Powered by Deep Web Technologies
Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cold Vacuum Drying facility HVAC system design description (SYS 30-1 THRU 30-5)  

SciTech Connect (OSTI)

This document describes the Cold Vacuum Drying Facility (CVDF) heating, ventilation, and air conditioning system (HVAC). The CVDF HVAC system consists of the Administrative building HVAC system, the process bay recirculation HVAC system, the process bay local HVAC and process vent system, the process general supply/exhaust HVAC system, and the Reference air system. These HVAC sub-systems support the CVDF process and provide secondary confinement of contamination and the required filtration of exhaust.

PITKOFF, C.C.

1999-07-02T23:59:59.000Z

2

Cold Vacuum Drying facility HVAC system design description  

SciTech Connect (OSTI)

This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD.

SINGH, G.

2000-09-22T23:59:59.000Z

3

Renovating Residential HVAC Systems HVAC Systems  

E-Print Network [OSTI]

- 1 - LBNL 57406 Renovating Residential HVAC Systems HVAC Systems J.A. McWilliams and I.S. Walker and Air Conditioning), and Stacy Hunt and Ananda Harzell (IBACOS). #12;- 3 - Renovating Residential HVAC Guideline for Residential HVAC Retrofits (http

4

HVAC Maintenance and Technologies  

Broader source: Energy.gov [DOE]

Presentation covers the HVAC maintenance and technologies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

5

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

6

MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS  

E-Print Network [OSTI]

LBNL-XXXXX MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUSof California. MAPPING HVAC SYSTEMS FOR SIMULATION INpresent a conventional view of HVAC systems to the user, and

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

7

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

8

Measuring Advances in HVAC Distribution System Design  

E-Print Network [OSTI]

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

9

An Application of State-Of-The-Art HVAC and Building Systems  

E-Print Network [OSTI]

AN APPLICATION OF STATE-OF-THE-ART HVAC AND BUILDING SYSTEMS DONALD P. FIORINO, M.S., P.E. Energy Conservation Manager Texas Instruments, Inc. Defense Systems and Electronics Group Dallas, Texas ABSTRACT This case study describes... the successful application of state-of-the-art HVAC and building systems at a large commercial office and industrial facility. The facility's exterior envelope systems, HVAC systems, lighting systems, energy conservation systems, exhaust/heat recovery...

Fiorino, D. P.

10

HVAC Installed Performance  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

11

Associate Vice President Facilities Management  

E-Print Network [OSTI]

Operations & Energy Services Jack Baker Executive Director Building & Landscape Maintenance Harry Teabout III Safety HVAC Systems HVAC Systems Administration/ Signs & Graphics Administration/ Signs & Graphics Piped-Campus Facilities Director Department of Engineering & Energy VACANT Energy Management Energy Management Engineering

Milchberg, Howard

12

CALIFORNIA ENERGY Large HVAC Energy Impact Report  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Large HVAC Energy Impact Report Statewide Energy Impact Report are part of the Integrated Design of Large Commercial HVAC Systems research project. The reports: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

13

Distributed scheduling for efficient HVAC precooling operations  

E-Print Network [OSTI]

of supply and return fans for HVAC systems under di?erentOp- timal Scheduling of HVAC Pre-cooling Operations withScheduling for E?cient HVAC Pre-cooling Operations ? Yang

Yang, Su

2014-01-01T23:59:59.000Z

14

HVAC Market Study:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering andHQHSI BestscientistsHVAC

15

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network [OSTI]

Wright, “Condition monitoring in HVAC subsystems using firstmonitoring packaged HVAC equipment. ASHRAE Transactions”,Detection and Diagnosis of HVAC Systems Using Support Vector

Najafi, Massieh

2010-01-01T23:59:59.000Z

16

MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS  

E-Print Network [OSTI]

Methodology for Secondary HVAC Systems, Doctoral Thesis,2002, Particulate Fouling of HVAC Heat Exchangers, Doctoraland diagnosis strategy for HVAC systems involving sensor

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

17

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network [OSTI]

and Mehry Yazdanian. Comparisons of HVAC Simulations betweeninformation Comparison of HVAC System Simulations inCLT (kW) Comparison of HVAC System Simulations in Different

Zhou, Xin

2014-01-01T23:59:59.000Z

18

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

E-Print Network [OSTI]

in this study. Classroom HVAC: Improving Ventilation andV8doc.sas.com/sashtml. Classroom HVAC: Improving VentilationBerkeley, CA 94720. Classroom HVAC: Improving Ventilation

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-01-01T23:59:59.000Z

19

HVAC component data modeling using industry foundation classes  

E-Print Network [OSTI]

HVAC Component Data Modeling Using Industry Foundationof a major extension of the HVAC part of the IFC data model.generic approach for handling HVAC components. This includes

Bazjanac, Vladimir; Forester, James; Haves, Philip; Sucic, Darko; Xu, Peng

2002-01-01T23:59:59.000Z

20

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

Integrated Simulation for HVAC Per- formance Prediction:air-conditioning equipment models (HVAC BESTEST), volume 1:air-conditioning equipment models (HVAC BESTEST), volume 2:

Trcka, Marija

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems  

E-Print Network [OSTI]

in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

Najafi, Massieh

2010-01-01T23:59:59.000Z

22

HVAC's Variable Refrigerant Flow (VRF) Technology  

E-Print Network [OSTI]

1 Comfort by Design Steve Jones Commercial Sales Manager for Mitsubishi Southwest Business Unit HVAC?s Variable Refrigerant Flow (VRF) Technology HVAC Industry Overview HVAC Market Dollar Volume $18 Billion Source:;NABH Research....2M Systems Ductless is a small percent of the U.S. HVAC market but current building and energy usage trends indicate a large growth opportunity Determining the Proper Application Worldwide Usage-Opportunity Window Unitary Chillers...

Jones, S.

2012-01-01T23:59:59.000Z

23

Strategy Guideline: HVAC Equipment Sizing  

SciTech Connect (OSTI)

The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

Burdick, A.

2012-02-01T23:59:59.000Z

24

Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol  

SciTech Connect (OSTI)

The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions. This protocol addresses only HVAC-related equipment and the energy savings estimation methods associated with installing such control systems as an energy efficiency measure. The affected equipment includes: Air-side equipment (air handlers, direct expansion systems, furnaces, other heating- and cooling-related devices, terminal air distribution equipment, and fans); Central plant equipment (chillers, cooling towers, boilers, and pumps). These controls may also operate or affect other end uses, such as lighting, domestic hot water, irrigation systems, and life safety systems such as fire alarms and other security systems. Considerable nonenergy benefits, such as maintenance scheduling, system component troubleshooting, equipment failure alarms, and increased equipment lifetime, may also be associated with these systems. When connected to building utility meters, these systems can also be valuable demand-limiting control tools. However, this protocol does not evaluate any of these additional capabilities and benefits.

Romberger, J.

2014-11-01T23:59:59.000Z

25

Pedernales Electric Cooperative- HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Pedernales Electric Cooperative offers equipment rebates to members who install energy efficient HVAC equipment. Eligible equipment includes:...

26

SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE  

E-Print Network [OSTI]

1 LBNL-47622 SIMULATION OF RESIDENTIAL HVAC SYSTEM PERFORMANCE Walker, I., Siegel, J ..................................................... 9 #12;3 ABSTRACT In many parts of North America residential HVAC systems are installed outside of the simulations is that they are dynamic - which accounts for cyclic losses from the HVAC system and the effect

27

Energirigtige pumpekoblinger i HVAC-systemer  

E-Print Network [OSTI]

Energirigtige pumpekoblinger i HVAC-systemer PSO 2003 - FORSKNING & UDVIKLING I EFFEKTIV energieffektive HVAC-aggregater #12;InformationomProjektnr.:335-021 PROCESSEN: Projektet er gennemfĂžrt af en reguleringsprincipper, mens Exhausto har leveret HVAC-aggregat og knowhow inden for klimasystemer. Grundfos

28

MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS  

E-Print Network [OSTI]

LBNL-49339 MODELING PARTICLE DEPOSITION ON HVAC HEAT EXCHANGERS J.A. Siegel1,3 * and W.W. Nazaroff2 Department of Energy under contract DE-AC03-76SF00098. #12;MODELING PARTICLE DEPOSITION ON HVAC HEAT, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy. INDEX TERMS HVAC, Fouling

29

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

30

CALIFORNIA ENERGY Small HVAC Database Of Monitored  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Small HVAC Database Of Monitored Information Database of Compiled of the Integrated Design of Small Commercial HVAC Systems research project. The reports are a result of funding: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

31

CALIFORNIA ENERGY Small HVAC Problems and Potential  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Small HVAC Problems and Potential Savings Reports Summary of Problems of the Integrated Design of Small Commercial HVAC Systems research project. The reports are a result of funding: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

32

CALIFORNIA ENERGY Small HVAC System Design Guide  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

33

STATE OF CALIFORNIA CERTIFICATE OF COMPLIANCE, PRESCRIPTIVE HVAC ALTERATIONS  

E-Print Network [OSTI]

STATE OF CALIFORNIA CERTIFICATE OF COMPLIANCE, PRESCRIPTIVE HVAC ALTERATIONS CEC-MECH-1C-ALT-HVAC (Revised 07/10) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF COMPLIANCE MECH-1C-ALT-HVAC Prescriptive HVAC Steps" column below. Note: After installation of HVAC units and/or ducts, the Installation

34

Thermovote: Participatory Sensing for Efficient Building HVAC Conditioning  

E-Print Network [OSTI]

Thermovote: Participatory Sensing for Efficient Building HVAC Conditioning Varick L. Erickson, Measurement, Performance Keywords HVAC conditioning, PMV, thermal comfort, phones 1 Introduction Recently goal, the service that HVAC systems provide is arguably more important than reducing energy. Before we

Cerpa, Alberto E.

35

Cooperative Control of Air Flow for HVAC Systems  

E-Print Network [OSTI]

in a variable air volume HVAC system,” Energy, vol. 21, no.Global optimization for overall HVAC systems-part I problemGlobal optimization for overall HVAC systems-part II problem

Shuai, Liu; Lihua, Xie

2013-01-01T23:59:59.000Z

36

Model-Based Hierarchical Optimal Control Design for HVAC Systems  

E-Print Network [OSTI]

trol algorithm design for hvac systems in energy efficientH.R. Sualem. Building and HVAC System simulation with theOPTIMAL CONTROL DESIGN FOR HVAC SYSTEMS Mehdi Maasoumy,

Maasoumy, Mehdi; Pinto, Alessandro; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

37

Compression effects on pressure loss in flexible HVAC ducts  

E-Print Network [OSTI]

to Determine Flow Resistance of HVAC Air Ducts and Fittings.Pressure Loss in Flexible HVAC Ducts Bass Abushakra, Ph.D.to Determine Flow Resistance of HVAC Air Ducts and Fittings.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-01-01T23:59:59.000Z

38

Comparison of Control Strategies for Energy Efficient Building HVAC Systems  

E-Print Network [OSTI]

optimal control design for HVAC systems. In Dynamic SystemOpti- mal control of HVAC systems in the presence of imper-consumption minimization of hvac sys- tems using model

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

39

Fouling of HVAC fin and tube heat exchangers  

E-Print Network [OSTI]

air ? air ? part ? part FPI HVAC REFERENCES Anonymous, 1987,LBNL-47668 Fouling of HVAC Fin and Tube Heat ExchangersCIEE SPONSOR. FOULING OF HVAC FIN AND TUBE HEAT EXCHANGERS

Siegel, Jeffrey; Carey, Van P.

2001-01-01T23:59:59.000Z

40

Building America Expert Meeting: Transitioning Traditional HVAC...  

Energy Savers [EERE]

validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure...

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measuring Advances in HVAC Distribution System Design  

E-Print Network [OSTI]

Advances in HV AC Distribution System Design Ellen FranconiAdvances in HVAC Distribution System Design Ellen Franconisavings result from distribution system design improvements,

Franconi, E.

2011-01-01T23:59:59.000Z

42

Modeling and Identification for HVAC Systems.  

E-Print Network [OSTI]

?? Heating, Ventilation and Air Conditioning (HVAC) systems consist of all the equipment that control the conditions and distribution of indoor air. Indoor air must… (more)

Scotton, Francesco

2012-01-01T23:59:59.000Z

43

DOE Convening Report on Certification of Commercial HVAC and...  

Broader source: Energy.gov (indexed) [DOE]

Convening Report on Certification of Commercial HVAC and CRE Products DOE Convening Report on Certification of Commercial HVAC and CRE Products This document is the convening...

44

Project examples Install new HVAC, electrical, fire protection,  

E-Print Network [OSTI]

Project examples Install new HVAC, electrical, fire protection, and plumbing systems in Mechanical. · Totransformthisspaceandincreaseaccessibility, anelevatorisrequired.Currently,Blakelydoesnot haveone. Replace HVAC and electrical system

Blanchette, Robert A.

45

Improving efficiency of a vehicle HVAC system with comfort modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency of a vehicle HVAC system with comfort modeling, zonal design, and thermoelectric devices Improving efficiency of a vehicle HVAC system with comfort modeling, zonal...

46

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network [OSTI]

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC… (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

47

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE...

48

Development of a High-Efficiency Zonal Thermoelectric HVAC System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

49

Energy Efficient HVAC System for Distributed Cooling/Heating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

50

Integration of HVAC System Design with Simplified Duct Distribution...  

Broader source: Energy.gov (indexed) [DOE]

Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building...

51

Building America Webinar: HVAC Right-Sizing Part 1-Calculating...  

Energy Savers [EERE]

HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...

52

Energy Department Releases Roadmaps on HVAC Technologies, Water...  

Energy Savers [EERE]

Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water...

53

Utveckling av provmetodik för HVAC pć lastbil; Development of test methodology for climatic testing of truck HVAC on trucks.  

E-Print Network [OSTI]

?? I detta examensarbetet undersöks hur provningen av HVAC pć lastbilar skall utföras i klimatvindtunneln CD7 som Scania färdigställer till ćr 2013. HVAC omfattar kupéuppvärmning,… (more)

Jonsson, Björn-Emil

2011-01-01T23:59:59.000Z

54

RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM  

SciTech Connect (OSTI)

A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF.

N. Ramirez

2004-12-16T23:59:59.000Z

55

Measurements of Smoke Characteristics in HVAC Ducts   

E-Print Network [OSTI]

The characteristics of smoke traveling in an HVAC duct have been observed along with the response of selected duct smoke detectors. The simulated HVAC system consists of a 9 m long duct, 0.45 m in diameter. An exhaust fan is placed at one end...

Wolin, Steven D; Ryder, Noah L; Leprince, Frederic; Milke, James; Mowrer, Frederick; Torero, Jose L

2001-01-01T23:59:59.000Z

56

2013 Energy Code Changes That Effect the HVAC  

E-Print Network [OSTI]

2013 Energy Code Changes That Effect the HVAC Industry Tav Commins Mechanical Engineer California Energy Commission #12;HVAC Mandatory Measures For All Newly Installed Residential HVAC Systems (New Watt Draw at .58 W/CFM, or (return duct and filter sizing) MERV 6 Filter #12;Residential HVAC Measures

California at Davis, University of

57

CALIFORNIA ENERGY Large HVAC Field and Baseline Data  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Large HVAC Field and Baseline Data Field Data Collection: Site Survey of the Integrated Design of Large Commercial HVAC Systems research project. The reports are a result of funding Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

58

Cooling and Dehumidification HVAC Technology for 1990s  

E-Print Network [OSTI]

Desiccant Cooling and Dehumidification HVAC Technology for 1990s HVAC: Heating, Ventilation Research Trusts SERI #12;Challenges Facing HVAC Industry in 1990's * Reduction of CFCs * Indoor air quality to solve the problems of the HVAC industry faced in1990's for space conditioning. SERI #12;l- = m mN a- mg

Oak Ridge National Laboratory

59

Residential HVAC Indoor Air Quality(ASHRAE 62.2)  

E-Print Network [OSTI]

Residential HVAC && Indoor Air Quality(ASHRAE 62.2) Tav Commins #12;Contact Information · Energy construction, Additions /Alterations · Nonresidential and Residential #12;Residential HVAC && Indoor Air Quality(ASHRAE 62.2) ·HVAC EfficiencyHVAC Efficiency ·Quality Installation (HERS Measures) S li b HERS R t

60

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues  

SciTech Connect (OSTI)

Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.

Wang, Liping; Hong, Tianzhen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced  

E-Print Network [OSTI]

Model Predictive Control of HVAC Systems:    Implementation and  air  conditioning  (HVAC)  account  for  27%  of  the reduction potential of HVAC systems with  active thermal 

Haves, Phillip

2010-01-01T23:59:59.000Z

62

HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing  

E-Print Network [OSTI]

2000 Broomes, Peter. , “HVAC Modeling for Cost of Ownership2000 Broomes, Peter. , “HVAC Results Comparison”, April,HVAC Modeling for Cost of Ownership Assessment in

Broomes, Peter; Dornfeld, David A

2003-01-01T23:59:59.000Z

63

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

E-Print Network [OSTI]

VOCs emitted by reactions of HVAC filters with ozone usingChemistry and Emissions on HVAC Filter Materials HugoChemistry and Emissions on HVAC Filter Materials Authors:

Destaillats, Hugo

2010-01-01T23:59:59.000Z

64

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

E-Print Network [OSTI]

Practices for Residential HVAC Systems”. Boston, MA. Jump,techniques for measuring HVAC grille air flows". ASHRAEPractices Guide for Residential HVAC Retrofits. LBNL 53592.

