National Library of Energy BETA

Sample records for facility operators hydro

  1. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  2. Facility Operations and Maintenance Facilities Management

    E-Print Network [OSTI]

    Capogna, Luca

    Facility Operations and Maintenance Facilities Management D101 Facilities Management R -575/affirmative action institution. 354 3 373 4 373A,B,C,D 4 Alm8/31/12 #12;Facility Operations and Maintenance, B 5 1409 5 1403 5 1403 A, B 4 1408 3 1408 A,B,C 3 1610 3 #12;Facility Operations and Maintenance

  3. Managing the risks of operating a hydro playground

    SciTech Connect (OSTI)

    Bachman, G.D.; Blackburn, P.C. (Van Ness, Feldman Curtis, Washington, DC (United States))

    1992-04-01

    An integral part of most hydro projects is some recreational opportunity for the public. As a result, plant owners need to be aware of and manage their exposure to recreational liability. This article discusses liability and the measures that hydro plant owners can take to reduce their risk.

  4. Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint

    SciTech Connect (OSTI)

    Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

    2013-05-01

    The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

  5. Facility Operations Specialist | Department of Energy

    Energy Savers [EERE]

    in Germantown, Maryland within Facilities Management Operations (FMO), Office of Logistics and Facility Operations, Office of Administration. The FMO is responsible for...

  6. Northwest Hydro Operators Regional Forum (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseum LobbyThousandNorthern NewHydro Power

  7. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  8. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  9. ITEP Course: Greening Tribal Operations and Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Institute for Tribal Environmental Professionals will be offering a new course, Greening Tribal Operations and Facilities in San Diego, California, December 9 -11, 2014, for employees of...

  10. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    applications including coal gasification, fer- tilizers fromin hydro-gasification reactions, such as coal and biomass,

  11. Quantifying the Operational Benefits of Conventional and Advanced Pumped Storage Hydro on Reliability and Efficiency: Preprint

    SciTech Connect (OSTI)

    Krad, I.; Ela, E.; Koritarov, V.

    2014-07-01

    Pumped storage hydro (PSH) plants have significant potential to provide reliability and efficiency benefits in future electric power systems with high penetrations of variable generation. New PSH technologies, such as adjustable-speed PSH, have been introduced that can also present further benefits. This paper demonstrates and quantifies some of the reliability and efficiency benefits afforded by PSH plants by utilizing the Flexible Energy Scheduling Tool for the Integration of Variable generation (FESTIV), an integrated power system operations tool that evaluates both reliability and production costs.

  12. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

  13. Facilities Operations, Planning, and Engineering Services

    E-Print Network [OSTI]

    McLaughlin, Richard M.

    Facilities Operations, Planning, and Design Engineering Services Energy Management & Water Reception Campus Maintenance Housing Support Life Safety Services HVAC Energy Management Controls Campus Grounds Maintenance Carolina North Forest Management Stormwater Maintenance In-house Landscape

  14. Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartmentMediaEnergy HistoryFY13Facilities

  15. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S. [Argonne National Lab., IL (United States); McCoy, J. [Western Area Power Administration, Salt Lake City, UT (United States)

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  16. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  17. California Federal Facilities: Rate-Responsive Buidling Operating...

    Office of Environmental Management (EM)

    Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and...

  18. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect (OSTI)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  19. Hydro-ball in-core instrumentation system and method of operation

    DOE Patents [OSTI]

    Tower, Stephen N. (Washington Township, Westmoreland County, PA); Veronesi, Luciano (O'Hara Township, Allegheny County, PA); Braun, Howard E. (Pittsburgh, PA)

    1990-01-01

    A hydro-ball in-core instrumentation system employs detector strings each comprising a wire having radiation sensitive balls affixed diametrically at spaced positions therealong and opposite tip ends of which are transportable by fluid drag through interior passageways. In the passageways primary coolant is caused to flow selectively in first and second opposite directions for transporting the detector strings from stored positions in an exterior chamber to inserted positions within the instrumentation thimbles of the fuel rod assemblies of a pressure vessel, and for return. The coolant pressure within the detector passageways is the same as that within the vessel; face contact, disconnectable joints between sections of the interior passageways within the vessel facilitate assembly and disassembly of the vessel for refueling and routine maintenance operations. The detector strings may pass through a very short bend radius thereby minimizing space requirements for the connections of the instrumentation system to the vessel and concomitantly the vessel containment structure. Improved radiation mapping and a significant reduction in potential exposure of personnel to radiation are provided. Both top head and bottom head penetration embodiments are disclosed.

  20. Standard Review Plan Preparation for Facility Operations Strengthening...

    Office of Environmental Management (EM)

    Facility Operations Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities August 2013 2 OFFICE OF ENVIRONMENTAL MANAGEMENT Standard Review Plan...

  1. Microfluidic Facility, Harvard Medical School UVO-42 Operation Manual

    E-Print Network [OSTI]

    Zhang, Yi

    Microfluidic Facility, Harvard Medical School UVO-42 Operation Manual 1. Load the substrate then be opened the tray removed, and the parts unloaded. Calixto Saenz, Microfluidic Facility

  2. Operations experience at the Bevalac radiotherapy facility

    SciTech Connect (OSTI)

    Alonso, J.R.; Criswell, T.L.; Howard, J.; Chu, W.T.; Singh, R.P.; Geller, D.; Nyman, M.

    1981-03-01

    During the first years of Bevalac operation the biomedical effort concentrated on radiobiology work, laying the foundation for patient radiotherapy. A dedicated radiotherapy area was created in 1978, and in 1979 full-scale patient treatment was begun. As of now over 500 treatments with carbon, neon and argon beams have been delivered to about 50 patients, some as boosts from other modalities and some as complete heavy ion treatments. Up to 12 patients per day have been treated in this facility. Continuing efforts in refining techniques and operating procedures are increasing efficiency and accuracy of treatments, and are contributing to the alleviation of scheduling difficulties caused by the unique requirements of radiotherapy with human patients.

  3. Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire)

    Broader source: Energy.gov [DOE]

    The statute establishes a procedure for the review, approval, monitoring, and enforcement of compliance in the planning, siting, construction, and operation of energy facilities, including...

  4. John C. Barnes of Savannah River Operations named 2012 Facility...

    Broader source: Energy.gov (indexed) [DOE]

    and H-Canyons and the HB-Line. These facilities conduct hazardous nuclear chemistry, packaging, and processing operations on plutonium and transuranic materials. Mr. Barnes...

  5. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) Nuclear Reactor Faclity Operations Criteria Review and Approach Document (EA CRAD 31-08, Rev....

  6. Associate Vice President Facilities Planning & Operations

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    ) Building Automation Technician Facilities Manager Monsanto Interim Director Physical Plant Associate II Supervisor Building Services (East Campus) Office Manager Inventory Specialist Building Services Sub-Forman (5) Equipment Services Worker (3) Building Services Worker (66) Building Services Worker

  7. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and

  8. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  9. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  10. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  11. IUPUI CAMPUS FACILITY SERVICES CONTRACTOR AND SUPPLIER OPERATING GUIDELINES

    E-Print Network [OSTI]

    IUPUI CAMPUS FACILITY SERVICES CONTRACTOR AND SUPPLIER OPERATING GUIDELINES Revised in March 2009 1.0 INTRODUCTION This document provides Contractors and Suppliers under the direction of Campus Facility Services while on the IUPUI Campus. 2.0 DEFINITIONS 2.1 Contractor/Supplier: Any individual, company

  12. CRAD, Conduct of Operations- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January, 2005 assessment of Conduct of Operations program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  13. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program.

  14. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-10-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program.

  15. 2014 Headquarters Facilities Master Security Plan- Chapter 8, Operations Security Program

    Broader source: Energy.gov [DOE]

    2014 Headquarters Facilities Master Security Plan - Chapter 8, Operations Security Program Describes the DOE Headquarters Operations Security (OPSEC) Program.

  16. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    SciTech Connect (OSTI)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  17. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  18. Powerline Conductor Operational Testing Facility (PCOT) The Powerline Conductor Operational Testing Facility (PCOT), currently planned for

    E-Print Network [OSTI]

    ) transmission system for long-term testing and evaluation. The HV transmission test network within PCOT a facility for realistic field testing of advanced sensors and communications that have been successfully for advanced sensors and communications. Sensors successfully developed and tested by industry or by the Indoor

  19. Micro Hydro 1 Micro Hydro Power.

    E-Print Network [OSTI]

    Micro Hydro 1 Micro Hydro Power. Andrew Cannard, Andrew Gonzales, Candace Kaiser. Using recycled materials we will be building a Mini Micro hydro system. Using a rear bicycle tire for the turbine we and implementation of permanent micro hydro systems on campus. Renewable energy is a key aspect of any plan to make

  20. Case Studies of Potential Facility-Scale and Utility-Scale Non-Hydro Renewable Energy Projects across Reclamation

    SciTech Connect (OSTI)

    Haase, S.; Burman, K.; Dahle, D.; Heimiller, D.; Jimenez, A.; Melius, J.; Stoltenberg, B.; VanGeet, O.

    2013-05-01

    This report summarizes the results of an assessment and analysis of renewable energy opportunities conducted for the U.S. Department of the Interior, Bureau of Reclamation by the National Renewable Energy Laboratory. Tasks included assessing the suitability for wind and solar on both a utility and facility scale.

  1. Feasibility study for a transportation operations system cask maintenance facility

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  2. Hydro unit commitment in hydro-thermal optimization

    SciTech Connect (OSTI)

    Li, C.; Hsu, E.; Svoboda, A.J.; Tseng, C.; Johnson, R.B. [Pacific Gas and Electric Co., San Francisco, CA (United States)

    1997-05-01

    In this paper the authors develop a model and technique for solving the combined hydro and thermal unit commitment problem, taking into full account the hydro unit dynamic constraints in achieving overall economy of power system operation. The combined hydrothermal unit commitment problem is solved by a decomposition and coordination approach. Thermal unit commitment is solved using a conventional Lagrangian relaxation technique. The hydro system is divided into watersheds, which are further broken down into reservoirs. The watersheds are optimized by Network Flow Programming (NFP). Priority-list-based Dynamic Programming is used to solve the Hydro Unit Commitment (HUC) problem at the reservoir level. A successive approximation method is used for updating the marginal water values (Lagrange multipliers) to improve the hydro unit commitment convergence, due to the large size and multiple couplings of water conservation constraints. The integration of the hydro unit commitment into the existing Hydro-Thermal Optimization (HTO) package greatly improves the quality of its solution in the PG and E power system.

  3. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    SciTech Connect (OSTI)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)

  4. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-89-1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric...

  5. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  6. OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes 8/24/98

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to ensure that the contractor has provided for an effective interface between facility operations personnel and personnel responsible for operation of...

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect (OSTI)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

  9. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E; Nixon, Archie E; Dodge, Robert L; Fife, Keith W; Sandoval, Arnold M; Garcia, Vincent E

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

  10. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  11. EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

  12. TYPE OF OPERATION R Research & Development T& Facility Type

    Office of Legacy Management (LM)

    -- R Research & Development T& Facility Type 0 Production scale testing a Pilat scale Y-. Bench Scale Process i Theoretical Studies Sample & Analysis 0 Productian 0 Disposal...

  13. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  14. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  15. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    SciTech Connect (OSTI)

    Bland, Arthur S Buddy; Hack, James J; Baker, Ann E; Barker, Ashley D; Boudwin, Kathlyn J.; Kendall, Ricky A; Messer, Bronson; Rogers, James H; Shipman, Galen M; White, Julia C

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools and resources for next-generation systems.

  16. HydroVision International

    Broader source: Energy.gov [DOE]

    The HydroVision International Conference and Exhibition offers attendees countless opportunities to network, share best practices, meet with product and service providers, and more.  Held over five...

  17. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  18. PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact

    E-Print Network [OSTI]

    of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL

  19. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  20. CRAD, Emergency Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Emergency Management program at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  1. CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

  2. CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  3. CRAD, Safety Basis- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Safety Basis at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  4. CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  5. CRAD, Environmental Protection- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Environmental Compliance program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  6. CRAD, Radiological Controls- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Radiation Protection Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  7. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  8. Dennis Yates Of Savannah River Operations Named 2013 Facility...

    Energy Savers [EERE]

    River Site. The HB-Line is part of the H-Canyon, which conducts hazardous nuclear chemistry, packaging, and processing operations on plutonium and transuranic materials. Mr....

  9. Form:Testing Facility Operator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood,PevafersaMapFile Jump to:NEPATesting Facility

  10. Operational status of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Malone, R.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; van Steenbergen, A.; Woodle, M.; Zhang, R.S. (Brookhaven National Lab., Upton, NY (USA)); Bigio, I.; Kurnit, N.; Shimada, T. (Los Alamos National Lab., NM (USA)); McDonald, K.T.; Russel, D.P. (Princeton Univ., NJ (USA)); Jiang,

    1990-01-01

    Initial design parameters and early operational results of a 50 MeV high brightness electron linear accelerator are described. The system utilizes a radio frequency electron gun operating at a frequency of 2.856 GHz and a nominal output energy of 4.5 MeV followed by two, 2{pi}/3 mode, disc loaded, traveling wave accelerating sections. The gun cathode is photo excited with short (6 psec) laser pulses giving design peak currents of a few hundred amperes. The system will be utilized to carry out infra-red FEL studies and investigation of new high gradient accelerating structures.

  11. NSTX Program Governance, Research Support and Facility Operation

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    -30, 2008 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec Supported by #12;NSTX 2009-13 5 year Plan · Milestone performance history · Scheduling operation, maintenance & upgrades · Managing environment, safety

  12. University of Leicester -Estates (Operations) -Service Level Statement Estates and Facilities Management Division

    E-Print Network [OSTI]

    Banaji,. Murad

    and Facilities Management Division (Operations) Service Level Statement Postal Services a) Aim To provideUniversity of Leicester - Estates (Operations) - Service Level Statement Feb 2015 Estates and partner organisations by ensuring that the EFMD staff provide a customer focussed, quality service

  13. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  14. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    SciTech Connect (OSTI)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  15. LESSONS LEARNED - STARTUP AND TRANSITION TO OPERATIONS AT THE 200 WEST PUMP AND TREAT FACILITY

    SciTech Connect (OSTI)

    FINK DE; BERGQUIST GG; BURKE SP

    2012-10-03

    This document lists key Lessons Learned from the Startup Team for the 200 West Pump and Treat Facility Project. The Startup Team on this Project was an integrated, multi-discipline team whose scope was Construction Acceptance Testing (CAT), functional Acceptance Testing Procedures (ATP), and procedure development and implementation. Both maintenance and operations procedures were developed. Included in the operations procedures were the process unit operations. In addition, a training and qualification program was also part of the scope.

  16. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect (OSTI)

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  17. TRAC analyses for CCTF and SCTF tests and UPTF design/operation. [Cylindrical Core Test Facility; Slab Core Test Facility; Upper Plenum Test Facility

    SciTech Connect (OSTI)

    Spore, J.W.; Cappiello, M.W.; Dotson, P.J.; Gilbert, J.S; Martinez, V.; Stumpf, H.J.

