing Manhattan Project Facilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workers Make History by Demolishing Manhattan Project Facilities Workers Make History by Demolishing Manhattan Project Facilities February 16, 2016 - 1:45pm Addthis Once K-27 is demolished, it will mark the first-ever cleanup of an entire gaseous diffusion complex anywhere. | Office of Environmental Management video David Sheeley David Sheeley Editor/Writer For the first time in history, workers will complete the demolition and cleanup of an entire gaseous diffusion

  11. Alaska Facility- and Community-Scale Project Development Regional Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshops | Department of Energy Facility- and Community-Scale Project Development Regional Energy Workshops Alaska Facility- and Community-Scale Project Development Regional Energy Workshops April 13, 2015 - 9:40am Addthis March 23-25, 2015 Bethel, Alaska University of Alaska Fairbanks March 26-27, 2015 Dillingham, Alaska University of Alaska, Bristol Bay Campus March 30-April 1, 2015 Juneau, Alaska University of Alaska Southeast The Office of Indian Energy hosted three back-to-back

  12. Major Risk Factors to the Integrated Facility Disposition Project

    Office of Environmental Management (EM)

    Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization,

  13. Project Profile: National Solar Thermal Test Facility

    Broader source: Energy.gov [DOE]

    The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

  14. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  15. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  16. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  17. TA1 Room Layout with Newport Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SCALE: 12" X 12" N S E W 22.50° JUPITER LASER FACILITY TA1 ROOM TA1 CHAMBER WEST BEAM CABLE COVER VISAR VIDMAR C O N T R O L R A C K

  18. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  19. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect (OSTI)

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  20. Mixed and Low-Level Waste Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  1. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  2. Newport News Business Owner Earns Award From Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newport News Business Owner Earns Award From Jefferson Lab Newport News Business Owner Earns Award From Jefferson Lab March 2, 2000 Jefferson Lab and the Department of Energy recently recognized the winner of the laboratory's Small Disadvantaged Business Contractor Award for FY1999. Jefferson Lab's Deputy Director, Christoph Leemann, presented the award to Beverly Hilton, owner of Hilton's Environmental, Inc. of Newport News during a ceremony attended by lab and DOE officials. Hilton and her

  3. Jefferson Lab to host open house May 19 (Inside Newport News Central) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab to host open house May 19 (Inside Newport News Central) External Link: http://www.insidenewportnewscentral.com/stories/364451-community-jefferson-lab-t...

  4. EA-1917: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1917: Draft Environmental Assessment Wave Energy Test Facility Project, Newport, OR ... and operation of their Wave Energy Test Project located off the coast of Newport, Oregon. ...

  5. Environmental Restoration Disposal Facility (Project W-296) Safety Assessment

    SciTech Connect (OSTI)

    Armstrong, D.L.

    1994-08-01

    This Safety Assessment is based on information derived from the Conceptual Design Report for the Environmental Restoration Disposal Facility (DOE/RL 1994) and ancillary documentation developed during the conceptual design phase of Project W-296. The Safety Assessment has been prepared to support the Solid Waste Burial Ground Interim Safety Basis document. The purpose of the Safety Assessment is to provide an evaluation of the design to determine if the process, as proposed, will comply with US Department of Energy (DOE) Limits for radioactive and hazardous material exposures and be acceptable from an overall health and safety standpoint. The evaluation considered affects on the worker, onsite personnel, the public, and the environment.

  6. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  7. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  8. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  9. PROJECT MANGEMENT PLAN EXAMPLES Facility End State Decisions Examples

    Office of Environmental Management (EM)

    Facility End State Decisions Examples Example 3 3.0 POST DEACTIVATION END STATE VISION The Heavy Water Facility is scheduled to cease moderator operations and commence final shutdown of moderator processing and processing support systems. The Heavy Water Facility and supporting facilities will be declared excess. Deactivation will place the facilities into a passively safe, minimal cost, long term S&M mode. At the end of the deactivation period, the facilities will be categorized

  10. Facility Software Quality Assurance for Capital Project Decisions RM

    Office of Environmental Management (EM)

    Facility Representative of the Year Award Facility Representative of the Year Award The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. PDF icon FROTY_Guidance_14-11-13.pdf Responsible Contacts

  11. Mixed and Low-Level Treatment Facility Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  12. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  13. Sicangu Lakota Oyate, Hihan Sapa Wapaha, Tate Woilagyapi Project - 30 MW Wind Energy Facility

    Energy Savers [EERE]

    Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) 30 MW Wind Energy Facility Phil Two Eagle, Director Ken Haukaas, Project Manager Resource Development Office Dale Osborn, President Distributed Generation Systems, Inc. (DISGEN) www.disgenonline.com Sicangu Lakota Oyate (Rosebud Sioux Tribe) Hihan Sapa Wapaha Tate Woilagyapi Project (Owl Feather War Bonnet Wind Project) Project Objectives 1. Complete all the development

  14. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Energy Savers [EERE]

    Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos

  15. Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN

    Office of Environmental Management (EM)

    & ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did This Review Approximately two million pounds of mercury are unaccounted for at Y-12 and mercury contamination has been detected in both soils and groundwater. The IFDP will

  16. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Biomass Program Major DOE Biofuels Project Locations in the United States PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

    Slide 1 The Current State of Technology for Cellulosic Ethanol

    Algal Biofuel Technologies Slide 1

    101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management

  17. Independent Oversight Assessment, Salt Waste Processing Facility Project -

    Office of Environmental Management (EM)

    2012 | Department of Energy Portsmouth/Paducah Project Office - May 2012 Independent Oversight Assessment, Portsmouth/Paducah Project Office - May 2012 May 2012 Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants This report provides the results of an independent assessment of the Department of Energy's (DOE) Portsmouth/Paducah Project Office oversight of conduct of operations at DOE's depleted uranium

  18. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  19. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect (OSTI)

    Alan A. Chen

    2008-03-27

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in the understanding the origin of galactic {sup 26}Al, a target radioisotope for gamma ray astronomy; the {sup 13}N(p,{gamma}){sup 14}O reaction in turn is the trigger reaction for the transition into the Hot-CNO cycles in novae and X-ray bursts. A graduate student of mine, who has been supported part-time by this grant, completed the evaluation of the {sup 25}Al(p,{gamma}){sup 26}Si reaction as part of his plans to measure this reaction at TRIUMF for his Ph.D. thesis project. I also hired a part-time undergraduate student for the 2004-05 academic year to assist with the evaluations, including that of the {sup 13}N(p,{gamma}){sup 14}O reaction. Year 3 (2005-06): The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions - This year's progress was closely coupled to new results coming from our collaboration on the DRAGON spectrometer team at TRIUMF. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions were both measured, and significant modifications to their respective reaction rates were required. Both are required input toward predicting the respective amounts of Titanium-44 and Aluminum-26 produced in our galaxy, in supernovae, massive stars, and nova explosions. The {sup 26}Al(p,{gamma}){sup 27}Si reaction rate was successfully completed. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction in particular served as the Ph.D. thesis for Christian Ouellet, and therefore the evaluation of this rate fell naturally within his thesis project. Christian successfully defended his thesis in 2007 and is now working for me on the McMaster DOE-funded Nuclear Data Project. In light of the recent data from his thesis, Christian is now putting the final touches on this evaluation, and will disseminate it through the Oak Ridge National Laboratory reaction rate database.

  20. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  1. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  2. Projects at the Component Development and Integration Facility. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This quarterly technical progress report presents progress on the projects at the component Development and Integration Facility (CDIF) during the first quarter of FY93. The CDIF is a major US Department of Energy (DOE) test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD proof-of-concept project; mine waste pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  3. Community- and Facility-Scale Tribal Renewable Energy Project Workshop to be Held in September

    Broader source: Energy.gov [DOE]

    Tribal leaders and staff are invited to attend this interactive workshop that will walk through the five steps of developing and financing community- and facility-scale projects on tribal lands.

  4. Aug. 27 Webinar Will Focus on Financing Facility- and Community-Scale Tribal Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Aug. 27 Tribal Renewable Energy Series webinar will explore various forms of financing for smaller facility- and community-scale renewable energy projects, including their relative advantages and disadvantages to tribal communities.

  5. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    FEMP developed a guide to help federal agencies, as well as the developers and financiers that work with them, to successfully install large-scale renewable energy projects at federal facilities.

  6. Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop Agenda

    Broader source: Energy.gov [DOE]

    Downoad the agenda for the Office of Indian Energy's Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop, which will be held September 18-20 at the...

  7. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect (OSTI)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  8. FEDERAL FACILITY COMPLIANCE AGREEMENT (FFCA) STACK ISOLATION PROJECT FUNCTIONS & REQUIREMENTS

    SciTech Connect (OSTI)

    TRANBARGER, R.K.

    2003-12-16

    This document delineates the functions and requirements for the FFCA Stack Isolation Project for the 244-A, 244-BX, 244-5, and 244-TX DCRTs. The isolation of each ventilation system and stack includes the electrical, instrumentation, and mechanical isolation of the ventilation system and the installation of primary and annulus breather filters to provide passive ventilation to meet the FFCA requirements.

  9. Project Closeout Report Francium trapping facility at Triumf

    SciTech Connect (OSTI)

    Orozco, Luis A

    2014-09-30

    This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, the only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.

  10. Central Japan Synchrotron Radiation Research Facility Project-(II)

    SciTech Connect (OSTI)

    Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y.; Katoh, M.; Hori, Y.; Sasaki, S.

    2010-06-23

    A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

  11. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  12. Newport News School Board Member Hosting Town Hall Thursday (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Newport News School Board Member Hosting Town Hall Thursday (Daily Press) External Link: http://articles.dailypress.com/2012-03-05/news/dp-nws-ednotebook-0305-20120304_1... By jlab_admin on Tue, 2012-03-06

  13. JLab Nanotube Research Leads To Newport News Start-Up (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Nanotube Research Leads To Newport News Start-Up (Daily Press) External Link: http://articles.dailypress.com/2012-08-03/news/dp-nws-cp-jefferson-lab-spinoff-2... By jlab_admin on Fri, 2012-08-03

  14. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect (OSTI)

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  15. Deuteron injector for Peking University Neutron Imaging Facility project

    SciTech Connect (OSTI)

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Yuan, Z. X.; Zhao, J.; Zhang, M.; Song, Z. Z.; Yu, J. X.; Guo, Z. Y.