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-01-01T23:59:59.000Z

65

An implementation of co-simulation for performance prediction of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

and Judkoff, R. 2002. IEA HVAC BESTEST volume 1, Technicaland Judkoff, R. 2004. IEA HVAC BESTEST volume 2, TechnicalOF INNOVATIVE INTEGRATED HVAC SYSTEMS IN BUILDINGS Marija

Trcka, Marija

2010-01-01T23:59:59.000Z

66

Co-design of Control Algorithm and Embedded Platformfor Building HVAC Systems  

E-Print Network [OSTI]

algorithm design for hvac systems in energy efficientOptimal control of HVAC systems in the presence of imperfectminimization of building hvac systems using model predictive

Maasoumy, Mehdi; Zhu, Qi; Li, Cheng; Meggers, Forrest; Sangiovanni-Vincentelli, Alberto

2013-01-01T23:59:59.000Z

67

Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers  

E-Print Network [OSTI]

ABORATORY Comparisons of HVAC Simulations between EnergyPlusemployer. Comparisons of HVAC Simulations between EnergyPlusThis paper compares HVAC simulations between EnergyPlus and

Hong, Tianzhen

2009-01-01T23:59:59.000Z

68

Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.  

E-Print Network [OSTI]

from Ozone Reaction with HVAC Filters Hugo Destaillats,from Ozone Reaction with HVAC Filters Hugo Destaillatsfrom Ozone Reaction with HVAC Filters Hugo Destaillats

Destaillats, Hugo

2012-01-01T23:59:59.000Z

69

Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues  

E-Print Network [OSTI]

of Commercial Building HVAC Systems, Atlanta: American2012. Modeling and simulation of HVAC faults in EnergyPlus,Modeling and Simulation of HVAC Faulty Operations and

Wang, Liping

2014-01-01T23:59:59.000Z

70

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network [OSTI]

Dascalaki E, Gaglia A. HVAC and indoor thermal conditions inCommissioning of Building HVAC Systems for Improving Energyand diagnosis strategy for HVAC systems involving sensor

Wang, Liping

2014-01-01T23:59:59.000Z

71

Optimal Control of Building HVAC Systems in the Presence of Imperfect Predictions  

E-Print Network [OSTI]

minimization of building hvac systems using model predictivealgorithm design for hvac systems in energy efficient build-optimal control design for HVAC systems,” in Dynamic System

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

72

Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid  

E-Print Network [OSTI]

optimal control design for HVAC systems,” in Dynamic Systemminimization of building hvac systems using model pre-algorithm design for hvac systems in energy efficient

Maasoumy, Mehdi

2013-01-01T23:59:59.000Z

73

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

optimal control design for HVAC systems,’’ in Proc. Dynamicelectricity consumption in hvac using learning- based model-algorithm design for hvac systems in energy efficient

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

74

Salsbury and Diamond: Automated Testing of HVAC Systems for Commissioning -1 -Automated Testing of HVAC Systems for Commissioning  

E-Print Network [OSTI]

and Diamond: Automated Testing of HVAC Systems for Commissioning - 1 - Automated Testing of HVAC Systems This paper describes an approach to the automation of the commissioning of HVAC systems. The approach of many HVAC systems is limited more by poor installation, commissioning, and maintenance than by poor

75

Utveckling av provmetodik för HVAC pć lastbil; Development of test methodology for truck HVAC.  

E-Print Network [OSTI]

?? The issue about how Scania shall perform HVAC tests in the climatic wind tunnel CD7, which Scania is about to complete by year 2013,… (more)

Tedenäs, Jimmy

2011-01-01T23:59:59.000Z

76

Recovery Act-Funded HVAC projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

77

Distributed Control of HVAC&R Networks  

E-Print Network [OSTI]

retains a degree of modularity—changing one component does not require changing all controllers. The final contribution is a new distributed optimization algorithm that is rooted in distributed MPC and is especially motivated by HVAC&R systems...

Elliott, Matthew Stuart

2013-07-05T23:59:59.000Z

78

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network [OSTI]

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

Kinnier, R. J.

1979-01-01T23:59:59.000Z

79

A PDI for your HVAC System  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "HVAC proper installation energy savings: over-promising or under-deliverying?"

80

Modeling and optimization of building HVAC systems.  

E-Print Network [OSTI]

??This thesis presents the development of hybrid modeling methodologies for HVAC component static/steady-state models and dynamic/transient models, and the development and implementation of a model-based… (more)

Jin, Guang Yu.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optimization Control Strategies for HVAC Terminal Boxes  

E-Print Network [OSTI]

is an important topic in today's building energy management and HVAC control field. The authors developed novel optimized control strategies and operation schedules for the terminal boxes for both occupied and non-occupied hours. The optimized control schedules...

Zhu, Y.; Batten, T.; Noboa, H.; Claridge, D. E.; Turner, W. D.; Liu, M.; Zhou, J.; Cameron, C.; Keeble, D.; Hirchak, R.

2000-01-01T23:59:59.000Z

82

Theoretical Minimum Energy Use of a Building HVAC System  

E-Print Network [OSTI]

This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

Tanskyi, O.

2011-01-01T23:59:59.000Z

83

The Optimization of Control Parameters for VAV HVAC System Commissioning  

E-Print Network [OSTI]

One of the technical subjects in commissioning for HVAC system is to enhance control performance and time efficiency, while the tuning of the optimal parameters to control HVAC system takes much time and labor in particular. Therefore, we propose a...

Song, S.; Maehara, K.; Sagara, N.

2006-01-01T23:59:59.000Z

84

EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...  

Broader source: Energy.gov (indexed) [DOE]

HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

85

The Application of Ultraviolet Germicidal Technology in HVAC Systems  

E-Print Network [OSTI]

One of the most significant issues for today's HVAC (Heating, Ventilation, and Air Conditioning) engineer is Indoor Air Quality (IAQ). Many building owners, operators, and occupants complain of foul odors emanating from HVAC systems...

Taylor, M. J.

2000-01-01T23:59:59.000Z

86

System Optimization - The Global Approach to HVAC Control  

E-Print Network [OSTI]

System Optimization is a new approach to HVAC control as implemented by Energy Management Control Systems. System Optimization is defined as electronic building control strategies which treat a building's HVAC components as a complete energy...

Thielman, D. E.

1984-01-01T23:59:59.000Z

87

Indirect Benefits (Increased Roof Life and HVAC Savings) from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San Jos Convention Center Indirect Benefits (Increased Roof Life and HVAC Savings) from a...

88

Robert Schwartz AVP for Facilities Services  

E-Print Network [OSTI]

Williams RH Maintenance Staff Wayne Hauck, Lead Wayne Holscher Cory Heitman Greg Felton Steven Cook Le Schrader, HVAC Tech Vehicle Mechanic George Hooper SU Facilities Services Jeff Harris Resource Center

Carter, John

89

Implementation and main results Ecient Management of HVAC Systems  

E-Print Network [OSTI]

water to remove heat from the air in the building. In HVAC system equipped with chillers, the electrical #12;Motivation Implementation and main results HVAC Systems Multiple-chiller systems Heating, Ventilation and Air-Conditioning System Heating, Ventilation and Air Conditioning Systems (HVAC) represents

Schenato, Luca

90

Atmospheric Environment 41 (2007) 31513160 Ozone removal by HVAC filters  

E-Print Network [OSTI]

Atmospheric Environment 41 (2007) 3151­3160 Ozone removal by HVAC filters P. Zhao, J.A. Siegel�, R May 2006; accepted 14 June 2006 Abstract Residential and commercial HVAC filters that have been loaded of the relative importance of HVAC filters as a removal mechanism for ozone in residential and commercial

Siegel, Jeffrey

91

Proceedings: Indoor Air 2005 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS  

E-Print Network [OSTI]

Proceedings: Indoor Air 2005 2366 OZONE REMOVAL BY RESIDENTIAL HVAC FILTERS P Zhao1,2 , JA Siegel1, Austin, Texas 78758, USA ABSTRACT HVAC filters have a significant influence on indoor air quality% for Filter #2 at a face velocity of 0.81 cm/s. The potential for HVAC filters to affect ozone concentrations

Siegel, Jeffrey

92

MATERIALS AND INFORMATION FLOWS FOR HVAC DUCTWORK FABRICATION AND SITE  

E-Print Network [OSTI]

MATERIALS AND INFORMATION FLOWS FOR HVAC DUCTWORK FABRICATION AND SITE INSTALLATION Matt Holzemer,1, and air-conditioning (HVAC) systems requires a set of complex activities and handoffs between multiple architecture-, engineering-, and construction practitioners. This paper highlights one part of the HVAC

Tommelein, Iris D.

93

ThermoSense: Occupancy Thermal Based Sensing for HVAC Control  

E-Print Network [OSTI]

ThermoSense: Occupancy Thermal Based Sensing for HVAC Control Alex Beltran Elect. Eng. & Comp Occupancy Sensing, Thermal Sensing, HVAC Control 1. INTRODUCTION From 1980 to 2010, energy in the United, November 13-14 2013, Rome, Italy. Copyright 2013 ACM 978-1-4503-2431-1/13/11 ...$15.00. (HVAC) consumed 42

Cerpa, Alberto E.

94

Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor -Global  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2012 HVAC Filter Sensor - Global Overview The purpose of this project is to develop a heating, ventilation, and air conditioning (HVAC) monitoring a residential, forced flow, multi-zone HVAC filter needs to be replaced, and then alerts the users

Demirel, Melik C.

95

Modeling Building Thermal Response to HVAC Zoning Virginia Smith  

E-Print Network [OSTI]

Modeling Building Thermal Response to HVAC Zoning Virginia Smith Department of Computer Science HVAC systems account for 38% of building energy usage. Studies have indicated at least 5-15% waste due to unoccu- pied spaces being conditioned. Our goal is to minimize this waste by retrofitting HVAC systems

Whitehouse, Kamin

96

SMUD's HVAC Programs Ravi Patel-Program Planning  

E-Print Network [OSTI]

1 SMUD's HVAC Programs 5-7-13 Ravi Patel- Program Planning Bruce Baccei- R&D #12;SMUD's Residential contractors trained and BPI certified ­ Majority were pushing only HVAC; now driving the HPP · Program encourages more HVAC replacements to occur through HPP ­ Move away from stand alone programs ­ Start

California at Davis, University of

97

Lessons Learned During HVAC Installation Dept. of Computer Science  

E-Print Network [OSTI]

Lessons Learned During HVAC Installation Ian Watson AI-CBR Dept. of Computer Science University of HVAC equipment. It has been developed as an adjunct to an existing system that uses case-based reasoning to reuse previous HVAC installation specifications and designs. The system described lets

Watson, Ian

98

An update on acoustics designs for HVAC (Engineering) K. Marriott  

E-Print Network [OSTI]

An update on acoustics designs for HVAC (Engineering) K. Marriott IOA, 29a Ashburton Road, Croydon and Air Conditioning (HVAC) engineer is to engineer ways for keeping these factors under control the HVAC engineer's environmental requirements while minimizing noise generated in the process considering

Paris-Sud XI, Université de

99

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings  

E-Print Network [OSTI]

Utilizing Passive Ventilation to Complement HVAC Systems in Enclosed Buildings Tom Rogg REU Student to assist HVAC has the potential to significantly reduce life cycle cost and energy consumption and electrical system that will tie thermostats to controlled valves in the actual HVAC system. Based on results

Mountziaris, T. J.

100

Modeling and simulation of HVAC Results in EnergyPlus  

E-Print Network [OSTI]

LBNL-5564E Modeling and simulation of HVAC Results in EnergyPlus Mangesh Basarkar, Xiufeng Pang;MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS Mangesh Basarkar, Xiufeng Pang, Liping Wang, Philip not capture the significant impact of installation, operational and degradation HVAC system faults on actual

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Monitoring-based HVAC Commissioning of an Existing Office  

E-Print Network [OSTI]

LBNL-5940E Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiency thereof or The Regents of the University of California. #12;1 Monitoring-based HVAC Commissioning@lbl.gov, Tel: 1-510-486-4921 Abstract The performance of Heating, Ventilation and Air Conditioning (HVAC

102

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network [OSTI]

LBNL-6432E Comparison of Building Energy Modeling Programs: HVAC Systems Xin Zhou1 , Tianzhen Hong2 programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E. This is a joint effort between purposes, BEMPs can be divided into load modules and HVAC system modules. This technical report

103

Handover Performance of HVAC Duct Based Indoor Wireless Networks  

E-Print Network [OSTI]

Handover Performance of HVAC Duct Based Indoor Wireless Networks A. E. Xhafa, P. Sonthikorn, and O in indoor wireless net- works (IWN) that use heating, ventilation, and air conditioning (HVAC) ducts.e., new call blocking and handover dropping probabilities, of an IWN that uses HVAC ducts are up to 6

Stancil, Daniel D.

104

Implementation of a Scenario-based MPC for HVAC Systems  

E-Print Network [OSTI]

Implementation of a Scenario-based MPC for HVAC Systems: an Experimental Case Study Alessandra, Ventilation and Air Conditioning (HVAC) systems play a fundamental role in maintaining acceptable thermal energy savings potential. Developing effective MPC-based control strategies for HVAC systems

Johansson, Karl Henrik

105

Continued on next page A letter explaining the 2005 HVAC  

E-Print Network [OSTI]

Continued on next page A letter explaining the 2005 HVAC Change-out to consumers is available this bulletin, or downloaded from the 2005 HVAC Change out Information website at: www.energy.ca.gov/title24 duct sealing requirements for HVAC change-outs in existing homes become effective October 1, 2005

106

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network [OSTI]

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

107

Tematiche di ricerca Controllo di sistemi HVAC&R  

E-Print Network [OSTI]

Tematiche di ricerca Controllo di sistemi HVAC&R Controllo di processo per l'industria dei;Tematiche di ricerca Controllo di sistemi HVAC&R Controllo di processo per l'industria dei semiconduttori controllo di sistemi HVAC&R 2 Controllo di processo per l'industria dei semiconduttori 3 Problemi di

Schenato, Luca

108

Long Range Passive UHF RFID System Using HVAC Ducts  

E-Print Network [OSTI]

INVITED P A P E R Long Range Passive UHF RFID System Using HVAC Ducts To provide a potential communications channel, HVAC ducts can function as electromagnetic waveguides; a 30-m read range has been-conditioning (HVAC) ducts as a potential communication channel between passive ultrahigh-frequency (UHF) radio

Hochberg, Michael

109

Optimal Control of Building HVAC Systems in the Presence of Imperfect Predictions, ASME Dynamic System Control Conference  

E-Print Network [OSTI]

optimal control design for HVAC systems,” in Dynamic Systemalgorithm design for hvac systems in energy efficient build-OPTIMAL CONTROL OF BUILDING HVAC SYSTEMS IN THE PRESENCE OF

Maasoumy, Mehdi

2012-01-01T23:59:59.000Z

110

Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following  

E-Print Network [OSTI]

of commercial building HVAC fan as ancillary service foralgorithm design for hvac systems in energy efficientoptimal control design for HVAC systems,” in Dynamic System

Maasoumy, Mehdi

2014-01-01T23:59:59.000Z

111

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM  

SciTech Connect (OSTI)

In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

112

University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 23 HVAC  

E-Print Network [OSTI]

­ HVAC SECTION 2 DIVISION 23 HVAC #12;University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 23 ­ HVAC DIVISION 23 - HVAC Note: This is a guide for Designers only 23 0510 - MECHANICAL GENERAL - HVAC PART 1 - GENERAL 1.1 MECHANICAL DESIGNER: A. Design

Xie,Jiang (Linda)

113

Dry Transfer Facility #1 - Ventilation Confinement Zoning Analysis  

SciTech Connect (OSTI)

The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department.

K.D. Draper

2005-03-23T23:59:59.000Z

114

Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field  

E-Print Network [OSTI]

Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field Kristin Group, Davis, CA, USA 4 Southern California Edison, Irwindale, CA, USA ABSTRACT HVAC maintenance utilities across the nation to include HVAC maintenance measures in energy efficiency programs

California at Davis, University of

115

Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study  

E-Print Network [OSTI]

LBNL- 49026 Report on HVAC Option Selections for aTable 3. High performance HVAC system filter selectionDrop ("H 2 O) Appendix A – RC HVAC working drawings. Figure

2001-01-01T23:59:59.000Z

116

IFC HVAC interface to EnergyPlus - A case of expanded interoperability for energy simulation  

E-Print Network [OSTI]

D. Sucic and P. Xu. 2002. HVAC Component Data Modeling Using2001. BS-8 project: IFC HVAC extension schemata. http://IFC HVAC INTERFACE TO ENERGYPLUS – A CASE OF EXPANDED

Bazjanac, Vladimir; Maile, Tobias

2004-01-01T23:59:59.000Z

117

Analysis of a hybrid UFAD and radiant hydronic slab HVAC system  

E-Print Network [OSTI]

Air- Conditioning Engineers HVAC & R Research, vol. 50, Sep.and radiant hydronic slab HVAC system.   Paul RAFTERY a,* ,of a novel integrated HVAC system. This system combines an

Raftery, Paul; Lee, Kwang Ho; Webster, Thomas; Bauman, Fred

2011-01-01T23:59:59.000Z

118

Daylighting controls; Orphan of HVAC design  

SciTech Connect (OSTI)

This paper reports that in the array of strategies employed for energy-efficient design and retrofitting in commercial buildings, the use of daylighting controls is often overlooked or omitted. Thus, daylighting controls are a worthy but neglected orphan of the design process, stranded between the lighting designer, architect and engineer. Most daylighting analysis ignores HVAC effects, despite obvious interactions between windows, heat-from-lights, and thermal loads.