    1985-01-01

    The analytical support in 1985 for Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF), and Upper Plenum Test Facility (UPTF) tests involves the posttest analysis of 16 tests that have already been run in the CCTF and the SCTF and the pretest analysis of 3 tests to be performed in the UPTF. Posttest analysis is used to provide insight into the detailed thermal-hydraulic phenomena occurring during the refill and reflood tests performed in CCTF and SCTF. Pretest analysis is used to ensure that the test facility is operated in a manner consistent with the expected behavior of an operating full-scale plant during an accident. To obtain expected behavior of a plant during an accident, two plant loss-of-coolant-accident (LOCA) calculations were performed: a 200% cold-leg-break LOCA calculation for a 2772 MW(t) Babcock and Wilcox plant and a 200% cold-leg-break LOCA calculation for a 3315 MW(t) Westinghouse plant. Detailed results are presented for several CCTF UPI tests and the Westinghouse plant analysis.

  18. Operational Status and Power Upgrade Prospects of the Neutrino Experimental Facility at J-PARC

    E-Print Network [OSTI]

    Taku Ishida; for the T2K Beam Group

    2015-03-08

    In order to explore CP asymmetry in the lepton sector, a power upgrade to the neutrino experimental facility at J-PARC is a key requirement for both the Tokai to Kamioka (T2K) long-baseline neutrino oscillation experiment and a future project with Hyper-Kamiokande. Based on five years of operational experience, the facility has achieved stable operation with 230 kW beam power without significant problems on the beam-line apparatus. After successful maintenance works in 2013-2014 to replace all electromagnetic horns and a production target, the facility is now ready to accomodate a 750-kW-rated beam. Also, the possibility of achieving a few to multi-MW beam operation is discussed in detail.

  19. An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 An Integrated Approach for Optimal Coordination of Wind Power and Hydro Pumping Storage Edgardo D hydro station with pumping capacity. Economic profits and better operational features can be obtained of hydro storage used and the market characteristics and several options are compared in this study

  20. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  1. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    SciTech Connect (OSTI)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  2. PREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES

    E-Print Network [OSTI]

    Boyer, Edmond

    ). The upper group consists of a bituminous soft coal, the lower coke coal. The field is sharply folded alongPREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES J.P. AMARTIN HJSJL a stricl methodology. It has been possjble then to resume coal winning, which has cor.tmued until

  3. EA-281 Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281 Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281 Manitoba Hydro More Documents & Publications EA-281-B Manitoba Hydro EA-281-A...

  4. EIS-0388: Operation of a Biosafety Level 3 Facility at the Los Alamos National Laboratory, New Mexico

    Broader source: Energy.gov [DOE]

    This EIS evaluates the operation of a Biosafety Level 3 Facility (BSL–3 Facility) at the Los Alamos National Laboratory (LANL). A BSL-2 Alternative, an existing BSL-2 permitted facility, and a No Action Alternative will be analyzed. The EIS is currently on hold.

  5. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    SciTech Connect (OSTI)

    Carter, R.L. Jr.

    1994-11-07

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS).

  6. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

  7. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

  8. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  9. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    SciTech Connect (OSTI)

    JANIN, L.F.

    2000-08-30

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  10. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  11. Subj: Educational and General (E&G) Facility Support Provide an overview of Facility Operations, Maintenance, Repair and Renovation and Space

    E-Print Network [OSTI]

    Operations, Maintenance, Repair and Renovation and Space Management Procedures and Practices. KEY DEFINITIONS. and optimizes energy use while maintaining occupant comfort. BAS technicians from the Energy office operate and infrastructure. Facilities Energy & Utilities: Energy and Utilities is responsible for campus-wide utility

  12. Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151

    SciTech Connect (OSTI)

    Van Vliet, James A. [Waste Control Specialists LLC, Andrews County, Texas (United States)

    2012-07-01

    During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facility consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)

  13. Umatilla Basin Fish Facilities Operation & Maintenance : Annual Report Fiscal Year 2008.

    SciTech Connect (OSTI)

    Wick, Mike

    2008-12-30

    Westland Irrigation District, as contractor to Bonneville Power Administration, and West Extension Irrigation District, as subcontractor to Westland, provide labor, equipment, and material necessary for the operation, care, and maintenance of fish facilities on the Umatilla River. Westland Irrigation District is the contractor of record. Job sites that are covered: Three Mile Right, Three Mile Left, Three Mile Adult Spawning, WEID Sampling Facility, Maxwell Screen Site, Westland Screen Site/Ladder/Juvenile Sampling Facility, Feed Canal Ladder/Screen Site, Stanfield Ladder/Screen Site, Minthorn Holding Facility, Thornhollow Acclimation Site, Imeques Acclimation Site, Pendleton Acclimation Site, and South Fork Walla Walla Spawning Facility. O & M personnel coordinate with the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) personnel in performing tasks under this contract including scheduling of trap and haul, sampling, acclimation site maintenance, and other related activities as needed. The input from ODFW biologists Bill Duke and Ken Loffink, and CTUIR biologist Preston Bronson is indispensable to the success of the project, and is gratefully acknowledged. All tasks associated with the project were successfully completed during the fiscal year 2008 work period of October, 2007 through September, 2008. The project provides operations and maintenance throughout the year on five fish screen sites with a total of thirty-four rotating drum-screens, and four fish ladders in the Umatilla River Basin; additionally, periodic operations and maintenance is performed at holding, acclimation, and spawning sites in the Basin. Three people are employed full-time to perform these tasks. The FY08 budget for this project was $492,405 and actual expenditures were $490,267.01. Selected work activities and concerns: (1) Feed Dam Passage Improvement Project - A project to improve fish passage over the short term at the Feed Canal Diversion Dam site (Umatilla River mile 28.7) was implemented with local U.S. Bureau of Reclamation field office personnel coordinating project activities. Operation and Maintenance Project personnel assisted with labor, materials, and equipment to ensure the project was completed as planned. Discussions are under way to determine feasible alternatives for longer term solutions to passage issues at the site. (2) Three Mile Right (east bank) Facilities - The pump for supplying water to the fish handling facility holding pond was reconstructed successfully to achieve the desired increase in flow output necessary when increased quantities of fish are present. (3) Fish Screen Rehab at Stanfield Canal Diversion - Working with the Washington Department of Fish and Wildlife screen shop personnel, three rotating drum screens at the Stanfield Canal diversion site (Umatilla River mile 33.3) were serviced and overhauled with new bearings, seals, paint, and reinforcing bars. Work was completed, and screens reinstalled prior to water diversions beginning in the spring. (4) O & M personnel performed daily, weekly, and monthly operations and maintenance duties at the screen and ladder sites including, but not limited to, desilting of mud and debris, lubrication of mechanical parts, replacement of screen seals and screen motor components, adjustment of ladder gates, removal of large trees and woody debris deposited during high river flow conditions, servicing of pumps and screens for fish handling operations and sampling studies, in addition to general site clean-up, vegetative control, and security. Crew members responded as needed during evenings and after-hours according to weather conditions, river flows, and fish passage facility needs.

  14. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Pourhasan, Razieh

    2015-01-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  15. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Razieh Pourhasan

    2015-11-20

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  16. Non-equilibrium steady state in the hydro regime

    E-Print Network [OSTI]

    Razieh Pourhasan

    2015-09-03

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P = P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) that the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1-September 30, 2010, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This fourth quarter comprises a total of 2208 possible hours for the fixed and mobile sites. The average of the fixed sites exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has historically had a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning in the second quarter of FY2010, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original instrumentation and new instrumentation made available through the American Recovery and Reinvestment Act of 2009 (ARRA). The Central Facility and 4 extended facilities will remain, but there will be up to 12 new surface characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The transition to the smaller footprint is ongoing through this quarter. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place by the end of calendar year 2011. AMF1 continues its 20-month deployment in Graciosa Island, the Azores, P

  18. The Greening of a Plutonium Facility through Personnel Safety, Operational Efficiency, and Infrastructure Improvements - 12108

    SciTech Connect (OSTI)

    Dodge, Robert L.; Cournoyer, Michael E.

    2012-07-01

    Chemical and metallurgical operations involving plutonium and other hazardous materials account for most activities performed at the Los Alamos National Laboratory's Plutonium Facility (TA-55). Engineered barriers provide the most effective protection from hazardous materials. These safety features serve to protect workers and provide defense in depth against the hazards associated with operations. Although not designed to specifically meet environmental requirements the safety-based design does meet or exceed the requirements of the environmental regulations enacted during and since its construction. TA-55's Waste Services Group supports this safety methodology by ensuring safe, efficient and compliant management of all radioactive and hazardous wastes generated at the TA-55. A key function of this group is the implementation of measures that lower the overall risk of radiological and hazardous material operations. Processes and procedures that reduce waste generation compared to current, prevalent processes or procedures used for the same purpose are identified. Some of these 'Best Practices' include implementation of a chemical control system, elimination of aerosol cans, reduction in hazardous waste, implementation of zero liquid discharge, and the re-cyclization of nitric acid. P2/WMin opportunities have been implemented in the areas of personnel and facility attributes, environmental compliance, energy conservation, and green focused infrastructure expansion with the overall objective of minimizing raw material and energy consumption and waste generation. This increases technical knowledge and augments operational safety. (authors)

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The first quarter comprises a total of 2,208 hours. The average exceeded their goal this quarter.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. T

  1. Feasibility of establishing and operating a generic oil shale test facility

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

  2. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect (OSTI)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  3. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, F J

    2012-02-27

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  4. Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility

    Broader source: Energy.gov [DOE]

    Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

  6. EA-1562: Construction and Operation of a Physical Sciences Facility at the Pacific Northwest National Laboratory, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of DOE proposed activities associated with constructing and operating a new Physical Sciences Facility (PSF) complex on DOE property located in...

  7. EA-0930: Facility Operations at the U.S. DOE Grand Junction Projects Office, Grand Junction, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to expand and upgrade the U.S. Department of Energy's Grand Junction Projects Office facilities and operations in Grand Junction, Colorado.

  8. EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

  9. Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut

    SciTech Connect (OSTI)

    W. C. Adams

    2007-07-03

    The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

  10. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 ? 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 × 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 × 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 × 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 × 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  15. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  16. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The fourth quarter comprises a total of 2,208 hours for the fixed and mobile sites. The average of the fixed sites well exceeded our goal this quarter. The AMF data statistic requires explanation. Since the AMF radar data ingest software is being modified, the data are being stored in the DMF for data processing. Hence, the data are not at the Archive; they are anticipated to become available by the next report.

  17. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  18. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2007, for the fixed sites only. The AMF has been deployed to Germany and is operational this quarter. The third quarter comprises a total of 2,184 hours. Although the average exceeded our goal this quarter, there were cash flow issues resulting from Continuing Resolution early in the period that did not allow for timely instrument repairs that kept our statistics lower than past quarters at all sites. The low NSA numbers resulted from missing MFRSR data this spring that appears to be recoverable but not available at the Archive at the time of this report.

  20. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2009, for the fixed sites. The AMF has completed its mission in China but not all of the data can be released to the public at the time of this report. The second quarter comprises a total of 2,160 hours. The average exceeded our goal this quarter.

  4. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period April 1, 2007 - March 31, 2008. Table 2 shows the summary of cumulative users for the period April 1, 2007 - March 31, 2007. For the second quarter of FY 2008, the overall number of users was nearly as high as the last reporting period, in which a new record high for number of users was established. This quarter, a new record high was established for the number of user days, particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany, as well as major field campaigns at the NSA and SGP sites. This quarter, 37% of the Archive users are ARM science-funded principal investigators and 23% of all other facility users are either ARM science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. I

  5. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department, FNAL #12;ISIS -- neutrons Diamond -- X-rays #12;#12;· Lifetime · Reliable Operation · Flexibility

  6. Hydrologic Modeling with Arc Hydro Tools 1 Copyright 2007 ESRI. All rights reserved. Arc Hydro

    E-Print Network [OSTI]

    Slatton, Clint

    Hydrologic Modeling with Arc Hydro Tools 1 Copyright © 2007 ESRI. All rights reserved. Arc Hydro Arc Hydro: GIS in Water Resources Seminar/Workshop Gainesville, Florida ­ November 15, 2007 Christine Dartiguenave, ESRI inc. cdartiguenave@esri.com #12;Hydrologic Modeling with Arc Hydro Tools 2 2Arc Hydro

  7. A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS

    E-Print Network [OSTI]

    A COMPARISON OF THE AQUATIC IMPACTS OF LARGE HYDRO AND SMALL HYDRO PROJECTS by Lara A. Taylor, P Project: A Comparison of the Aquatic Impacts of Large Hydro and Small Hydro Projects Project No.: 501 of small hydro development in British Columbia has raised concerns surrounding the effects

  8. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  9. Midwest Hydro Users Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  10. hydro | OpenEI Community

    Open Energy Info (EERE)

    hydro Home Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other...

  11. Ontario Hydro Motor Efficiency Study 

    E-Print Network [OSTI]

    Dautovich, D. R.

    1980-01-01

    Electric motors consume more than one-half of the electrical energy produced by Ontario Hydro. In the residential sector, the major motor load is for refrigerators and freezers while packaged equipment dominate the motor load in the commercial...

  12. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF, currently in Germany. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Due to the similarity of ACRF NSA data streams, and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2007 - December 31, 2007. Table 2 shows the summary of cumulative users for the period January 1, 2007 - December 31, 2007. For the first quarter of FY 2008, the overall number of users was up significantly from the last reporting period. For the fourth consecutive reporting period, a record high number of Archive users was recorded. In addition, the number of visitors and visitor days set a new record this reporting period particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany. It is interesting to note this quarter that

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period October 1, 2007 - September 30, 2008. Table 2 shows the summary of cumulative users for the period October 1, 2007 - September 30, 2008. For the fourth quarter of FY 2008, the overall number of users is down substantially (about 30%) from last quarter. Most of this decrease resulted from a reduction in the ACRF Infrastructure users (e.g., site visits, research accounts, on-site device accounts, etc.) associated with the AMF China deployment. While users had easy access to the previous AMF deployment in Germany that resulted in all-time high user statistics, physical and remote access to on-site accounts are extremely limited for the AMF deployment in China. Furthermore, AMF data have not yet been released from China to the Data Management Facility for processing, which affects Archive user statistics. However, Archive users are only down about 10% from last quarter. Anothe

  14. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect (OSTI)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  15. Phase report 1C, TA-21 operable unit RCRA Facility Investigation, Outfalls Investigation

    SciTech Connect (OSTI)

    Not Available

    1994-02-28

    This phase report summarizes the results of field investigations conducted in 1992 at Technical Area 21 of Los Alamos National Laboratory, as prescribed by the RCRA Facility Investigation work plan for the Technical Area 21 operable unit (also known as OU 1106). This phase report is the last part of a three-part phase report describing the results of field work conducted in 1992 at this operable unit. Phase Report lA, issued on l4 June l993, summarized site geologic characterization activities. Phase report 1B, issued on 28 January 1994, included an assessment of site-wide surface soil background, airborne emissions deposition, and contamination in the locations of two former air filtration buildings. The investigations assessed in Phase Report 1C include field radiation surveys and surface and near-surface sampling to characterize potential contamination at 25 outfalls and septic systems listed as SWMUs in the RFI work plan. Based on the RFI data, it is recommended that no further action is warranted for 8 SWMUs and further action is recommended for 3 SWMUs addressed in this phase report. For 14 SWMUs which represent no immediate threat to human health or environment, deferral of further action/no further action decisions is recommended until outstanding analytical data are received, sampling of adjacent SWMUs is completed, or decisions are made about the baseline risk assessment approach.