    2012-02-15

    The deuteron injector developed for the PKUNIFTY (Peking University Neutron Imaging Facility) has been installed and commissioned at Peking University (PKU). The injector system must transfer 50 keV 50 mA of D{sup +} ion beam to the entrance of the 2 MeV radio frequency quadrupole (RFQ) with 10% duty factor (1 ms, 100 Hz). A compact 2.45 GHz permanent magnet electron cyclotron resonance (PMECR) ion source and a 1.36 m long low energy beam transport (LEBT) line using two solenoids was developed as the deuteron injector. A {phi}5 mm four-quadrant diaphragm was used to simulate the entrance of RFQ electrodes. The beam parameters are measured after this core with an emittance measurement unit (EMU) and a bending magnet for ion fraction analysis at the end of injector. During the commissioning, 77 mA of total deuteron beam was extracted from PMECR and 56 mA of pure D{sup +} beam that passed through the {phi}5 mm four-quadrant diaphragm was obtained at the position of RFQ entrance with the measured normalized rms emittance 0.12-0.16{pi} mm mrad. Ion species analysis results show that the deuteron fraction is as high as 99.5%. All of the parameters satisfy PKUNIFTY's requirements. In this paper, we will describe the deuteron injector design and report the commissioning results as well as the initial operation.

  16. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect (OSTI)

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  17. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  18. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  19. EERE Success Story-DOE-Funded Project is First Permanent Facility to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-produce Electricity from Geothermal Resources at an Oil and Gas Well | Department of Energy DOE-Funded Project is First Permanent Facility to Co-produce Electricity from Geothermal Resources at an Oil and Gas Well EERE Success Story-DOE-Funded Project is First Permanent Facility to Co-produce Electricity from Geothermal Resources at an Oil and Gas Well May 12, 2016 - 11:03am Addthis Source: Kirby Baier of Continental Resources Source: Kirby Baier of Continental Resources The U.S.

  20. Fast Flux Test Facility transition project resource loaded schedule. Revision 1

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1994-10-31

    Revision 1 of the Fast Flux Test Facility (FFTF) Transition Project Resource Loaded Schedule (RLS) provides detail to manage the major elements, project baseline and cost estimate for the FFF Transition Project within the Advanced Reactors Transition Program, comprised of Activity Data Sheets (ADS) 6640, 6641, and 6642. The scope includes all work in the Budget and Reporting categories of Program Integration (PI), Surveillance and Maintenance (S and M), and Deactivation/Compliance (D/C). The transition activities are necessary to bring the FFTF and related facilities to a safe deactivation state, while maintaining worker health and safety. The scope of ADS 6640 and 6642 is the FFTF Transition Project while the scope of ADS 6641 is the Hanford Site Nuclear Energy Legacies.

  1. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    This quarterly technical progress report presents progress on several different projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Pilot Program; Plasma Furnace Projects for waste destruction; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project for removal of radioactive materials; and Spray Casting Project.

  2. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future MissionFacilities FacilitiesTara Camacho-Lopez2016-04-06T18:06:13+00:00 National Solar Thermal ... experimental engineering data for the design, ...

  3. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  4. Energy Department Announces $5 Million to Develop Clean Energy Projects at Federal Facilities

    Broader source: Energy.gov [DOE]

    The Energy Department today announced $5 million in funding for nine projects that will advance the development of combined heat and power (CHP) and renewable energy technologies at facilities across the federal government and help meet energy efficiency, renewable energy, and greenhouse gas reduction goals.

  5. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    SciTech Connect (OSTI)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  6. Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    Broader source: Energy.gov [DOE]

    The Large-Scale Renewable Energy Guide: Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities provides best practices and other helpful guidance for federal agencies developing large-scale renewable energy projects.

  7. Newporter Apartments. Deep Energy Retrofit Short Term Results

    SciTech Connect (OSTI)

    Gordon, Andrew; Howard, Luke; Kunkle, Rick; Lubliner, Michael; Auer, Dan; Clegg, Zach

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost-effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960’s vintage low-rise multi-family apartment community (120 units in three buildings).

  8. Newporter Apartments: Deep Energy Retrofit Short-Term Results

    SciTech Connect (OSTI)

    Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

    2012-12-01

    This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

  9. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  10. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  11. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Connor, M.D.

    1994-09-29

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover.

  12. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  13. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  14. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect (OSTI)

    Streit, R.D.; Throop, A.L.

    1995-04-01

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  15. 340 Facility Secondary Containment and Leak Detection Project W-302 Functional Design Criteria

    SciTech Connect (OSTI)

    Stordeur, R.T.

    1995-03-01

    This functional design criteria for the upgrade to the 340 radioactive liquid waste storage facility (Project W-302) specifically addresses the secondary containment issues at the current vault facility of the 340 Complex. This vault serves as the terminus for the Radioactive Liquid Waste System (RLWS). Project W-302 is necessary in order to bring this portion of the Complex into full regulatory compliance. The project title, ``340 Facility Secondary Containment and Leak Detection``, illustrates preliminary thoughts of taking corrective action directly upon the existing vault (such as removing the tanks, lining the vault, and replacing tanks). However, based on the conclusion of the engineering study, ``Engineering Study of the 300 Area Process Wastewater Handling System``, WHC-SD-WM-ER-277 (as well as numerous follow-up meetings with cognizant staff), this FDC prescribes a complete replacement of the current tank/vault system. This offers a greater array of tanks, and provides greater operating flexibility and ease of maintenance. This approach also minimizes disruption to RLWS services during ``tie-in``, as compared to the alternative of trying to renovate the old vault. The proposed site is within the current Complex area, and maintains the receipt of RLWS solutions through gravity flow.

  16. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities

    SciTech Connect (OSTI)

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. For the purposes of this Guide, large-scale Federal renewable energy projects are defined as renewable energy facilities larger than 10 megawatts (MW) that are sited on Federal property and lands and typically financed and owned by third parties.1 The U.S. Department of Energy’s Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This Guide is intended to provide a general resource that will begin to develop the Federal employee’s awareness and understanding of the project developer’s operating environment and the private sector’s awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this Guide has been organized to match Federal processes with typical phases of commercial project development. FEMP collaborated with the National Renewable Energy Laboratory (NREL) and professional project developers on this Guide to ensure that Federal projects have key elements recognizable to private sector developers and investors. The main purpose of this Guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project. This framework begins the translation between the Federal and private sector operating environments. When viewing the overall

  17. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  18. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  19. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  20. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  1. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  2. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  3. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  4. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  5. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  6. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  7. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  8. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect (OSTI)

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

  9. Secretary of Energy Announces Approval and Funding for Facilities Upgrade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs | Department of Energy Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs Secretary of Energy Announces Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs February 22, 2006 - 12:09pm Addthis NEWPORT NEWS , VA - Secretary of Energy Samuel W.

  10. The Role of the Federal Project Director: Lessons from the National Ignition Facility

    Broader source: Energy.gov [DOE]

    The National Ignition Facility (NIF) Facility is home of the world’s largest laser.  With 192 laser beams that can deliver more than 60 times the energy of any previous laser system, NIF represents...

  11. Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

    1991-01-01

    This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

  12. Fort Irwin integrated resource assessment. Volume 3: Sitewide Energy Project identification for buildings and facilities

    SciTech Connect (OSTI)

    Keller, J.M.; Dittmer, A.L.; Elliott, D.B.; McMordie, K.L.; Richman, E.E.; Stucky, D.J.; Wahlstrom, R.R.; Hadley, D.L.

    1995-02-01

    The U.S. Army Forces Command (FORSCOM) has tasked the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Irwin facility located near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 16 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present valve (NPV) and savings-to-investment ratio (SIR) of each ERO.

  13. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect (OSTI)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

  14. DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy...

  15. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    SciTech Connect (OSTI)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a technical integration team, consists of a series of tasks designed to meet the project objectives. This report was reviewed by a participatory peer review panel (PPRP), sponsor reviewers, the NRC, the U.S. Geological Survey, and other stakeholders. Comments from the PPRP and other reviewers were considered when preparing the report. The SSC model was completed at the end of 2011.

  16. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  17. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect (OSTI)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  18. Advanced Wind Energy Projects Test Facility Moving to Texas Tech University

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

  19. Compressed Air System Project Improves Production at a Candy Making Facility

    SciTech Connect (OSTI)

    2002-03-01

    The H.B. Reese Company successfully completed an upgrade of this compressed air system at its facility in Hershey, PA. The plant took two compressors offline while increasing throughput and quality.

  20. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  1. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    SciTech Connect (OSTI)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  2. Criticality Safety Lessons Learned in a Deactivation and Decommissioning Environment [A Guide for Facility and Project Managers

    SciTech Connect (OSTI)

    NIRIDER, L.T.

    2003-08-06

    This document was designed as a reference and a primer for facility and project managers responsible for Deactivation and Decommissioning (D&D) processes in facilities containing significant inventories of fissionable materials. The document contains lessons learned and guidance for the development and management of criticality safety programs. It also contains information gleaned from occurrence reports, assessment reports, facility operations and management, NDA program reviews, criticality safety experts, and criticality safety evaluations. This information is designed to assist in the planning process and operational activities. Sufficient details are provided to allow the reader to understand the events, the lessons learned, and how to apply the information to present or planned D&D processes. Information is also provided on general lessons learned including criticality safety evaluations and criticality safety program requirements during D&D activities. The document also explores recent and past criticality accidents in operating facilities, and it extracts lessons learned pertinent to D&D activities. A reference section is included to provide additional information. This document does not address D&D lessons learned that are not pertinent to criticality safety.

  3. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect (OSTI)

    HUNACEK, G.S.