Rundquist, R.A. (R.A. Rundquist Associates Inc., Northampton, MA (US))

1991-11-01T23:59:59.000Z

119

Thermal Storage Options for HVAC Systems  

E-Print Network [OSTI]

THERMAL STORAGE OPTIONS FOR HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT With the ever-increasing cost of electricity and the high demand charges levied by utility compa nies, thermal storage... for cooling is rapidly becom ing a widely recognized method to lower cooling costs. There are three maior types of thermal stor age systems: ? Ice Storage: This utilizes the latent heat of fusion of ice for thermal storage. During off Deak periods...

Weston, R. F.; Gidwani, B. N.

120

Pitfalls in Building and HVAC Systems  

E-Print Network [OSTI]

the summer savings. ? Consider all forms of savings, not just en ergy. Opportunities are often missed be cause only energy savings are consideted. For example, the installation of extetior wall insulation or aluminum thermopane win dows result in a...PITFALLS IN BUILDING AND HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT The purpose of an energy audit is to identify and analyze areas of energy consumption and to pro pose methods of conservation...

Gidwani, B. N.

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reliability and Functional Availability of HVAC Systems  

E-Print Network [OSTI]

RELIABILITY AND FUNCTIONAL AVAILABILITY OF HVAC SYSTEMS Sonny Myrefelt Dep. of Build. Serv. Eng., KTH, 10044 Stockholm, Sweden, and SKANSKA Sydost, V?xj?, Sweden Summary This paper presents a model to calculate the reliability... system, therefore, there must be sufficient documentation of design airflow rates. The compulsory ventilation checks performed in Sweden have focused on the importance of maintaining the design air flow rates. More about this activity can be seen...

Myrefelt, S.

2004-01-01T23:59:59.000Z

122

2014-04-28 Issuance: Certification of Commercial HVAC, Water...  

Broader source: Energy.gov (indexed) [DOE]

Register final rule regarding the certification of commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration (CRE) equipment, as issued...

123

Columbia Water and Light- HVAC and Lighting Efficiency Rebates  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

124

Fault Detection and Diagnosis in Building HVAC Systems.  

E-Print Network [OSTI]

??Building HVAC systems account for more than 30% of annual energy consumption in United States. However, it has become apparent that only in a small… (more)

Najafi, Massieh

2010-01-01T23:59:59.000Z

125

The impact of filter loading on residential hvac performance.  

E-Print Network [OSTI]

??Buildings are the primary user of energy in the USA. Within homes, the heating, ventilation, and air condition (HVAC) system is the largest energy consumer.… (more)

Kruger, Abraham J.

2013-01-01T23:59:59.000Z

126

Two Alabama Elementary Schools Get Cool with New HVAC Units ...  

Broader source: Energy.gov (indexed) [DOE]

campaign. Winston's HVAC replacement project received a boost from the Alabama State Energy Program, which granted the school district a little more than 82,000 in Recovery...

127

Improving the Efficiency of Light-Duty Vehicle HVAC Systems using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric Devices and Comfort Modeling Improving the Efficiency of Light-Duty Vehicle HVAC Systems using Zonal Thermoelectric...

128

A Scenario-based Predictive Control Approach to Building HVAC Management Systems  

E-Print Network [OSTI]

A Scenario-based Predictive Control Approach to Building HVAC Management Systems Alessandra Parisio and Air Conditioning (HVAC) systems while minimizing the overall energy use. The strategy uses

Johansson, Karl Henrik

129

SIMULATION AND EXPERIMENTAL VALIDATION OF AIRBORNE AND STRUCTURE-BORNE NOISE TRANSMISSION IN HVAC PLENUMS.  

E-Print Network [OSTI]

??This research demonstrates the usage of numerical acoustics to model sound and vibrational energy propagation in HVAC ducts and plenums. Noise and vibration in HVAC… (more)

Ramalingam, Srinivasan

2012-01-01T23:59:59.000Z

130

Characterization of HVAC operation uncertainty in EnergyPlus AHU modules.  

E-Print Network [OSTI]

??This study addresses 5 uncertainties that exist in the operation of HVAC systems, which will presumably affect the actual energy consumption of the HVAC system… (more)

Sui, Di

2014-01-01T23:59:59.000Z

131

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network [OSTI]

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

132

Energy efficient HVAC system features thermal storage and heat recovery  

SciTech Connect (OSTI)

This article describes a HVAC system designed to efficiently condition a medical center. The topics of the article include energy efficient design of the HVAC system, incentive rebate program by the local utility, indoor air quality, innovative design features, operations and maintenance, payback and life cycle cost analysis results, and energy consumption.

Bard, E.M. (Bard, Rao + Athanas Consulting Engineering Inc., Boston, MA (United States))

1994-03-01T23:59:59.000Z

133

HVAC & Building Management Control System Energy Efficiency Replacements  

SciTech Connect (OSTI)

The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

Hernandez, Adriana

2012-09-21T23:59:59.000Z

134

Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson  

E-Print Network [OSTI]

Occupancy Based Demand Response HVAC Control Strategy Varick L. Erickson University of California an efficient demand response HVAC control strategy, actual room usage must be considered. Temperature and CO2 are used for simulations but not for predictive demand response strategies. In this paper, we develop

Cerpa, Alberto E.

135

Thinking small leads to efficient HVAC system  

SciTech Connect (OSTI)

The energy efficient design of a Park Avenue office tower is discussed. The 27 story, 260,000 sq. ft. building features an energy efficient HVAC system, including separate mechanical rooms on each floor and a pre-cooling coil utilizing water from a cooling tower. The building was designed so that condenser water from the cooling tower is run through a pre-cooling coil on each floor in order to provide free cooling before the water goes through the condenser coil. The building also uses a Honeywell energy management system to control the start and stop of various mechanical equipment according to outside conditions and building loads. (MJF)

Not Available

1981-06-01T23:59:59.000Z

136

VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER  

SciTech Connect (OSTI)

This comprehensive topical report discusses the key findings in the development of an advanced blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented, and several prototype wheels are demonstrated in various housings. A comparison of retrofitted blowers to that of three typical units from the industry is presented. The design and modification of the blower housing is addressed and the impact of size limitations on static efficiency is discussed. The roadmap to rearward-inclined wheel technology insertion is presented and typical static efficiency gains are documented.

Herman Wiegman; Charlie Stephens; Xiaoyue Liu; Ralph Carl; Sunny Zhuang; Paul Szczesny; Kamron Wright

2003-09-23T23:59:59.000Z

137

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy  

E-Print Network [OSTI]

OBSERVE: Occupancy-Based System for Efficient Reduction of HVAC Energy Varick L. Erickson, Miguel Á & control General Terms Algorithms, Machine Learning, Measurement Keywords Occupancy, HVAC, Ventilation for heating, ventilation, and air-conditioning (HVAC) systems[2]. Studies suggest that 15% to 25% of HVAC

Carreira-Perpiñån, Miguel Á.

138

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1  

E-Print Network [OSTI]

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems Massieh Najafi1 , David for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most in a substantial increase in energy use. For example, failure of an HVAC fan may prevent cool air from one

139

Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control  

E-Print Network [OSTI]

Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control Yuvraj Agarwal, Bharathan the dominant energy consumer is the HVAC system. Despite this fact, in most buildings the HVAC system is run sensing to guide the operation of a building HVAC system. We show how we can enable aggressive duty

Simunic, Tajana

140

Best Practices for Energy Efficient Cleanrooms Efficient HVAC Systems: Variable-Speed-Drive Chillers  

E-Print Network [OSTI]

LBNL-58636 Best Practices for Energy Efficient Cleanrooms Efficient HVAC Systems: Variable Efficient Cleanrooms Efficient HVAC Water Systems: Variable-Speed-Drive Chillers Tengfang Xu Contents HVAC.................................................................................................................................... 6 #12;HVAC Water Systems Variable-Speed-Drive Chillers Summary Cleanroom energy benchmarking data

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network [OSTI]

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

142

The Impact of Uncertain Physical Parameters on HVAC Demand Response  

SciTech Connect (OSTI)

HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units. These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.

Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai; Fuller, Jason C.

2014-03-01T23:59:59.000Z

143

Classroom HVAC: Improving ventilation and saving energy -- field study plan  

SciTech Connect (OSTI)

The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

2004-10-14T23:59:59.000Z

144

Self-Correcting HVAC Controls Project Final Report  

SciTech Connect (OSTI)

This document represents the final project report for the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls Project jointly funded by Bonneville Power Administration (BPA) and the U.S. Department of Energy (DOE) Building Technologies Program (BTP). The project, initiated in October 2008, focused on exploratory initial development of self-correcting controls for selected HVAC components in air handlers. This report, along with the companion report documenting the algorithms developed, Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units (Fernandez et al. 2009), document the work performed and results of this project.

Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas; Cho, Heejin; Goddard, James K.; Dinh, Liem H.

2010-01-04T23:59:59.000Z

145

Index to Evaluate Energy Efficiency of the Building HVAC System  

E-Print Network [OSTI]

1An Index to Evaluate Energy Efficiency of the Entire Building HVAC System Presented by Dr. Claridge Date: 09/15/2014 ESL-IC-14-09-15 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14..., Beijing, China, September 14-17, 2014 3• Why we need the Energy/Load Ratio 1. Building 2. HVAC Systems 3. Common Index • Building sector consumes 40% of total energy usage in US (Residential buildings – 22%, Commercial building – 19%) • HVAC systems...

Wang, L.; Wang, L.; Claridge,D.

2014-01-01T23:59:59.000Z

146

SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

M.M. Ansari

2005-04-05T23:59:59.000Z

147

D-Zero HVAC Heat Pump Controls  

SciTech Connect (OSTI)

This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

Markley, Dan; /Fermilab

2004-04-14T23:59:59.000Z

148

Modeling and Simulation of HVAC Faulty Operations and  

E-Print Network [OSTI]

effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled to Maintenance Issues Liping Wang, Tianzhen Hong Environmental Energy Technologies Division January 2013 and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues Liping Wang

149

HVAC vs. Space Heaters: Which is More Efficient? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Let's start with a basic tenet: electric space heaters are less efficient than HVAC systems. I cannot replace my heating system with room heaters if I want to save money....

150

Review of Residential Low-Load HVAC Systems  

SciTech Connect (OSTI)

In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

Brown, Scott A.; Thornton, Brian; Widder, Sarah H.

2013-09-01T23:59:59.000Z

151

Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors  

SciTech Connect (OSTI)

This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

Burdick, A.

2012-05-01T23:59:59.000Z

152

Building HVAC Control System Interaction Issues: Two Case Studies  

E-Print Network [OSTI]

Direct Digital Control (DDC) allows HVAC equipment to be controlled at an upper level (supervisory control) through commands from a central system, or at a lower-level (local-loop control) by local controllers. The various levels of equipment...

Chen, Q.; Deng, S.; Toole, C.; Xu, C.

2007-01-01T23:59:59.000Z

153

Columbia Water and Light- Residential HVAC Rebate Program  

Broader source: Energy.gov [DOE]

Columbia Water and Light (CWL) provides an HVAC incentive for residential customers that are replacing an older heating and cooling system. Customers should submit the mechanical permit from a...

154

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network [OSTI]

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

Graham, E. L.

1980-01-01T23:59:59.000Z

155

Ameren Illinois (Electric)- Custom, HVAC, and Motor Business Efficiency Incentives  

Broader source: Energy.gov [DOE]

Prescriptive rebates are available for many HVAC and motor efficiency improvements. Pre-approval is required for all rebates. The programs are available only to non-residential customers that...

156

MODELING AND SIMULATION OF HVAC FAULTS IN ENERGYPLUS  

E-Print Network [OSTI]

Symptoms Decreased boiler efficiency due to the increasedresult in reduced boiler efficiency if the sensor hasboiler and two chillers in the plant loop. The building envelope prescriptive minimums and HVAC system efficiencies

Basarkar, Mangesh

2013-01-01T23:59:59.000Z

157

DESIGN GUIDELINES FOR FACILITIES CONSTRUCTION  

E-Print Network [OSTI]

(HVAC) DG 230000.20 Materials, Equipment and Methods (HVAC) DG 230913 Instrumentation and Control for HVAC DG 233000 HVAC Air Distribution DIVISION 26 -- ELECTRICAL DG 260000.10 Procedures, Design

Farritor, Shane

158

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

of contractors in the HVAC market will certainly have anational version of the HVAC market share decision model,equipment 4.5. HVAC Equipment Market Shares We now define

Johnson, F.X.

2010-01-01T23:59:59.000Z

159

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

solar-thermal- assisted hvac system. Energy and Buildings, [of a Solar-Assisted HVAC System with Thermal Storage A.of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

160

Influence Of Three Dynamic Predictive Clothing Insulation Models On Building Energy Use, HVAC Sizing And Thermal Comfort  

E-Print Network [OSTI]

ON BUILDING ENERGY USE, HVAC SIZING AND THERMAL COMFORT aThe results showed that when the HVAC is controlled based onequipment sizing. When the HVAC is controlled based on the

Schiavon, Stefano; Lee, Kwang Ho

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Using measured equipment load profiles to "right-size" HVAC systems and reduce energy use in laboratory buildings (Pt. 2)  

E-Print Network [OSTI]

load profiles to “right-size” HVAC systems and reduce energyGeorgia. ASHRAE [1999]. HVAC Applications Handbook 1999.Inefficiency of a Common Lab HVAC System,” presented at the

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2008-01-01T23:59:59.000Z

162

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Efficiency Choice 6.3 New Home HVAC System Choice 6.4. NewJuly. EPRI. 1990. REEPS 2.0 HVAC Model Logic, prepared by1990. Review of Equipment HVAC Choice Parameters. Cambridge

Johnson, F.X.

2010-01-01T23:59:59.000Z

163

Comfort by Design: An Introduction to HVAC's Variable Refrigerant Flow (VRF) Technology  

E-Print Network [OSTI]

Comfort by Design An Introduction to HVAC’s Variable Refrigerant Flow (VRF) Technology Keith Reihl kreihl@hvac.mea.com ESL-KT-14-11-13 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 HVAC Market Overview 0% 27% 9% 5% 4... Through Efficiency Conference, Dallas, Texas Nov. 18-20 How LOUD is a traditional HVAC unit? 33 dB(A) Library 50 dB(A) Refrigerator 60 dB(A) Conversation 78 dB(A) Vacuum 25 dB(A) Recording Studio 65-75 dB(A) Residential 3-ton HVAC Unit How Q IET are VRF...

Reihl,K.

2014-01-01T23:59:59.000Z

164

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Imports/Exports Gas Availability Change efficiency choice equation Add technologiestoHVAC model Adjust cost-efficiency parameter Develop HVAC Conversion

Johnson, F.X.

2010-01-01T23:59:59.000Z

165

DEMONSTRATION OF A HYBRID INTELLIGENT CONTROL STRATEGY FOR CRITICAL BUILDING HVAC SYSTEMS  

SciTech Connect (OSTI)

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control. Within these facilities, PID control is often inadequate to maintain desired performance due to changing operating conditions. As the goal of the Heating, Ventilation and Air-Conditioning (HVAC) control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore a hybrid design using the integration of soft control methods with hard control methods is developed and demonstrated to account for these errors and nonlinearities.

Craig Rieger; D. Subbaram Naidu

2010-06-01T23:59:59.000Z

166

Department of Energy and Mineral Engineering Spring 2013 Solar Innovations -HVAC and Waste Stream Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Mineral Engineering Spring 2013 Solar Innovations - HVAC and Waste Stream Analysis Overview There are two problems that were voiced by Solar Innovations, HVAC system

Demirel, Melik C.

167

Building America Whole-House Solutions for New Homes: HVAC Design...  

Energy Savers [EERE]

HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this...

168

CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

169

Direct Digital Control- A Tool for Energy Management of HVAC Systems  

E-Print Network [OSTI]

Direct digital control (DDC) applied to heating, ventilating, and air-conditioning (HVAC) systems corrects many of the deficiencies of conventional automatic temperature control systems. By applying new control sequences, DDC optimizes HVAC energy...

Swanson, K.

170

CoolCab Test and Evaluation and CoolCalc HVAC Tool Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation and CoolCalc HVAC Tool Development CoolCab Test and Evaluation and CoolCalc HVAC Tool Development 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

171

TITLE: HVAC TESTING & BALANCING FOR MAJOR AND MINOR PROJECTS OBJECTIVE AND  

E-Print Network [OSTI]

TITLE: HVAC TESTING & BALANCING FOR MAJOR AND MINOR PROJECTS OBJECTIVE AND PURPOSE: To provide an independent test & balance for the adjustment of all HVAC systems in all major projects and minor projects

Fernandez, Eduardo

172

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes.  