  16. PP-54 Ontario Hydro Electric Power Commission | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-54 Ontario Hydro Electric Power Commission PP-54 Ontario Hydro Electric Power Commission Presidential Permit authorizing Ontario Hydro Electric Power Commission to construct,...

  17. Extreme hydro-meteorological events and their probabilities

    E-Print Network [OSTI]

    Beersma, Jules

    Extreme hydro-meteorological events and their probabilities Jules Beersma #12;Promotor: Prof. dr. A Onderzoekschool (BBOS) #12;Extreme hydro-meteorological events and their probabilities Extreme hydro

  18. Design and operation of a counter-rotating aspirated compressor blowdown test facility

    E-Print Network [OSTI]

    Parker, David V. (David Vickery)

    2005-01-01

    A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

  19. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  20. EA-281-A Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281-A Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281-A Manitoba Hydro More Documents & Publications EA-281 Manitoba Hydro EA-281-B...

  1. EA-281-B Manitoba Hydro | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-281-B Manitoba Hydro Order authorizing Manitoba Hydro to export electric energy to Canada. EA-281-B Manitoba Hydro More Documents & Publications EA-281 Manitoba Hydro EA-281-A...

  2. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  3. Invervar Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation, search Name: Invervar Hydro

  4. NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center

    E-Print Network [OSTI]

    Antypas, Katie

    2013-01-01

    NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

  5. Hydro Research Program Seeking Graduate Student Applicants

    Broader source: Energy.gov [DOE]

    The Hydro Research Foundation is now accepting graduate student applications for its DOE-funded graduate student research program. The Hydro Research Awards Program is designed to spur innovation...

  6. Doctoral Defense "Thermal-hydro-mechanical model

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Doctoral Defense "Thermal-hydro-mechanical model for freezing and thawing soils" Yao Zhang Date been implemented in a finite element system, with a thermal-hydro- mechanical framework being used

  7. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  8. North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power development

    E-Print Network [OSTI]

    Meju, Max

    North West Hydro Resource Model Research to identify potential capacity and assist NW hydro power University wide research, aims to develop a system to promote the exploitation of hydro power in North with regard to hydro schemes Reviewing and re-formulating ill defined requirements for environmental

  9. Prparation de votre examen stabilit hydro

    E-Print Network [OSTI]

    Hoepffner, Jérôme

    Préparation de votre examen stabilité hydro: - Relisez vos notes de cours - Refaites les exercices

  10. Appendix HYDRO: Hydrological Investigations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal Facility Agreement and Consent04A:E

  11. CRAD, Criticality Safety- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Criticality Safety program at the Y-12 - Enriched Uranium Facility.

  12. 4, 18791891, 2007 hydro-information

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et al. Title Page Abstract for distributed and interoperable hydro-information systems J. Horak, A. Orlik, and J. Stromsky Institute (antonin.orlik.hgf@vsb.cz) 1879 #12;HESSD 4, 1879­1891, 2007 WS for hydro-information systems J. Horak et

  13. Quidi Vidi Lake Hydro Power Demonstration Project

    E-Print Network [OSTI]

    Bruneau, Steve

    Quidi Vidi Lake Hydro Power Demonstration Project Presented by Eugene G. Manning, B. Eng Candidate walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation

  14. A historical perspective of remote operations and robotics in nuclear facilities. Robotics and Intelligent Systems Program

    SciTech Connect (OSTI)

    Herndon, J.N.

    1992-12-31

    The field of remote technology is continuing to evolve to support man`s efforts to perform tasks in hostile environments. The technology which we recognize today as remote technology has evolved over the last 45 years to support human operations in hostile environments such as nuclear fission and fusion, space, underwater, hazardous chemical, and hazardous manufacturing. The four major categories of approach to remote technology have been (1) protective clothing and equipment for direct human entry, (2) extended reach tools using distance for safety, (3) telemanipulators with barriers for safety, and (4) teleoperators incorporating mobility with distance and/or barriers for safety. The government and commercial nuclear industry has driven the development of the majority of the actual teleoperator hardware available today. This hardware has been developed largely due to the unsatisfactory performance of the protective-clothing approach in many hostile applications. Manipulation systems which have been developed include crane/impact wrench systems, unilateral power manipulators, mechanical master/slaves, and servomanipulators. Viewing systems have included periscopes, shield windows, and television systems. Experience over the past 45 years indicates that maintenance system flexibility is essential to typical repair tasks because they are usually not repetitive, structured, or planned. Fully remote design (manipulation, task provisions, remote tooling, and facility synergy) is essential to work task efficiency. Work for space applications has been primarily research oriented with relatively few successful space applications, although the shuttle`s remote manipulator system has been quite successful. In the last decade, underwater applications have moved forward significantly, with the offshore oil industry and military applications providing the primary impetus.

  15. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDRO-MAGNTIQUES; THO-RMES FONDAMENTAUX ET LEUR CONSTATATION EXPRIMENTALE;

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    PHÉNOMÈNES DITS HYDRO-ÉLECTRIQUES ET HYDRO-MAGNÉTIQUES; THÉO- RÈMES FONDAMENTAUX ET LEUR nouveaux phénomènes. Je les désignerai ainsi comme une hydro-électicité, un hydro-magnétisme, etc. Mais'idée, d'aimants au lieu d'hydro-aimants, de masses électriques au lieu de masses hydro-électriques, et

  16. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    SciTech Connect (OSTI)

    Michael, WILLIAMS

    2004-11-22

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented.

  17. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  18. Scoping Calculations for Potential Groundwater Impacts from Operation of the APT Facility at SRS

    SciTech Connect (OSTI)

    Thibault, J.J.

    1999-10-07

    The purpose of this study was to determine the potential travel times and paths of the postulated activated groundwater beneath the facility and to examine the fate and transport of this activated groundwater.

  19. SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research

    SciTech Connect (OSTI)

    McDonald, R.J. (ed.)

    1987-09-01

    This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

  20. Sandia Energy - SWiFT Facility Prepared for More-Efficient Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the DOESNL Scaled Wind-Farm Technology (SWiFT) facility picked up in preparation for an enhanced, more-efficient site-enabling advanced research to be executed with more rigor....

  1. Commissioning and early operating experience with the Fermilab horizontal test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  2. An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System

    SciTech Connect (OSTI)

    Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D; Rowe, Nathan C; Younkin, James R

    2011-01-01

    An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment also provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.

  3. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  4. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  6. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    SciTech Connect (OSTI)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.; Khan, S.S.; Nair, K.N.S.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of its longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)

  7. Design of a hydro-electric plant on the Mattawamkeag River

    E-Print Network [OSTI]

    Hazen, Daniel Francis

    1915-01-01

    stream_size 74828 stream_content_type text/plain stream_name hazen_1915_3424074.pdf.txt stream_source_info hazen_1915_3424074.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 DESIGN of a HYDRO... Engineering. June 5, 1915. DESIGN of a HYDRO-ELECTRIC PLANT on the MATTAWAMKBAG RIVER PREFACE This thesis•contains all the preliminary work necessary to show the feasibility of the construction and operation of a hydro-electric plant on the Mattawamkeag...

  8. Environmental assessment of facility operations at the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado

    SciTech Connect (OSTI)

    1996-06-01

    The US Department of Energy (DOE) has prepared a sitewide environmental assessment (EA) of the proposed action to continue and expand present-day activities on the DOE Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Because DOE-GJPO regularly proposes and conducts many different on-site activities, DOE decided to evaluate these activities in one sitewide EA rather than in multiple, activity-specific documents. On the basis of the information and analyses presented in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, as defined by the National Environmental Policy Act (NEPA) of 1969. Therefore, preparation of an environmental impact statement is not required for facility operations, and DOE is issuing this Finding of No Significant Impact (FONSI).

  9. A Fusion Test Facility for Inertial Fusion Presented by Stephen Obenschain

    E-Print Network [OSTI]

    in their optimization, and have to be developed in concert with their own purpose-built facilities. #12;HAPL= $25M advanced pellet designs that are resistant to hydro-instability · Use deep UV light and large burn #12) that to help hydro-stability. Maximum (linear) hydro-instability growth

  10. SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock

    E-Print Network [OSTI]

    McDonald, Kirk

    SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W Neutron Source, Target Test Facility is a full-scale replica of the mercury-target flow loop prototypic target, and numerous pressure sensors. Outside of the loop enclosure, tests were done on a new

  11. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29

    To establish policies and procedures for management of DOE, including NNSA, Management and Operating (M&O) and other facility management contractor employees assigned to the Washington, D.C., area. Cancels DOE O 350.2.

  12. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-18

    The Order establishes policies and procedures for managing DOE and NNSA management and operating (M&O) contractors and other facility management contractor employees assigned to the Washington, D.C., area.

  13. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  8. Pumped Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic Utility District No 2Pumped Hydro Jump to:

  9. Assessment of radiological releases from the NuMI facility during MINOS and NOvA operations

    SciTech Connect (OSTI)

    Martens, Mike; /Fermilab

    2007-04-01

    This report makes projections of the radiological releases from the NuMI facility during operations for the MINOS and NO ?A experiments. It includes an estimate of the radionuclide levels released into the atmosphere and the estimated tritium and sodium-22 concentrations in the NuMI sump water and Fermilab pond system. The analysis was performed for NuMI operations with a beam power on target increased from the present 400 kW design up to a possible 1500 kW with future upgrades. The total number of protons on target was assumed to be 18 x 10{sup 20} after the completion of MINOS and 78 x 10{sup 20} after the completion of NO ?A.

  10. A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility

    E-Print Network [OSTI]

    Dibb, Gregory David, 1974-

    2004-01-01

    Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

  11. Improving information flow for molding maintenance operations in a medical device manufacturing facility

    E-Print Network [OSTI]

    Lin, YongLiang Manfred

    2009-01-01

    Manufacturing companies seek ways to eliminate waste from their operations to stay competitive. In this project, the waste is in the mold repair process which involves two main groups, Molding and Tooling. By using process ...

  12. Environmental Assessment for the proposed modification and continued operation of the DIII-D facility

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    The EA evaluates the proposed action of modifying the DIII-D fusion facility and conducting related research activities at the GA San Diego site over 1995-1999 under DOE contract number DE-ACO3-89ER51114. The proposed action is need to advance magnetic fusion research for future generation fusion devices such as ITER and TPX. It was determined that the proposed action is not a major action significantly affecting the quality of the human environment according to NEPA; therefore a finding of no significant impact is made and an environmental impact statement is not required.

  13. Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets

    E-Print Network [OSTI]

    Boyer, Edmond

    be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant1 Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets Franck Bourry is able to minimize the imbalance penalty risks associated to wind power forecast uncertainty through

  14. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

  15. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  16. NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys

    E-Print Network [OSTI]

    NOAA Fisheries Protocols For Hydro-dynamic Dredge Surveys: Surf Clams and Ocean Quahogs December 19..................................................................................................................................... 1 NOAA Fisheries Hydro-dynamic Clam Dredge Survey Protocols

  17. PP-22 British Columbia Hydro and Power Authority, Amendment 1967...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-22 British Columbia Hydro and Power Authority, Amendment 1967 PP-22 British Columbia Hydro and Power Authority, Amendment 1967 Presidential permit authorizing British Columbia...

  18. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  20. Initial Activation and Operation of the Power Conditioning System for the National Ignition Facility

    SciTech Connect (OSTI)

    Newton, M A; Kamm, R E; Fulkerson, E S; Hulsey, S D; Lao, N; Parrish, G L; Pendleton, D L; Petersen, D E; Polk, M; Tuck, J M; Ullery, G T; Moore, W B

    2003-08-20

    The NIF Power Conditioning System (PCS) resides in four Capacitor Bays, supplying energy to the Master and Power Amplifiers which reside in the two adjacent laser bays. Each capacitor bay will initially house 48 individual power conditioning modules, shown in Figure 2, with space reserved for expansion to 54 modules. The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that will be capable of storing nearly 400 MJ of electrical energy and delivering that energy to the nearly 8000 flashlamps in the NIF laser. The first sixteen modules of the power conditioning system have been built, tested and installed. Activation of the first nine power conditioning modules has been completed and commissioning of the first ''bundle'' of laser beamlines has begun. This paper will provide an overview of the power conditioning system design and describe the status and results of initial testing and activation of the first ''bundle'' of power conditioning modules.

  1. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    SciTech Connect (OSTI)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  2. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  3. HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation

    E-Print Network [OSTI]

    Römisch, Werner

    HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

  4. Hydro - Power and peril ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydro - Power and peril ... Fish and the dams that provide about 7 percent of the nation's electricity may have a more symbiotic relationship because of work being performed by a...

  5. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  6. Technical Basis for Safe Operations with Pu-239 in NMS and S Facilities (F and H Areas)

    SciTech Connect (OSTI)

    Bronikowski, M.G.

    1999-03-18

    Plutonium-239 is now being processed in HB-Line and H-Canyon as well as FB-Line and F-Canyon. As part of the effort to upgrade the Authorization Basis for H Area facilities relative to nuclear criticality, a literature review of Pu polymer characteristics was conducted to establish a more quantitative vs. qualitative technical basis for safe operations. The results are also applicable to processing in F Area facilities.The chemistry of Pu polymer formation, precipitation, and depolymerization is complex. Establishing limits on acid concentrations of solutions or changing the valence to Pu(III) or Pu(VI) can prevent plutonium polymer formation in tanks in the B lines and canyons. For Pu(IV) solutions of 7 g/L or less, 0.22 M HNO3 prevents polymer formation at ambient temperature. This concentration should remain the minimum acid limit for the canyons and B lines when processing Pu-239 solutions. If the minimum acid concentration is compromised, the solution may need to be sampled and tested for the presence of polymer. If polymer is not detected, processing may proceed. If polymer is detected, adding HNO3 to a final concentration above 4 M is the safest method for handling the solution. The solution could also be heated to speed up the depolymerization process. Heating with > 4 M HNO3 will depolymerize the solution for further processing.Adsorption of Pu(IV) polymer onto the steel walls of canyon and B line tanks is likely to be 11 mg/cm2, a literature value for unpolished steel. This value will be confirmed by experimental work. Tank-to-tank transfers via steam jets are not expected to produce Pu(IV) polymer unless a larger than normal dilution occurs (e.g., >3 percent) at acidities below 0.4 M.