    2000-08-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  4. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  5. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  6. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  7. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  8. Developing Renewable Energy Projects Larger Than 10 MWs at Federal Facilities (Book)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    To accomplish Federal goals for renewable energy, sustainability, and energy security, large-scale renewable energy projects must be developed and constructed on Federal sites at a significant scale with significant private investment. The U.S. Department of Energy's Federal Energy Management Program (FEMP) helps Federal agencies meet these goals and assists agency personnel navigate the complexities of developing such projects and attract the necessary private capital to complete them. This guide is intended to provide a general resource that will begin to develop the Federal employee's awareness and understanding of the project developer's operating environment and the private sector's awareness and understanding of the Federal environment. Because the vast majority of the investment that is required to meet the goals for large-scale renewable energy projects will come from the private sector, this guide has been organized to match Federal processes with typical phases of commercial project development. The main purpose of this guide is to provide a project development framework to allow the Federal Government, private developers, and investors to work in a coordinated fashion on large-scale renewable energy projects. The framework includes key elements that describe a successful, financially attractive large-scale renewable energy project.

  9. Compressed Air Project Improves Efficiency and Production at Harland Publishing Facility

    SciTech Connect (OSTI)

    2002-05-01

    Case study describing a project which configured a printing machine so that it consumes less compressed air and required lower pressure to operate effectively. Project replicated throughout the company, leading to energy cost savings of $200,000 per year, or 2.9 million kilowatt-hours.

  10. CENTRAL STORAGE FACILITY PROJECT IN COLOMBIA TO PROVIDE THE SAFE STORAGE AND PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES

    SciTech Connect (OSTI)

    Greenberg, Raymond; Wright, Kyle A.; McCaw, Erica E.; Vallejo, Jorge

    2009-10-07

    The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. Internationally, over 40 countries are cooperating with GTRI to enhance the security of these materials. The GTRI program has worked successfully with foreign countries to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources. GTRI began cooperation with the Republic of Colombia in April 2004. This cooperation has been a resounding success by securing forty high-risk sites, consolidating disused/orphan sources at an interim secure national storage facility, and developing a comprehensive approach to security, training, and sustainability. In 2005 the Colombian Ministry of Mines and Energy requested the Department of Energys support in the construction of a new Central Storage Facility (CSF). In December 2005, the Ministry selected to construct this facility at the Institute of Geology and Mining (Ingeominas) site in Bogota. This site already served as Colombias national repository, where disused sources were housed in various buildings around the complex. The CSF project was placed under contract in May 2006, but environmental issues and public protests, which led to a class action lawsuit against the Colombian Government, forced the Ministry to quickly suspend activities, thereby placing the project in jeopardy. Despite these challenges, however, the Ministry of Mines and Energy worked closely with public and environmental authorities to resolve these issues, and continued to be a strong advocate of the GTRI program. In June 2008, the Ministry of Mines and Energy was granted the construction and environmental licenses. As a result, construction immediately resumed and the CSF was completed by December 2008. A commissioning ceremony was held for the new facility in January 2009, which was attended by representatives from the Department of Energy, U.S. Embassy, and the Ministry of Mines and Energy, including the Minister and Vice Minister.

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Orleans, LA (United States) Superconducting Super Collider Project Office (United States) Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) US...

  12. Portsmouth Proposed Plan for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project

    Broader source: Energy.gov [DOE]

    DOE has evaluated alternatives for demolishing the buildings at the Portsmouth Site. Two remedial alternatives were developed for consideration. This Proposed Plan describes the required no-action alternative (Alternative 1) and a D&D alternative (Alternative 2). The preferred alternative is Alternative 2, controlled demolition of the process buildings and complex facilities.

  13. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  14. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  15. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    SciTech Connect (OSTI)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  16. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect (OSTI)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  17. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    SciTech Connect (OSTI)

    Moss, R. H.; Delgado, A.; Malone, E L.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure; (4) Vulnerability assessments can be connected to efforts to improve facility resilience to motivate participation; and (5) Efficient, scalable methods for vulnerability assessment can be developed, but additional case studies and evaluation are required.

  18. West Valley Demonstration Project Phase I Decommissioning- Facility Disposition Partnering Performance Agreement

    Broader source: Energy.gov [DOE]

    The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE...

  19. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  20. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect (OSTI)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  1. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  2. Jefferson Lab Sets Sept. 1 Groundbreaking for $73.2 M Facility | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Sets Sept. 1 Groundbreaking for $73.2 M Facility Jefferson Lab Sets Sept. 1 Groundbreaking for $73.2 M Facility NEWPORT NEWS, Va., Aug. 31, 2010 - The U.S. Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility will hold a groundbreaking on Sept. 1 to inaugurate the construction phase of its new $73.2 million Technology and Engineering Development Facility, or TEDF. EwingCole, based in Philadelphia, Penn., designed the state-of-the-art facility, that will bring

  3. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  4. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    SciTech Connect (OSTI)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results in plant status control, information management, knowledge management, and 'Real-Time-Truth' as it relates to the current plant conditions. The following report includes two attachments; each attachment represents Pilot Project 1 and 3. The two attachments also provide a report on two distinct milestones that were completed and are described below: M3L11IN06030307 - Complete initiation of two pilot projects Complete initiation of pilot projects on real-time configuration management and control to overcome limitations with existing permanent instrumentation and real-time awareness of plant configurations; two candidate projects that consider low-cost wireless technology for in situ configuration monitoring and candidate technologies and an information architecture for outage management and control will be initiated with utilities. M3L11IN06030309 - Complete data collection, R&D plans, and agreements needed to conduct the two pilot projects Complete data collection conducted at pilot project utilities to support real-time configuration management and outage control center pilot studies conducted; R&D plan for pilot projects produced and needed agreements established to support R&D activities.

  5. RH-LLW Disposal Facility Project CD-2/3 to Design/Build Proposal Reconciliation Report

    SciTech Connect (OSTI)

    Annette L. Schafer

    2012-06-01

    A reconciliation plan was developed and implemented to address potential gaps and responses to gaps between the design/build vendor proposals and the Critical Decision-2/3 approval request package for the Remote-Handled Low Level Waste Disposal Facility Project. The plan and results of the plan implementation included development of a reconciliation team comprised of subject matter experts from Battelle Energy Alliance and the Department of Energy Idaho Operations Office, identification of reconciliation questions, reconciliation by the team, identification of unresolved/remaining issues, and identification of follow-up actions and subsequent approvals of responses. The plan addressed the potential for gaps to exist in the following areas: • Department of Energy Order 435.1, “Radioactive Waste Management,” requirements, including the performance assessment, composite analysis, monitoring plan, performance assessment/composite analysis maintenance plan, and closure plan • Environmental assessment supporting the National Environmental Policy Act • Nuclear safety • Safeguards and security • Emplacement operations • Requirements for commissioning • General project implementation. The reconciliation plan and results of the plan implementation are provided in a business-sensitive project file. This report provides the reconciliation plan and non-business sensitive summary responses to identified gaps.

  6. The North West Shelf Project; Australian LNG facility ahead of schedule

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    The LNG complex, one of the most important natural resource developments ever undertaken in Australia, will provide a major new export industry for the country. It is based on vast hydrocarbon resources, primarily natural gas, discovered in the early 1970s on the North West Continental Shelf. The project consists of the North Rankin A gas drilling and production platform, a 70-mile subsea pipeline carrying the gas to shore, a domestic gas plant and three LNG trains. A second drilling and production platform, to be located in the Goodwyn field about 23 km from the North Rankin A platform, is now in the development stages. The complex is detailed in this paper.

  7. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  8. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area.

  9. EERC pilot-scale CFBC evaluation facility Project CFB test results. Topical report, Task 7.30

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

    1992-09-01

    Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors` designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550{degree}F, with low-rank coals having optimal sulfur capture approximately 100{degree}F lower.

  10. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect (OSTI)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  11. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  12. Media Advisory: Poster Session Highlights Projects, Research Carried Out by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Interns at Jefferson Lab | Jefferson Lab Aug. 1, 2014 Time: 11:45 a.m. - 1 p.m. Place: The CEBAF Center lobby at Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 Event: More than 40 high school students and college undergraduates who participated in summer science internship programs at the Department of Energy's Thomas Jefferson National Accelerator Facility, or Jefferson Lab, will share with invited guests and members of the lab community results from their respective

  13. Adams Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  14. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  16. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  17. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Cleveland Project Phase 2 | Open Energy Information

    Open Energy Info (EERE)

    Project Phase 2 Jump to: navigation, search Name Cleveland Project Phase 2 Facility Cleveland Project Phase 2 Sector Wind energy Facility Type Offshore Wind Facility Status...

  1. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  4. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  5. Stateline Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Stateline Wind Energy Project Facility Stateline Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Gary Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Gary Wind Energy Project Jump to: navigation, search Name Gary Wind Energy Project Facility Gary Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  7. Condon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Condon Wind Project Jump to: navigation, search Name Condon Wind Project Facility Condon Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  8. Project Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Project Management MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It ...

  9. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  10. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities State-Of-The-Art Supporting all elements of IMS projects Facilities Labs and Test Sites Integrated Military Systems maintains a number of state-of-the-art testing and fabrication facilities. Supporting all elements of IMS projects including design, prototyping, fabrication, development, testing, and assessments, these facilities enable customers to quickly realize their projects and get the information they need in a fast and effective way. Use the "left" and

  11. Facility Disposition Projects

    Office of Environmental Management (EM)

    6 NE Budget Request Presentation FY16 NE Budget Request Presentation PDF icon Office of Nuclear Energy FY16 Budget Request Presentation More Documents & Publications FY17 NE Budget Request Presentation Office of Nuclear Energy Fiscal Year 2014 Budget Request FY 2016 Budget Justification

    7 NE Budget Request Presentation FY17 NE Budget Request Presentation PDF icon FY17 NE Budget Request Presentation More Documents & Publications FY16 NE Budget Request Presentation Office of

  12. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  13. Manhattan Project: Maps

    Office of Scientific and Technical Information (OSTI)

    Scroll down to view thumbnails of each map. Leslie Groves looks at a map of Japan. Manhattan Project: General Manhattan Project Facilities Places map "Signature Facilities of the ...

  14. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect (OSTI)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  15. Facility Disposition Safety Strategy RM

    Broader source: Energy.gov [DOE]

    The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

  16. Beryllium Facilities & Areas - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Facilities that have been Demolished Outdoor Areas where Beryllium Contamination has been Identified Hanford Projects and Facilities - Descriptions Former Hanford...