E-Print Network [OSTI]

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems

173

VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER  

SciTech Connect (OSTI)

This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

2001-11-14T23:59:59.000Z

174

Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid  

E-Print Network [OSTI]

Efficient Building Control Systems, Smart Grid and AircraftCommercial Building HVAC Fan as Ancillary Service for Smart

Maasoumy, Mehdi

2013-01-01T23:59:59.000Z

175

Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial Buildings  

E-Print Network [OSTI]

Sentinel: Occupancy Based HVAC Actuation using Existing WiFi Infrastructure within Commercial.agarwal@cs.cmu.edu ABSTRACT Commercial buildings contribute to 19% of the primary energy consumption in the US, with HVAC systems accounting for 39.6% of this usage. To reduce HVAC energy use, prior studies have pro- posed using

Gupta, Rajesh

176

Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond  

E-Print Network [OSTI]

Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond Lawrence Berkeley of the commissioning of HVAC systems. The approach is based on software that generates a sequence of test signals for new and retrofit projects. Introduction The performance of many HVAC systems is limited more by poor

Diamond, Richard

177

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network [OSTI]

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

178

Randomized Model Predictive Control for HVAC Systems Alessandra Parisio, Damiano Varagnolo, Daniel Risberg,  

E-Print Network [OSTI]

Randomized Model Predictive Control for HVAC Systems Alessandra Parisio, Damiano Varagnolo, Daniel Conditioning (HVAC) sys- tems play a fundamental role in maintaining acceptable ther- mal comfort and Indoor. A possible solu- tion is to develop effective control strategies for HVAC sys- tems, but this is complicated

Johansson, Karl Henrik

179

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access  

E-Print Network [OSTI]

Theoretical Estimates of HVAC Duct Channel Capacity for High-Speed Internet Access Ariton E. Xhafa-conditioning (HVAC) ducts based on multi-carrier transmission that uses M-QAM mod- ulation and measured channel- flections in HVAC ducts). Our work also shows that data rates in excess of 300 Mbps are possible over

Stancil, Daniel D.

180

Modeling Building Thermal Response to HVAC Virginia Smith, Tamim Sookoor, and Kamin Whitehouse  

E-Print Network [OSTI]

Modeling Building Thermal Response to HVAC Zoning Virginia Smith, Tamim Sookoor, and Kamin,sookoor,whitehouse}@virginia.edu Abstract. HVAC systems account for 38% of building energy usage. Studies have indicated at least 5 HVAC systems to enable room-level zoning where each room is conditioned in- dividually based on its

Whitehouse, Kamin

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A LIBRARY OF HVAC COMPONENT MODELS FOR USE IN AUTOMATED1 DIAGNOSTICS2  

E-Print Network [OSTI]

A LIBRARY OF HVAC COMPONENT MODELS FOR USE IN AUTOMATED1 DIAGNOSTICS2 3 4 Peng Xu, Philip Haves HVAC system (air handling units and air distribution systems). The models are used to predict of automatic documentation methods in the library. INTRODUCTION The increasing complexity of building HVAC

182

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity  

E-Print Network [OSTI]

Multi-carrier Signal Transmission through HVAC Ducts: Experimental Results for Channel Capacity, for the first time, experimental results on channel capacity of heating, ventilation, and air-conditioning (HVAC through a building HVAC duct system demonstrate the ability to transmit with a spectral efficiency of 3

Stancil, Daniel D.

183

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture  

E-Print Network [OSTI]

Seamless Handover in Buildings Using HVAC Ducts: A New System Architecture Ariton E. Xhafa, Paisarn-- In this paper, we present an innovative solution to the handover problem in multi-story buildings using HVAC of the indoor wireless networks that use the heating, ventilation, and air conditioning (HVAC) ducts

Stancil, Daniel D.

184

MAPPING HVAC SYSTEMS FOR SIMULATION IN Author(s), Mangesh Basarkar, James O'Donnell, Philip  

E-Print Network [OSTI]

LBNL-5565E MAPPING HVAC SYSTEMS FOR SIMULATION IN ENERGYPLUS Author(s), Mangesh Basarkar, James O Government or any agency thereof or The Regents of the University of California. #12;MAPPING HVAC SYSTEMS tools to be accessible to designers, tool interfaces should present a conventional view of HVAC systems

185

Comparison of HVAC filter test methods for particle removal efficiency Brent Stephens1,*  

E-Print Network [OSTI]

Comparison of HVAC filter test methods for particle removal efficiency Brent Stephens1,* , Jeffrey Introduction The use of HVAC filters in buildings is one strategy to reduce occupant exposure to particulate matter. However, HVAC filters are typically tested only in laboratory settings and little is known about

Siegel, Jeffrey

186

BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS  

E-Print Network [OSTI]

BLACK-BOX MODELLING OF HVAC SYSTEM: IMPROVING THE PERFORMANCES OF NEURAL NETWORKS Eric FOCK Ile de La RĂ©union - FRANCE ABSTRACT This paper deals with neural networks modelling of HVAC systems of HVAC system can be modelled using manufacturer design data presented as derived performance maps

Boyer, Edmond

187

RF propagation in an HVAC duct system: impulse response characteristics of the channel  

E-Print Network [OSTI]

RF propagation in an HVAC duct system: impulse response characteristics of the channel Pavel V, the heating, ventilation, and air conditioning (HVAC) duct system in buildings is a complex network of hollow at RF and microwave frequencies of com- mon interest. HVAC ducts can be used as a wireless communication

Stancil, Daniel D.

188

VOLUME 16, NUMBER 3 HVAC&R RESEARCH MAY 2010 The Effects of Filtration on  

E-Print Network [OSTI]

VOLUME 16, NUMBER 3 HVAC&R RESEARCH MAY 2010 273 The Effects of Filtration on Pressure Drop and Energy Consumption in Residential HVAC Systems (RP-1299) Brent Stephens Atila Novoselac, PhD Jeffrey A of high-efficiency HVAC filters is a common strategy to control exposure to airborne particulate matter

Siegel, Jeffrey

189

EVALUATION OF EMERGING DIAGNOSTIC TOOLS FOR COMMERCIAL HVAC SYSTEMS Hannah Friedman Mary Ann Piette  

E-Print Network [OSTI]

EVALUATION OF EMERGING DIAGNOSTIC TOOLS FOR COMMERCIAL HVAC SYSTEMS Hannah Friedman Mary Ann Piette for commercial HVAC systems. We present a brief description of the diagnostic tools, and then focus on evaluating, ventilating, and air-conditioning (HVAC) systems (Gregerson, 1997, Claridge et al., 2000). If these energy

190

Multicriteria Genetic Tuning for the Optimization and Control of HVAC Systems  

E-Print Network [OSTI]

Multicriteria Genetic Tuning for the Optimization and Control of HVAC Systems Rafael Alcala1, Jose of genetic algorithms for the optimization and control of Heating, Ventilating and Air Conditioning (HVAC of these systems. An optimum operation of the HVAC systems is a necessary condition for mini- mizing energy

Casillas Barranquero, Jorge

191

Fuzzy Rule Reduction and Tuning of Fuzzy Logic Controllers for a HVAC System  

E-Print Network [OSTI]

Fuzzy Rule Reduction and Tuning of Fuzzy Logic Controllers for a HVAC System R. AlcalÂŽa, J. Alcal, Ventilating and Air Conditioning (HVAC) Systems are equip- ments usually implemented for maintaining satisfactory comfort conditions in build- ings. The design of Fuzzy Logic Controllers (FLCs) for HVAC Systems

Granada, Universidad de

192

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System  

E-Print Network [OSTI]

RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

Whitehouse, Kamin

193

Tile of the document: HVAC system component-based modeling and implementation  

E-Print Network [OSTI]

1 Abstract Tile of the document: HVAC system component-based modeling and implementation Karam the foundation for modeling components that are used in HVAC systems (heating, ventilation, and air conditioning such functionalities. #12;2 HVAC system component-based modeling and implementation By Karam H. Rajab Scholarly

Austin, Mark

194

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris*  

E-Print Network [OSTI]

Comparison of dust from HVAC filters, indoor surfaces, and indoor air Federico Noris* , Kerry A and Environmental Engineering * Corresponding email: Fedenoris@mail.utexas.edu SUMMARY HVAC filters are long heavy metal (Pb, Cd and As) concentrations. HVAC filter microbial concentrations appear to be consistent

Siegel, Jeffrey

195

A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS  

E-Print Network [OSTI]

1 A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS T. I describes a control scheme with fault detection capabilities suitable for application to HVAC systems as a reference of correct operation. Faults that occur in the HVAC system under control cause the PI

196

CHARACTERIZATION OF AIRFLOWS NEAR THE EXIT OF HVAC REGISTERS USING LASER DOPPLER VELOCIMETRY (LDV).  

SciTech Connect (OSTI)

A facility to characterize the airflow at the exit of HVAC registers was designed and fabricated. The objective of this work is to obtain velocity and turbulence data at the exit of registers, which can then be used as an input boundary condition in a modern Computational Fluid Dynamics (CFD) code to predict the velocity and temperature distribution in an enclosure, and also the register performance parameters such as throw. During the course of this work, two commonly used registers were tested. Both registers were 8 inch x 4 inch sidewall registers. Laser Doppler Velocimetry was used to measure the axial and vertical components of the velocity vector at various locations across the face of the registers. For the two cases of registers studied here, the results suggest that the velocity field at the very exit of each of these registers scales with the flow rate through the registers. This means that, in the mode of operation in which the supply fan (of an HVAC system) has a ''High'' and ''Low'' setting, similar velocity scaling would result for the type of registers tested here.

TUTU,N.K.; KRISHNA,C.R.; ANDREWS,J.W.; BUTCHER,T.A.

2003-03-13T23:59:59.000Z

197

Energy-Efficient Building HVAC Control Using Hybrid System LBMPC  

E-Print Network [OSTI]

Improving the energy-efficiency of heating, ventilation, and air-conditioning (HVAC) systems has the potential to realize large economic and societal benefits. This paper concerns the system identification of a hybrid system model of a building-wide HVAC system and its subsequent control using a hybrid system formulation of learning-based model predictive control (LBMPC). Here, the learning refers to model updates to the hybrid system model that incorporate the heating effects due to occupancy, solar effects, outside air temperature (OAT), and equipment, in addition to integrator dynamics inherently present in low-level control. Though we make significant modeling simplifications, our corresponding controller that uses this model is able to experimentally achieve a large reduction in energy usage without any degradations in occupant comfort. It is in this way that we justify the modeling simplifications that we have made. We conclude by presenting results from experiments on our building HVAC testbed, which s...

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

198

Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect (OSTI)

This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

Krstulovich, S.F.

1987-10-31T23:59:59.000Z

199

Interdisciplinary Innovation and Vision in the HVAC  

E-Print Network [OSTI]

High energy costs in buildings are forcing the building owners, developers, fund and facility managers to find alternate energy efficiency methods while improving the indoor air quality and thus the comfort level of the room occupants. High...

Hecker, T.

2008-01-01T23:59:59.000Z

200

Optimizing HVAC Control to Improve Building Comfort and Energy Performance  

E-Print Network [OSTI]

This paper demonstrates the benefits of optimal control in well-designed and operated buildings using a case study. The case study building was built in 2001. The HVAC and control systems have been installed with state-of-the-art equipment which...

Song, L.; Joo, I.; Dong, D.; Liu, M.; Wang, J.; Hansen, K.; Quiroz, L.; Swiatek, A.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Performance Validation and Energy Analysis of HVAC Systems using Simulation  

E-Print Network [OSTI]

that energy savings of between 15% and 40% could be made in commercial buildings by closer monitoring and supervision of energy-usage and related data. An earlier study by Kao and Pierce (1983) showed that sensor1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick

Diamond, Richard

202

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

at Oklahoma State University (http://www.hvac.okstate.edu). The correct citation for the paper is: Spitler, J.D. 2007. Research Planning for the HVAC&R Industry. HVAC&R Research 13(5):681- 682. #12;VOLUME 13, NUMBER 5 HVAC&R RESEARCH SEPTEMBER 2007 681 EDITORIAL Research Planning for the HVAC&R Industry Jeffrey D

203

Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California  

E-Print Network [OSTI]

SPECIFY UNITS) when heat (of HVAC) is turned off?using the heat (from HVAC)? A. B. C. D. January Februaryair conditionmg (from HVAC)? A. B. C. D. January February

Shendell, Derek Garth

2010-01-01T23:59:59.000Z

204

Total Quality Commissioning for HVAC Systems to Assure High Performance Throughout the Whole Life Cycle  

E-Print Network [OSTI]

TOTAL QUALITY COMMISSIONING FOR HVAC SYSTEMS TO ASSURE HIGH PERFORMANCE THROUGHOUT THE WHOLE LIFE CYCLE By: Grahame E. Maisey, P.E., and Beverly Milestone, LEED AP Building Services Consultants INTRODUCTION Current HVAC systems... are not coming close to approaching life cycle performance expectations for energy, operation and maintenance, occupant comfort and productivity and longevity. HVAC systems in buildings claiming to be sustainable, with integrated, energy conscious design...

Maisey, G.; Milestone, B.

2005-01-01T23:59:59.000Z

205

Free-cooling: A total HVAC design concept  

SciTech Connect (OSTI)

This paper discusses a total ''free cooling'' HVAC design concept in which mechanical refrigeration is practically obviated via the refined application of existing technological strategies and a new diffuser terminal. The principles being applied are as follows; Thermal Swing: This is the active contribution of programmed heat storage to overall HVAC system performance. Reverse Diffuser: This is a new air terminal design that facilitates manifesting the thermal storage gains. Developing the thermal storage equation system into a generalized simulation model, optimizing the thermal storage and operating strategies with a computer program and developing related algorithms are subsequently illustrated. Luminair Aspiration: This feature provides for exhausting all luminair heat totally out of the building envelope, via an exhaust duct system and insulated boots. Two/Three-Stage Evaporative Cooling: This concept comprises a system of air conditioning that entails a combination of closed and open loop evaporative cooling with standby refrigeration only.

Janeke, C.E.

1982-01-01T23:59:59.000Z

206

Quantitative Methods for Comparing Different HVAC Control Schemes  

E-Print Network [OSTI]

Experimentally comparing the energy usage and comfort characteristics of different controllers in heating, ventilation, and air-conditioning (HVAC) systems is difficult because variations in weather and occupancy conditions preclude the possibility of establishing equivalent experimental conditions across the order of hours, days, and weeks. This paper is concerned with defining quantitative metrics of energy usage and occupant comfort, which can be computed and compared in a rigorous manner that is capable of determining whether differences between controllers are statistically significant in the presence of such environmental fluctuations. Experimental case studies are presented that compare two alternative controllers (a schedule controller and a hybrid system learning-based model predictive controller) to the default controller in a building-wide HVAC system. Lastly, we discuss how our proposed methodology may also be able to quantify the efficiency of other building automation systems.

Aswani, Anil; Taneja, Jay; Krioukov, Andrew; Culler, David; Tomlin, Claire

2012-01-01T23:59:59.000Z

207

Experimental results of a predictive neural network HVAC controller  

SciTech Connect (OSTI)

Proportional, integral, and derivative (PID) control is widely used in many HVAC control processes and requires constant attention for optimal control. Artificial neural networks offer the potential for improved control of processes through predictive techniques. This paper introduces and shows experimental results of a predictive neural network (PNN) controller applied to an unstable hot water system in an air-handling unit. Actual laboratory testing of the PNN and PID controllers show favorable results for the PNN controller.

Jeannette, E.; Assawamartbunlue, K.; Kreider, J.F. [Univ. of Colorado, Boulder, CO (United States); Curtiss, P.S. [Architectural Energy Corp., Boulder, CO (United States)

1998-12-31T23:59:59.000Z

208

Measuring rates of outdoor airflow into HVAC systems  

SciTech Connect (OSTI)

During the last few years, new technologies have been introduced for measuring the flow rates of outside air into HVAC systems. This document describes one particular technology for measuring these airflows, a system and a related protocol developed to evaluate this and similar measurement technologies under conditions without wind, and the results of our evaluations. We conclude that the measurement technology evaluated can provide a reasonably accurate measurement of OA flow rate over a broad range of flow, without significantly increasing airflow resistance.

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

2002-10-01T23:59:59.000Z

209

Integrated high efficiency blower apparatus for HVAC systems  

DOE Patents [OSTI]

An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

2007-07-24T23:59:59.000Z

210

Using Energy Management Control Systems for HVAC Operational Diagnostics  

E-Print Network [OSTI]

USING ENERGY MANAGEMENT CONTROL SYSTEMS FOR HVAC OPERATIONAL DIAGNOSTICS Karl Stum, P.E. Portland Energy Conservation, Inc. 92 1 SW Washington, Suite 3 12 Portland, OR 97205 503-248-4636 Fax 503-295-0820 ABSTRACT The power and flexibility... Proceedings, June 1997. Meyers, S.; E. Mills; A. Chen; L. Demsetz "Building Data Visualization for Diagnostics," ASHRAE Journal, June 1996. PECl (Portland Energy Conservation, Inc.). Energy Management C0ntrof Systems-A Practical Guiak, 1997. Sparks, R...

Stum, K.