  7. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  8. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  9. Supplemental Requirements for the Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-19

    The Notice supplements review and approval requirements of DOE O 350.2A, Use of Management and Operating (M&O) or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area, dated 10-29-03.

  10. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-31

    To establish policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), management and operating (M&O) and other facility management contractor employees assigned to the Washington, D.C. area. Supersedes DOE O 350.2A

  11. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe

    E-Print Network [OSTI]

    Groppi, Christopher

    under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe #12;The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. A light wave is a light wave

  12. Hoyte Phifer Facilities Operations

    E-Print Network [OSTI]

    Saidak, Filip

    morning hours to reduce evaporation. Use mulch to reduce irrigating. Plant drought resistant, native, Newspaper, Soft-back books Cardboard Plastic: #1 & #2 Bottles Steel: Tin Cans & Aerosol Cans Chipboard #12 wastes. NO!!!!! Pizza Boxes Styrofoam Disposable Cups or Plates Paper Towels Plastic Wrap & Bags #12

  13. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    SciTech Connect (OSTI)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.; Stephenson, John R.; Pflugrath, Brett D.; Welch, Abigail E.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-02-01

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to the incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.

  14. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  15. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  16. EIS-0141: Washington Water Power/B.C. Hydro Transmission Interconnection Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of constructing and operating a double-circuit 230-kilovolt electrical transmission line that would link the electrical systems of the Washington Water Power Company and the British Columbia Hydro and Power Authority.

  17. Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real

    E-Print Network [OSTI]

    Harrison, Gareth

    . This will be contrasted in energy terms with the increase in dispatch available by operating more flexibly within extensions of the transmission network, mini- hydro schemes are often at the end of long open-ended radial of Real Power Export Aristides E. Kiprakis and A. Robin Wallace Institute for Energy Systems, University

  18. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  19. Development of HydroImage, A User Friendly Hydrogeophysical Characterization Software

    SciTech Connect (OSTI)

    Mok, Chin Man; Hubbard, Susan; Chen, Jinsong; Suribhatla, Raghu; Kaback, Dawn Samara

    2014-01-29

    HydroImage, user friendly software that utilizes high-resolution geophysical data for estimating hydrogeological parameters in subsurface strate, was developed under this grant. HydroImage runs on a personal computer platform to promote broad use by hydrogeologists to further understanding of subsurface processes that govern contaminant fate, transport, and remediation. The unique software provides estimates of hydrogeological properties over continuous volumes of the subsurface, whereas previous approaches only allow estimation of point locations. thus, this unique tool can be used to significantly enhance site conceptual models and improve design and operation of remediation systems. The HydroImage technical approach uses statistical models to integrate geophysical data with borehole geological data and hydrological measurements to produce hydrogeological parameter estimates as 2-D or 3-D images.

  20. Wetland assessment of the effects of construction and operation of a depleteduranium hexafluoride conversion facility at the Portsmouth, Ohio, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation, and potential loss of hydrology necessary to sustain wetland conditions. Construction at Locations B or C would not result in direct impacts to wetlands. However, the hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 are set forth in 10 CFR Part 1022. The impacts at Location A may potentially be avoided by an alternative routing of the entrance road, or mitigation may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the State of Ohio. Unavoidable impacts to isolated wetlands may require an Isolated Wetlands Permit from the Ohio Environmental Protection Agency. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to wetlands are anticipated to be negligible to minor for the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found in this part of Ohio, which in many cases involve previously disturbed habitats.

  1. Lac Courte Oreilles Hydro Dam Assessment

    SciTech Connect (OSTI)

    Weaver, Jason; Meyers, Amy

    2014-12-31

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  2. Transcending the Hydro-Illogical Building a Texas Hydrologic

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Transcending the Hydro-Illogical Cycle Building a Texas Hydrologic Information System TX-HIS #12;Q to couple streamflow models to GCMs · We need to break the hydro-illogical cycle and plan for the delivery

  3. | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a

    E-Print Network [OSTI]

    New Hampshire, University of

    | JANUARY/FEBRUARY 2014 | Hydro INTERNATIONAL22 symbols and features used on a nautical chart #12;Hydro INT

  4. Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion

    E-Print Network [OSTI]

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2008-01-01

    at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

  5. Forestry Commission Wales Guidance on rental levels for Hydro Power

    E-Print Network [OSTI]

    initiated a process to facilitate the development of small- scale hydro-electricity schemes on land ownedForestry Commission Wales Guidance on rental levels for Hydro Power Guidance on rental levels for hydro power projects Tel: 02920 475961 Email: hydrowales@forestry.gsi.gov.uk Version 1.0 Mike Pitcher 17

  6. NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 46 A CLIMATIC ANALYSIS OF OROGRAPHIC PRECIPITATION OVER THE BIGHydrology (HYDRO) ofthe National Weather Service (NWS) develops procedures for making river and water supply, and conducts pertinent research and development NOAA Teclmical Memorandums in the NWS HYDRO series facilitate

  7. November 20th, 2013November 20 , 2013 BC Hydro Today

    E-Print Network [OSTI]

    November 20th, 2013November 20 , 2013 DRAFT 1 #12; BC Hydro Today FY 2013 IPPs in BC BC; BC Hydro serves 95 percent of the population in British Columbia1Columbia Load are split evenly (IPPs are d t t ith BC h d )3under contract with BC hydro)3 Limited transfer capability into BC from

  8. Fraser River Hydro and Fisheries Research Project fonds

    E-Print Network [OSTI]

    Handy, Todd C.

    Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

  9. NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 45 RELATIONSHIP BETWEEN STORM AND ANTECEDENT PRECIPITATION OVER TECHNICAL MEMORANDUMS National Weather Service. Office of Hydrology Series The Office of Hydrology (HYDRO and development. NOAA Technical Memorandums in the NWS HYDRO series facilitate prompt distribution of scientific

  10. NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES

    E-Print Network [OSTI]

    Kirby, James T.

    NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES GENERATED BY SUBMARINE TSUNAMIGENIC#al to increase the reliability of the system · Can we use precursors of tsunami? Hydro numerical models applicable on an oceanic scale #12;Index · Introduc#on on hydro

  11. Interconnected hydro-thermal systems Models, methods, and applications

    E-Print Network [OSTI]

    Interconnected hydro-thermal systems Models, methods, and applications Magnus Hindsberger Kgs. Lyngby 2003 IMM-PHD-2003-112 Interconnected hydro-thermalsystems #12;Technical University of Denmark 45882673 reception@imm.dtu.dk www.imm.dtu.dk IMM-PHD-2003-112 ISSN 0909-3192 #12;Interconnected hydro

  12. Hydro, Solar, Wind The Future of Renewable Energy

    E-Print Network [OSTI]

    Lavaei, Javad

    Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical the turbine speed constant. The available hydro power is calculated using the height difference between source has become popular and has many immediate benefits to communities that opt to build a hydro

  13. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  14. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 and pumped-storage hydro units is developed. For its compu- tational solution two di erent decompo- sition-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  15. Atomic scale mixing for inertial confinement fusion associated hydro instabilities

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

  16. Energy for Cleaner Transportation Hydro-Quebec

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash Illinois Institute of Technology Naperville, Illinois, USA R. D. McConnell National Renewable Energy in the United States of America #12;iii Preface Energy for Cleaner Transportation This symposium covered

  17. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  18. Earthquake design criteria for small hydro projects in the Philippines

    SciTech Connect (OSTI)

    Martin, P.P.; McCandless, D.H.; Asce, M.

    1995-12-31

    The definition of the seismic environment and seismic design criteria of more than twenty small hydro projects in the northern part of the island of Luzon in the Philippines took a special urgency on the wake of the Magnitude 7.7 earthquake that shook the island on July 17, 1990. The paper describes the approach followed to determine design shaking level criteria at each hydro site consistent with the seismic environment estimated at that same site. The approach consisted of three steps: (1) Seismicity: understanding the mechanisms and tectonic features susceptible to generate seismicity and estimating the associated seismicity levels, (2) Seismic Hazard: in the absence of an accurate historical record, using statistics to determine the expected level of ground shaking at a site during the operational 100-year design life of each Project, and (3) Criteria Selection: finally and most importantly, exercising judgment in estimating the final proposed level of shaking at each site. The resulting characteristics of estimated seismicity and seismic hazard and the proposed final earthquake design criteria are provided.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  20. Facilities Management Mike Johnson

    E-Print Network [OSTI]

    Capogna, Luca

    , Design & Construction Services Bob Beeler Director, Facility Operations & Maintenance / Environmental Health & Safety Ron Edwards Director, Utility Operations & Maintenance Scott Turley Director, Business & Distribution Utility Plant Operations Water Treatment Zone C Utility Maintenance (HEAT) Power Distribution

  1. EA-1364: Proposed Construction and Operation of a Biosafety Level 3 Facility at Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to construct an approximately 3,000 square foot, one-story permanent facility which includes two BSL-3 laboratories with adjoining individual mechanical rooms separated by a central support BSL-2 laboratory; clothes-change and shower rooms; and associated office spaces.

  2. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.

  3. EA-2017: Braddock Locks and Dam Hydro Electric Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is proposing to authorize the expenditure of federal funding to Hydro Green Energy, LLC to fabricate, install, and operate one interchangeable Modular Bulb Turbine (MBT) which would be inserted in a Large Frame Module (LFM) at the existing Braddock Locks and Dam. The installation would be part of a larger project that would include the design and installation of seven MBTs to create a 5.2 megawatt, low head hydropower system at Braddock Locks and Dam. An Environmental Assessment (EA) previously prepared by the Federal Energy Regulatory Commission (FERC) has been adopted by DOE pursuant to the requirements of the National Environmental Policy Act (NEPA).

  4. DRAFT - DOE O 350.2C, Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes policies and procedures for managing DOE and NNSA management and operating (M&O) contractors and other facility management contractor employees assigned to the Washington, D.C., area.

  5. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)

    Broader source: Energy.gov [DOE]

    "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

  6. Proposal for the award of a service contract for the operation, maintenance and other work relating to the low-voltage electrical facilities of CERN’s non- machine buildings

    E-Print Network [OSTI]

    2011-01-01

    Proposal for the award of a service contract for the operation, maintenance and other work relating to the low-voltage electrical facilities of CERN’s non- machine buildings

  7. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect (OSTI)

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  8. RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

  9. Centro di Ricerca Il Direttore del Centro di Ricerca Hydro-Eco

    E-Print Network [OSTI]

    Di Pillo, Gianni

    Centro di Ricerca HYDRO-ECO HYDRO-ECO . Il Direttore del Centro di Ricerca Hydro-Eco Visto il D Vista la Delibera del Consiglio del Centro Hydro-Eco del 15/9/2010 Vista la Delibera del Senato Ricerca Hydro-Eco è così composta: Rosario Cantelli Angelo Chianese Paolo De Filippis Stefania Panero

  10. Sichuan Provincial Hydro Power Investment Operation Group Co ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe Power CoShixiaLtd

  11. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...

    Open Energy Info (EERE)

    A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  12. Training and Research on Probabilistic Hydro-Thermo-Mechanical...

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Citation Details In-Document Search...

  13. Robust optimization based self scheduling of hydro-thermal Genco ...

    E-Print Network [OSTI]

    Dec 29, 2013 ... Abstract: This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed ...

  14. Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward

    SciTech Connect (OSTI)

    Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

    2010-09-01

    The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

  15. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    SciTech Connect (OSTI)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  16. MRS Action Plan Task B report: Analyses of alternative designs and operating approaches for a Monitored Retrievable Storage Facility

    SciTech Connect (OSTI)

    Woods, W.D.; Jowdy, A.K.; Keehn, C.H.; Gale, R.M.; Smith, R.I.

    1988-12-01

    The Nuclear Waste Policy Amendments Act (NWPAA) instituted a number of changes in the DOE commercial nuclear waste management system. After passage of the Act, the DOE initiated a number of systems studies to reevaluate the role of Monitored Retrievable Storage (MRS) within the federal waste management system. This report summarizes the results of a study to determine the schedules and costs of developing those MRS facilities needed under a number of scenarios, with differing functions allocated to the MRS and/or different spent fuel acceptance schedules. Nine cases were defined for the system study, seven of which included an MRS Facility. The study cases or scenarios evaluated varied relative to the specific functions to be performed at the MRS. The scenarios ranged in magnitude from storage and shipment of bare, intact spent fuel to consolidating the spent fuel into repository emplacement containers prior to storage and shipment. Each scenario required specific modifications to be made to the design developed for the MRS proposal to Congress (the Conceptual Design Report). 41 figs., 326 tabs.

  17. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: EnergyReservoir |Solkraft AS Jump to:CoatingHydro

  18. Cauvery Hydro Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to: navigation,Cauvery Hydro Energy Ltd Jump to:

  19. Jiuquan Sanyuan Hydro Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon Material Co Ltd

  20. KKK Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari Silicon MaterialJunco NovoNewhlerKCPKGB

  1. The Small Hydro Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy andInstitute Jump to:andEnergyThe PowerHydro

  2. Property:HydroInfo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website JumpHeatSource Jump to:HydroInfo Jump

  3. Property:HydroSystem | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,PropertyPartner7Website JumpHeatSource Jump to:HydroInfo

  4. Ascent Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformation Ascension Parish,Ascent Hydro

  5. Ambient Hydro Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5AllEnergy Information AmanaAmatitlanAmberley,Hydro

  6. Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms

    E-Print Network [OSTI]

    element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro-mechanical properties of the materials modelled are chosen to be representative of a potential injection site. For high on the injection process, and on site and rock properties. Rutqvist et al. (2008) showed through a coupled

  7. Thermo-hydro-chemical Predictive analysis for the drift-scale predictive heater test,

    E-Print Network [OSTI]

    Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John; Simmons, Ardyth

    1998-01-01

    Characterization Project Thermo-Hydro-Chemical Predictive90-1116 Berkeley, C A 94720 Thermo-Hydro-Chemical PredictiveVersion 1.0 Thermo-Hydro-Chemical Predictive Analysis for

  8. Biological interactions and hydro-climatic forcing of Atlantic menhaden stock

    E-Print Network [OSTI]

    Hilderbrand, Robert H.

    Biological interactions and hydro-climatic forcing of Atlantic menhaden stock recruitment NOAA and Chesapeake Bay Program in: ·· Evaluating roles of biological interactions and hydroEvaluating roles of biological interactions and hydro--climaticclimatic forcing onforcing on forage

  9. Optimierung eines hydro-thermischen Kraftwerks-systems unter Ungewi heit

    E-Print Network [OSTI]

    Römisch, Werner

    Optimierung eines hydro-thermischen Kraftwerks- systems unter Ungewi heit Dr. rer. nat. N. Growe Arbeit beschreiben wir ein stochastisches Modell fur den ko- stenoptimalen Einsatz eines hydro ein, entwickeln ein Losungsverfahren und validieren dies am Beispiel des hydro

  10. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Johns, William H.