  17. Biogenic opal germanium/silicon ratios used to monitor upwelling intensity in Newport Lagoon section, Monterey Formation, California

    SciTech Connect (OSTI)

    Murnane, R.J.

    1986-04-01

    Empirical evidence and modeling of geochemical cycles of silicon (Si) and germanium (Ge) suggest that opal Ge/Si ratios record water Ge/Si ratios although some fractionation of germanium from silicon occurs during biogenic opal formation. Modeling results also suggest that opal Ge/Si ratios could record changes in upwelling intensity. In today's oceans, areas of high productivity associated with upwelling show relatively elevated surface-water nutrient concentrations, whereas areas of low productivity with restricted upwelling exhibit low surface-water nutrient concentrations. Fractionation of germanium from silicon during biogenic opal formation would cause the surface ocean's Ge/Si ratio to increase as surface-water nutrient concentrations are lowered. Diatomites from the Newport Lagoon section of the Monterey Formation were analyzed to test the hypothesis that biogenic opal Ge/Si ratios could be used to trace upwelling intensity. Diatom assemblages of the Monterey Formation vary with upwelling intensity over a time scale of millions of years. Samples collected from the middle and late Miocene have high ratios (up to 8 x 10/sup -7/) when diatom assemblages indicate relatively weak upwelling, and low ratios (less than 6 x 10/sup -7/) when diatom assemblages indicate relatively strong upwelling. These ratios agree with modeling predictions. Opal Ge/Si ratios may also record upwelling fluctuations on much shorter times scales. Adjacent, centimeter-scale, lighter and darker layers record past variations in biogenic and terrigenous inputs to ocean-bottom sediments. Opal Ge/Si ratios may indicate whether the darker layers result from a relative decrease in surface-water productivity in response to a reduction in upwelling intensity, or only from a relative increase in terrigenous detrital inputs.

  18. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  19. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  20. THE PROJECT-X INJECTOR EXPERIMENT: A NOVEL HIGH PERFORMANCE FRONT-END FOR A FUTURE HIGH POWER PROTON FACILITY AT FERMILAB

    SciTech Connect (OSTI)

    Nagaitsev, S.; et al,

    2013-09-25

    A multi-MW proton facility, Project X, has been proposed and is currently under development at Fermilab. We are carrying out a program of research and development aimed at integrated systems testing of critical components comprising the front end of Project X. This program, known as the Project X Injector Experiment (PXIE), is being undertaken as a key component of the larger Project X R&D program. The successful completion of this program will validate the concept for the Project X front end, thereby minimizing a primary technical risk element within Project X. PXIE is currently under construction at Fermilab and will be completed over the period FY12-17. PXIE will include an H* ion source, a CW 2.1-MeV RFQ and two superconductive RF (SRF) cryomodules providing up to 25 MeV energy gain at an average beam current of 1 mA (upgradable to 2 mA). Successful systems testing will also demonstrate the viability of novel front end technologies that are expected find applications beyond Project X.

  1. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  2. Kotzebue Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Kotzebue Wind Project II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Tatanka Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Tatanka Wind Project II Facility Tatanka Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  4. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC...

  5. Hampton Roads Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    Project Facility Hampton Roads Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Virginia State Government Location...

  6. Kotzebue Wind Project III | Open Energy Information

    Open Energy Info (EERE)

    Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue...

  7. Highland Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Highland Wind Project Facility Highland Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Chamberlain Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Chamberlain Wind Project Facility Chamberlain Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  10. Condon Wind Project phase II | Open Energy Information

    Open Energy Info (EERE)

    Project phase II Jump to: navigation, search Name Condon Wind Project phase II Facility Condon Wind Project phase II Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Hydrogen Pilot Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Pilot Project Wind Farm Jump to: navigation, search Name Hydrogen Pilot Project Wind Farm Facility Hydrogen Pilot Project Sector Wind energy Facility Type Small Scale Wind Facility...

  12. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  13. American Recovery and Reinvestment Act ( ARRA) FEMP Technical Assistance, U.S. General Services Administration - Project 194 U.S. Custom Cargo Inspection Facility, Detroit, MI

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-05-31

    This report documents the findings of an on-site audit of the U.S. Customs Cargo Inspection Facility (CIF) in Detroit, Michigan. The federal landlord for this building is the General Services Administration (GSA). The focus of the audit was to identify various no-cost or low-cost energy-efficiency opportunities that, once implemented, would reduce electrical and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  14. Conceptual design statement of work for the immobilized low-activity waste disposal facility, project W-520

    SciTech Connect (OSTI)

    Pickett, W.W.

    1998-04-30

    This Statement of Work outlines the deliverables and schedule for preparation of the Project W-520 Conceptual Design Report, including, work plans, site development plan, preliminary safety evaluation, and conceptual design.

  15. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  16. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  17. Hardscrabble Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Hardscrabble Wind Power Project Jump to: navigation, search Name Hardscrabble Wind Power Project Facility Hardscrabble Wind Power Project Sector Wind energy Facility Type...

  18. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  19. Bayshore Recycling Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount...

  20. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  1. Highmore Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Highmore Wind Energy Project Jump to: navigation, search Name Highmore Wind Energy Project Facility Highmore Wind Energy Project Sector Wind energy Facility Type Commercial Scale...

  2. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...

  3. Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds a wide variety of renewable energy and energy efficiency projects in an effort to assist tribes in realizing their energy visions.

  4. Ground-water monitoring compliance projects for Hanford Site facilities: Progress Report for the Period July 1 to September 30, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    This report documents the progress of four Hanford Site ground-water monitoring projects for the period from July 1 to September 310, 1987. The four disposal facilities are the 300 Area Process Trenches, 183-H Solar Evaporation Basins, 200 Area Low-Level Burial Grounds, and Nonradioactive Dangerous Waste (NRDW) Landfill. This report is the fifth in a series of periodic status reports. During this reporting period, field activities consisted of completing repairs on five monitoring wells originally present around the 183-H Basins and completing construction of 25 monitoring wells around the 200 Area Burial Grounds. The 14 wells in the 200 East Area were completed by Kaiser Engineers Hanford (KEH) and the 11 wells in the 200 West Area were compelted by ONWEGO Well Drilling. The NRDW Landfill interim characterization report was submitted to the WDOE and the USEPA in August 1987. Analytical results for the 300 Area, 183-H, and the NRDW Landfill indicate no deviations from previously established trends. Results from the NRDW Land-fill indiate that the facility has no effect on the ground-water quality beneath the facility, except for the detection of coliform bacteria. A possible source of this contamination is the solid-waste lanfill (SWL) adjacent to the NRDW Landfill. Ground-water monitoring data for the NRDW and SWL will be evaluated together in the future. Aquifer testing was completed in the 25 new wells surrounding the 200 Area buiral grounds. 13 refs., 19 refs., 13 tabs.

  5. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  6. Tribal Facilities Retrofits

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Property Manager  Day to day operations of facilities  Budget control over facilitiesProject needs for future space requirements  Maintenance  Capital improvements  Brief history of the Tlingit & Haida Tribes  Tour of our Juneau facilities  Historical utility cost data  Summary of Project Objectives  Expected cost and emission reductions  Strategic planning for future implementation Two separate

  7. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  8. EIS-0350-S1: Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    This Supplemental EIS evaluates the completion of the Chemistry and Metallurgy Research Building Replacement (CMRR) Project, which consists of constructing the nuclear facility portion (CMRR-NF) at Los Alamos National Laboratory (LANL). The CMRR Project provides the analytical chemistry and materials characterization capabilities currently or previously performed in the existing Chemistry and Metallurgy Research (CMR) Building. Because of recent detailed site geotechnical investigations, certain aspects of the CMRR-NR project have changed resulting in change to the environmental impacts.

  9. An introduction to the National Tritium Labeling Facility

    SciTech Connect (OSTI)

    Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

    1988-06-01

    The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

  10. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  11. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  12. JLab's 12 GeV Upgrade Project Clears Critical Hurdle | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's 12 GeV Upgrade Project Clears Critical Hurdle JLab's 12 GeV Upgrade Project Clears Critical Hurdle Independent Project Review committee members Independent Project Review committee members, visiting JLab to evaluate the readiness of the 12 GeV Upgrade project, tour Hall B during their site visit. Here they view the CEBAF Large Acceptance Spectrometer as Hall B Leader Volker Burkert and Lead Engineer Dave Kashy explain the system. NEWPORT NEWS, VA - The U.S. Department of Energy's Thomas

  13. Projecting

    U.S. Energy Information Administration (EIA) Indexed Site

    Projecting the scale of the pipeline network for CO2-EOR and its implications for CCS infrastructure development Matthew Tanner Office of Petroleum, Gas, & Biofuels Analysis U.S. Energy Information Administration October 25, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions ex- pressed here are those of the author and not necessarily those of the U.S. Energy Information Administration. Author: Matthew Tanner, matthew.tanner@eia.gov

  14. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Project ... Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  15. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  16. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E.; Kessel, D.S.

    1995-05-01

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  17. The RNB project in Japanese Hadron Facility and possible use of neutron-rich beam for the study of superheavy nuclei

    SciTech Connect (OSTI)

    Nomura, Toru

    1998-02-15

    We first describe briefly a radioactive nuclear beam (RNB) facility based on the isotope separator on-line and post-accelerator scheme planned in Japanese Hadron Project. In this facility, various radioactive nuclear species produced in 3 GeV proton-induced reactions will be accelerated through heavy-ion linacs in three stages, the maximum output energy in each stage being 0.17, 1.05 and 6.5 meV/nucleon, respectively. Secondly, we discuss the feasibility of the use of neutron-rich RNB for experimental study of more neutron-rich superheavy nuclei than those presently known. It is shown that the increase of the survival probability of neutron-rich compound nuclei can possibly compensate for a difficulty arising from expected weak intensities of the secondary-beams. In addition, cold-fusion-like reactions as well as possible enhancement of near-barrier fusion cross sections that can become more prominent by use of neutron-rich beams are discussed.