1998-01-01T23:59:59.000Z

211

Research & Development Roadmap: Emerging HVAC Technologies | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelatedEnergy RequestEnergy HVAC

212

LDV HVAC Model Development and Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVAC Model Development and

213

E-Print Network 3.0 - air conditioning hvac Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems play an important role in providing comfort in residential, commercial... of Heating, Refrigerating, and Air-Conditioning Engineers. Batterman S. and Burge H. 1995. "HVAC...

214

Numerical Investigation of Flow Induced Noise in a Simplified HVAC Duct with OpenFOAM.  

E-Print Network [OSTI]

?? Due to the growing demand for comfort, the noise generated by HVAC components should be considered by the designers. Flow induced noise is one… (more)

Wang, Cong

2013-01-01T23:59:59.000Z

215

REDESIGN OF HVAC SYSTEM TO IMPROVE ENERGY EFFICIENCY OF EDUCATIONAL BUILDING.  

E-Print Network [OSTI]

??An energy modeling software was used to analyze the current building configuration and simulations were performed in an attempt to redesign the current HVAC system… (more)

Hagene, Brian Matthew

2012-01-01T23:59:59.000Z

216

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

217

Design and tuning of robust PID controller for HVAC systems  

SciTech Connect (OSTI)

This paper concerns the development of a new design and tuning method for use with robust proportional-plus-integral-plus-derivative (PID) controllers that are commonly used in the heating, ventilating, and air-conditioning (HVAC) fields. The robust PID controller is designed for temperature control of a single-zone environmental space. Although the dynamics of environmental space are described by higher-order transfer functions, most HVAC plants are approximated by first-order lag plus deadtime systems. Its control performance is examined for this commonly approximated controlled plant. Since most HVAC plants are complex with nonlinearity, distributed parameters, and multivariables, a single set of PID gains does not necessarily yield a satisfactory control performance. For this reason, the PID controller must be designed as a robust control system considering model uncertainty caused by changes in characteristics of the plant. The PID gains obtained by solving a two-disk type of mixed sensitivity problem can be modified by contrast to those tuned by the traditional Ziegler-Nichols rule. The results, which are surprisingly simple, are given as linear functions of ratio of deadtime to time constant for robustness. The numerical simulation and the experiments on a commercial-size test plant for air conditioning suggest that the robust PID controller proposed in this paper is effective enough for practical applications.

Kasahara, Masato; Matsuba, Tadahiko; Kuzuu, Yoshiaki; Yamazaki, Takanori; Hashimoto, Yukihiro; Kamimura, Kazuyuki; Kurosu, Shigeru

1999-07-01T23:59:59.000Z

218

Procedures to identify Energy Conservation Opportunities applied to HVAC system: example of VSD of chilled water pumps  

E-Print Network [OSTI]

Procedures to identify Energy Conservation Opportunities applied to HVAC system: example of VSD of HVAC equipment using variable speed drive (VSD) is an Energy Conservation Opportunity (ECO) which can

Paris-Sud XI, Université de

219

Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis of indoor particles  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 535 HVAC filters as "passive" samplers: fate analysis the effectiveness of using HVAC filters as an indoor sampling technique. #12;Proceedings of Healthy Buildings 2009

Siegel, Jeffrey

220

Office of Facilities and Grounds Future Power Distribution Grid Requirements for  

E-Print Network [OSTI]

Electrical Cost Trends FY 2011 vs. FY 2012 UHM Office of Facilities and Grounds 7 $484 FTE Increase 31 and Expense Trends 1Q FY2008 ­ 1Q FY2012 #12;Office of Facilities and Grounds 29 November 2011 © UHM Office of capital investments in HVAC mechanical upgrades and energy retrofits as part of the campus' biennium

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems  

E-Print Network [OSTI]

Proposal for the Award of a Contract for Maintenance, Operation and Minor Installation Work for CERN Cooling and HVAC Systems

1996-01-01T23:59:59.000Z

222

Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method  

E-Print Network [OSTI]

Minimization of energy consumption in HVAC systems with data-driven models and an interior online 13 June 2014 Keywords: HVAC Interior-point method Internal heat gain Multilayer perceptron-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC

Kusiak, Andrew

223

HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence Berkeley National Laboratory, U.S.A.  

E-Print Network [OSTI]

1 HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which

224

1736 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 10, OCTOBER 2003 Impulse Response of the HVAC Duct as a  

E-Print Network [OSTI]

of the HVAC Duct as a Communication Channel Pavel V. Nikitin, Member, IEEE, Daniel D. Stancil, Senior Member (HVAC) ducts in buildings behave as multimode waveguides when excited at radio frequencies and thus, can of a usual indoor propagation channel. In this paper, we describe physical mechanisms which affect the HVAC

Hochberg, Michael

225

7/11/00-draft copy: do not quote 1 of 30 New Technologies for Residential HVAC Ducts  

E-Print Network [OSTI]

7/11/00-draft copy: do not quote 1 of 30 New Technologies for Residential HVAC Ducts Burke Treidler is not evaluated and HVAC contractors overcome duct system shortcomings by installing oversized equipment Technologies for Residential HVAC Ducts fittings with some use of ductboard. Fittings that snap together were

226

Feasibility of Retrofitting Centralized HVAC Systems for Room-Level Zoning Tamim Sookoor, Brian Holben, Kamin Whitehouse  

E-Print Network [OSTI]

Feasibility of Retrofitting Centralized HVAC Systems for Room-Level Zoning Tamim Sookoor, Brian {sookoor,bnh4k,whitehouse}@cs.virginia.edu Abstract--Heating, ventilation, and cooling (HVAC) accounts's largest energy consumers. Many attempts have been made to optimize the control of HVAC systems

Whitehouse, Kamin

227

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 2, FEBRUARY 2005 335 On the Capacity Limits of HVAC Duct Channel for  

E-Print Network [OSTI]

of HVAC Duct Channel for High-Speed Internet Access Ariton E. Xhafa, Member, IEEE, Ozan K. Tonguz, Member and experimental channel-capacity estimates of heating, ventilation, and air condi- tioning (HVAC) ducts based suppressed. Our experimental results also show that even in the case of more complex HVAC duct networks (i

Stancil, Daniel D.

228

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network [OSTI]

EnergyPlus, Trend Data Introduction The performance of HVACthe commissioning of HVAC systems. Analyzing trend data is aHVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend

Wang, Liping

2014-01-01T23:59:59.000Z

229

Fouling of HVAC Fin and Tube Heat Exchangers Jeffrey Siegel and Van P. Carey  

E-Print Network [OSTI]

Fouling of heat exchangers used in heating, ventilating, and air conditioning (HVAC) systems is important contributor to overall energy use and peak electric demand. Furthermore, the location of heat exchangers in HVAC systems means that if bioaerosols containing bacteria, fungi, and viruses deposit on heat

230

Review of Pre- and Post-1980 Buildings in CBECS - HVAC Equipment  

SciTech Connect (OSTI)

PNNL was tasked by DOE to look at HVAC systems and equipment for Benchmark buildings based on 2003 CBECS data. This white paper summarizes the results of PNNL’s analysis of 2003 CBECS data and provides PNNL’s recommendations for HVAC systems and equipment for use in the Benchmark buildings.

Winiarski, David W.; Jiang, Wei; Halverson, Mark A.

2006-12-01T23:59:59.000Z

231

Application of Multizone HVAC Control Using Wireless Sensor Networks and Actuating Vent Registers  

E-Print Network [OSTI]

Most residential heating, ventilating, and air conditioning (HVAC) systems are designed to treat the home as a single zone. Single zone control consists of one thermostat, in a central area of the house that controls the HVAC operation. In a single...

Watts, W.; Koplow, M.; Redfern, A.; Wright, P.

2007-01-01T23:59:59.000Z

232

MODELING PARTICLE DEPOSITION ON HVAC HEAT JA Siegel1,3*  

E-Print Network [OSTI]

. Of Mechanical Engineering, University of California, Berkeley, CA, USA 2 Dept. Of Civil and Environmental degradation for heating, ventilating, and air conditioning (HVAC) systems. Particulate fouling of indoor fin: JASiegel@lbl.gov Proceedings: Indoor Air 2002 521 #12;HEAT EXCHANGER DESCRIPTION The HVAC heat exchangers

Siegel, Jeffrey

233

Integrated Commissioning for a Large Medical Facility  

E-Print Network [OSTI]

Integrated Commissioning for A Large Medical Facility Yeqiao Zhu, Ph.D. Project Manager Texas A&M University Mingsheng Liu, Ph.D. Tommy Batten John Zhou, Ph.D. Associate Professor Researcher Control Engineer University of Nabraska Texas A... Commissioning (CC) can still reduce the energy consumption further and also can improve the building comfort level [Zhu, et al., 1997; Liu, et al., 1998; Claridge, et al., 1996; Haasl and Edmunds, 1997; Lawson, 19971. For the large medical center, the HVAC...

Zhu, Y.; Batten, T.; Turner, W. D.; Claridge, D. E.; Giebler, T.; Liu, M.; Zhou, J.; Cameron, C.; Keeble, B.; Hirchak, R.

2000-01-01T23:59:59.000Z

234

Thermal Modeling for a HVAC Controlled Real-life Yong Fu1, Mo Sha1, Chengjie Wu1, Andrew Kutta1, Anna Leavey2, Chenyang Lu1,  

E-Print Network [OSTI]

Thermal Modeling for a HVAC Controlled Real-life Auditorium Yong Fu1, Mo Sha1, Chengjie Wu1, Andrew consumption in build- ings is heating, ventilation, and air conditioning (HVAC). For an HVAC system to provide, especially in large open spaces. To optimize HVAC control, it is important to establish accurate dynamic

Lu, Chenyang

235

PV modules, with a life measured in decades, will typically be in place longer than the outdoor unit of a HVAC system.  

E-Print Network [OSTI]

unit of a HVAC system. When the performance of an HVAC system deteriorates, it is usually inspected remain installed on the roof even after the system is no longer being used. Although HVAC units have only jumpers and screws effectively bond all parts of the listed device together. HVAC components are typically

Johnson, Eric E.

236

Fouling of HVAC fin and tube heat exchangers  

SciTech Connect (OSTI)

Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

Siegel, Jeffrey; Carey, Van P.

2001-07-01T23:59:59.000Z

237

Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors  

SciTech Connect (OSTI)

This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

Burdick, A.

2011-10-01T23:59:59.000Z

238

Regulation study for the facility control system design at the Facility Operations Center at TA55  

SciTech Connect (OSTI)

NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

NONE

1994-03-16T23:59:59.000Z

239

Structure Design and Indirect Adaptive General Predictive Temperature Control of a Class of Passive HVAC  

E-Print Network [OSTI]

HVAC TAWEGOUM Rousseau Unité Propre EPHor (Environnement Physique de la plante Horticole) Institut, moisture) is a dominating factor, on the one hand to deal with the market quantitative and qualitative

Paris-Sud XI, Université de

240

CO 2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems  

E-Print Network [OSTI]

CO 2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO 2-based DCV under ASHRAE 62.1.2004 through 2010...

Nassif, N.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

What are the Best HVAC Solutions for Low-Load, High Performance Homes?"  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question What are the best HVAC solutions for low-load, high performance homes?"

242

Analysis of the HVAC System at the Willow Branch Intermediate School  

E-Print Network [OSTI]

This report presents an analysis of the HVAC system at the Willow Branch Intermediate School for the MEEN 685 class project. The school is located at College Station, Texas. A portion of the school belonged to Oakwood Intermediate School which...

Wei, G.

1997-01-01T23:59:59.000Z

243

Application of Various HVAC Simulation Programs and Visual Tools to Commissioning  

E-Print Network [OSTI]

Various existing HVAC system simulation programs and visualization tools are considered to be potentially powerful tools for commissioning. Although not originally developed as commissioning tools, these programs facilitate the confirmation...

Zheng, M.; Pan, S.

2007-01-01T23:59:59.000Z

244

Computational Study on Thermal Properties of HVAC System with Building Structure Thermal Storage  

E-Print Network [OSTI]

Building structure thermal storage (BSTS) HVAC systems can store heat during nighttime thermal storage operation (nighttime operation hours) by using off-peak electricity and release it in the daytime air-conditioning operation (daytime operation...

Sato, Y.; Sagara, N.; Ryu, Y.; Maehara, K.; Nagai, T.

2007-01-01T23:59:59.000Z

245

UNIT NUMBER: C-304 Buildina/HVAC Picina Svstem- Soil Backfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

63 UNIT NUMBER: C-304 BuildinaHVAC Picina Svstem- Soil Backfill UNIT NAME: REGULATORY STATUS: AOC .OCATION: Adjacent to C-304 building APPROXIMATE DIMENSIONS: 100 feet wide by 200...

246

Requirements for Commissioning HVAC Systems Using BEMS and Commissioning the BEMS Itself Based on Questionnaire Surveys  

E-Print Network [OSTI]

In this paper the present status and requirements for commissioning of HVAC Systems using Building Energy Management Systems (BEMS) and commissioning the BEMS itself are investigated and summarized. The information presented is based on the results...

Yoshida, H.; Vaezi-Nejad, H.; Choiniere, D.; Wang, F.

2004-01-01T23:59:59.000Z

247

Development of HVAC System Performance Criteria Using Factorial Design and DOE-2 Simulation  

E-Print Network [OSTI]

A new approach is described for the development of Heating, Ventilating, and Air-conditioning (HVAC) System Performance Criteria for the Texas Building Energy Design Standard. This approach integrates a design of experimental methodology and DOE-2...

Hou, D.; Jones, J. W.; Hunn, B. D.; Banks, J. A.

1996-01-01T23:59:59.000Z

248

A Qualitive Modeling Approach for Fault Detection and Diagnosis on HVAC Systems  

E-Print Network [OSTI]

This paper describes the basics and first test results of a model based approach using qualitative modeling to perform Fault Detection and Diagnostics (FDD) on HVAC and R systems. A quantized system describing the qualitative behavior of a...

Muller, T.; Rehault, N.; Rist, T.

2013-01-01T23:59:59.000Z

249

Joint-Frequency Bins versus Conventional Bin Weather Data in Analysis of HVAC System Operation  

E-Print Network [OSTI]

this study the use of joint-frequency bins has relative added value to the analysis of HVAC system operation depending on whether the system is dominated by ventilation loads....

Jones, A.; Baltazar, J. C.; Claridge, D. E.

250

Energy Master Plans for Sustainable, High Performance HVAC and Associated Systems for Hot and Humid Climates  

E-Print Network [OSTI]

ENERGY MASTER PLANS for SUSTAINABLE, HIGH PERFORMANCE HVAC & ASSOCIATED SYSTEMS for HOT AND HUMID CLIMATES Grahame E. Maisey, P.E. Beverly Milestone Chief Engineer President GEMCO Energy Master Planners GEMCO Energy... net zero energy, high performance productivity and long-life systems for minimal material use. This is achieved by a number of small, easy steps and at a rate and schedule determined by the owner. Projects will eventually reduce HVAC...

Maisey, G. E.; Milestone, B.

2004-01-01T23:59:59.000Z

251

Airborne Particulate Matter in HVAC Systems and its Influence on Indoor Air Quality  

E-Print Network [OSTI]

], microorganisms [2], in the case of abnormal maintenance. Because there are all kinds of components in the duct systems, tapping the law of particle distribution in HVAC systems is not an easy work. Generally speaking, flow in the duct system... is turbulent except those in some kind of components like filters. Particle movement, especially particle deposition, is strongly related to organized structures in near-wall turbulence [3]. The mechanisms governing particle transport in HVAC systems...

Fu, Z.; Li, N.; Wang, H.

2006-01-01T23:59:59.000Z

252

An Evaluation of the HVAC Load Potential for Providing Load Balancing Service  

SciTech Connect (OSTI)

This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

Lu, Ning

2012-09-30T23:59:59.000Z

253

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

SciTech Connect (OSTI)

This case study focusing on a residence in northern California was undertaken as a demonstration of the potential of a systems approach to HVAC retrofits. The systems approach means that other retrofits that can affect the HVAC system are also considered. For example, added building envelope insulation reduces building loads so that smaller capacity HVAC system can be used. Secondly, we wanted to examine the practical issues and interactions with contractors and code officials required to accomplish the systems approach because it represents a departure from current practice. We identified problems in the processes of communication and installation of the retrofit that led to compromises in the final energy efficiency of the HVAC system. These issues must be overcome in order for HVAC retrofits to deliver the increased performance that they promise. The experience gained in this case study was used to optimize best practices guidelines for contractors (Walker 2003) that include building diagnostics and checklists as tools to assist in ensuring the energy efficiency of ''house as a system'' HVAC retrofits. The best practices guidelines proved to be an excellent tool for evaluating the eight existing homes in this study, and we received positive feedback from many potential users who reviewed and used them. In addition, we were able to substantially improve the energy efficiency of the retrofitted case study house by adding envelope insulation, a more efficient furnace and air conditioner, an economizer and by reducing duct leakage.

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-09-01T23:59:59.000Z

254

Optimized Fan Control In Variable Air Volume HVAC Systems Using Static Pressure Resets: Strategy Selection and Savings Analysis.  