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  11. GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems

    E-Print Network [OSTI]

    Cooke, Steven J.

    GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian with Fisheries and Oceans Canada (6 scientists) and 3 major hydroelectric companies (Nalcor, Manitoba Hydro

  12. Economic Impact Analysis of CPV Towantic, LLC's Construction and Operation of an 805 MW Electricity Generation Facility in Oxford, CT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Economic Impact Analysis of CPV Towantic, LLC's Construction and Operation of an 805 MW, 2015 #12;Connecticut Center for Economic Analysis Page 2 of 25 University of Connecticut EXECUTIVE SUMMARY CPV Towantic, LLC (CPV) engaged the Connecticut Center for Economic Analysis (CCEA) to develop

  13. Assimilating GRACE, hydrology and hydro-meteorology datasets for estimating

    E-Print Network [OSTI]

    Stuttgart, Universität

    1 Assimilating GRACE, hydrology and hydro-meteorology datasets for estimating monthly water storage from grace (M/t) #12;Datasets for assimilation: Geodesy 7 Power-law of the time-variable gravity field [mm/month] #12;Datasets for assimilation: Hydro-meteorology 9 Evapotranspiration (ETa) from era

  14. MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES E. Ortego, A. Dazin, G. Caignaert, F. Colas, O. Coutier-Delgosha Abstract: Modelling of a hydro-pneumatic energy storage system is the main demand response strategy. 1 Introduction Energy storage is one of the most exciting solutions considered

  15. GE Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd...

    Open Energy Info (EERE)

    Hydro Asia Co Ltd formerly Kvaerner Power Equipment Co Ltd Kvaerner Hangfa Jump to: navigation, search Name: GE Hydro Asia Co Ltd (formerly Kvaerner Power Equipment Co., Ltd...

  16. Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger Vehicle

    E-Print Network [OSTI]

    Li, Perry Y.

    Optimization and Control of a Hydro-Mechanical Transmission based Hybrid Hydraulic Passenger of Minnesota, Minneapolis, USA ABSTRACT Hydro-mechanical transmission (HMT) based hybrid hydraulic vehicle

  17. A Case Study of the Use of BIM and Construction Operations Building Information Exchange (COBie) for Facility Management 

    E-Print Network [OSTI]

    Jawadekar, Salil

    2012-10-19

    , increasing customer satisfaction, and optimizing the operation and maintenance of our building systems to reduce energy usage. This paper studies projects where the concept of BIM for FM is being applied using COBie as the data handover tool. We... al. (2005), there exist nowadays two main challenges in intelligent building integration research. The first refers to overcoming the hindering factors imposed by the lack of interoperability amongst the building automation systems products from...

  18. Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly Compressible Seabed

    E-Print Network [OSTI]

    Kirby, James T.

    Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly@udel.edu, giorgio.bellotti@uniroma3.it 1. Objective Enhancement of Tsunami Early Warning Systems (TEWS) Hydro/s) [2]. Study of the characteristics of hydro-acoustic waves generated by sudden sea bottom motion

  19. Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals

    E-Print Network [OSTI]

    Stuttgart, Universität

    1 Canonical Correlation Analysis (CCA) of GRACE, hydrological and hydro-meteorological signals M. J and Hydro-meteorology Hydrology GRACE Hydro-meteorology RQ dt dS dt dMdS RETP . dt AH a #12;3 GRACE, times based signals #12;12 CCA on catchments based ­ GRACE and hydro-meteorology T GDGDGD T VUQ dt d

  20. Facilities and Capabilities | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHARE Facilities and Capabilities ORNL operates two of the world's most powerful neutron scattering user facilities: the High Flux Isotope Reactor and the Spallation...

  1. Alpha Gamma Hot Cell Facility

    E-Print Network [OSTI]

    Kemner, Ken

    . These operations can result in elevated radiological risks to the facility and workers. ARG-US -- meaning and should be developed for and deployed in nuclear and radiological facilities to aid operation and reduceAlpha Gamma Hot Cell Facility Argonne National Laboratory is a U.S. Department of Energy laboratory

  2. Facilities Design and Construction Services

    E-Print Network [OSTI]

    Frantz, Kyle J.

    for custodial materials as well as maintenance equipment. (The Facilities Maintenance and Operations Department be in written request to University's Facilities Maintenance and Operations Department and the Communication, corridors and facilities shall provide maximum flexibility and access for routine maintenance. (Reference

  3. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.; Sick, Mirjam; Brown, Richard S.; Carlson, Thomas J.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.

  4. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whether more realistic simulations of the turbine hydraulic environment ?those that resolve unsteady turbulent eddies not captured in steady-state RANS computations? are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.

  5. Ontario hydro integrated programs for plant design and construction

    SciTech Connect (OSTI)

    Oreskovich, J.P.; Somerville, R.L.

    1987-01-01

    Integrated programs for plant design and construction (IPPDC) is a 5-yr program at Ontario Hydro to optimize engineering and construction productivity through better use of computer technology. The proportion of computer programs operating with data derived from an integrated common data base is very low. IPPDC, on the other hand, is greatly concerned with this common data base. The goals of the IPPDC include improvement of the information flow for a project, minimization of site-discovered interferences, and compression of the entire project life cycle through the intelligent use of computer technology. This program focuses on the development of an integrated data base for plant design software systems to service a multi discipline engineering environment as required by a large-scale megaproject. To achieve the goals of IPPDC, there are three basic elements of computer technology that must be in place before a totally integrated data base system can be achieved: (1) data management; (2) networking; and (3) three-dimensional modeling.

  6. Multi-function Waste Tank Facility path forward engineering analysis -- Technical Task 3.6, Estimate of operational risk in 200 West Area

    SciTech Connect (OSTI)

    Coles, G.A.

    1995-04-28

    Project W-0236A has been proposed to provide additional waste tank storage in the 200 East and 200 West Areas. This project would construct two new waste tanks in the 200 West Area and four new tanks in the 200 East Area, and a related project (Project W-058) would construct a new cross-site line. These projects are intended to ensure sufficient space and flexibility for continued tank farm operations, including tank waste remediation and management of unforeseen contingencies. The objective of this operational risk assessment is to support determination of the adequacy of the free-volume capacity provided by Projects W-036A and W-058 and to determine related impacts. The scope of the assessment is the 200 West Area only and covers the time period from the present to the year 2005. Two different time periods were analyzed because the new cross-site tie line will not be available until 1999. The following are key insights: success of 200 West Area tank farm operations is highly correlated to the success of the cross-site transfer line and the ability of the 200 East Area to receive waste from 200 West; there is a high likelihood of a leak on a complexed single-shell tank in the next 4 years (sampling pending); there is a strong likelihood, in the next 4 years, that some combination of tank leaks, facility upsets, and cross-site line failure will require more free tank space than is currently available in Tank 241-SY-102; in the next 4 to 10 years, there is a strong likelihood that a combination of a cross-site line failure and the need to accommodate some unscheduled waste volume will require more free tank space than is presently available in Tank 241-SY-102; the inherent uncertainty in volume projections is in the range of 3 million gallons; new million-gallon tanks increase the ability to manage contingencies and unplanned events.

  7. Rye Patch geothermal development, hydro-chemistry of thermal...

    Open Energy Info (EERE)

    Rye Patch geothermal development, hydro-chemistry of thermal water applied to resource definition Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye...

  8. Final Report - Wind and Hydro Energy Feasibility Study - June 2011

    SciTech Connect (OSTI)

    Jim Zoellick; Richard Engel; Rubin Garcia; Colin Sheppard

    2011-06-17

    This feasibility examined two of the Yurok Tribe's most promising renewable energy resources, wind and hydro, to provide the Tribe detailed, site specific information that will result in a comprehensive business plan sufficient to implement a favorable renewable energy project.

  9. Biological assessment of the effects of construction and operation of adepleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors along Little Beaver Creek, the Northwest Tributary stream, and a wooded area east of the X-100 facility. However, no Indiana bats were collected during surveys of these areas in 1994 and 1996. Locations A, B, and C do not support suitable habitat for the Indiana bat and would be unlikely to be used by Indiana bats. Indiana bat habitat also does not occur at Proposed Areas 1 and 2. Although Locations A and C contain small wooded areas, the small size and lack of suitable maturity of these areas indicate that they would provide poor habitat for Indiana bats. Trees that may be removed during construction would not be expected to be used for summer roosting by Indiana bats. Disturbance of Indiana bats potentially roosting or foraging in the vicinity of the facility during operations would be very unlikely, and any disturbance would be expected to be negligible. On the basis of these considerations, DOE concludes that the proposed action is not likely to adversely affect the Indiana bat. No critical habitat exists for this species in the action area. Although the timber rattlesnake occurs in the vicinity of the Portsmouth site, it has not been observed on the site. In addition, habitat for the timber rattlesnake is not present on the Portsmouth site. Therefore, DOE concludes that the proposed action would not affect the timber rattlesnake.

  10. Evaluation of Blade-Strike Models for Estimating the Biological Performance of Large Kaplan Hydro Turbines

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Ploskey, Gene R.; Richmond, Marshall C.

    2005-11-30

    BioIndex testing of hydro-turbines is sought as an analog to the hydraulic index testing conducted on hydro-turbines to optimize their power production efficiency. In BioIndex testing the goal is to identify those operations within the range identified by Index testing where the survival of fish passing through the turbine is maximized. BioIndex testing includes the immediate tailrace region as well as the turbine environment between a turbine's intake trashracks and the exit of its draft tube. The US Army Corps of Engineers and the Department of Energy have been evaluating a variety of means, such as numerical and physical turbine models, to investigate the quality of flow through a hydro-turbine and other aspects of the turbine environment that determine its safety for fish. The goal is to use these tools to develop hypotheses identifying turbine operations and predictions of their biological performance that can be tested at prototype scales. Acceptance of hypotheses would be the means for validation of new operating rules for the turbine tested that would be in place when fish were passing through the turbines. The overall goal of this project is to evaluate the performance of numerical blade strike models as a tool to aid development of testable hypotheses for bioIndexing. Evaluation of the performance of numerical blade strike models is accomplished by comparing predictions of fish mortality resulting from strike by turbine runner blades with observations made using live test fish at mainstem Columbia River Dams and with other predictions of blade strike made using observations of beads passing through a 1:25 scale physical turbine model.

  11. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  12. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  13. Kauai Test Facility

    SciTech Connect (OSTI)

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  14. Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    E-Print Network [OSTI]

    Thomas W. Baumgarte; Scott A. Hughes; Stuart L. Shapiro

    1999-02-09

    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').

  15. BETHE-Hydro: An Arbitrary Lagrangian-Eulerian Multi-dimensional Hydrodynamics Code for Astrophysical Simulations

    E-Print Network [OSTI]

    Jeremiah W. Murphy; Adam Burrows

    2008-07-09

    In this paper, we describe a new hydrodynamics code for 1D and 2D astrophysical simulations, BETHE-hydro, that uses time-dependent, arbitrary, unstructured grids. The core of the hydrodynamics algorithm is an arbitrary Lagrangian-Eulerian (ALE) approach, in which the gradient and divergence operators are made compatible using the support-operator method. We present 1D and 2D gravity solvers that are finite differenced using the support-operator technique, and the resulting system of linear equations are solved using the tridiagonal method for 1D simulations and an iterative multigrid-preconditioned conjugate-gradient method for 2D simulations. Rotational terms are included for 2D calculations using cylindrical coordinates. We document an incompatibility between a subcell pressure algorithm to suppress hourglass motions and the subcell remapping algorithm and present a modified subcell pressure scheme that avoids this problem. Strengths of this code include a straightforward structure, enabling simple inclusion of additional physics packages, the ability to use a general equation of state, and most importantly, the ability to solve self-gravitating hydrodynamic flows on time-dependent, arbitrary grids. In what follows, we describe in detail the numerical techniques employed and, with a large suite of tests, demonstrate that BETHE-hydro finds accurate solutions with 2$^{nd}$-order convergence.

  16. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    E-Print Network [OSTI]

    Barnard, J. J.

    2010-01-01

    physics that underpins high-hydro coupling-efficiency in N Dtarget designs using proven hydro codes like H Y D R A . byF E targets, we have studied hydro and implosion efficiency

  17. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national stockpile stewardship agenda. Of...

  18. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  19. BETHE-Hydro: An Arbitrary Lagrangian-Eulerian Multi-dimensional Hydrodynamics Code for Astrophysical Simulations

    E-Print Network [OSTI]

    Murphy, Jeremiah W

    2008-01-01

    In this paper, we describe a new hydrodynamics code for 1D and 2D astrophysical simulations, BETHE-hydro, that uses time-dependent, arbitrary, unstructured grids. The core of the hydrodynamics algorithm is an arbitrary Lagrangian-Eulerian (ALE) approach, in which the gradient and divergence operators are made compatible using the support-operator method. We present 1D and 2D gravity solvers that are finite differenced using the support-operator technique, and the resulting system of linear equations are solved using the tridiagonal method for 1D simulations and an iterative multigrid-preconditioned conjugate-gradient method for 2D simulations. Rotational terms are included for 2D calculations using cylindrical coordinates. We document an incompatibility between a subcell pressure algorithm to suppress hourglass motions and the subcell remapping algorithm and present a modified subcell pressure scheme that avoids this problem. Strengths of this code include a straightforward structure, enabling simple inclusio...

  20. RELAP5/MOD3 simulation of the loss of residual heat removal during midloop operation experiment conducted at the ROSA-IV/ Large Scale Test Facility 

    E-Print Network [OSTI]

    Banerjee, Sibashis Sanatkumar

    1994-01-01

    for 3040 seconds. The ROSA-1-V/]LsTF is one of the largest test facilities in the world and is located in Japan. It is a volumetrically scaled (1/48) full height, two loop model of a Westinghouse four loop pressurized water reactor (PWR). The facility...

  1. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  2. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  3. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions...

  4. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  5. Texas Facilities Commission's Facility Management Strategic Plan 

    E-Print Network [OSTI]

    Ramirez, J. A.

    2009-01-01

    stream_source_info ESL-IC-09-11-12.pdf.txt stream_content_type text/plain stream_size 4735 Content-Encoding ISO-8859-1 stream_name ESL-IC-09-11-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Texas Facilities... Commission?s Facility Management Strategic Plan Jorge A. Ramirez Deputy Executive Director Building Operations & Plant Management ESL-IC-09-11-12 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17...