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to

  19. Jefferson Lab Breaks Ground On $310 Million Project | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breaks Ground On $310 Million Project Jefferson Lab Breaks Ground On $310 Million Project groundbreaking Newport News Mayor Joe Frank addresses the crowd at the groundbreaking ceremony for the Jefferson Lab 12 GeV Upgrade. Also on the stage are (front row, l-r) U.S. Rep. Rob Wittman of Virginia's 1st District; U.S. Rep. Bobby Scott of Virginia's 3rd District; Gene Henry, Associate Director of the DOE's Office of Science for Nuclear Physics; Jefferson Lab Director Hugh Montgomery; (back row, l-r)

  20. Media Advisory: Poster Session Highlights Projects, Research Carried Out by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer Interns at Jefferson Lab | Jefferson Lab July 31, 2015 Time: 11:45 a.m. - 1:15 p.m. Place: The CEBAF Center lobby at Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 Event: More than 30 high school students and college undergraduates who participated in summer, science internship programs at the Department of Energy's Thomas Jefferson National Accelerator Facility, or Jefferson Lab, will share with invited guests and members of the lab community results from their work

  1. Watauga High School Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Project Jump to: navigation, search Name Watauga High School Wind Energy Project Facility Watauga High School Sector Wind energy Facility Type Community Wind Facility Status...

  2. Solano Wind Project- phase II | Open Energy Information

    Open Energy Info (EERE)

    search Name Solano Wind Project- phase II Facility Solano Wind Project- phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  3. Lamar Wind Energy Project II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Lamar Wind Energy Project II Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Lamar Wind Energy Project I | Open Energy Information

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Lamar Wind Energy Project I Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Lamar Wind Energy Project III | Open Energy Information

    Open Energy Info (EERE)

    III Jump to: navigation, search Name Lamar Wind Energy Project III Facility Lamar Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  7. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  8. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2009 [Facility News] Fast Physics Project to Join ARM User Community Bookmark and Share In November, ARM representatives participated in a kickoff meeting for the FASTER (FAst-physics System TEstbed and Research) project at Brookhaven National Laboratory. This project is funded by the DOE Earth System Modeling program and involves ten institutions led by BNL. Researchers involved in the FASTER project will assess and improve fast processes in climate models using a combination of single

  10. Listing of Defense Nuclear Facilities

    Energy Savers [EERE]

    Listing of Defense Nuclear Facilities The facilities listed below are considered DOE defense nuclear facilities for purposes of Section 3161. Kansas City Plant Pinellas Plant Mound Facility Fernald Environmental Management Project Site Pantex Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los Alamos National Laboratory Sandia National Laboratory Lawrence Livermore National Laboratory Oak Ridge National Laboratory Nevada Test Site 1 Y-12 Plant

  11. Wapsipinicon Wind Project | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Wapsipinicon Wind Project Facility Wapsipinicon Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco...

  12. Agua Caliente Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Agua Caliente Solar Project Facility 290-megawatt photovoltaic solar generating facility Sector Solar Facility Type Utility scale solar Owner...

  13. Kit Carson Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Kit Carson Wind Project Facility Kit Carson Sector Wind energy Facility Type Community Wind Facility Status In Service Address 102 W 5th...

  14. Nondestructive Evaluation and Monitoring Projects NASA White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) ...

  15. CAES Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name CAES Wind Project Facility CAES Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.522243, -112.053963...

  16. Hyannis Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Hyannis Wind Project Facility Hyannis Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.998692,...

  17. White Creek Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Power Project Jump to: navigation, search Name White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale...

  18. Wild Horse Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  19. Kittitas Valley Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Valley Wind Power Project Jump to: navigation, search Name Kittitas Valley Wind Power Project Facility Kittitas Valley Wind Power Project Sector Wind energy Facility Type...

  20. Mill Run Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Run Wind Power Project Jump to: navigation, search Name Mill Run Wind Power Project Facility Mill Run Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  1. Buffalo Ridge II Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    II Wind Power Project Jump to: navigation, search Name Buffalo Ridge II Wind Power Project Facility Buffalo Ridge II Wind Power Project Sector Wind energy Facility Type Commercial...

  2. Michigan Offshore Wind Pilot Project | Open Energy Information

    Open Energy Info (EERE)

    Michigan Offshore Wind Pilot Project Jump to: navigation, search Name Michigan Offshore Wind Pilot Project Facility Michigan Offshore Wind Pilot Project Sector Wind energy Facility...

  3. Texas Offshore Pilot Research Project | Open Energy Information

    Open Energy Info (EERE)

    Offshore Pilot Research Project Jump to: navigation, search Name Texas Offshore Pilot Research Project Facility Texas Offshore Pilot Research Project Sector Wind energy Facility...

  4. El Dorado Solar Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Solar Power Plant Jump to: navigation, search Name El Dorado Solar Project Solar Power Plant Facility El Dorado Solar Project Sector Solar Facility Type Photovoltaic...

  5. Beacon Solar Energy Project Solar Power Plant | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Energy Project Solar Power Plant Jump to: navigation, search Name Beacon Solar Energy Project Solar Power Plant Facility Beacon Solar Energy Project Sector Solar Facility...

  6. SES Solar Three Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Three Project Solar Power Plant Jump to: navigation, search Name SES Solar Three Project Solar Power Plant Facility SES Solar Three Project Sector Solar Facility Type Photovoltaics...

  7. SES Solar Two Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Two Project Solar Power Plant Jump to: navigation, search Name SES Solar Two Project Solar Power Plant Facility SES Solar Two Project Sector Solar Facility Type Concentrating Solar...

  8. Armenia Mountain Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Armenia Mountain Wind Energy Project Jump to: navigation, search Name Armenia Mountain Wind Energy Project Facility Armenia Mountain Wind Energy Project Sector Wind energy Facility...

  9. Bluegrass Ridge Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bluegrass Ridge Wind Energy Project Jump to: navigation, search Name Bluegrass Ridge Wind Energy Project Facility Bluegrass Ridge Wind Energy Project Sector Wind energy Facility...

  10. Rosebud Sioux Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Sioux Wind Energy Project Jump to: navigation, search Name Rosebud Sioux Wind Energy Project Facility Rosebud Sioux Wind Energy Project Sector Wind energy Facility Type Community...

  11. SCE Roof Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    SCE Roof Project Solar Power Plant Jump to: navigation, search Name SCE Roof Project Solar Power Plant Facility SCE Roof Project Sector Solar Facility Type Photovoltaic Developer...

  12. Palmdale Project Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Palmdale Project Solar Power Plant Jump to: navigation, search Name Palmdale Project Solar Power Plant Facility Palmdale Project Sector Solar Facility Type Hybrid Developer Inland...

  13. Phased Construction Completion Report for Bldg. K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2008-10-01

    This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

  14. Phased Construction Completion Report for Building K-1401 of the Remaining Facilities Demolition Project at the East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Garland S.

    2008-03-01

    This Phased Construction Completion Report documents the demolition of Bldg. K-1401, Maintenance Building, addressed in the Action Memorandum for the Remaining Facilities Demolition Project at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2003a) as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 non-time-critical removal action. The objectives of the removal action (DOE 2003a) - to eliminate the source of potential contamination, to eliminate the threat of potential future releases, and/or to eliminate the threats to the general public and the environment - were met. The end state of this action is for the slab to remain with all penetrations sealed and grouted or backfilled. The basement and pits remain open. There is residual radiological and polychlorinated biphenyl contamination on the slab and basement. A fixative was applied to the area on the pad contaminated with polychlorinated biphenyls. Interim land-use controls will be maintained until final remediation decisions are made under the Zone 2 Record of Decision (DOE 2005a).

  15. Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities

    SciTech Connect (OSTI)

    Stine, M.D.

    1995-01-04

    The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

  16. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  17. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  18. Pyrotek Graphitization Facility Expansion Project

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  19. Project Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The purpose of this project is to develop improved heat transfer fluids, thermal storage ... The majority of the current R&D effort is focused on parabolic trough facilities. Sandia ...

  20. DOE NNSA Site Facility Management Contracts - MASTER.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SRNS), LLC Fluor Corporation, Newport News Nuclear, Honeywell International Inc. ... Strategic Petroleum Reserve Office (SPRO) FE Fluor Federal Petroleum Operations Fluor ...

  1. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  2. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  3. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  4. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaboration User Facilities collaborationassetsimagesicon-collaboration.jpg User Facilities A new research frontier awaits Our door is open and we thrive on mutually...

  5. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  6. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    SciTech Connect (OSTI)

    Roscha, V.

    1994-11-29

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate.

  7. Facilities Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Initiatives Facilities Initiatives The Headquarters Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the Forrestal Building in Washington, DC, and Germantown Maryland. Many of these initiatives are part of their Energy Savings Performance Contract (ESPC). ESPCs allow Federal agencies to accomplish energy savings projects without up-front capital costs and without

  8. Cold Test Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects & Facilities Cold Test Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  9. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 [Facility News] Calling All Data Archive Users Bookmark and Share DataArchive You will need to update your ARM data profile as soon as possible as part of new government reporting requirements. Researchers access data collected through the routine operations and scientific field experiments of the ARM Facility through the ARM Data Archive. An updated registration form requests information about the scientific project for which you are using ARM data. This information is a new requirement

  11. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  12. Completed Projects Table.xlsx

    Office of Environmental Management (EM)

    ... Construction Line Item Project Depleted Uranium Hexafluoride Conversion Project (DUF6) Portsmouth & Paducah 02-U-101 346 580 2008 2010 No No Yes Nuclear Facility ...

  13. Sandia Energy - Scaled Wind Farm Technology Facility Baselining...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Accelerates Work Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Systems Analysis Scaled Wind Farm Technology Facility Baselining...

  14. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  15. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  18. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  19. Colorado Green Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Colorado Green Wind Power Project Facility Colorado Green Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  20. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    SciTech Connect (OSTI)

    Hager, Robert C.; Costello, Ronald J.

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2016 [Facility News] New Funding Opportunity Announced Bookmark and Share Simulations like this one will be used by the newly launched DOE Accelerated Climate Modeling for Energy (ACME) project to advance three climate science drivers and corresponding questions in water cycle, biogeochemistry, and cryosphere-ocean system. Simulations like this one will be used by the newly launched DOE Accelerated Climate Modeling for Energy (ACME) project to advance three climate science drivers and

  2. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  3. Kotzebue Wind Project Phase II & III | Open Energy Information

    Open Energy Info (EERE)

    II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind...