E-Print Network [OSTI]

??The potential of static pressure reset (SPR) control to save fan energy in variable air volume HVAC systems has been well documented. Current research has… (more)

Kimla, John

2010-01-01T23:59:59.000Z

255

A plug and play framework for an HVAC air handling unit and temperature sensor auto recognition technique.  

E-Print Network [OSTI]

??A plug and play framework for an HVAC air handling unit control system is proposed in this study. This is the foundation and the first… (more)

Zhou, Xiaohui

2010-01-01T23:59:59.000Z

256

Economic Comparison of HVAC and HVDCSolutions for Large Offshore Wind Farms underSpecial Consideration of Reliability.  

E-Print Network [OSTI]

?? An economic comparison of several HVAC-HVDC transmission systems from large offshore windfarms is presented. The power output from the offshore windfarm is modeled by… (more)

Lazaridis, Lazaros

2005-01-01T23:59:59.000Z

257

Demand Response-Enabled Model Predictive HVAC Load Control in Buildings using Real-Time Electricity Pricing.  

E-Print Network [OSTI]

??A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy… (more)

Avci, Mesut

2013-01-01T23:59:59.000Z

258

System dynamics based models for selecting HVAC systems for office buildings: a life cycle assessment from carbon emissions perspective.  

E-Print Network [OSTI]

??This study aims to explore the life cycle environmental impacts of typical heating ventilation and air condition (HVAC) systems including variable air volume (VAV) system,… (more)

Chen, S

2011-01-01T23:59:59.000Z

259

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Administration. April. EPRI. 1982. Residential End-UseInstitute. EA-2512. July. EPRI. 1990. REEPS 2.0 HVAC ModelInstitute. October 11. EPRI, Electric Power Research

Johnson, F.X.

2010-01-01T23:59:59.000Z

260

Outdoor airflow into HVAC systems: An evaluation of measurement technologies  

SciTech Connect (OSTI)

During the last few years, new technologies have been introduced for measuring the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for controlled evaluation of these measurement technologies. The results of tests of three measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The test results indicate that one measurement technology can measure OA flow rates with errors of 20% or less without a field-based calibration, as long as the OA velocities are sufficient to provide an accurately measurable pressure signal. The test results for a second measurement technology are similar; however, a difficult field-based calibration relating the OA flow rate with the pressure signal would be required to reduce errors below approximately 30%. The errors in OA flow rates measured with the third measurement technology, that uses six electronic airspeed sensors downstream of the OA inlet louver, exceeded 100%; however, these errors could be substantially reduced through a difficult field based calibration. The effects of wind on the accuracy of these measurement technologies still needs to be evaluated.

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compression effects on pressure loss in flexible HVAC ducts  

SciTech Connect (OSTI)

A study was conducted to evaluate the effect of compression on pressure drop in flexible, spiral wire helix core ducts used in residential and light commercial applications. Ducts of 6 inches, 8 inches and 10 inches (150, 200 and 250 mm) nominal diameters were tested under different compression configurations following ASHRAE Standard 120-1999--Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings. The results showed that the available published references tend to underestimate the effects of compression. The study demonstrated that moderate compression in flexible ducts, typical of that often seen in field installations, could increase the pressure drop by a factor of four, while further compression could increase the pressure drop by factors close to ten. The results proved that the pressure drop correction factor for compressed ducts cannot be independent of the duct size, as suggested by ASHRAE Fundamentals, and therefore a new relationship was developed for better quantification of the pressure drop in flexible ducts. This study also suggests potential improvements to ASHRAE Standard 120-1999 and provides new data for duct design.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

262

Evaluation of flow capture techniques for measuring HVAC grilleairflows  

SciTech Connect (OSTI)

This paper discusses the accuracy of commercially available flow hoods for residential applications. Results of laboratory and field tests indicate these hoods can be inadequate to measure airflows in residential systems, and there can be large measurement discrepancies between different flow hoods. The errors are due to poor calibrations, sensitivity of the hoods to grille airflow non-uniformities, and flow changes from added flow resistance. It is possible to obtain reasonable results using some flow hoods if the field tests are carefully done, the grilles are appropriate, and grille location does not restrict flow hood placement. We also evaluated several simple flow capture techniques for measuring grille airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics. These simple techniques can be as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, agencies such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow capture techniques.

Walker, Iain S.; Wray, Craig P.

2002-11-01T23:59:59.000Z

263

Deposition of biological aerosols on HVAC heat exchangers  

SciTech Connect (OSTI)

Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

Siegel, Jeffrey; Walker, Ian

2001-09-01T23:59:59.000Z

264

A Distributed Facilities Automation System For IBM Buildings  

E-Print Network [OSTI]

to the host would be via an IBM-supplied local communications network protocol. Remote appli cations would include process control, security, energy manage ment, facilities automation or any other automation application. The remote systems... of these areas which are affected are: - HVAC - Chemical Processes Control - Utilities Generation - Tank Farm Monitoring Resource Management - Solvent Supply and Recovery Systems - DI Water Distribution - Sewage and Waste Treatment Plant Control...

Houle, W. D. Sr.

265

Physical Sciences Facility Air Emission Control Equivalency Evaluation  

SciTech Connect (OSTI)

This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

Brown, David M.; Belew, Shan T.

2008-10-17T23:59:59.000Z

266

High-Speed Internet Access via HVAC Ducts: A New Approach Daniel D. Stancil, Ozan K. Tonguz, Ariton Xhafa, Ahmet Cepni, and Pavel Nikitin  

E-Print Network [OSTI]

High-Speed Internet Access via HVAC Ducts: A New Approach Daniel D. Stancil, Ozan K. Tonguz, Ariton conditioning (HVAC) ducts for indoor wireless transmission systems and networks. Mea- surements and system to 100 Mbps should be possible, when HVAC system is used in con- junction with OFDM technology. Keywords

Stancil, Daniel D.

267

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

at Oklahoma State University (www.hvac.okstate.edu) The correct citation for the paper is: Rees, S.J., J cooling loads is of critical concern to designers of HVAC systems. The work reported here has been carried of the HVAC industry worldwide would be improved if common methods of performing key design calculations were

Ghajar, Afshin J.

268

Cooperative Control of Air Flow for HVAC Systems Shuai Liu1,2, Yushen Long1, Lihua Xie1 and Alexandre M. Bayen3  

E-Print Network [OSTI]

Cooperative Control of Air Flow for HVAC Systems Shuai Liu1,2, Yushen Long1, Lihua Xie1 for building heating, ven- tilation and air-conditioning (HVAC) systems. The strategy consists in two level and the HVAC system parameters. I. INTRODUCTION In recent years, energy saving and environment protection have

269

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 5, MAY 2003 945 Propagation Model for the HVAC Duct as a  

E-Print Network [OSTI]

for the HVAC Duct as a Communication Channel Pavel V. Nikitin, Member, IEEE, Daniel D. Stancil, Senior Member (HVAC) ducts in buildings are typically hollow metal pipes which can be used as waveguides to carry such a communication system. This paper presents a propagation model for a straight HVAC duct terminated at both ends

Stancil, Daniel D.

270

A Simple Path Loss Prediction Model for HVAC Systems O. K. Tonguz, D. D. Stancil, A. E. Xhafa, A. G. Cepni, P. V. Nikitin  

E-Print Network [OSTI]

1 A Simple Path Loss Prediction Model for HVAC Systems O. K. Tonguz, D. D. Stancil, A. E. Xhafa, A, and air conditioning (HVAC) cylindrical ducts in 2.4-2.5 GHz frequency band. The model we propose predicts the average power loss between a transmitter-receiver pair in an HVAC duct network. This prediction model

Stancil, Daniel D.

271

The Effect of Optimal Tuning of the Heating/Cooling Curve in AHU of HVAC System in Real Practice  

E-Print Network [OSTI]

be ordered by ISSO. http://www.isso.nl/ Elkhuizen P.A. , Peitsman H.C., ? A new design guideline for the heating and cooling curve in AHU of HVAC systems (a method for the optimal adjustment of AHU in HVAC systems) ?, A40-E-M4-NL-TNO-1, IEA Annex 40...

2004-01-01T23:59:59.000Z

272

Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners  

SciTech Connect (OSTI)

This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

2011-08-29T23:59:59.000Z

273

Application of black-box models to HVAC systems for fault detection  

SciTech Connect (OSTI)

This paper describes the application of black-box models for fault detection and diagnosis (FDD) in heating, ventilating, and air-conditioning (HVAC) systems. In this study, multiple-input/single-output (MISO) ARX models and artificial neural network (ANN) models are used. The ARX models are examined for different processes and subprocesses and compared with each other. Two types of models are established--system models and component models. In the case of system models, the HVAC system as a whole is regarded as a black box instead of as a collection of component models. With the component model type, the components of the HVAC system are regarded as separate black boxes.

Peitsman, H.C. [TNO Building and Construction Research, Delft (Netherlands). Dept. of Indoor Environment, Building Physics and Systems; Bakker, V.E. [Univ. of Twente, Enschede (Netherlands). Dept. of Computer Science

1996-11-01T23:59:59.000Z

274

Conventional Facilities Chapter 6: HVAC Systems 6-1 NSLS-II Preliminary Design Report  

E-Print Network [OSTI]

American Society for Testing Materials Standards American Society of Heating, Refrigeration, and Air Except Low-Rise Residential Buildings American Water Works Association ANSI/ASHRAE Standard 62 supply units, and miscellaneous cooling equipment. Since the chilled water pumps at the central plant

Ohta, Shigemi

275

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network [OSTI]

and incorporated into HVAC design for medium-to-large buildings, it is possible to structure system arrangements that reduce energy operating costs very significantly compared to conventional all-air VAV systems and also to all-air VAV ice thermal storage systems...

Meckler, G.

1989-01-01T23:59:59.000Z

276

Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions  

E-Print Network [OSTI]

An energy analysis was performed on the Texas A & M University at Qatar building in Doha, Qatar. The building and its HVAC systems were modeled using EnergyPlus. Building chilled water and electrical data were collected to validate the computer...

Bible, Mitchell

2011-10-21T23:59:59.000Z

277

VOL. 6, NO. 1 HVAC&R RESEARCH JANUARY 2000 Qualitative Comparison of North American and  

E-Print Network [OSTI]

Calculation of design cooling and heating loads is an essential task in the design of HVAC systems and has societies publish methods for calculating design cooling and heating load calculations in their handbooks.K. Cooling Load Calculation Methods Simon J. Rees, Ph.D Jeffrey D. Spitler, Ph.D., P.E. Member ASHRAE Member

278

VOLUME 11, NUMBER 2 HVAC&R RESEARCH APRIL 2005 An Optimization-Based Approach for  

E-Print Network [OSTI]

of energy consumption, and human comfort requirements. This paper presents a daily energy management in view of rising energy costs, the government mandate on reduction of energy consumption (Capehart et al requirements. A major portion of energy consumption of a building comes from HVAC units. For example

Luh, Peter

279

Residential commissioning to assess envelope and HVAC system performance  

SciTech Connect (OSTI)

Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non-energy benefits associated with improving the performance of a component, it must also indicate how individual components interact in the complete building system. For this paper, we limit our discussion to diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. The remainder of this paper first describes what residential commissioning is, its characteristic elements, and how one might structure its process. Subsequent sections describe a consolidated set of practical diagnostics that the building industry can use now. Where possible, we also discuss the accuracy and usability of these diagnostics, based on recent laboratory work and field studies. We conclude by describing areas in need of research and development, such as practical field diagnostics for envelope thermal conductance and combustion safety. There are several potential benefits for builders, consumers, code officials, utilities, and energy planners of commissioning houses using a consistent set of validated methods. Builders and/or commissioning agents will be able to optimize system performance and reduce consumer costs associated with building energy use. Consumers will be more likely to get what they paid for and builders can show they delivered what was expected. Code officials will be better able to enforce existing and future energy codes. As energy reduction measures are more effectively incorporated into the housing stock, utilities and energy planners will benefit through greater confidence in predicting demand and greater assurance that demand reductions will actually occur. Performance improvements will also reduce emissions from electricity generating plants and residential combustion equipment. Research to characterize these benefits is underway.

Wray, Craig P.; Sherman, Max H.

2001-08-31T23:59:59.000Z

280

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Detection and diagnosis of faults and energy monitoring of HVAC systems with least-intrusive power analysis  

E-Print Network [OSTI]

Faults indicate degradation or sudden failure of equipment in a system. Widely existing in heating, ventilating, and air conditioning (HVAC) systems, faults always lead to inefficient energy consumption, undesirable indoor ...

Luo, Dong, 1966-

2001-01-01T23:59:59.000Z

282

Integrated Ice Storage/Sprinkler HVAC System Sharply Cuts Energy Costs and Air-Distribution First Costs  

E-Print Network [OSTI]

Integrated ice thermal storage/sprinkler HVAC systems developed and applied by the author in several commercial applications shift a major portion of electric utility demand to cheaper off-peak hours, while also reducing significantly the first cost...

Meckler, G.

1986-01-01T23:59:59.000Z

283

Proceedings of Healthy Buildings 2009 Paper 680 Do forced air HVAC systems have a role in healthy homes?  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 680 Do forced air HVAC systems have a role in healthy-extreme weather conditions. #12;Proceedings of Healthy Buildings 2009 Paper 680 Thus, a central forced air

Siegel, Jeffrey

284

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air-Conditioner Energy Consumption in  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air efficiency filters (Points A, B, and C, respectively). #12;Proceedings of Healthy Buildings 2009 Paper 474

Siegel, Jeffrey

285

Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers  

SciTech Connect (OSTI)

This paper compares HVAC simulations between EnergyPlus and DOE-2.2 for data centers. The HVAC systems studied in the paper are packaged direct expansion air-cooled single zone systems with and without air economizer. Four climate zones are chosen for the study - San Francisco, Miami, Chicago, and Phoenix. EnergyPlus version 2.1 and DOE-2.2 version 45 are used in the annual energy simulations. The annual cooling electric consumption calculated by EnergyPlus and DOE-2.2 are reasonablely matched within a range of -0.4percent to 8.6percent. The paper also discusses sources of differences beween EnergyPlus and DOE-2.2 runs including cooling coil algorithm, performance curves, and important energy model inputs.

Hong, Tianzhen; Sartor, Dale; Mathew, Paul; Yazdanian, Mehry

2008-08-13T23:59:59.000Z

286

Energy Conservation Experiences with HVAC Systems in the High Humidity Climate, A Case History  

E-Print Network [OSTI]

ENERGY CONSERVATION EXPERIENCES VITH HVAC SYSTEMS IN THE HIGH HUMIDITY CLIMATE. A CASE HISTORY Tom R. Todd Principa 1 Engineering Sciences, Inc. Memphis, Tennessee 38112 The purpose of this paper is to discuss sev- era 1 commonly encountered.... Condensation during normal sys tern opere- tion. It was frequently found that moisture in the room air would condense on cold surfaces around supply air diffusers during normal opera- tion of the system. Direct evidence of this was simply the presence...

Todd, T. R.

1985-01-01T23:59:59.000Z

287

Comparative guide to emerging diagnostic tools for large commercial HVAC systems  

SciTech Connect (OSTI)

This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

Friedman, Hannah; Piette, Mary Ann

2001-05-01T23:59:59.000Z

288

Post-Retrocommissioning HVAC Operations Monitoring Using Enterprise-Wide energy Management System  

E-Print Network [OSTI]

Post-retrocommissioning HVAC Operations Monitoring Using Enterprise-wide Energy Management System Narendra Amarnani Project Manager Brian Roberts Section Manager County of Los Angeles – ISD Los Angeles, California, USA Howard Choy... earned a graduate degree from Cal Poly University, Pomona. He is a Certified Energy Manager, a LEEDź AP, and a Certified Energy Plan Examiner. Brian’s is the Section Manager of the Systems Section within Energy Management Division. His...

Amarnani, N.; Roberts, B.; Choy, H.

2007-01-01T23:59:59.000Z

289

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

290

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

291

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of Heating, Ventilation and Air-Conditioning (HVAC) systems for the PS accelerator infrastructure

2012-01-01T23:59:59.000Z

292

Proposal to negotiate an amendment to an existing contract for the supply and installation of an HVAC system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal to negotiate an amendment to an existing contract for the supply and installation of an HVAC system for the HIE-ISOLDE infrastructure

2014-01-01T23:59:59.000Z

293

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel  

E-Print Network [OSTI]

Proposal for the award of a contract for dismantling, removal and packaging of the existing Heating, Ventilation and Air-Conditioning (HVAC) systems in the PS tunnel

2012-01-01T23:59:59.000Z

294

Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities  

E-Print Network [OSTI]

, W.K., "Fundamental Concepts Integrating Evaporative Techniques in HVAC Systems," ASHRAE TRANSACTIONS, V. 96, Pt. 1, 1990. 3. McDonald, G.W., M.H. Turietta and R.E. Foster, "Modeling Evaporative Cooling Systems with DOE- 2. ID," ASHRAE...USE OF DOE-2 TO EVALUATE EVAPORATIVE COOLING IN TEXAS CORRECTIONAL FACILITIES Namir Saman, Ph.D., P.E. Tarek Bou-Saada Tia Heneghan Visiting Assistant Professor Research Associate Energy Manager Energy Systems Laboratory Energy Systems...

Saman, N.; Heneghan, T.; Bou-Saada, T. E.

1996-01-01T23:59:59.000Z

295

Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study  

SciTech Connect (OSTI)

This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

Krstulovich, S.F.