  6. True Polar Wander: linking Deep and Shallow Geodynamics to Hydro-and Bio-Spheric Hypotheses

    E-Print Network [OSTI]

    True Polar Wander: linking Deep and Shallow Geodynamics to Hydro- and Bio-Spheric Hypotheses T. D on the bulk solid Earth over longer tirnescales 565 #12;566 Linking Deep and Shallow Geodynamics to Hydro

  7. Portland Company to Receive $1.3 Million to Improve Hydro Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

  8. The SegHidro Experience: Using the Grid to Empower a Hydro-Meteorological Scientific Network

    E-Print Network [OSTI]

    Cirne, Walfredo

    The SegHidro Experience: Using the Grid to Empower a Hydro- Meteorological Scientific Network This paper describes our experience with SegHidro, a project that empowers hydro-meteorological researchers

  9. Hydro INTERNATIONAL | OCTOBER 2015 | 21 Figure 1: Bechevin Bay Inlet System.

    E-Print Network [OSTI]

    New Hampshire, University of

    Hydro INTERNATIONAL | OCTOBER 2015 | 21 FEATURE | Figure 1: Bechevin Bay Inlet System. Bechevin Bay, the derived bathymetry was limited to very shallow depths because of the sediment #12;| OCTOBER 2015 | Hydro

  10. Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation System

    E-Print Network [OSTI]

    Tarboton, David

    Simulated watershed responses to land cover changes using the Regional Hydro-Ecological Simulation Old Main Hill, Logan, UT, 84322-8200, USA Abstract: In this work, we used the Regional Hydro

  11. HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety

    E-Print Network [OSTI]

    Lee, John D.

    HESSD '98 17 Safety concerns at Ontario Hydro: The need for safety management through incident of complex socio-technical systems Ontario Hydro -- one of the largest electrical utilities in North America

  12. Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay

    E-Print Network [OSTI]

    Gruner, Daniel S.

    Hydro-Ecologic Responses to Land Use in Small Urbanizing Watersheds Within the Chesapeake Bay. The consequences for both the hydrology and 41 #12;42 HYDRO-ECOLOGIC RESPONSES TO LAND USE IN SMALL URBANIZING

  13. US Hydro 2011 Tampa, FL April 2528, 2011 1 On the Horizon

    E-Print Network [OSTI]

    New Hampshire, University of

    US Hydro 2011 Tampa, FL April 2528, 2011 1 On the Horizon: Better Bottom Detection for areas the eelgrass canopy and seafloor. #12;US Hydro 2011 Tampa, FL April 2528, 2011 2 Figure 1: Bottom detections

  14. Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales

    E-Print Network [OSTI]

    Dippner, Joachim W.

    Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual Available online 3 March 2006 Abstract An examination of a wide spectrum of hydro

  15. ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment

    E-Print Network [OSTI]

    Gajic, Zoran

    ROOT LOCUS TECHNIQUE 323 7.6.1 Hydro Power Plant Experiment The design of a static controller for a real hydro power plant is considered in Skatariâ?? c and Gajiâ?? c (1992). The hydro power plant is treated variables of this hydro power plant are represented by x T = [1` 1! 1u f 1/ d 1/ q 1/ f 1/D 1/Q ] where 1

  16. Outsourcing Ownership, Operation and Management of Industrial Facility Power Plants for the Purpose of Reducing Future Risk and Capital Requirements of the Corporation 

    E-Print Network [OSTI]

    Sebesta, J. J.; Schubbe, T.

    1999-01-01

    For many industrial corporations, the availability of funds for maintaining and modernizing Central Utility systems is becoming more and more difficult to obtain. Total return on investments in facility infrastructure generally does not tend to meet...

  17. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility 

    E-Print Network [OSTI]

    Hoak, William Vandergrift

    1993-01-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes "C, 'IN, and 110. The gases...

  18. 14 IEEE power & energy magazine july/august 2008 THE CONTRIBUTION OF HYDRO-

    E-Print Network [OSTI]

    Dixon, Juan

    14 IEEE power & energy magazine july/august 2008 T THE CONTRIBUTION OF HYDRO- power to modern%, with these differences reflecting respective economic devel- opment. Hydro contributes 17% of the total world electricity hand, the interna- tional antidam lobby demands that major hydro developments be stopped altogether

  19. Climate Change in Scotland: Impact on Mini-Hydro G.P. Harrison

    E-Print Network [OSTI]

    Harrison, Gareth

    be generated from wind, wave, biomass or small- or mini-hydro plant. Production from these resources some 300 MW is small hydro potential capable of producing energy at less than 7p/kWh (Garrad Hassan, 2001). Although many of the better sites for small and mini-hydro have already been developed

  20. Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Title: Hydraulic modeling of a mixed water level control hydro-mechanical gate Ludovic Cassan1 Abstract: The article describes the hydraulic functioning of a mixed water level control hydro- mechanical of the model to reproduce the functioning of this complex hydro-mechanical system. CE database Subject headings

  1. A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A Study of the Hydro-Mechanical Behaviour of Compacted Crushed Argillite C.S. Tang a, b , A and the microstruc- ture on the hydro-mechanical behaviour of the compacted crushed argillite have been in a strong effect of the grain size distribution on the hydro-mechanical behaviour and thus the close link

  2. Revue. Volume X n x/anne, pages 1 X Comportement thermo-hydro-mcanique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Revue. Volume X ­ n° x/année, pages 1 à X Comportement thermo-hydro-mécanique (THM) d'un ouvrage en'évaluer les risques de la dégradation de la pierre dues aux couplages thermo-hydro-mécaniques qui conduisent à'année 2008 par une station météo aérienne située proche du château. Les analyses couplées thermo-hydro

  3. Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Hydro-Mechanical Loading and Compressibility of Fibrous Media for Resin Infusion Processes P processes where hydro-mechanical coupling takes place depends on the validity of compressibility and permeability models. In this work, the computer code initially used to simulate the effect of coupled hydro

  4. A lattice-based query system for assessing the quality of hydro-ecosystems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A lattice-based query system for assessing the quality of hydro-ecosystems Agn`es Braud1 Cristina used for building a hierarchy of site pro- files which are annotated by hydro in the project. This paper presents an application of Galois lattices to the hydro-ecological domain, focussing

  5. Dimensionnement et gestion d'un systme de stockage thermique par hydro-accumulation : application la

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dimensionnement et gestion d'un système de stockage thermique par hydro-accumulation : application de stockage thermique de type hydro-accumulation destiné à une chaufferie collective multi, mix-énergétique, stockage thermique, hydro-accumulation, dimensionnement optimal, gestion, graphe d

  6. Mod`ele Elements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-elastique

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mod`ele El´ements Finis d'un Pli Vocal Artificiel avec Couplage Hydro-´elastique N. Hermanta , F formulation variationnelle du couplage hydro-élastique. Un premier calcul hyper-élastique simule le gonflement dans l'analyse modale des vibrations de petite amplitude du système hydro-élastique, permettant ainsi

  7. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective

  8. HYDRO-MECHANICAL UPSCALING OF A FRACTURED ROCKMASS USING A 3D NUMERICAL APPROACH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HYDRO-MECHANICAL UPSCALING OF A FRACTURED ROCKMASS USING A 3D NUMERICAL APPROACH Thoraval Alain & VERIFICATIONS A new upscaling method has been proposed by INERIS to determine the equivalent hydro mechanical network; 3DEC [Itasca Consulting Group, 1994; Damjanac, 1994] to make the hydro-mechanical computations. 2

  9. NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

  10. PHNOMNES DITS HYDRO-LECTRIQUES ET HYDROMAGNTIQUES; PAR M. C.-A. BJERKNES (1),

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    509 PHÉNOMÈNES DITS HYDRO-ÉLECTRIQUES ET HYDROMAGNÉTIQUES; PAR M. C.-A. BJERKNES (1), Professeur à corps hydro- électrisés s'attirent ou se repoussent, suivant que leurs vibrations sont concordantes ou- minuent en même temps). Un hydro-aimant, formé ou bien d'une splzère oscillante ou de deux pulsateurs

  11. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-Print Network [OSTI]

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power on range of thermal and hydro power plant reaction times. This work suggests that power and energy

  12. To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve

    E-Print Network [OSTI]

    Memo To: NW Hydro Association From: Dick Wanderscheid, Angus Duncan and Todd Reeve Re: The Bonneville Environmental Foundation's comments on the draft hydro potential study BEF staff completed to address the larger, conceptual picture of the hydro potential in the region. In particular, we attempted

  13. Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive

    E-Print Network [OSTI]

    Van de Ven, James D.

    Paper Number Development of a Hydro-Mechanical Hydraulic Hybrid Drive Train with Independent Wheel of a passenger car. The developed hydro-mechanical drive train enables independent control of the torque at each for the Center for Compact and Efficient Fluid Power at the University of Minnesota. The hydro-mechanical hybrid

  14. Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1 , James T. Kirby1 and hydro-acoustic wave fields, generated by the 2011 Tohoku-oki tsunamigenic event using a numerical model in deep water revealed the role of underlying layer on the formation of hydro- acoustic waves and carrying

  15. LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by

    E-Print Network [OSTI]

    Anderson, Charles W.

    THESIS LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Submitted by Tumenjargal Sukh 2012 All Rights Reserved #12;ABSTRACT LOCAL UNDERSTANDING OF HYDRO-CLIMATE CHANGES IN MONGOLIA Air the degree of change of Mongolian water resources. We find that herders' local knowledge of hydro

  16. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-Print Network [OSTI]

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

  17. Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)

    E-Print Network [OSTI]

    Moelders, Nicole

    Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

  18. Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United States

    E-Print Network [OSTI]

    Jackson, Robert B.

    Author's personal copy Opportunities and barriers to pumped-hydro energy storage in the United available commercially for grid-tied electricity storage, pumped- hydro energy storage (PHES) and compressed resources, where energy storage becomes more and more important. Pumped-hydro energy storage (PHES

  19. ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE

    E-Print Network [OSTI]

    Li, Perry Y.

    ANALYSIS AND CONTROL DESIGN OF A HYDRO-MECHANICAL HYDRAULIC HYBRID PASSENGER VEHICLE Teck Ping, Sim@me.umn.edu ABSTRACT This paper gives the dynamic analysis of a hydro- mechanical transmission (HMT) drive train passenger vehicle with a hydro-mechanical transmission (HMT) drive train with regeneration and indepen- dent

  20. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed hydro units. The variable ut i 2 f0;1g; i = 1;:::;I;t = 1;:::;T indicates whether the thermal unit i

  1. Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Toussaint, Renaud

    Hydro-thermal flow in a rough fracture EC Contract SES6-CT-2003-502706 PARTICIPANT ORGANIZATION NAME: CNRS Synthetic 2nd year report Related with Work Package............ HYDRO-THERMAL FLOW in the influence of a realistic geometry of the fracture on its hydro-thermal response. Several studies have

  2. POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN

    E-Print Network [OSTI]

    Römisch, Werner

    POWER MANAGEMENT IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN RELAXATION NICOLE GR power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel to successive decom- position into single thermal and hydro unit subproblems that are solved by dynamic

  3. Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2

    E-Print Network [OSTI]

    Kirby, James T.

    Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

  4. Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train

    E-Print Network [OSTI]

    Li, Perry Y.

    Hierarchical Control Strategy for a Hybrid Hydro-mechanical Transmission (HMT) Power-Train Kai Loon a Hydro-mechanical Transmission (HMT) or power-split archi- tecture is being developed as a testbed within hybrid powertrain has a hydro- mechanical transmission (HMT) or power-split architecture. This combines

  5. Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1

    E-Print Network [OSTI]

    Stuttgart, Universität

    Estimating runoff using hydro-geodetic approaches; assessment and comparison M. J. Tourian1 , C- drological balance equation, hydro-meteorological balance equation, least squares prediction using change from GRACE hydro-meteorological balance equation (Ratm) Ratm = - · Q - dM dt . · Q refers

  6. Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks Stephen Dawson instances of point-to-point traffic. We present Hydro, a hybrid routing protocol that combines local agility. Evaluations across testbeds and deployments demonstrate the performance and functionality of Hydro across

  7. Constraints on the lake volume required for hydro-fracture through ice sheets

    E-Print Network [OSTI]

    Skemer, Philip

    Constraints on the lake volume required for hydro-fracture through ice sheets M. J. Krawczynski,1 M April 2009; published 16 May 2009. [1] Water-filled cracks are an effective mechanism to drive hydro to rapidly drive hydro-fractures through 1­1.5 km of subfreezing ice. This represents $98% of the meltwater

  8. May 4, 2012, Spring Operations Review Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: 11:30 a.m. on May 4 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 Hydro Operations Update The Federal Columbia River Power System is being operated for...

  9. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system

    SciTech Connect (OSTI)

    Rudolf, A.; Bayrleithner, R.

    1999-11-01

    The paper presents a two layer approach to solve the unit commitment problem of a hydro-thermal power system. The first layer uses a genetic algorithm (GA) to decide the on/off status of the units. The second layer uses a non-linear programming formulation solved by a Lagrangian relaxation to perform the economic dispatch while meeting all plant and system constraints. In order to deal effectively with the constraints of the problem and prune the search space of the GA in advance, the difficult minimum up/down-time constraints of thermal generation units and the turbine/pump operating constraint of storage power stations are embedded in the binary strings that are coded to represent the on/off-states of the generating units. The other constraints are handled by integrating penalty costs into the fitness function. In order to save execution time, the economic dispatch is only performed if the given unit commitment schedule is able to meet the load balance, energy, and begin/end level constraints. The proposed solution approach was tested on a real scaled hydro-thermal power system over a period of a day in half-hour time-steps for different GA-parameters. The simulation results reveal that the features of easy implementation, convergence within an acceptable execution time, and highly optimal solution in solving the unit commitment problem can be achieved.

  10. Comparison of predicted ground-level airborne radionuclide concentrations to measured values resulting from operation of the Los Alamos Meson Physics Facility. Master's thesis

    SciTech Connect (OSTI)

    Hoak, W.V.

    1993-05-01

    A comparison study of measured and predicted downwind radionuclide concentrations from the Los Alamos Meson Physics Facility (LAMPF) was performed. The radionuclide emissions consist primarily of the radioisotopes 11C, 13N, and 150. The gases, vented to the outside environment by a stack located at the facility, potentially increase the radiation exposure at the facility boundary. Emission rate, meteorological, and radiation monitoring station data were collected between September 26, 1992 and October 3, 1992. The meteorological and emission data were input to the Clean Air Act Assessment Package-1988 (CAP88-PC) computer code. The downwind radionuclide air concentrations predicted by the code were compared to the air concentrations measured by the monitoring stations. The code was found to slightly over-predict downwind concentrations during unstable atmospheric conditions. For stable atmospheric conditions, the code was not useful for predicting downwind air concentrations. This is thought to be due to an underestimation of horizontal dispersion.

  11. Facility Modernization Report

    SciTech Connect (OSTI)

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  12. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  13. Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson, Ginny Llewellyn, Dean Simmonds, Aaron Wernerehl

    E-Print Network [OSTI]

    van den Berg, Jur

    PowerPail Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson near potential hydro-electric power generation sources. There are several disadvantages to hydro Pipe PowerPail http://mrenergy.co.in/run-of-river-hydro.html #12;

  14. Old Harbor Scammon Bay Hydro Feasibility

    SciTech Connect (OSTI)

    Brent Petrie

    2007-06-27

    The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

  15. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  16. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-07-15

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  19. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    Akkelin, S V; Karpenko, Iu A; Sinyukov, Yu M

    2008-01-01

    We develop a combined hydro-kinetic approach which incorporates hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support ...