  4. Centennial Wind Energy Project (2006) | Open Energy Information

    Open Energy Info (EERE)

    6) Jump to: navigation, search Name Centennial Wind Energy Project (2006) Facility Centennial Wind Energy Project (2006) Sector Wind energy Facility Type Commercial Scale Wind...

  5. Centennial Wind Energy Project (2007) | Open Energy Information

    Open Energy Info (EERE)

    7) Jump to: navigation, search Name Centennial Wind Energy Project (2007) Facility Centennial Wind Energy Project (2007) Sector Wind energy Facility Type Commercial Scale Wind...

  6. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N.; Pope, R.B.

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  7. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Print Text Size: A A A FeedbackShare Page BES User Facilities Brochure BES User Facilities Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and

  8. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glovebox Facilities Working with SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials

  9. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  10. PGDP Deactivation Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GDP Transition » PGDP Deactivation Project PGDP Deactivation Project PGDP Deactivation Project scope major activities: Site Optimization Studies include: - Steam, Air, Nitrogen and Chilled Water Optimization Study - Water Treatment Facility Optimization Study - C-100 Optimization Study - Sewer Evaluation Study Facility Stabilization Preparation and/or removal of nuclear materials and contaminants from facilities. Stabilization activities are performed during early stages of facility

  11. Programs | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INCITE Program ALCC Program Director's Discretionary (DD) Program ALCF Data Science Program Early Science Program INCITE 2016 Projects ALCC 2015 Projects ESP Projects View All Projects Publications ALCF Tech Reports Industry Collaborations Featured Science Simulation of cosmic reionization Cosmic Reionization On Computers Nickolay Gnedin Allocation Program: INCITE Allocation Hours: 65 Million Addressing Challenges As a DOE Office of Science User Facility dedicated to open science, any

  12. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  13. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and shock and nonshock initiation proton radiography Facilities Los Alamos has a ... Science Laboratory National High Magnetic Field Laboratory War Reserve Detonator ...

  14. Facility Representatives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... facilities under a single lineprogram manager within the ... unique position in the transmission of information between ... performance, any areas of theory or fundamentals, if any, ...

  15. NREL: Energy Systems Integration Facility - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Integration Facility, fill out a Project Summary Form and email it to Dr. Martha Symko-Davies, NREL's energy systems integration business development director. NREL...

  16. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  17. Omaha Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Omaha Public Power District Developer Omaha Public Power District Energy...

  18. Suzlon Project VII | Open Energy Information

    Open Energy Info (EERE)

    Project VII Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Suzlon Developer Suzlon Energy Purchaser QF on SPP Location Dumas TX...

  19. Sherrod Elementary Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Sherrod Elementary Wind Project Facility Sherrod Elementary Sector Wind energy Facility Type Community Wind Location AK Coordinates 61.648163,...

  20. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  1. KDOT Osborne Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name KDOT Osborne Wind Project Facility KDOT Osborne Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.456077, -98.695613...

  2. Greenbush Kansas Wind Project | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Greenbush Kansas Wind Project Facility Greenbush Kansas Sector Wind energy Facility Type Community Wind Location KS Coordinates 37.51403, -94.987839...

  3. KDOT Grainfield Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name KDOT Grainfield Wind Project Facility KDOT Grainfield Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.11006, -100.468124...

  4. Northumberland Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    search Name Northumberland Schools Wind Project Facility Northumberland Schools Sector Wind energy Facility Type Community Wind Location VA Coordinates 37.917591, -76.473579...

  5. Miller Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Miller Schools Wind Project Facility Miller Schools Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.521069, -98.979942...

  6. Smoky Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Smoky Valley Wind Project Facility Smoky Valley Sector Wind energy Facility Type Community Wind Location KS Coordinates 38.578766, -97.683563...

  7. Cedar Rapids Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Cedar Rapids Wind Project Facility Cedar Rapids Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.562199, -98.148048...

  8. Microsoft PowerPoint - NEAC Facilities Subcommittee Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a pilot program for the creation of a "virtual laboratory" user-facility since 2007. * ... Projects * Post-irradiation Examination Sample LibraryRapid Turnaround Projects * ...

  9. The Mixed Waste Management Facility monthly report, December 1994

    SciTech Connect (OSTI)

    Streit, R.

    1995-01-01

    This report contains cost and planning schedules, and detailed information on project management at the LLNL facility.

  10. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  12. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  13. PROJECT MANGEMENT PLAN EXAMPLES

    Office of Environmental Management (EM)

    Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP)

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  15. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  16. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  1. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  2. Field test of a generic method for halogenated hydrocarbons: Semivost test at a chemical manufacturing facility. Final project report, August 1992-August 1993

    SciTech Connect (OSTI)

    McGaughey, J.F.; Bursey, J.T.; Merrill, R.G.

    1996-11-01

    The candidate methods for semivolatile organic compounds are SW-846 Sampling Method 0010 and Analytical Method 8270, which are applicable to stationary sources. Two field tests were conducted using quadruple sampling trains with dynamic spiking were performed according to the guidelines of EPA Method 301. The first field test was performed at a site with low levels of moisture. The second test reported here was conducted at a chemical manufacturing facility where chemical wastes were burned in a coal-fired boiler. Poor recoveries obtained for the spiked analytes at the second test were attributed to wet sorbent from the sampling train, use of methanol to effect complete transfer of wet sorbent from the sampling module, and use of extraction techniques which did not effect a complete separation of methylene chloride from methanol. A procedure to address problems with preparation of samples from Method 0010 is included in the report.

  3. Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory | 9700 South Cass Avenue | Argonne, IL 60439 | www.anl.gov | September 2013 alcf_keyfacts_fs_0913 Key facts about the Argonne Leadership Computing Facility User support and services Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. Catalysts are computational scientist with domain expertise and work directly with project principal investigators to maximize discovery and reduce time-to- solution.

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2016 [Facility News] Atmospheric Modeling Advisory Group Assembled Bookmark and Share ARM recently formed the Atmospheric Modeling Advisory Group to represent research community interests and provide feedback to the LES ARM Symbiotic Simulation and Observation Workflow (LASSO) modeling project. This group consists of six scientists, spanning the range of specialties that will benefit from LASSO, plus ARM Technical Director, Jim Mather; LASSO principal investigator, William Gustafson; and

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2011 [Facility News] Call for Proposals: SERDP Bookmark and Share The Strategic Environmental Research and Development Program (SERDP) is currently accepting proposals for both Core and SERDP Exploratory Development (SEED) FY 2012 solicitations. The Core Solicitation seeks proposals for basic and applied research and advanced technology development. Core projects vary in cost and duration. SEED proposals explore innovative approaches and require high technical risk or supporting data

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 18, 2007 [Data Announcements, Facility News] ICRCCM Results Now Available at the ARM Data Archive Bookmark and Share Data and documentation from the first Intercomparison of Radiation Codes in Climate Models (ICRCCM-1) are now included at the ARM Data Archive. This 1980s climate modeling project eventually led to the creation of the ARM Program. Included in this repository are all available correspondences, publications, reports, workshops and meetings, ICRCCM test cases, longwave and

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 31, 2014 [Facility News] 2015 Funding Opportunity Available for Early Career Scientists Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting research applications through its Early Career Research Program. For the 2014 call, the DOE Climate and Environmental Sciences Division is only accepting proposals in the area of land-atmosphere interactions. Applications are sought that will reduce the uncertainties in projections from Earth system models through

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2009 [Facility News] Arrival of Recovery Act Funds Sets Wheels In Motion Bookmark and Share So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. Through the American Recovery and Reinvestment Act of 2009 (aka stimulus), the Department of Energy's Office of Science received $1.2 billion. In late May, DOE released approximately $54 million-90 percent-of the $60 million allocated to the ARM

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 31, 2009 [Facility News, Publications] African Collaborators Continue Data Analyses from Niamey Bookmark and Share During a recent gathering at the University of Niamey, SGP and African collaborators pause for a quick photo. From left to right: Dr. Zewdu Segele, SGP Site Scientist Postdoc; Professor Ibrah Sanda, Professor of Physics, University of Niamey; Dr. Pete Lamb, SGP Site Scientist; Professor Ben Mohamed, project lead from the University of Niamey; Hama Hamidou, a Niamey

  10. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  11. Technology and Engineering Development Facility | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology and Engineering Development Facility Technology & Engineering Development Facility September 25, 2013 A week ago, the Office of Project Assessment held a review of the TEDF (Technology and Engineering Development Facility). It was a CD-4(B) review. Formally called "Ready for Operations," this review and its successful completion is broadly recognized as marking the end of the project; just a few items on a punch list and the dedication (on Oct. 16) are left to do.

  12. Belle Mead Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Belle Mead Solar Project Facility Belle Mead Solar Project Sector Solar Facility Type Ground-mount fixed tilt solar array Owner EnXco Developer...

  13. Sun Harvest Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Sun Harvest Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount Owner EnXco Developer EnXco Energy Purchaser Fresno Adventist Academy...

  14. West Holt Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name West Holt Wind Project Facility West Holt Sector Wind energy Facility Type Community Wind Location NE Coordinates 42.540997, -98.978706...

  15. Preparation for Facility Operations RM | Department of Energy

    Energy Savers [EERE]

    Preparation for Facility Operations RM Preparation for Facility Operations RM The objective of this Standard Review Plan (SRP) on Preparation for Facility Operations is to provide consistency guidance to evaluate the effectiveness of the final project closure of major construction projects for transition from Critical Decision-4 (CD-4) to facility operations. PDF icon Preparation for Facility Operations RM More Documents & Publications Code of Record Standard Review Plan (SRP) Standard

  16. The Process, Methods and Tool Used To Integrate Safety During Design of a Category 2 Nuclear Facility

    Broader source: Energy.gov [DOE]

    Presenter: Lynn J. Harkey, SDIT Project Engineer, Uranium Processing Facility Project, B&W Y-12 Track 5-2

  17. Long Island Power Authority Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Long Island Power Authority Solar Project Jump to: navigation, search Name Long Island Power Authority Solar Project Facility Long Island Power Authority Solar Project Sector Solar...