1986-11-12T23:59:59.000Z

296

IMPLEMENTATION OF A HYBRID CONTROLLER FOR CRITICAL BUILDING HVAC SYSTEMS  

SciTech Connect (OSTI)

Many industrial facilities utilize pressure control gradients to prevent migration of hazardous species from containment areas to occupied zones, often using Proportional-Integral-Derivative (PID) control systems. When operators rebalance the plant, variation from the desired gradients can occur and the operating conditions can change enough that the PID parameters are no longer adequate to maintain a stable system. As the goal of the ventilation control system is to optimize the pressure gradients and associated flows for the plant, Linear Quadratic Tracking (LQT) is a method that provides a time-based approach to guiding plant interactions. However, LQT methods are susceptible to modeling and measurement errors, and therefore the additional use of soft computing methods is proposed for implementation to account for these errors and nonlinearities. The performance of the resulting hybrid controller is demonstrated through simulation and experimental testing as compared to a representative PID controller.

Craig Rieger

2008-11-01T23:59:59.000Z

297

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

298

Validation of a Building Simulation Tool Using Field Data for Three Identical Configuration Full-Serve Restaurants Using Different HVAC Systems  

E-Print Network [OSTI]

A new building application for a pre-existing HVAC software tool which calculates the benefits of desiccant-assisted HVAC equipment versus the performance of a standard vapor-compression system is used to model the monitored results, see Yborra...

Brillhart, P. L.; Worek, W. M.

2000-01-01T23:59:59.000Z

299

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

such a system is determining the required heat flux. Current guidance in the ASHRAE HVAC Applications Handbook of the hydronic snow melting system. Current guidance in the ASHRAE HVAC Applications Handbook (1) for required-of-snowfall-hours-not-exceeded of 75%, 90%, 95%, 98%, 99% and 100%. This approach is limited by the fact that real systems are almost

300

HVAC systems in the current stock of U. S. K-12 schools. Final report, May 91-Mar 92  

SciTech Connect (OSTI)

The report summarizes information on heating, ventilating, and air-conditioning (HVAC) systems commonly found in U.S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize and ventilate classroom spaces, how they operate, and how they are controlled. Some information is given to compare systems from the standpoint of energy use, cost, and their ability to maintain stable levels of static pressure in classrooms and/or to adequately ventilate the spaces. There do not appear to be any well defined trends in types of HVAC systems involved in current school building construction and modification. Systems looked at include those using reheat and/or mixing, unit ventilators (UVs), and two-fan, dual-duct variable air volume (VAV) systems.

Parker, J.D.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings  

SciTech Connect (OSTI)

It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

2002-06-01T23:59:59.000Z

302

R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment  

SciTech Connect (OSTI)

The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

Chiu, S.A.; Zaloudek, F.R.

1987-03-01T23:59:59.000Z

303

HVAC Right-Sizing Part 1: Calculating Loads | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann GeorgeLogging Systems2008Gulf Coast'sFormHOWHQHVAC DesignHVAC

304

Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese WebThese case studiesEnergyHVAC | Department

305

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

306

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

307

HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet)  

SciTech Connect (OSTI)

BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

Not Available

2014-03-01T23:59:59.000Z

308

COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS  

SciTech Connect (OSTI)

Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

2004-10-31T23:59:59.000Z

309

Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study  

SciTech Connect (OSTI)

It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions.

Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

2001-10-11T23:59:59.000Z

310

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

311

General Methodology Combining Engineering Optimization of Primary HVAC & R Plants with Decision Analysis Methods--Part I: Deterministic Analysis  

SciTech Connect (OSTI)

This paper is the first of a two-part sequence that proposes a general methodology for dynamic scheduling and optimal control of complex primary HVAC&R plants, which combines engineering analyses within a practical decision analysis framework by modeling risk attitudes of the operator. The paper was based on work done prior to employment by Battelle.

Jiang, Wei; Reddy, T. A.

2007-01-31T23:59:59.000Z

312

ETME 422 -REFRIGERATION & HVAC SYSTEMS FALL 2011 LEC -10:00 -10:50am M W F RH 312  

E-Print Network [OSTI]

-1209(h) Office Hours: M-F 1-2p.m. Text: Heating, Ventilating, and Air Conditioning - Analysis and Design. -- Refrigeration and heating, ventilating and air-conditioning (HVAC) for comfort and industrial applications of the fundamentals of Heating, Ventilating, Air Conditioning, and Refrigeration as they relate to human comfort

Dyer, Bill

313

Proper Setup of HVAC System in Conjunction with Sound Building 'Skin' Design for Alleviation of IAQ and Energy Performance Problems  

E-Print Network [OSTI]

climates, not only because of the loss of energy, but also because of damage that can result to insulation, drywall, and structure in addition to promotion of mold and mildew growth. Proper setup of the HVAC system, in conjunction with sound building “skin...

Rosenberg, M.

2006-01-01T23:59:59.000Z

314

Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems  

SciTech Connect (OSTI)

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01T23:59:59.000Z

315

Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials  

SciTech Connect (OSTI)

Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were coated with an impaction oil showed significantly higher formaldehyde emissions than most other samples. Those emissions were magnified in the presence of particles (i.e., in used filters), and were observed even in the absence of ozone, which suggests that hydrolysis of filter binder or tackifier additives may be the reason for those high emissions. Mass balance calculations indicate that the emission rates of formaldehyde and acetaldehyde from the filters are generally not large enough to substantially increase indoor formaldehyde or acetaldehyde concentrations.

Destaillats, Hugo; Fisk, William J.

2010-02-01T23:59:59.000Z

316

HVAC Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting wasEngineering andHQHSI

317

Laboratory measurement of secondary pollutant yields from ozone reaction with HVAC filters.  

SciTech Connect (OSTI)

We used Proton Transfer Reaction - Mass Spectrometry (PTR-MS) and conventional sampling methods to monitor and identify trace level organic pollutants formed in heterogeneous reactions between ozone and HVAC filters in real time. Experiments were carried out using a bench-scale flow tube reactor operating with dry air and humidified air (50% RH), at realistically high ozone concentrations (150 ppbv). We explored different filter media (i.e., fiberglass and cotton/polyester blends) and different particle loadings (i.e., clean filter and filters loaded with particles for 3 months at the Lawrence Berkeley National Laboratory and the Port of Oakland, CA). Detailed emission dynamics of very low levels of certain organic pollutants from filter media upon ozone exposure in the presence of moisture have been obtained and analyzed.

Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Zhang, Jianshun (Jensen); Fisk, William J.

2009-09-09T23:59:59.000Z

318

General Methodology Combining Engineering Optimization of Primary HVAC and R Plants with Decision Analysis Methods--Part II: Uncertainty and Decision Analysis  

SciTech Connect (OSTI)

A companion paper to Jiang and Reddy that presents a general and computationally efficient methodology for dyanmic scheduling and optimal control of complex primary HVAC&R plants using a deterministic engineering optimization approach.

Jiang, Wei; Reddy, T. A.; Gurian, Patrick

2007-01-31T23:59:59.000Z

319

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network [OSTI]

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control...

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

320

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report  

SciTech Connect (OSTI)

A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

None

1980-09-01T23:59:59.000Z

322

facilities to develop innovative technologies in partnership  

E-Print Network [OSTI]

chambers that can aid in developing improved heating, ventilation and air-conditioning (HVAC) systems . . . . . . . . . . . . . . . . . . .2 Guides needed for Oak Ridge Public Tour . . . . . . . . . . .2 HFIR named Nuclear

323

Hvac systems as a tool in controlling indoor air quality: A literature review. Final report, May-August 1993  

SciTech Connect (OSTI)

The report gives results of a review of literature on the use of heating, ventilation, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). One conclusion of the review is that HVAC systems very often contribute to the indoor air pollution because of (1) poor system maintenance, (2) overcrowding or the introduction of new pollution-generating sources with buildings, and (3) the location of outdoor air near ambient pollution sources. Another conclusion is that failure to trade off between energy conservation and employee productivity may result in increased IAQ problems. The report contents are based on literature survey covering the years 1988 through 1993, involving 60 references, 32 of which are cited in the report.

Samfield, M.M.

1995-12-01T23:59:59.000Z

324

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

325

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

326

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

327

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

328

Use of EMCS Recorded Data to Identify Potential Savings Due to Improved HVAC Operations & Maintenance (O&M)  

E-Print Network [OSTI]

Use of EMCS Recorded Data to Identify Potential Savings Due to Improved HVAC Operations & Maintenance(O&M) Mingsheng Liu, Yeqiao Zhu, and David Claridge Energy Systems Laboratory Texas A&M University ABSTRACT In most chiller and boiler central... and cooling energy consumption using an appropriate model [Liu 1995, Liu and Claridge 19951 with the bin weather data for each building. Step 5: Calculate the campus consumption as the sum of consumption of all buildings. Step 6: Compare the simulated...

Liu, M.; Zhu, Y.; Claridge, D. E.

1996-01-01T23:59:59.000Z

329

An Experimental Evaluation of HVAC-Grade Carbon-Dioxide Sensors: Part 3, Humidity, Temperature, and Pressure Sensitivity Test Results  

SciTech Connect (OSTI)

This is the third paper in a four-part series reporting on the test and evaluation of typical carbon-dioxide sensors used in building HVAC applications. Fifteen models of NDIR HVAC-grade CO2 sensors were tested and evaluated to determine the humidity, temperature, and pressure sensitivity of the sensors. This paper reports the performance of the sensors at various relative humidity, temperature, and pressure levels common to building HVAC applications and provides a comparison with manufacturer specifications. Among the 15 models tested, eight models have a single-lamp, single-wavelength configuration, four models have a dual-lamp, single-wavelength configuration, and three models have a single-lamp, dual-wavelength configuration. The sensors were tested in a chamber specifically fabricated for this research. A description of the apparatus and the method of test are described in Part 1 (Shrestha and Maxwell 2009). The test result showed a wide variation in humidity, temperature, and pressure sensitivity of CO2 sensors among manufacturers. In some cases, significant variations in sensor performance exist between sensors of the same model. Even the natural variation in relative humidity could significantly vary readings of some CO2 sensor readings. The effects of temperature and pressure variation on NDIR CO2 sensors are unavoidable without an algorithm to compensate for the changes. For the range of temperature and pressure variation in an air-conditioned space, the effect of pressure variation is more significant compared to the effect of temperature variation.

Shrestha, Som S [ORNL; Maxwell, Dr. Gregory [Iowa State University

2010-01-01T23:59:59.000Z

330

Airflow regulation in variable-speed systems for residential HVAC applications  

SciTech Connect (OSTI)

In the majority of heating, ventilating, and air-conditioning (HVAC) systems, air is the final medium for adding or extracting heat from or to the space to be air conditioned. Air is heated by passing it over a heat transfer device called a coil, which is a heat exchanger with air on the outside and the primary heating/cooling medium (water, steam, electricity, refrigerant, etc.) on the inside. One of the major factors determining heat transfer is the airflow rate, which can be controlled by mechanical means or by controlling the speed of the fan. Centrifugal fans driven by single-speed induction motors traditionally have been used in the JVAC industry but have an airflow characteristic that depends on the static pressure seen by the system. Variable-speed systems are starting to emerge as a strong alternative to traditional systems because of their ability to match the demand of the air-conditioned space, resulting in higher efficiencies and higher comfort. System efficiency can be improved by constraining the range of airflows provided by the fan or blower system in response to system pressure, that is, by controlling the airflow over the heat exchanger. This paper presents a method to regulate airflow independent of the static pressure and without the need for airflow sensors.

Becerra, R.C.; Beifus, B.L. [General Electric Co., Fort Wayne, IN (United States)

1996-11-01T23:59:59.000Z

331

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

332

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

333

A Formal Approach to Provide Information Support for Troubleshooting of HVAC Related Problems.  

E-Print Network [OSTI]

??Currently, corrective maintenance constitutes more than 55% of all maintenance activities in average facilities management groups in the US and. Among corrective maintenance activities, heating,… (more)

Yang, Xue

2014-01-01T23:59:59.000Z

334

Screening analysis for EPACT-covered commercial HVAC and water-heating equipment  

SciTech Connect (OSTI)

EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

2000-05-25T23:59:59.000Z

335

Advanced control strategies for HVAC&R systems—An overview: Part II: Soft and fusion control  

SciTech Connect (OSTI)

A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-04-01T23:59:59.000Z

336

Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryan WheelerResidentialHVAC A

337

An evaluation of technologies for real-time measurement of rates of outdoor airflow into HVAC systems  

SciTech Connect (OSTI)

During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of four commercially available measurement technologies and one prototype based on a new design are also summarized. The test system and protocol were judged practical and very useful. The series of tests identified three commercially available measurement technologies that should provide reasonably accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. The errors in OA flow rates measured with the fourth commercially available measurement technology were 20% to 30% with horizontal probes but much larger with vertical probes. The new prototype measurement technology was the only one that appears suitable for measuring OA flow rates over their full range from 20% OA to 100% OA without using two separate OA dampers. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2004-09-01T23:59:59.000Z

338

Measurement of HVAC system performance and local ventilation using passive perfluorocarbon tracer technology  

SciTech Connect (OSTI)

In April of 1993, two (2) perfluorocarbon tracer (PFT) ventilation/indoor air quality assessment tests were performed in the Gleeson Hall building of the SUNY Farmingdale campus. The building was being modified, in part, as a result of significant occupant complaints of perceived poor air quality. The four story building had a basement first floor with air supplied normally by an HVAC system labelled as AC1. During this study, AC1 was inoperational and the basement interior rooms (walls) were primarily gone; the other three floors were still being used for classes. It is possible that a sense of poor air quality may have been perceived by first-floor occupants because they were working in the basement, but this issue could not be addressed. The second floor had two (2) lecture halls--Rm 202 (handled by AC4) and Rm 204 (handled by AC5); the balance of the second floor interior rooms and corridors was split between two other air handling systems, AC2 for the west side of the building and AC3 for the east side. The remaining 3rd and 4th floors were also split about evenly between AC2 and AC3. The perimeter rooms, equipped with wall units having their own outside air (OA) source plus centralized return air (RA) bypasses, were not included in this testing which was restricted to the basement floor (1st floor) and the four operating air handling systems, AC2 to AC5, during Test 1 and only AC2 to AC5 during Test 2. Two types of tests were performed using the full suite of 5 PFT types available. The first test was designed to measure the infiltration, exfiltration, and air exchange between the 5 AC zones above and the second test used the 5th tracer, which had been in the basement, as a distributed source throughout the four other zones to act as a surrogate pollutant source. This report provides final conclusions of both tests and suggestions regarding its usefulness in similar building ventilation and indoor air quality assessments.

Dietz, R.N.; Goodrich, R.W.

1995-06-01T23:59:59.000Z

339

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

. For these reasons, ground-coupled heat pump systems are potentially more efficient than conven- tional air-to-air -Source Heat Pump System Models in an Integrated Building and System Simulation Environment. HVAC&R Research 12 and Validation of Ground-Source Heat Pump System Models in an Integrated Building and System Simulation

340

Study on Control Performance of HVAC System or Interior Zone and Perimeter Zone in Office Building; Estimation of Optimal PI Tuning in Cooling Operation  

E-Print Network [OSTI]

In office buildings there are generally two HVAC systems installed, one in the perimeter zone (PZ) and one in the interior zone (IZ), and the temperatures of each zone are independently controlled. In the present paper, in order to the solve problem...

Maehara, K.; Sagara, N.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

function (TF) method was the method of choice for cooling load calculation. There- fore, information; Rundquist 1990; Treado and Bean 1992). Recently, ASHRAE developed two new cooling load calculation: Chantrasrisalai, C., and D.E. Fisher. 2007. Lighting heat gain parameters: Experimental results. HVAC&R Research

342

NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)  

SciTech Connect (OSTI)

This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

Not Available

2005-09-01T23:59:59.000Z

343

Market assessment for active solar heating and cooling products. Category B: A survey of decision makers in the HVAC market place. Survey instruments  

SciTech Connect (OSTI)

Telephone screener questionnaires and mail-out questionnaires for marketing surveys for solar heating and cooling equipment are presented. Questionnaires are included for the residential segment, industrial segment, HVAC professionals segment, builder/developer segment, and the commercial segment. No results are reported. (WHK)

Lilien, G. L.; Johnston, P. E.

1980-09-01T23:59:59.000Z

344

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

SciTech Connect (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

345

Introducing Energy Management Systems into Smaller Facilities  

E-Print Network [OSTI]

Many small and medium sized commercial buildings are energy hogs. Typically they were designed and built to meet low first cost criteria. Control system capability is usually minimal, insulation is thin, glass areas are large, and HVAC equipment...

Lawrence, J. A.

1983-01-01T23:59:59.000Z

346

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

347

Evaluation of commercially available techniques and development of simplified methods for measuring grille airflows in HVAC systems  

SciTech Connect (OSTI)

In this report, we discuss the accuracy of flow hoods for residential applications, based on laboratory tests and field studies. The results indicate that commercially available hoods are often inadequate to measure flows in residential systems, and that there can be a wide range of performance between different flow hoods. The errors are due to poor calibrations, sensitivity of existing hoods to grille flow non-uniformities, and flow changes from added flow resistance. We also evaluated several simple techniques for measuring register airflows that could be adopted by the HVAC industry and homeowners as simple diagnostics that are often as accurate as commercially available devices. Our test results also show that current calibration procedures for flow hoods do not account for field application problems. As a result, organizations such as ASHRAE or ASTM need to develop a new standard for flow hood calibration, along with a new measurement standard to address field use of flow hoods.