  20. HydroNEXT Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure Company

  1. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  2. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  3. EIS-0070: Mining, Construction and Operation for a Full-size Module at the Anvil Points Oil Shale Facility, Rifle, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement to assess the environmental and socioeconomic implications of its proposal to mine 11 million tons of oil shale from the Naval Oil Shale Reserves (NOSR) at Anvil Points, Colorado; to construct an experimental full-size shale retort module on a 365-acre lease tract having a 4700 bbl/day production capacity; and to consider extension, modification or new leasing of the facility. This project was cancelled after the DEIS was issued.

  4. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  5. BC Hydro Brings Energy Savings to Low-Income Families in Canada...

    Broader source: Energy.gov (indexed) [DOE]

    the impact of rising electricity costs in Canada. ECAP provides qualified low-income BC Hydro residential account holders with a free home energy assessment; installation of...

  6. Copyright 2005 POSC Intelligent Oilfield Operations

    E-Print Network [OSTI]

    Brock, David

    Copyright © 2005 POSC WITSMLTM and Intelligent Oilfield Operations David Archer MIT Data Center M-Alliance POSC Source: Downes & Mui, "Unleashing the Killer App" #12;Oil fields of the future: real-time oil, London Members + SIG Members: > 80 Oil BP, ChevronTexaco, ExxonMobil, Hydro, ONGC, Pioneer, Shell

  7. Vice President of Core Facilities

    E-Print Network [OSTI]

    MacAdam, Keith

    ) Research Integrity Federal Relations Sponsored Projects Administration, AVPR Advanced Science & Technology Veterinarian Research Communications Centers & Institutes · Center for Applied Energy Research (CAER) · CenterVice President of Research Core Facilities · Clinical Research Development and Operations Center

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  9. Pion correlations in hydro-inspired models with resonances

    E-Print Network [OSTI]

    W. Florkowski; W. Broniowski; A. Kisiel; J. Pluta

    2006-09-19

    The effects of the freeze-out hypersurface and resonance decays on the pion correlation functions in relativistic heavy-ion collisions are studied with help of the hydro-inspired models with single freeze-out. The heavy-ion Monte-Carlo generator THERMINATOR is used to generate hadronic events describing production of particles from a thermalized and expanding source. We find that the short-lived resonances increase the pionic HBT radii by about 1 fm. We also find that the pion HBT data from RHIC are fully compatible with the single freeze-out scenario provided a special choice of the freeze-out hypersurface is made.

  10. OpenHydro Group Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.InformationImprovements Oil and Gas JumpOpenHydro Group

  11. Dhauladhar Hydro System Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie Jump to:Dhauladhar Hydro

  12. Diebu Lazikou Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergie JumpDiebuLazikou Hydro

  13. City of Hart Hydro, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtdEllsworth, IowaGraettinger,Harlan, Iowa (UtilityHydro, Michigan

  14. Birahi Ganga Hydro Power Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence Jump to: navigation, searchBirahi Ganga Hydro Power

  15. AD Hydro Power Ltd ADHPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu,Information onAD Hydro Power Ltd ADHPL

  16. Macaohe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name: Lyon-LincolnShichuangMacaohe Hydro Power

  17. Nagarjuna Hydro Energy Pvt Ltd NHEPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFE BateriasInternationalNTTEA-030-07-05NaWoTecHydro

  18. Paschim Hydro Energy Pvt Ltd PHEPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltos del Voltoya SA JumpPaschim Hydro

  19. Qingyang Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE Inc dEAPrysmianPvTHuapengYulongQingyang Hydro

  20. Gowthami Hydro Electric Co P Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydro Electric Co P Ltd Jump to: navigation,

  1. Guangdong Huaiji Xinlian Hydro electric Power Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectricHydroLegalAltoOlhoInformation Huaiji

  2. Guizhou Sanhe Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanh esInformationHydro Power

  3. Guizhou Yuefeng Hydro Power Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefeng Hydro Power

  4. Guizhou Zhenning Yuefeng Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power Co Ltd JumpGuanhYuefeng Hydro

  5. Hul Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool JumpHuaningXinda BioPower CoHul Hydro

  6. Janapadu Hydro Power Project Pvt Ltd JHPPPL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEA EnergyOxy CoalJanapadu

  7. Jiangshan Jinlong hydro power development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEAPvtJianJianqiao

  8. Jiangxi Jiangwan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar TechnologyAvon New EnergyJiangwan

  9. Jiangxi Province Ruijin City Liujinba Hydro Development Co Ltd | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun Solar TechnologyAvon NewEnergy

  10. Jichuan Taiyang River Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:Huilun SolarLongjiangJiaozuo

  11. Jinxiu Guangneng Hydro Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to:HuilunWaterInformation

  12. Kapil Mohan Associates Hydro Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuari SiliconEnergy

  13. Laifeng Najitan Hydro electric Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: Energy Resources JumpLaidlaw

  14. Langao County Guangming Hydro Power Development Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado: EnergyLamartineEnergyInformation

  15. Ledong Xinyuan Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectricColorado:EnergyLaorLaunchLeaLeawood,Ledong

  16. SBA Hydro Systems Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon Development | OpenGmbH JumpSBA Hydro Systems

  17. Shimen Zhangjiadu Hydro Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu Hydro Power Co Ltd Jump to:

  18. Shizong Heier Hydro power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology Co LtdOhio:Zhangjiadu HydroShiv ShaktiShizong

  19. Sichuan Tianquan Qieshan Hydro Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianhe PowerQieshan Hydro

  20. Sichuan Xingchen Hydro Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery Technology CoWanping Hydropower CoTianheXingchen Hydro

  1. V B Hydro Projects Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API Version 2(RECP) inHydro

  2. HydroCoil Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil Power Inc

  3. HydroGen Aquaphile sarl | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil Power

  4. HydroGen Corporation formerly Chiste Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoil

  5. MHK Projects/Hydro Gen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf Moon CoveHydro Gen < MHK

  6. Zhongda Sanchuan Hydro Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey WindZhongda Sanchuan Hydro Development

  7. Zhongjing Hydro Power Development Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey WindZhongda Sanchuan HydroZhongjing

  8. Comprehensive facilities plan

    SciTech Connect (OSTI)

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  9. Report on Development of Concepts for the Advanced Casting System in Support of the Deployment of a Remotely Operable Research Scale Fuel Fabrication Facility for Metal Fuel

    SciTech Connect (OSTI)

    Ken Marsden

    2007-03-01

    Demonstration of recycle processes with low transuranic losses is key to the successful implementation of the Global Nuclear Energy Partnership strategy to manage spent fuel. It is probable that these recycle processes will include remote fuel fabrication. This report outlines the strategy to develop and implement a remote metal fuel casting process with minimal transuranic losses. The approach includes a bench-scale casting system to develop materials, methods, and perform tests with transuranics, and an engineering-scale casting system to demonstrate scalability and remote operability. These systems will be built as flexible test beds allowing exploration of multiple fuel casting approaches. The final component of the remote fuel fabrication demonstration culminates in the installation of an advanced casting system in a hot cell to provide integrated remote operation experience with low transuranic loss. Design efforts and technology planning have begun for the bench-scale casting system, and this will become operational in fiscal year 2008, assuming appropriate funding. Installation of the engineering-scale system will follow in late fiscal year 2008, and utilize materials and process knowledge gained in the bench-scale system. Assuming appropriate funding, the advanced casting system will be installed in a remote hot cell at the end of fiscal year 2009.

  10. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    SciTech Connect (OSTI)

    Greager, E.M.

    1997-12-11

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years.

  11. Hydro-kinetic approach to relativistic heavy ion collisions

    E-Print Network [OSTI]

    S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

    2008-08-28

    We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

  12. Canastota Renewable Energy Facility Project

    SciTech Connect (OSTI)

    Blake, Jillian; Hunt, Allen

    2013-12-13

    The project was implemented at the Madison County Landfill located in the Town of Lincoln, Madison County, New York. Madison County has owned and operated the solid waste and recycling facilities at the Buyea Road site since 1974. At the onset of the project, the County owned and operated facilities there to include three separate landfills, a residential solid waste disposal and recycled material drop-off facility, a recycling facility and associated administrative, support and environmental control facilities. This putrescible waste undergoes anaerobic decomposition within the waste mass and generates landfill gas, which is approximately 50% methane. In order to recover this gas, the landfill was equipped with gas collection systems on both the east and west sides of Buyea Road which bring the gas to a central point for destruction. In order to derive a beneficial use from the collected landfill gases, the County decided to issue a Request for Proposals (RFP) for the future use of the generated gas.

  13. MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MOMENT-FREQUENCY DISTRIBUTION USED AS A CONSTRAINT FOR HYDRO-MECHANICAL MODELLING IN FRACTURE fractured rocks for EGS purposes is accompanied by microseismicity. From our numerical hydro are partly liberated and the resulting small sliding movements give rise to low frequency stress waves

  14. TOUR HYDROS.CH -Duba Hong-Kong-Singapore-Monaco-Brazil USA Records & conferences

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    ;· · · · 10 #12;· · · 11 #12;12 #12;13 #12;14 #12;15 #12;16 #12;VOILES DE SAINT- TROPEZ TOUR HYDROS.CH - Dubaï19-23 July 2016 Energy Efficiency Global Forum Washington May, 12-13 TOUR HYDROS.CH ­ Records

  15. Proposition de sujet de Thse de Doctorat Caractrisation multi chelle des proprits hydro-go-physiques des

    E-Print Network [OSTI]

    Naud Frédéric

    Proposition de sujet de Thèse de Doctorat Caractérisation multi échelle des propriétés hydro structurales et ainsi développer des méthodologies d'acquisition hydro-géo-physique en ce milieu complexe

  16. Formulaire de demande de bourse institutionnelle d'Hydro-Qubec Bourse de recrutement* OU Bourse de persvrance**

    E-Print Network [OSTI]

    Vellend, Mark

    Annexe B Formulaire de demande de bourse institutionnelle d'Hydro-Québec Bourse de recrutement* OU'étudiant : Montant de la bourse institutionnelle d'Hydro-Québec : 5 000 $ Montant de l

  17. Facility Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Academy of Sciences, Hefei, Anhui, P.R. China The Engineering Design of ARC: A Compact, High Field, Fusion Nuclear Science Facility and Demonstration Power Plant B. N....

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  19. Facility Name Facility Name Facility FacilityType Owner Developer...

    Open Energy Info (EERE)

    FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi...

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  2. EIS-0129: New England/Hydro-Quebec 450 kV Transmission Line Interconnection- Phase II

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Economic Regulatory Administration issued this EIS to explore the impacts of amending Presidential Permit PP-76 to allow the Vermont Electrical Company to operate at power levels above those stipulated in the permit and to build additional transmission facilities to distribute the increased power. Phase I of this project is detailed in EIS-0103.

  3. Sandia Energy - Test Site Operations & Maintenance Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Site Operations & Maintenance Safety Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing Test Site Operations & Maintenance Safety Test...

  4. Congrs SHF : Environnement et Hydro-lectricit , Lyon,6 & 7 octobre 2010 Pigay, Aelbrecht, Beal RESTAURATION MORPHO-DYNAMIQUE ET

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Congrès SHF : « Environnement et Hydro-électricité », Lyon,6 & 7 octobre 2010 ­Piégay, Aelbrecht pour la protection contre les crues et la navigation, puis après la construction de barrages hydro deux projets est de définir un plan de restauration hydro-morphologique et écologique conduisant à la

  5. Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou a,*, Manuel Pulido-Velazquez b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Review Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou of Frank Ward, Associate Editor Keywords: Hydro-economic models Integrated water resource management (IWRM and space will increasingly motivate efforts to address water scarcity and reduce water conflicts. Hydro

  6. Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Laboratory Hydro-mechanical Characterisation of Boom Clay at Essen and Mol Y. F. Deng1, 2 , A. M. In the present work, the hydro-mechanical behaviour of Boom clay samples from the borehole Essen-1 at a depth and hydro-mechanical behaviour of Boom clay from Essen at 227-m, 240-m and 248-m depths are similar

  7. A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir

    E-Print Network [OSTI]

    Boyer, Edmond

    A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR of New South Wales, Sydney 2052, Australia. Abstract The constitutive thermo-hydro-mechanical equations is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo-hydro

  8. Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-54 Phenomene couple thermo-hydro-mecanique des roches fracturees: Recents developpements des methodes de modelisation et tests de validation Coupled thermo-hydro-mechanical phenomena in fractured fracture.La deuxiemequestion concemela modelisation des phenomenes couples thenno-hydro-mecaniques. L

  9. February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged wood and naturally

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    February 16-18, 2011 / Biel (Bienne), Switzerland Comparison between accelerated thermo-hydro aged Bois 3 DEISTAF ­ University of Florence, Italy Key words: accelerated aging, micro-mechanics, thermo-hydro]. It has been observed that similar degradation can be found in thermo-hydro (TH) treated wood [4]. The aim

  10. Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model and Computations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-Mechanical Coupling in Damaged Porous Media Containing Isolated Cracks or/and Vugs: Model In this paper we present the development of the macroscopic model describing the hydro-mechanical coupling) In this paper we present the macroscopic model describing the hydro-mechanical behaviour of such class

  11. La dynamique de communication entre Hydro-Qubec et les Innus dans le cadre du projet de la Romaine

    E-Print Network [OSTI]

    La dynamique de communication entre Hydro-Québec et les Innus dans le cadre du projet de la Romaine Fortin, 2014 #12;#12;iii Résumé Le mémoire porte sur la dynamique de communication entre Hydro-Québec et, composées dInnus et de représentants dHydro-Québec, et dont le rôle est de gérer les fonds. De plus, le

  12. Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydro-climate?

    E-Print Network [OSTI]

    Christie-Blick, Nicholas

    present hydro-climate? Peri Sasnett,1,2 Brent M. Goehring,1,2,3 Nicholas Christie-Blick,1,2 and Joerg M the idea that volcanism may relate to a wetter than present hydro-climate. Twelve of the fifteen ages that eruptive timing relates to a wetter hydro-climate. Instead, the presence of a relatively shallow modern

  13. Name Name Address Place Zip Category Sector Telephone number...

    Open Energy Info (EERE)

    References AHERC AHERC K Street Nenana Alaska Category Testing Facility Operators Hydro Marine and Hydrokinetic http acep uaf edu facilities tanana river hydrokinetic test...

  14. Proton beam therapy facility

    SciTech Connect (OSTI)

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  15. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  16. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

  17. Conduct of Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-06-29

    This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Admin Chg 2, dated 12-3-14, supersedes Admin Chg 1.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  20. Hanford surplus facilities programs facilities listings and descriptions. Revision 1

    SciTech Connect (OSTI)

    Kiser, S.K.; Witt, T.L.