  18. SES Calico Solar One Project Solar Power Plant | Open Energy...

    Open Energy Info (EERE)

    Calico Solar One Project Solar Power Plant Jump to: navigation, search Name SES Calico Solar One Project Solar Power Plant Facility SES Calico Solar One Project Sector Solar...

  19. Biomass Gasifier Facility (BGF). Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Pacific International Center for High Technology Research (PICHTR) is planning, to design, construct and operate a Biomass Gasifier Facility (BGF). This facility will be located on a site easement near the Hawaiian Commercial & Sugar company (KC&S) Paia Sugar Factory on Maui, Hawaii. The proposed BGF Project is a scale-up facility, intended to demonstrate the technical and economic feasibility of emerging biomass gasification technology for commercialization. This Executive Summary summarizes the uses of this Environmental Assessment, the purpose and need for the project, project,description, and project alternatives.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  2. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  3. Voluntary Protection Program Onsite Review, Salt Waste Processing Facility

    Energy Savers [EERE]

    Construction Project - February 2013 | Department of Energy Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013 February 2013 Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during February 5 - 14, 2013 to determine whether

  4. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  5. SWIFT Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWIFT Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  6. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  7. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    SciTech Connect (OSTI)

    Magoulas, Virginia; Cercy, Michael; Hall, Irin

    2013-07-01

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  8. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  9. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site

  10. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  11. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions Navigate Section Our Vision National User Facilities Research Areas In...

  12. Facility Representatives

    Energy Savers [EERE]

    063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is

  13. Auburn-Washburn Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Auburn-Washburn Wind Project Facility Auburn-Washburn Sector Wind energy Facility Type Community Wind Owner Auburn-Washburn School District Address...

  14. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial,...

  15. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  16. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  17. Tribal Facilities Retrofits: Freeing Up Resources through Reduced Demand

    Energy Savers [EERE]

    up resources through reduced demand" Elias Duran - Facilities Manager ¡ Day to day operations of facilities ¡ Budget control over facilities ¡ Project needs for future space requirements ¡ Maintenance ¡ Capital improvements ¡ Brief history of the Tlingit & Haida Tribes ¡ Tour of our existing facilities ¡ Historical utility cost data ¡ Summary of Project Objectives ¡ Expected cost and emission reductions ¡ Strategic planning for future implementation Two separate Tribes United

  18. Integrated Disposal Facility Risk Assessment

    SciTech Connect (OSTI)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  19. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  20. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  1. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  3. Forrest County Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

  4. Sales Tax Exemption for Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Energy efficiency projects must decrease the measurable amount of energy used by the facility by at least 15% percent while maintaining or increasing the production for the same period.

  5. Laboratories and Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  6. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect (OSTI)

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  7. Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » Facilities Print Text Size: A A A FeedbackShare Page The

  8. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... the Utah Department of Environmental Quality, and the Environmental Protection Agency. ... 0 1312005 0 0 l102005 0 0 11712005 43 Power bump activated pump 0 0.0 0.0 1242005 0 ...

  9. MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... reactive barrier, installing a treatment cell, installing insttumentation, and ... Average temperature: High Temperature--- Low Temperature. Ourent barometric ...

  10. Major Risk Factors Integrated Facility Disposition Project -...

    Office of Environmental Management (EM)

    ... of Decision LGWTS Liquid and Gaseous Waste Treatment System LLW low-level waste LLLW liquid low-level waste LTTD low-temperature thermal desorption MLLW mixed low-level waste MV ...

  11. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... used to test sum stem 11112004 0 power pump activated pumps Ol I 11S2004 0 Oj I ... L.,:J - endmg Average wind speed. Prevailing wiud ...

  12. MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report...

    Office of Legacy Management (LM)

    ... (oF) ' RAIN (in), WIND SPEED (mph) HEAT COOL AVG MEAN DEG DEG lUND DOM DAY TEMP ... of Rain: 4 (>.01 in) 2 (>.1 in) 0 (>1 in) Heat Base: 65.0 Cool Base: 65.0 Method: ...

  13. MSGOUID MONTICELLO PROJECTS *FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... Meteorological Data for the period beginning :se,. cvlku- c:J4a- '1* endmg Average.wind speed Prevailing wind direction Average temperature High Temperature Low Temperature ...

  14. MSG MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... Wee.. -flw, 6. 5 Meteorological Data for the period begiillling en.rmg' Average wind speed, Prevailing wind direction, ...

  15. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... Meteorological Data for the period beginning Average wind speed Prevaililig wind direction. Average temperature.--- High Temperature Low ...

  16. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... tMJ.VJ -k ,- aJtl mow clq..J;v .,; &ame pl,cies- Average wind speed Average temperature- Prevailing wind direction- High Temperature--- Current barometric pressure ...

  17. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... Data for the period beginning ,ee tueP.&t d'---... Average wind speed. Prevailfug wind direction, Average temperaturec High Temperature ...

  18. MSG MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT

    Office of Legacy Management (LM)

    ... D11Tfl- L<> Meteorological Data for the period beginning ending, Average wind speed. Prevailiilg wind direction. Average temperature'------ High ...

  19. Manhattan Project Signature Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Y-12 Beta-3 Racetracks, the only surviving World War II-era elctromagnetic isotope separations equipment in the world, still stand, complete with operator panels and telephone ...

  20. Jupiter Laser Facility Target Fab Request Requester: Date...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sketches: Jupiter Laser Facility Target Fab Request Requester: Date Requested: Phone or E-Mail: Date Required: Target Name: Reference : Laser System: Project: Task:

  1. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  2. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B Contractor Leadership...

  3. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  4. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A Mission Accomplishments (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management A- Contractor Leadership...

  5. Sherwin-Williams Richmond, Kentucky, Facility Achieves 26%...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dozens of energy-savings projects over the past few years. The facility is a Lean Manufacturing Leader, adhering to the lean manufacturing business- management strategy, ...

  6. West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    The West Valley Demonstration Project came into being through the West Valley Demonstration Project Act of 1980. The Act requires that the DOE is responsible for solidifying the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process.

  7. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  8. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L.

    2014-05-25

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  9. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  10. Renewable Energy Facility Sales and Use Tax Reimbursement

    Broader source: Energy.gov [DOE]

    To qualify, the project costs associated with a new or expanded facility must exceed $20 million, and the costs associated with equipment upgrades must exceed $2 million. Eligible project costs i...

  11. By Project | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    By Project User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics By Institution By Project Data Archive User Statistics Collection Practices Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Statistics By Project Print Text Size: A A A FeedbackShare Page The map and

  12. Portsmouth RI/FS Report for the Process Buildings and Complex Facilities

    Energy Savers [EERE]

    Decontamination and Decommissioning Evaluation Project | Department of Energy Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project Portsmouth RI/FS Report for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project This remedial investigation/feasibility study (RI/FS), the Remedial Investigation and Feasibility Study Report for the Process Buildings and Complex Facilities Decontamination and

  13. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  14. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    SciTech Connect (OSTI)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  15. MHK Projects/Bonnybrook Wastewater Facility Project 1 | Open...

    Open Energy Info (EERE)

    first grant from the National Research Council-Industrial Research Assistance Program (NRC-IRAP) was for a small technical study to prove the EnCurrent scalable turbine could be...

  16. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  17. 2015 RENEWABLE ENERGY PROJECT DEVELOPMENT AND FINANCE WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and potential pitfalls of developing and financing community and facility scale renewable energy projects 2) Determine how the development of a renewable energy project could ...

  18. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the...

  19. Federal Energy Management Program Renewable Energy Project Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and utility-scale project planning assistance Acquisition ... Contract assistance Design review assistance ... Power at Federal Facilities Renewable Energy ...

  20. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  1. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  2. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2010 Facility News ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat...

  4. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  5. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  6. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  7. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  8. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility, Los Alamos National ... Contained Firing Facility Dual Axis Radiographic Hydrodynamic Test Facility High ...

  9. Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Technical Assistance » Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity The Federal Energy Management Program (FEMP) provides project assistance through the AFFECT funding opportunity. AFFECT provides grants for the development of capital projects to increase the energy efficiency and renewable energy

  10. Solar Deployment on Tribal Facilities

    Energy Savers [EERE]

    Shekóli (Greetings) from Oneida 1 Department of Energy Tribal Energy Program Review Denver, Colorado May 4-7, 2015 Michael Troge Oneida Tribe of Indians of Wisconsin Solar Deployment on Tribal Facilities 2 AGENDA * Past work * Proposed solar project * Other 3 Thank you! * Department of Energy, Tribal Energy Program, Office of Indian Energy, & National Renewable Energy Lab. * Oneida Tribe Energy Team, Business Committee, Land Commission, Finance, Legal, Land Management, Public Works,

  11. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  12. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  13. Regulatory Considerations for Developing Generation Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Considerations for Developing Generation Projects on Federal Lands 2 Purpose of ... - How does ownership and usage of a generation facility impact regulatory ...

  14. Ni Clusterbank Replacement Project | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

  15. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Assessments Review, West Valley Demonstration Project - December 2014 EA-1552: Final Environmental Assessment 3Q CY2005 (PDF), Facility Representative Program Performance...

  16. Exhibits, Museums, Historic Facilities, and Public Tours | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy History » Historical Resources » Exhibits, Museums, Historic Facilities, and Public Tours Exhibits, Museums, Historic Facilities, and Public Tours Exhibits, Museums, Historic Facilities, and Public Tours New! Manhattan Project National Historical Park The Department of Energy (DOE) supports exhibits, museums, and historic facilities across the country dedicated to displaying and interpreting the history of the Department and its scientific and technological missions and

  17. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  18. EM Opens New Waste Repackaging Facility at Laboratory | Department of

    Office of Environmental Management (EM)

    Energy Opens New Waste Repackaging Facility at Laboratory EM Opens New Waste Repackaging Facility at Laboratory March 7, 2013 - 12:00pm Addthis A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new facility where transuranic waste will be repackaged at Los Alamos National Laboratory. EM Deputy Assistant Secretary for Waste Management Frank Marcinowski, left, talks with LANL’s Oversized Container Disposition Project

  19. Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory

    Office of Environmental Management (EM)

    INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of

  20. 2011 Awards for Project Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Awards for Project Management 2011 Awards for Project Management The Federal Project Director of the Year for 2011: David K. Arakawa (Office of Science) The Secretary's Award of Excellence: Physical Sciences Facility Project (Office of Science) The 2011 Secretary's Achievement Award: Research Support Facility Project (Office of Energy Efficiency and Renewable Energy) Spallation Neutron Source Instruments - Next Generation Project (Office of Science) Ion Beam Laboratory Project (National

  1. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine.