Walker, Iain S.; Wray, Craig P.; Guillot, Cyril; Masson, S.

2003-08-01T23:59:59.000Z

348

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating Ventilation and Air Conditioning (HVAC) system for the HIE-ISOLDE infrastructure

2012-01-01T23:59:59.000Z

349

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

2012-01-01T23:59:59.000Z

350

Energy Management in Small Commercial Buildings: A Look at How HVAC Contractors Can Deliver Energy Efficiency to this Segment  

SciTech Connect (OSTI)

While buildings smaller than 50,000 sq ft account for nearly half of the energy used in US commercial buildings, energy efficiency programs to-date have primarily focused on larger buildings. Interviews with stakeholders and a review of the literature indicate interest in energy efficiency from the small commercial building sector, provided solutions are simple and low-cost. An approach to deliver energy management to small commercial buildings via HVAC contractors and preliminary demonstration findings are presented. The energy management package (EMP) developed includes five technical elements: benchmarking and analysis of monthly energy use; analysis of interval electricity data (if available), a one-hour onsite walkthrough, communication with the building owner, and checking of results. This data-driven approach tracks performance and identifies low-cost opportunities, using guidelines and worksheets for each element to streamline the delivery process and minimize the formal training required. This energy management approach is unique from, but often complementary to conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Because HVAC contractors already serve these clients, the transaction cost to market and deliver energy management services can be reduced to the order of hundreds of dollars per year. This business model, outlined briefly in this report, enables the offering to benefit the contractor and client even at the modest expected energy savings in small buildings. Results from a small-scale pilot of this approach validated that the EMP could be delivered by contractors in 4-8 hours per building per year, and that energy savings of 3-5percent are feasible through this approach.

Hult, Erin; Granderson, Jessica; Mathew, Paul

2014-07-01T23:59:59.000Z

351

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

352

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

353

Guide to research facilities  

SciTech Connect (OSTI)

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

354

Activation of Air and Utilities in the National Ignition Facility  

SciTech Connect (OSTI)

Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

Khater, H; Pohl, B; Brererton, S

2010-04-08T23:59:59.000Z

355

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

356

Homeland Security Issues for Facilities  

E-Print Network [OSTI]

efficiency filters typically cause greater static pressure drop. Replacing air handling units to accept higher efficiency filters can be a major undertaking and expense. Besides offering some protection from biological and radiological agents, efficient..., security, surveillance, ventilation and filtration, and maintenance and training. The remainder of this discussion will focus primarily on occupant protection through HVAC system readiness and additional security measures. The aftermath of natural...

McClure, J. D.; Fisher, D.; Fenter, T.

2004-01-01T23:59:59.000Z

357

Logue and Singer, HVAC&R, 20(2): 264-275, 2014. Energy Impacts of Effective Residential Range Hood Use, LBNL-6683E Page 1  

E-Print Network [OSTI]

Use, LBNL-6683E Page 1 Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking-92322201-0; and by the California Energy Commission through Contracts 500-05-026 and 500-08-061. LBNL Report Number 6683-E #12;Logue and Singer, HVAC&R, 20(2): 264-275, 2014. Energy Impacts of Effective Residential Range Hood Use, LBNL-6683E

358

HVAC ENERGY EFFICIENCY CASE STUDY Evaporcool condenser air pre-cooler retrofit for air-cooled chillers  

E-Print Network [OSTI]

-cooled chillers installed at Contrails Dining Facility at Beale Air Force Base in Marysville, California-ton air-cooled chiller at the 15,000 sq. ft. Contrails Dining Facility. The project demonstrated-cooler over a multitude of possible facility sizes served, and over a large range of chiller and RTU

California at Davis, University of

359

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

360

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technology Transitions Facilities Database  

Broader source: Energy.gov [DOE]

The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

362

Better building: LEEDing new facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better building: LEEDing new facilities Better building: LEEDing new facilities We're taking big steps on-site to create energy efficient facilities and improve infrastructure....

363

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

364

Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings  

SciTech Connect (OSTI)

This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

Patrick O'Neill

2009-06-30T23:59:59.000Z

365

2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

366

Science and Technology Facility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

367

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Climate, Ocean, and Sea Ice Modeling (COSIM) Terrestrial Ecosystem and Climate Dynamics Fusion Energy Sciences Magnetic Fusion Experiments Plasma Surface...

368

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

- (Core Requirements 4 and 6) Sufficient numbers of qualified personnel are available to conduct and support operations. Adequate facilities and equipment are available to ensure...

369

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

370

Existing Facilities Program  

Broader source: Energy.gov [DOE]

The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

371

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

372

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

373

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

374

Hot Fuel Examination Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

375

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

376

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network [OSTI]

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

377

Facilities Management CAD Standards  

E-Print Network [OSTI]

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

378

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

379

Argonne Leadership Computing Facility  

E-Print Network [OSTI]

Argonne Leadership Computing Facility Argonne Leadership Computing Facility 2010 ANNUAL REPORT S C I E N C E P O W E R E D B Y S U P E R C O M P U T I N G ANL-11/15 The Argonne Leadership Computing States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees

Kemner, Ken

380

A Materials Facilities Initiative -  

E-Print Network [OSTI]

A Materials Facilities Initiative - FMITS & MPEX D.L. Hillis and ORNL Team Fusion & Materials for Nuclear Systems Division July 10, 2014 #12;2 Materials Facilities Initiative JET ITER FNSF Fusion Reactor Challenges for materials: fluxes and fluence, temperatures 50 x divertor ion fluxes up to 100 x neutron

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nanotechnology User Facility for  

E-Print Network [OSTI]

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

382

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

383

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

384

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

strategy, 2) perform energy efficiency audits of city facilities, 3) upgrade HVAC system at City Hall, 4) install an adaptive frequency drive on HVAC chiller at City...

385

FAciLity mAintenAnce College of Rural and Community Development  

E-Print Network [OSTI]

maintenance trends and developing strate- gies for future maintenance needs. Occupational endorsement Program--Troubleshooting HVAC Systems......................................2 CTT F151--Introduction to Plumbing Tools

Hartman, Chris

386

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network [OSTI]

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Hill, Wendell T.

387

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

388

Photovoltaic Research Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

389

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

390

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

's electricity from renewable resources by 2010. The Guidebook outlines eligibility and legal requirementsCALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION

391

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

392

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

393

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

394

Cornell University Facilities Services  

E-Print Network [OSTI]

Description: The Large Animal Teaching Complex (LATC) will be a joint facility for the College of Veterinary or increase operating costs of the dairy barn; therefore, the College of Veterinary Medicine has agreed

Manning, Sturt

395

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

396

Facilities Management Department Restructuring  

E-Print Network [OSTI]

­ Zone 2 ­ Mission Bay/East Side: Includes Mission Bay, Mission Center Bldg, Buchanan Dental, Hunters Point, 654 Minnesota, Oyster Point 2. Recommendation that UCSF align all Facility Services and O

Mullins, Dyche

397

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

398

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

399

Pollution Control Facilities (South Carolina)  

Broader source: Energy.gov [DOE]

For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

400

National Ignition Facility subsystem design requirements laser {ampersand} target area building (LTAB) SSDR 1.2.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements for the conventional building systems and subsystems of the Laser and Target Area Building (LTAB), including those that house and support the operation of high-energy laser equipment and the operational flow of personnel and materials throughout the facility. This SSDR addresses the following subsystems associated with the LTAB: Building structural systems for the Target Bay, Switchyards, Diagnostic Building, Decontamination Area, Laser Bays, Capacitor Bays and Operations Support Area, and the necessary space associated with building-support equipment; Architectural building features associated with housing the space and with the operational cleanliness of the functional operation of the facilities; Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facilities; Plumbing systems that provide potable water and sanitary facilities for the occupants, plus stormwater drainage for transporting rainwater; Fire Protection systems that guard against fire damage to the facilities and their contents; Material handling systems for transporting personnel and heavy materials within the building areas; Mechanical process piping systems for liquids and gases that provide cooling and other service to experimental laser equipment and components; Electrical power and grounding systems that provide service and standby power to building and experimental equipment, including lighting distribution and communications systems for the facilities; Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Detailed requirements for building subsystems that are not addressed in this document (such as specific sizes, locations, or capacities) are included in detail-level NIP Project Interface Control Documents (ICDS).

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Working with SRNL - Our Facilities - Glovebox Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14Working WithGlovebox Facilities

402

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in Cook County, Illinois. ItBrookhaven Facility

403

Impact of E4 Training and Field Auditing of GSA Heartland Region Facilities  

SciTech Connect (OSTI)

To assess the impact of energy efficiency expert evaluation (E4) training and field audits performed since 2007, the Federal Energy Management Program (FEMP) undertook a follow-up study on the implementation of E4 recommendations and an analysis of energy savings. The building property manager and O and M contractor of each facility were interviewed to obtain feedback and implementation status of the E4 recommendations. Overall, there were more than 160 recommendations documented in the E4 reports; about 50% of these recommendations were fully implemented and the remaining 50% either partially implemented or not implemented. In four buildings, the E4 recommendations were aligned with American Recovery and Reinvestment Act of 2009 (ARRA) projects replacing HVAC equipment or upgrading the building control system. The E4 recommendations were not followed-up in two buildings because of uncertainty of the long-term use of the facility or personnel changes. Results of this followon study are reported in this document.

Fernandez, Nicholas; Gowri, Krishnan; Underhill, Ronald M.; Goddard, James K.

2012-04-01T23:59:59.000Z

404

HVAC-systems.  

E-Print Network [OSTI]

?? It is of interest for companies to keep the annual operating cost of their buildings as low as possible. A substantial share of the… (more)

Alvsvćg, Űyvind

2011-01-01T23:59:59.000Z

405

Personalized HVAC control system  

E-Print Network [OSTI]

We present a novel method of building comfort control, focused around the occupant. Custom sensing, communication, and actuation hardware were developed to locate users in a building, and measure various parameters directly ...

Feldmeier, Mark Christopher

406

Variable Refrigerant Flow HVAC  

E-Print Network [OSTI]

Conference, San Antonio, Texas Dec. 16-18 What do they know that we don’t know? Japan 90% Over 7 Million Systems China 86% Over 17 Million Systems Europe 81% Over 7 Million Systems USA 4% .5 Million Systems ESL-KT-13-12-33 CATEE 2013: Clean Air Through...-source VRF IEER 11.5 - 17.7 19.6 9.7 10.3 10.9 10.5 IPLV - 14.2 - - SCHE - - 18.6 N/A Energy Efficiency - commercial EER ESL-KT-13-12-33 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 More Comfort & Quiet ? 4 ton...

Jones, S.

2013-01-01T23:59:59.000Z

407

HVAC Performance Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED HotSeptember 2005 |HUD's

408

UNIVERSITY BOULEVARD FAU Research Facility  

E-Print Network [OSTI]

Harriet L.Wilkes Honors College FAU Research Facility Expansion Satellite Utility Plant Chiller Lift

Fernandez, Eduardo

409

Hanford facility contingency plan  

SciTech Connect (OSTI)

The Hanford Facility Contingency Plan, together with each TSD unit- specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. Applicability of this plan to Hanford Facility activities is described in the Hanford Facility RCRA Permit, Dangerous Waste Portion, General Condition II.A. General Condition II.A applies to Part III TSD units, Part V TSD units, and to releases of hazardous substances which threaten human health or the environment. Additional information about the applicability of this document may also be found in the Hanford Facility RCRA Permit Handbook (DOE/RL-96-10). This plan includes descriptions of responses to a nonradiological hazardous substance spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. The term hazardous substances is defined in WAC 173-303-040 as: ``any liquid, solid, gas, or sludge, including any material, substance, product, commodity, or waste, regardless of quantity, that exhibits any of the physical, chemical or biological properties described in WAC 173-303-090 or 173-303-100.`` Whenever the term hazardous substances is used in this document, it will be used in the context of this definition. This plan includes descriptions of responses for spills or releases of hazardous substances occurring at areas between TSD units that may, or may not, threaten human health or the environment.

Sutton, L.N.

1996-07-01T23:59:59.000Z

410

Fitness facilities, facilities for extracurricular activities and other purposes Facility Location Department in charge  

E-Print Network [OSTI]

Facility Location Department in charge Student Hall (1) Common Facility 1 for Extracurricular Activities (2 tennis courts, Swimming pool (25 m, not officially approved) Rokkodai Area (Tsurukabuto 2 Campus) Martial art training facility, Japanese archery training facility, Playground, 4 tennis courts, Swimming pool

Banbara, Mutsunori

411

RCRA facility stabilization initiative  

SciTech Connect (OSTI)

The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program`s management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies.

Not Available

1995-02-01T23:59:59.000Z

412

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [Facility

413

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMayMarch 1, 2012 [FacilityMay

414

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities Glove

415

Service & Reliability Equipment & Facilities  

E-Print Network [OSTI]

termites E5 Marine applications, panel & block E7 Field Stake tests (FST colonies) E9 Above ground L-joint stake test (Formosan termites & decay), E9 L- joint, E16 (horizontal lap-joint), E18 ground proximity facilities for AWPA test: A9 X-ray, E1 (termites), E10 (soil block), E11 (leaching), E12 metal corrosion

416

Graph algorithms experimentation facility  

E-Print Network [OSTI]

DRAWADJMAT 2 ~e ~l 2. ~f ~2 2 ~t ~& [g H 2 O? Z Mwd a P d ed d Aid~a sae R 2-BE& T C dbms Fig. 2. External Algorithm Handler The facility is menu driven and implemented as a client to XAGE. Our implementation follows very closely the functionality...

Sonom, Donald George

1994-01-01T23:59:59.000Z

417

Strategies for Facilities Renewal  

E-Print Network [OSTI]

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

418

FACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES  

E-Print Network [OSTI]

to the repair of hydraulic turbine runners and large pump impellers. Reclamation operates and maintains a wideFACILITIES INSTRUCTIONS, STANDARDS, & TECHNIQUES VOLUME 2-5 TURBINE REPAIR Internet Version variety of reaction and impulse turbines as well as axial flow, mixed flow, radial flow pumps and pump

Laughlin, Robert B.

419

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

420

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

422

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

423

PUREX facility preclosure work plan  

SciTech Connect (OSTI)

This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D).

Engelmann, R.H.

1997-04-24T23:59:59.000Z

424

Reed Reactor Facility Annual Report  

SciTech Connect (OSTI)

This is the report of the operations, experiments, modifications, and other aspects of the Reed Reactor Facility for the year.

Frantz, Stephen G.

2000-09-01T23:59:59.000Z

425

Lunch & Learn Facilities &  

E-Print Network [OSTI]

" 3 #12;What are F&A costs? OMB Circular A-21 provides guidance on F&A costs F&A a.k.a. Overhead a #12;F&A Rate Development Process FSU's process must be designed to ensure that Federal sponsors do usage ­ Allocate facilities costs ­ Provide productivity analysis Space survey tool WebSpace ­ On-line

McQuade, D. Tyler

426

ARM - SGP Intermediate Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility

427

Facilities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergy BlogExchangeSummary TableFacilities

428

CFTF | Carbon Fiber Technology Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

429

CRAD, Nuclear Facility Construction - Structural Concrete, May...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

430

Canyon Facilities - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyon Facilities

431

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy153014TheFacilities NREL's

432

ARM - SGP Extended Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtended Facility SGP Related

433

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

434

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone Complete!

435

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act Milestone

436

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act MilestoneOctober

437

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery Act

438

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015

439

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20, 2015June

440

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary 20,August

442

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News] Final Recovery ActJanuary

443

ARM - Guest Instrument Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAX News GangesListGreenhouse

444

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility

445

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3, 200828,15, 2005 [Facility31,

446

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [Facility

447

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October 28, 2010 [FacilityUser

448

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility

449

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010 [DataDatastreamstoms3,4,3,October15, 2005 [Facility31,

450

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation on

451

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New Instrumentation

452

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] New

453

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look for

454

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look

455

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15, 2004

456

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,

457

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew Look15,August

458

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNew

459

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15, 2004

460

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust 15,

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugust

462

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh Speed

463

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHigh

464

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News] NewNewAugustHighArctic

465

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]

466

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan Deflects

467

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster Plan

468

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary

469

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster PlanFebruary5,

470

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster

471

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 2011

472

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125, 2011

473

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,

474

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9, 201125,May

475

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,

476

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,Website

477

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility News]Disaster9,WebsiteApril

478

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [Facility

479

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011 [Education,

480

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011

Note: This page contains sample records for the topic "facility hvac" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011

482

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,

483

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20, 2011,5,

484

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,

485

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 2011

486

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9, 201110,

487

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,

488

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23, 2011

489

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,

490

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May 20,9,23,31,

491

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011May

492

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary

493

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,

494

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14, 2011MayMilitary30,New

495

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,

496

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011

497

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27, 2011CIMEL

498

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,

499

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 2011

500

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30, 2004 [FacilityMay 14,October 27,, 20114,