    1994-01-01

    On the Hanford Site, many surplus facilities exist (including buildings, stacks, tanks, cribs, burial grounds, and septic systems) that are scheduled to be decommissioned. Many of these facilities contain large inventories of radionuclides, which present potential radiological hazards on and off the Hanford Site. Some structures with limited structural deterioration present potential radiological and industrial safety hazards to personnel. Because of the condition of these facilities, a systematic surveillance and maintenance program is performed to identify and correct potential hazards to personnel and the environment until eventual decommissioning operations are completed.

  1. Business and Operations Financial Planning

    E-Print Network [OSTI]

    Barrash, Warren

    Business and Operations Financial Planning Resource Allocation Human Resources Administrative Organizations Dean on Call Games Center Campus Programs Title IX Investigation Parent and Family Outreach Main Store Recreation and Education Scholarships Stadium Facilities and Operations Student Accommodations

  2. Engineering Test Facilities Having the facilities to develop and test spaceflight hardware

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Engineering Test Facilities Having the facilities to develop and test spaceflight hardware onsite is a key ingredient to LASP's success. Our extensive test and calibration facilities enable our in-house engineers to work closely with scientists and mission operations staff in "test-like-you-fly" scenarios. Our

  3. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; Power, John G.; /Argonne

    2012-09-05

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  4. Site maps and facilities listings

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

  5. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    A Geological and Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  6. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  7. Thermo-hydro-mechanical Analysis of Fractures and Wellbores in Petroleum/Geothermal Reservoirs 

    E-Print Network [OSTI]

    Safariforoshani, Mohammadreza

    2013-08-09

    The thesis considers three-dimensional analyses of fractures and wellbores in low-permeability petroleum/geothermal reservoirs, with a special emphasis on the role of coupled thermo-hydro-mechanical processes. Thermoporoelastic ...

  8. BC Hydro Industrial Sector: Marketing Sector Marketing Plan (Fiscal 2005/Fiscal 2006) 

    E-Print Network [OSTI]

    Willis, P.; Wallace, K.

    2005-01-01

    BC Hydro, the major electricity utility in the Province of British Columbia has been promoting industrial energy efficiency for more than 15 years. Recently it has launched a new Demand Side Management initiative with the objective of obtaining 2000...

  9. Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray

    E-Print Network [OSTI]

    Hook, Andrew L.

    Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

  10. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  11. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  12. Advanced control improves MHC-VGO unit operation. [Mild HydroCracking-Vacuum Gas Oil

    SciTech Connect (OSTI)

    Richard, L.; Watson, D. (Setpoint Inc., Houston, TX (United States)); Danzinger, F.; Tuppinger, D.; Schuster, R.; Wilmsen, W. (OMV AG, Schwechat (Germany))

    1995-03-01

    Constraint and multivariable predictive (MPC) controllers were implemented on an FCC preheater (MHC-VGO unit), which runs in mild hydrocracking (MHC) mode. In only a few weeks following commissioning, better control provided an average reduction in steam use of 38%, an average reduction of 22% in DEA use and a 5 to 10% reduction in fuel consumption. OMV's refinery in Schwechat was commissioned in 1960 and is now one of the largest and most complex inland-refineries in Europe with an annual crude oil processing capacity of 10 million metric tons. Every product stream is desulfurized by hydrodesulfurization (HDS) units. As part of a refinery-wide advanced control (ADVC) project which includes 27 units implemented on four process computers and two DCSs, advanced controls were installed on the MHC-VGO unit. The entire project was executed over a period of two and a half years. The paper describes the process, advanced control, the weighted average bed temperature controller, feed maximization control, stripper feed temperature control, stripping steam/feed ratio controller, stripper pressure minimization, H[sub 2]/oil controller, recycle/DEA ratio controller, stripper bottoms level controller, and advanced control benefits.

  13. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    combustion of petroleum-based fuels in conventional engines can cause serious environmental pollution

  14. Microsoft PowerPoint - Entergy-Hydro-Operations_Smethers [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on darkMicroorganisms toPalladium wavyfamilyOuachita River System

  15. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    E-Print Network [OSTI]

    Gibson, Carl H

    2008-01-01

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates p...

  16. An Approach to Facilities Operational Improvement 

    E-Print Network [OSTI]

    Taneja, O.

    2011-01-01

    (GSA) and other Federal Agencies such as the EPA are working together to continue to protect America?s precious resources by reducing their carbon foot prints and energy consumption. The motivation for achieving such success stems from the Energy... BY GSA GOALS 14 a.) Green Procurement Of Products & Services b.) Installation of Renewable Energy Sources c.) Procurement of power generated from renewable sources d.)Participate in Demand Response Strategies to lower burden on electric power...

  17. LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE

    E-Print Network [OSTI]

    Krovi, Venkat

    and turn white handled lever to vertical position to turn oxygen on. B. To portable E tank of oxygen to the ON position. 3.14 Turn your oxygen flow rate to 1-2 L/min. 3.15 Turn your vaporizer on (usually 1-2% ISO). 3

  18. Building a Sustainable Future FACILITIES & OPERATIONS

    E-Print Network [OSTI]

    the contributions made toward the efficient use of energy in the federal sector. #12;Renovation PNNL conserves to the Department of Energy's (DOE) Hanford Site focusing on designing reactors, fabricating reactor fuel on delivering scientific solutions for energy, national security, and the environment. PNNL provides science

  19. High Performance Computing Facility Operational Assessment, CY...

    Office of Scientific and Technical Information (OSTI)

    costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from...

  20. Medford Operation Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, IncSouthVirginia:

  1. Nuclear Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind Career

  2. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  3. Vehicle to Grid -A Control Area Operators Perspective

    E-Print Network [OSTI]

    Firestone, Jeremy

    Mexico Nav Glen Four Corners NM Coal Hydro Gas Wind Other Palo Verde AZ Market- place S. NV #12;#12;Key ISO Roles · Frequency Monitoring & Time Error Control · Scheduling of Power Transfers · Grid Planning of experience in dealing with Distributed Resources #12;Wireless Provider Grid Operator Power Command Power

  4. The organization of ALARA program at a DOE facility

    SciTech Connect (OSTI)

    Setaro, J.A.

    1992-01-01

    The organization of an ALARA Program at a DOE Facility (Oak Ridge National Laboratory), it's relationship with laboratory management, facility operators, and the radiation protection program is described. The use of chartered ALARA committees at two distinct levels is discussed.

  5. Psychrometric Testing Facility Restoration and Cooling Capacity Testing 

    E-Print Network [OSTI]

    Cline, Vincent E.

    2010-10-12

    The Psychrometric Testing Facility at the Riverside Energy Efficiency Laboratory at Texas AandM University has not been operational for several years. The goal of this project was to restore the testing facility to a fully ...

  6. Biosafety Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide assists DOE/NNSA field elements and operating contractors in incorporating hazardous biological agents/toxins into emergency management programs, as required by DOE O 151.1C. No cancellation.

  7. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF About BlogFacilities

  8. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture |GE PutsgovSitesMobile Facility AMF

  9. Subsurface Facility System Description Document

    SciTech Connect (OSTI)

    Eric Loros

    2001-07-31

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation.

  10. EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the...

  11. Performing Energy Security Assessments: A How-To Guide for Federal Facility Managers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guide describes the best practices and recommended process for federal facility managers to prepare for the following sections of a facility’s energy security plan: vulnerability assessments, energy preparedness and operations plans, and remedial action plans.

  12. Hydro-Gravitational-Dynamics of Planets and Dark Energy

    E-Print Network [OSTI]

    Carl H. Gibson; Rudolph E. Schild

    2008-08-24

    Self-gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and frag-ments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC on 0.03 Mpc galaxy accretion disks. Star deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors misinterpreted as the dark energy hypothesis and overestimates of the universe age. Failures of standard LCDM cosmological models reflect not only obsolete Jeans 1902 fluid mechanical assumptions, but also failures of standard turbulence models that claim the cascade of turbulent kinetic energy is from large scales to small. Because turbulence is always driven at all scales by inertial-vortex forces the turbulence cascade is always from small scales to large.

  13. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  14. NETL's Hybrid Performance, or Hyper, facility

    SciTech Connect (OSTI)

    2013-06-12

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  15. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  16. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  17. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  18. Independent Activity Report, Richland Operations Office- June 2011

    Broader source: Energy.gov [DOE]

    Hanford Cold Vacuum Drying Facility, Multi-Canister Overpack, Operational Proficiency Demonstration [HIAR-RL-2011-06-22

  19. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01

    > ARC Advisory Group, SCADA Market for Water & Wastewater toand Data Acquisition (SCADA) systems in wastewater treatmenttreatment facilities, SCADA systems direct when to operate

  20. Power Systems Development Facility

    SciTech Connect (OSTI)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  1. Protective Embolization of the Gastroduodenal Artery with a One-HydroCoil Technique in Radioembolization Procedures

    SciTech Connect (OSTI)

    Lopez-Benitez, R.; Hallscheidt, P.; Kratochwil, C.; Ernst, C.; Kara, L.; Rusch, O.; Vock, P.; Kettenbach, J.

    2013-02-15

    Protective occlusion of the gastroduodenal artery (GDA) is required to avoid severe adverse effects and complications in radioembolization procedures. Because of the expandable features of HydroCoils, our goal was to occlude the GDA with only one HydroCoil to provide particle reflux protection. Twenty-three subjects with unresectable liver tumors, who were scheduled for protective occlusion of the GDA before radioembolization therapy, were included. The primary end point was to achieve a proximal occlusion of the GDA with only one detachable HydroCoil. Evaluated parameters were duration of deployment, and early (during the intervention) and late (7-21 days) occlusion rates of GDA. Secondary end points included complete duration of the intervention, amount of contrast medium used, fluoroscopy rates, and adverse effects. In all cases, the GDA was successfully occluded with only one HydroCoil. The selected diameter/length range was 4/10 mm in 2 patients, 4/15 mm in 6 patients, and 4/20 mm in 15 patients. HydroCoils were implanted, on average, 3.75 mm from the origin of the GDA (range 1.5-6.8 mm), with an average deployment time of 2:47 (median 2:42, range 2:30-3:07) min. In 21 (91%) of 23 patients, a complete occlusion of the GDA was achieved during the first 30 min after the coil implantation; however, in all patients, a late occlusion of the GDA was present after 6 to 29 days. No clinical or technical complications were reported. We demonstrated that occlusion of the GDA with a single HydroCoil is a safe procedure and successfully prevents extrahepatic embolization before radioembolization.

  2. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  3. Abstract -In this paper, we address the problem of making inferences about a population of infrastructure facilities from a

    E-Print Network [OSTI]

    Rakas, Jasenka

    Infrastructure maintenance and repair decisions, along with supporting budgets, are based on data about facility of Air Traffic Control (ATC) facilities operated by the Federal Aviation Administration (FAA

  4. First Commissioning Results of the n_TOF Facility at CERN

    E-Print Network [OSTI]

    Borcea, C; Cennini, P; Dahlfors, M; Dangendorf, V; Ferrari, A; García-Muñoz, G; Kadi, Y; Lacoste, V; Nolte, R; Radermacher, E; Rubbia, Carlo; Saldaña, F; Vlachoudis, V; Zanini, L; CERN. Geneva. SPS and LHC Division

    2001-01-01

    n_TOF, the new neutron time of flight facility at CERN, is now operational and has been commisioned.

  5. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  6. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  7. HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergyHyEnergyHydroCoilHydroVenturi

  8. Hydro-Pac Inc., A High Pressure Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., A High Pressure Company Hydro-Pac

  9. Ris Energy Report 5 Hydro, ocean and geothermal 4 This chapter gives an overview of the development of

    E-Print Network [OSTI]

    ), the UsA (306 TWh) and Norway (106 TWh). Large hydro remains one of the lowest-cost power tech- nologies restricted further growth in many countries. Large hydro supplied 16% of global electricity in 2004, down project on the west coast of south korea. Electricity will be generated by the seawater flowing into sihwa

  10. Wastewater Construction and Operation Permits (Iowa)

    Broader source: Energy.gov [DOE]

    These regulations describe permit requirements for the construction and operation of facilities treating wastewater, and provide separation distances from other water sources.

  11. | November 2008 | Hydro iNterNatioNal14 Processing bathymetry and backscatter from four different multibeam echosounder systems for US

    E-Print Network [OSTI]

    New Hampshire, University of

    | November 2008 | Hydro iNterNatioNal14 Processing bathymetry and backscatter from four different margin and Gu lf of Alaska. #12;Hydro iNterNatioNal | November 2008 | 15 reference copies for the data

  12. Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas

    E-Print Network [OSTI]

    Dixon, Juan

    Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

  13. Network Operating Systems Partha Dasgupta

    E-Print Network [OSTI]

    Dasgupta, Partha

    Network Operating Systems Partha Dasgupta Department of Computer Science and Engineering Arizona of Electrical Engineering] 1. Introduction Network Operating Systems extend the facilities and services provided by computer operating systems to support a set of computers, connected by a network. The environment managed

  14. Environmental Review of Western Water Project Operations: Where NEPA Has Not Applied, Will It Now Protect Farmers from Fish

    E-Print Network [OSTI]

    Benson, Reed D.

    2011-01-01

    purposes, including hydro- power, flood control, navigation,percent of the nation's hydro- power, provide municipal

  15. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  16. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  17. J. Fluid Mech. (2015), vol. 766, R1, doi:10.1017/jfm.2015.37 Depth-integrated equation for hydro-acoustic

    E-Print Network [OSTI]

    Kirby, James T.

    2015-01-01

    J. Fluid Mech. (2015), vol. 766, R1, doi:10.1017/jfm.2015.37 Depth-integrated equation for hydro-integrated equation for the mechanics of generation, propagation and dissipation of low-frequency hydro-acoustic waves the role of bottom dissipation on hydro-acoustic wave generation and propagation. Key words: compressible

  18. Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medellin-Azuara a,*, L.G. Mendoza-Espinosa b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Virtues of simple hydro-economic optimization: Baja California, Mexico J. Medelli´n-Azuara a,*, L in revised form 1 May 2009 Accepted 22 May 2009 Available online 26 June 2009 Keywords: Hydro-economic models simple hydro-economic optimization to investigate a wide range of regional water system management

  19. Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011).

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hydro-climatology: Variability and Change (Proceedings of symposium J-H02 held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011). Copyright © 2011 IAHS Press 195 How could hydro , L. COLLET2 , S. ARDOIN-BARDIN3 & P. ROUCOU4 1 CNRS, 2 UM2, 3 IRD ­ UMR HydroSciences Montpellier

  20. A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY VARIATION ON THE STATE OF HISTORICAL STONE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A FULLY COUPLED THERMO-HYDRO MECHANICAL ANALYSIS OF THE IMPACT OF TEMPERATURE AND HUMIDITY Keywords: Thermo-hydro-mechanical coupling, modelling, inverse problem, tuffeau, monument, in situ measures initiation and growth due to the variation of climate conditions; thermo-hydro-mechanical incompatibility