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 15, 2008 [Facility News] New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. To analyze cloud properties, ARM scientists

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 [Facility News] National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual meeting of the National User Facility Organization. Comprised of representatives from Department of Energy (DOE) national user facilities, the purpose of this group is to promote and encourage discussions among user facility administrators, their management, and their user organization representatives by communicating

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News] Opportunity for Cloud Properties Retrieval Algorithm Development: Request for Interest Opened Bookmark and Share The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud radars. The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 28, 2010 [Facility News] Footprint Adjustments Underway at Southern Great Plains Site Bookmark and Share Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint. Facilities closed thus far are colored black. Upon completion of the SGP footprint reduction, extended facilities 9, 11, 12, 15 and 21

  9. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chamber In-Air Station Software Support Support During experiments at the Radiation Effects Facility users are assisted by the experienced on-site support staff. Our...

  10. Software - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frame Drawing Test frame Drawing Platter Drawing Radiation Effects Facility Cyclotron Institute Texas A&M University MS 3366 College Station, TX 77843 Ph: 979-845-1411 ...

  11. Project Reports for White Mountain Apache Tribe- 2002 Project

    Broader source: Energy.gov [DOE]

    The project will involve an examination of the feasibility of a cogeneration facility at the Fort Apache Timber Company (FATCO), an enterprise of the White Mountain Apache Tribe. FATCO includes a sawmill and a remanufacturing operation that process timber harvested on the tribe's reservation. The operation's main facility is located in the reservation's largest town, Whiteriver. In addition, the tribe operates an ancillary facility in the town of Cibeque on the reservation's west side.

  12. CMI Unique Facility: Pilot-Scale Separations Test Bed Facility | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Pilot-Scale Separations Test Bed Facility Pilot-scale separations test bed facility at Idaho National Laboratory A group tours the 30-stage mixer-settler during a meeting at Idaho National Laboratory. This technology was developed for a CMI project. The Pilot-Scale Separations Test Bed Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. Noting that the CMI Grand

  13. Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project

    SciTech Connect (OSTI)

    J. T. Beck

    2007-04-26

    This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

  14. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  15. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  16. The Spallation Neutron Source Project

    Broader source: Energy.gov [DOE]

    When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project...

  17. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  18. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  19. Shaping Future Supercomputing Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 1 1 a n n u a l r e p o r t Shaping Future Supercomputing Argonne Leadership Computing Facility ANL-12/22 Argonne Leadership Computing Facility 2 0 1 1 a l c f a n n u a l r e p o r t w w w . a l c f . a n l . g o v Contents Overview .......................................2 Mira ..............................................4 Science Highlights ...........................8 Computing Resources ..................... 26 2011 ALCF Publications .................. 28 2012 INCITE Projects

  20. Manhattan Project Sites at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan Project » Manhattan Project Signature Facilities Manhattan Project Signature Facilities The "Gadget" device fully assembled atop the 100-foot firing tower, shortly before the Trinity test. July 15, 1945. The "Gadget" device fully assembled atop the 100-foot firing tower, shortly before the Trinity test. July 15, 1945. New! Manhattan Project National Historical Park New! K-25 Virtual Museum The Department of Energy, in the mid-1990s, developed a list of eight

  1. Facility for Advanced Accelerator Experimental Tests (FACET) | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Facility for Advanced Accelerator Experimental Tests (FACET) High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy

  2. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  3. Accelerator Test Facility (ATF) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Test Facility (ATF) High Energy Physics (HEP) HEP Home About Research Facilities User Facilities Fermilab Accelerator Complex Facility for Advanced Accelerator Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, Missions, and Status Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW

  4. Project Development | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development Nuclear Physics (NP) NP Home About Research Facilities User Facilities Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Facilities Project Development Print

  5. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  6. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  7. Lead Coolant Test Facility Development Workshop

    SciTech Connect (OSTI)

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  8. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  10. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class ...

  11. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  12. Managing Large Capital Projects | Department of Energy

    Energy Savers [EERE]

    Managing Large Capital Projects Managing Large Capital Projects Presentation from the 2015 DOE National Cleanup Workshop by Ken Picha, Deputy Assistant Secretary for Tank Waste and Nuclear Material, Office of Environmental Management. PDF icon Managing Large Capital Projects More Documents & Publications Waste Treatment Plant Project Construction of Salt Waste Processing Facility (SWPF) 2013 Congressional Nuclear Cleanup Caucus Briefings

  13. Structuring small projects

    SciTech Connect (OSTI)

    Pistole, C.O.

    1995-11-01

    One of the most difficult hurdles facing small project developers is obtaining financing. Many major banks and institutional investors are unwilling to become involved in projects valued at less than $25 million. To gain the interest of small project investors, developers will want to present a well-considered plan and an attractive rate of return. Waste-to-energy projects are one type that can offer diversified revenue sources that assure maximum profitability. The Ripe Touch Greenhouse project, a $14.5 million waste tire-to-energy facility in Colorado, provides a case study of how combining the strengths of the project partners can help gain community and regulatory acceptance and maximize profit opportunities.

  14. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE

  15. Facilities | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels, chemicals, and products. These facilities are available for testing feedstocks, processes, technologies, and equipment at laboratory- to- pilot scales. Government agencies, universities, and a variety of industries have taken advantage of the flexibility offered by these facilities to evaluate and validate their process

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 11, 2011 [Facility News] ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa Island in the Azores from May 2009 through December 2010--its longest deployment to date. The ARM Mobile Facility obtained data on Graciosa Island in the Azores from May 2009 through December 2010--its longest deployment to date. December 31, 2010, marked the last official day of data collection for the Clouds,

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Board Established for ARM Climate Research Facility Bookmark and Share The scientific infrastructure established by the ARM Program - heavily instrumented research sites, the ARM Data Archive, and the ARM Mobile Facility under development - is now available for use by scientists worldwide through the ARM Climate Research Facility. As a national user facility, this unique asset provides the opportunity for a broader national and international research community to study global change. The

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16,

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2014 [Facility News] ARM Facility Embarks on Expansion in the United States Bookmark and Share A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. Through 20 years of measurements at its observations sites around the world, the ARM

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 18, 2009 [Data Announcements, Facility News] Data Available from ARM Mobile Facility Deployment in China Bookmark and Share The Study of Aerosol Indirect Effects in China was anchored by the ARM Mobile Facility in Shouxian and included an additional instrumented site to the east at Lake Taihu and two instrumented sites to the north. All data collected by the ARM Mobile Facility in Shouxian are now publicly available at the Data Archive. In addition, data collected at the northern Zhangye

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 20, 2014 [Facility News, Publications] 2013 ARM Annual Report Now Available Bookmark and Share The 2013 edition of the ARM Climate Research Facility Annual Report was published in February 2014. The first 25 pages include a short overview of the Facility, followed by featured field campaigns, user research results, and summaries of infrastructure achievements. The back portion of the report includes a summary of all 2013 field campaigns conducted throughout the ARM Facility and a

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 24, 2009 [Facility News] Mobile Facility Deployments Featured in ClimateWire Bookmark and Share Several ARM science team members are quoted in an article published in ClimateWire, an online publication devoted to climate change issues and their effects on business, the environment, and society. The article highlights deployments of the ARM Mobile Facility and its contribution to the overall climate record obtained through the ARM Climate Research Facility. ClimateWire is one of several

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 21, 2015 [Facility News] First Ever ARM / ASR Joint User Facility PI Meeting Bookmark and Share Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. A recent joint meeting of the users and staff from the Atmospheric Radiation Measurement (ARM) Climate

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1, 2015 [Facility News] BAMS Features Results of 21-Month ARM Deployment Bookmark and Share Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Low clouds were observed typically at the Graciosa site during the 21-month ARM Mobile Facility deployment. Featured in the March 2015 Bulletin of the American Meteorological Society (BAMS), the 21-month ARM mobile facility deployment in the Azores was the longest of its type in a non-tropical

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2008 [Facility News] Facility Update Highlights Progress Bookmark and Share As the ARM Climate Research Facility has grown, so has its bimonthly report. With key accomplishments and activities encompassing the entire ARM infrastructure, the "Operations Update" report has been renamed "Facility Update." Along with this change, the report's web page has a new, more streamlined look that provides more information at a glance. Stay tuned for a more detailed

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 30, 2007 [Facility News] Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share During the 2-week instrument comparison, the AERI planned for Linze was rolled outside of the SGP Guest Instrument Facility each day-weather permitting-to obtain its measurements. The SGP AERI took its measurements through a special window from inside the facility. One instrument scientists use to obtain measurements important for climate studies is an atmospherically emitted

  14. Great Lakes Steel -- PCI facility

    SciTech Connect (OSTI)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  15. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of half a dozen unique facilities developed by the Critical Materials...

  16. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  17. Project X functional requirements specification

    SciTech Connect (OSTI)

    Holmes, S.D.; Henderson, S.D.; Kephart, R.; Kerby, J.; Kourbanis, I.; Lebedev, V.; Mishra, S.; Nagaitsev, S.; Solyak, N.; Tschirhart, R.; /Fermilab

    2012-05-01

    Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility is designed to support programs in elementary particle and nuclear physics, with possible applications to nuclear energy research. A Functional Requirements Specification has been developed in order to establish performance criteria for the Project X complex in support of these multiple missions, and to assure that the facility is designed with sufficient upgrade capability to provide U.S. leadership for many decades to come. This paper will briefly review the previously described Functional Requirements, and then discuss their recent evolution.

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its

  19. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  20. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...